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Abstract— The detection of head movement plays a crucial role
in human-computer interaction systems. These systems depend
on control signals to operate a range of assistive and augmented
technologies, including wheelchairs for Quadriplegics, as well as
virtual/augmented reality and assistive driving. Driver drowsiness
detection and alert systems aided by head movement detection can
prevent major accidents and save lives. Wearable devices, such
as MagTrack consist of magnetic tags and magnetic eyeglasses
clips and are intrusive. Vision-based systems suffer from ambient
lighting, line of sight, and privacy issues. Contactless sensing has
become an essential part of next-generation sensing and detec-
tion technologies. Wi-Fi and radar provide contactless sensing,
however in assistive driving they need to be inside enclosures or
dashboards, which for all practical purposes in this paper have
been considered as through walls. In this study, we propose a contactless system to detect human head movement
with and without walls. We used ultra-wideband(UWB) radar and Wi-Fi signals, leveraging machine and deep learning
techniques. Our study analyzes the six common head gestures: right, left, up, and down movements. Time-frequency
multi-resolution analysis based on wavelet scalograms is used to obtain features from channel state information values,
along with spectrograms from radar signals for head movement detection. Feature fusion of both radar and Wi-Fi signals
is performed with state-of-the-art deep learning models. A high classification accuracy of 83.33% and 91.8% is achieved
overall with the fusion of VGG16 and InceptionV3 model features trained on radar and Wi-Fi time-frequency maps with
and without the walls, respectively.

Index Terms— RF sensing, behavior monitoring, micro-Doppler signatures, channel state information, deep learning,
machine learning, features fusion.

I. INTRODUCTION

HEAD movements [1], carry important information re-
lated to human behavior. Head motions are an in-

tegral part of non-verbal communication and have a wide
range of applications for human-computer interaction, such
as assistive technologies, virtual and augmented reality, and
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assistive driving systems. Head movement detection has been
widely utilised for assistive driving of wheelchairs for patients
suffering from paralysis, driver drowsiness detection and alert
systems. Intelligent assistive driving systems can reduce the
number of road accidents by monitoring driver’s behavior
through head movements and generate alerts accordingly.
Mental tiredness impairs focus when driving and has major
safety implications [2], [3]. Poor sleep and tiredness are
major causes of poor driving performance, steering mistakes,
loss of vehicle control, and deadly accidents [4]–[7]. Driving
assistance systems rely heavily on the detection of driver at-
tentiveness. The orientation of the driver’s head may reflect his
degree of attention. Head movement is getting high popularity
in assistive driving since an estimated 1,560 reported road
deaths in 2021 in the UK [8]. In recent years, there has been an
increase in assistive technologies in healthcare and many other
domains that benefit from smart technology concepts. Head
movement detection has proven to be effective in many ap-
plications such as the detection of driver’s fatigue [9], human
visual focus [10], behavior recognition [11], vitals monitoring
[12], healthcare cognitive assistance [13], in figuring out the
human head kinematics [14] to estimate and predict possible
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head collision injuries in athletes, and in clinical depression
monitoring [15] etc. Real-time head movements estimation
techniques are also being integrated with mobile devices
which can assist in multiple healthcare applications. Thread-
based sensors are also used along with machine learning
algorithms to classify various head movements [16]. This
research [16] describes a method for tracking and classifying
head movements using flexible strain-sensing threads attached
to the neck of an individual. A data processing technique for
motion recognition quantifies head location in near real-time.
To predict the location, a set of features is extracted from each
data segment and utilized as input for nine classifiers, includ-
ing Support Vector Machine, Naive Bayes, and KNN. Several
other techniques to estimate head position are surveyed in
[17]. Using multi-primitive closed-loop face analysis in video
arrays, [18] developed a computational framework for robust
face identification and posture estimation. [19] used facial
symmetry and anthropometric measurements to compute head
orientation. The head’s Y-Z coordinates were calculated using
eye distances and camera focal length. Face anthropometry
was used to estimate head X-axis orientation. This method was
tested on actual photos. [20] presented a real-time head move-
ment estimation approach based on the video camera as a way
of communication between the individual and the device. The
suggested solution is made up of numerous computer-vision
algorithms that have been carefully tuned to work in a specific
environment, as well as a head posture estimation based on
rolling/yaw, and pitching movement calculations. Experiments
were carried out using 363 videos of 27 individuals in various
settings. Also, camera-based and wearable devices were used
to recognize head movements, which were discussed in the lit-
erature for identifying human behavior while listening, talking,
and in driving assistance applications. These techniques have
limitations, such as the obligation to record the target, which
restricts their practical uses due to privacy concerns. The legal
implications of such aids may restrict their wider use in public
and private settings; for example, video-in-head motions may
be viewed as photographing someone without their consent,
which is illegal in many countries. The main drawbacks of
existing camera-based and wearable-based technology include
serious privacy concerns, poor lighting, obstructions to the line
of sight, training difficulties with longer video sequence data,
and computational complexities, and wearable devices disrupt
daily routines.

Radio frequency (RF) head movement sensors, on the other
hand, can fulfill the demand for next-generation technologies.
By recognizing head motions using RF sensing, machine learn-
ing (ML), and deep learning (DL) techniques, various appli-
cations can benefit from very accurate cues. Moreover, unlike
vision-based systems, RF sensing-based head movements are
unaffected by opaque barriers or walls separating the target and
the transponder. RF signals can pass through walls to detect
visual cues, such as head and lip movements. Head movements
provide additional functionality for the next generation of
multimodal hearing aid devices for understanding the behavior
of people. In this study, we designed, developed, and tested an
RF sensing-based method for detecting head motions with and
without a wall. Activity monitoring through walls or barriers

via Wi-Fi and radar devices is a great breakthrough in the field.
Since cameras are limited to line-of-sight visuals and they can
not detect/sense any object or humans through walls/barriers.
Therefore in this work, we introduced a radar and Wi-Fi-based
novel system which can perform head-movements monitoring
through walls and other opaque barriers.

These papers [21]–[23], provide an explanation of all ap-
plications conducted through RF (Radio Frequency) covering
speech recognition, activity recognition, and hand gestures
with high accuracies. The advantages and challenges of radar-
based driving assistance systems are presented in [24]. For
the automotive-radar industries, the main system requirements
are to achieve high-resolution, low-cost hardware and size
compactness. The major strength of using automotive-Radars
in driving-assistance systems is the higher angular resolutions
attained even with a small number of antennas being used.
The authors also discussed the high-resolution angle-finding
techniques that are computationally effective for automotive-
radar applications. In another work, [25], four human activity
recognition such as (a) box (punch forward three times), (b)
pick (squat down and pick something up), (c) foot (four steps
in place), and (d) zombie (raise a hand like a zombie) were
performed through the wall using radar and achieves 97.6%
accuracy. Similarly, the authors in [26] presented human
activity (walking, sitting, and falling) detection system using
Wi-Fi signals. In this work, the transmitter and receiver were
separated by the wall and activities were performed on both
sides of the transmitter and receiver side.

Our work focuses on recognizing different head movements
and collecting data using micro-Doppler signatures and CSI
amplitude using a radar sensor and Wi-Fi signals. The existing
dataset is diverse in nature that includes samples from a
wide variety of subjects (ages and genders) and a diverse
number of classes that cover all essential aspects of head
movements. Head up, Head down, Right 90, Left 90, Right
45, and Left 45 are the six types of Doppler signatures and
CSI data considered for this work. These types of movements
include dynamic gestures in which mobility or head are used
to represent various movements. The dataset was recorded
using two separate methods i.e. using a Radar sensor and Wi-
Fi signals with and without a wall. These features make the
dataset a better option for the training and assessment of ML
and DL algorithms for the recognition of head movements.
In order to visualize the recorded data, spectrograms and CSI
amplitudes were used.

The following presents the main contributions of our re-
search work in the field:

• We proposed a contact-less head recognition system that
automatically recognizes and translates head movements
with and without a wall in between the target and
transponder setup.

• In addition, we collect a dataset of 2400 samples from
6 different types of head movements captured at 0.50
centimeters distance away from the target. Furthermore,
the data samples are collected using 2 different techniques
(Radar sensor and Wi-Fi signals) with and without a
wall. To ensure diversity, data was collected from four
participants (two males and two females) ranging in age
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from 20 to 40 years.
• For the radar dataset, VGG16, VGG19, InceptionV3,

and SqueezeNet were applied on the individual subject,
combined dataset of four subjects VGG16 outperformed
as compared to another algorithm with 80% Accuracy
with the wall and 79.2% without the wall.

• For the Wi-Fi dataset, VGG16, VGG19, Incep-
tionV3, SqueezeNet, Neural network pattern recognition,
Tree(Medium Tree), and Ensemble(Boosted Tree) was
applied on the individual subject, a combined dataset of
four subjects InceptionV3 outperformed as compared to
another algorithm 80% Accuracy with the wall and 89%
without the wall.

• The fusion of features for different deep learning models
was tested. The highest accuracy values of 91% without
the wall were achieved with feature fusion of VGG16
and InceptionV3 deep learning models. Furthermore, the
highest accuracy of 83.33% was achieved through the
walls with the feature fusion of VGG16 and InceptionV3
deep learning models.

• In this work, we presented the experimental results from
several state-of-the-art DL and ML models applied to
our benchmark dataset, which can serve as a foundation
for future research in the domain of detecting head
movements through walls.

This research proposes novel head movement gestures
using micro-doppler signatures using radar-sensor with and
without walls. Five different gestures are considered Head
45L, Head 45R, Head 90L, Head 90R, and Head Down.
An ultra-wideband radar, XeThru X4M03 is used to record
experimental data. The received data is represented in the form
of spectrograms while spatiotemporal features were extracted
using fusion of two different models. We achieved 91.8%
of classification accuracy without a wall. The possible use
cases of the proposed technology are illustrated in Fig. 1.
The whole setup, data collection, DL and ML algorithms, and
experimental results are presented in the following sections.

II. RADAR BASED SETUP

The experimental setup and configuration parameters for
the radar-based head movement system are illustrated in Fig.
2a. The sensor has a 1.5 GHz sensor bandwidth and a
detection range of about 9.6 meters. It utilizes an ultra-wide-
wide (UWB) radar sensor, specifically the Xethru-X4M03
model, equipped with both transmitter (Tx) and receiver (Rx)
antennas. To derive valuable insights from the radar data,
we employed the short-time Fourier transform (STFT) on
the radar signal. This process resulted in the creation of
spectrograms that effectively captured the radar Doppler shift
corresponding to various head movements. Examination of
these spectrograms revealed that different head movements
produced distinct spectrogram patterns.

A. Scenario 1 - Line-of-sight: With no wall in between
target and transponder setup

The sensor was placed in front of the participants/subject at
around a half-meter distance. The experimental data recording

activity for head movements was carried out by placing the
radar 0.5 meters away from the subject sitting on a chair.
The only movements performed here by the subjects were
the head movements with slight shoulder movements which
naturally arises while talking. The rest of the body was in
a normal sitting position. Each activity was performed in a
4 seconds time frame. In these 4 seconds, the RF signal was
transmitted and received back by the radar. The data collection
and processing using UWB radar setup are shown in Fig. 3a.

B. Scenario 2 -Non-line-of-sight: With wall/opaque
barrier in between target and transponder setup

The sensor was placed in the line of sight of the par-
ticipants/subject at around a half-meter distance. A plaster-
board/drywall wall was placed between the target and the
radar. The experimental data recording activity for each head
movement was carried out for 4 seconds and during these
four seconds, the radar sent and received the RF signals. The
subject was sitting on the chair in a normal position while
performing head movements activity. The data collection and
processing using UWB radar setup are shown in Fig. 3b.

III. WI-FI BASED SETUP

The second set of experiments was performed using Wi-
Fi. The experimental setup and parameter configuration for
Wi-Fi based head movement system is given in Fig. 2b.
The main equipment of this setup is USRP-X300 with a
single transmitter antenna (directional) and two antennas at
the receiver side which are (directional) in nature. On the
transmitter side, the Rx antenna UWB 1.35GHz-9.5GHz Log-
Periodic Directional was used as a transmitter whereas two
monopole antennas (VERT2450) optimized at an operating
frequency of 5.5 GHz were used as a receiver. The gain of both
the Tx/Rx antennas was set to 35 dB. The USRP and desktop
were connected using an Intel(R)-Core(TM) i7-7700 processor
operating at 3.60 GHz with 16GB of RAM. Communication
between the USRP and GNU Radio was established using a
virtual machine running Ubuntu 16.04. A Python script was
employed to transmit and receive data from the USRP-X300.
The experiments were conducted within the 5.5 GHz Wi-Fi
frequency band.

A. Scenario 1 - Line-of-sight: With no wall in between
target and transponder setup

The Tx and Rx antennas were situated approximately 0.50
meters away from the subject, and each head movement was
performed continuously for 4 seconds. The data collection
process and subsequent processing using Wi-Fi equipment
are depicted in Fig. 3c. It’s important to note that Wi-Fi
signals were evaluated based on a range of characteristics,
including time-frequency maps, among others. Unlike radar
signals, where frequency shift was the primary distinguishing
factor, Wi-Fi CSI values were most effective when variations
in CSI amplitudes were observed. These fluctuations in one-
dimensional CSI amplitude revealed distinctive patterns of
head movement.
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Fig. 1. Conceptual representation of the suggested methodology for head movements.

B. Scenario 2 - Non-line-of-sight: With wall/opaque
barrier in between target and transponder setup

The Tx and Rx antennas were positioned around 0.50 meters
away from the subject. Plasterboard or drywall was placed
between Tx, Rx, and target. The experimental data recording
activity for each head movement was carried out for 4 seconds
and during these four seconds, the Tx signal hit the target
and was received back to the receiver. The subject was sitting
on the chair in a normal position while performing head
movements activity. The data collection and processing using
Wi-Fi setup are shown in Fig. 3d.

IV. METHODS

The main illustration of head movement activity is shown
in Fig. 4a. In the case of Wi-Fi, 2000 packets were transmitted

within four seconds, where each data instance represented the
CSI amplitudes. The CSI patterns (amplitude) of considered
head movements, namely, Head down, Head up, Head left
90, Head Right 90, Head Right 45, and Head Left 45, are
depicted in Fig. 4b without wall and Fig. 4d with wall
experiments. In each figure, the 51 subcarriers of the OFDM
signal are represented by different colors. The amplitude of
the subcarriers is represented on the y-axis of each sub-figure,
while the number of received packets is displayed on the x-
axis. In the radar scenario, The same approach was used for
data collection with a total of 600 data samples, four subjects
participated including two males and two females, with 25 data
samples in each class. Data is in the form of a spectrogram,
which is shown in Fig. 4c without wall and Fig. 4e with
wall experiments. Each figure’s different colors represent a



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (OCTOBER 2023) 5

a b

c

Your Paper

You

December 12, 2022

Abstract

Your abstract.

Parameter Value

USRP-Platform X300
OFDM-subcarriers 51
Frequency of operation 5.5GHz
Gain of Tx 35dB
Gain of Rx 35dB
Tx antenna Log periodic HyperLOG 7040, 700MHz to 4GHz
Rx antenna UWB 1.35GHz-9.5GHz Log-Periodic Directional
Subject distance from Tx-Rx antennas 0.50 meters
Duration of activity 4 seconds
Samples collected (each class) 50

References

Subject Head Movements
Radar Wi-Fi

Head down Head Up Left 45 Left 90 Right 45 Right 90 Head down Head Up Left 45 Left 90 Right 45 Right 90 Total

S1 (Male) With-Wall 25 25 25 25 25 25 25 25 25 25 25 25 300
Without-Wall 25 25 25 25 25 25 25 25 25 25 25 25 300

S2 (Male) With-Wall 25 25 25 25 25 25 25 25 25 25 25 25 300
Without-Wall 25 25 25 25 25 25 25 25 25 25 25 25 300

S3 (Female) With-Wall 25 25 25 25 25 25 25 25 25 25 25 25 300
Without-Wall 25 25 25 25 25 25 25 25 25 25 25 25 300

S4 (Female) With-Wall 25 25 25 25 25 25 25 25 25 25 25 25 300
Without-Wall 25 25 25 25 25 25 25 25 25 25 25 25 300

Total 200 200 200 200 200 200 200 200 200 200 200 200 2400

1

Your Paper

You

December 12, 2022

Abstract

Your abstract.

Parameter Value

USRP-Platform X300
OFDM-subcarriers 51
Frequency of operation 5.5GHz
Gain of Tx 35dB
Gain of Rx 35dB
Tx antenna Log periodic HyperLOG 7040, 700MHz to 4GHz
Rx antenna UWB 1.35GHz-9.5GHz Log-Periodic Directional
Subject distance from Tx-Rx antennas 0.50 meters
Duration of activity 4 seconds
Samples collected (each class) 50

References

Subject Head Movements
Radar Wi-Fi

Head down Head Up Left 45 Left 90 Right 45 Right 90 Head down Head Up Left 45 Left 90 Right 45 Right 90 Total

S1 (Male) With-Wall 25 25 25 25 25 25 25 25 25 25 25 25 300
Without-Wall 25 25 25 25 25 25 25 25 25 25 25 25 300

S2 (Male) With-Wall 25 25 25 25 25 25 25 25 25 25 25 25 300
Without-Wall 25 25 25 25 25 25 25 25 25 25 25 25 300

S3 (Female) With-Wall 25 25 25 25 25 25 25 25 25 25 25 25 300
Without-Wall 25 25 25 25 25 25 25 25 25 25 25 25 300

S4 (Female) With-Wall 25 25 25 25 25 25 25 25 25 25 25 25 300
Without-Wall 25 25 25 25 25 25 25 25 25 25 25 25 300

Total 200 200 200 200 200 200 200 200 200 200 200 200 2400

1

Parameter Value

Platform Xetru radar X4MO3
Instrumental range 9.6 meters
Subject and Radar distance 0.50 meters
Frequency of operation 7.29GHz
Tx power 6.3dBm
Activity duration 4 seconds
Collected samples in each class 25

2

Fig. 2. Head movements activity with their representation in Wi-Fi and radar signal. (a) The configuration parameters of radar software and
hardware without and with through the wall experiment. (b) The configuration parameters of Wi-Fi software and hardware with and without the wall
experiment. (c) An overview of the gathered data, the total number of participants, and the conducted activities.
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Fig. 3. Head movements activity with their representation in Wi-Fi and radar signal. (a) An experimental setup of the radar signal without a wall.
(b) An experimental setup of radar signal through a wall. (c) An experimental setup of Wi-Fi signal without wall. (d) An experimental setup of Wi-Fi
signal through a wall.

change in frequency. In each spectrogram, y-axis represents
the Doppler shift (Hz), while the x-axis represents time.

A. Radar Data Processing
The Xethru X4M03 radar chip was configured using the

XEP interface and X4driver. Data was recorded at a rate of
500 frames per second (FPS) in the form of float message data.
A loop was implemented to read the data file, and the values
were subsequently stored in a DataStream variable, which was
then converted into a complex range-time-intensity matrix. To
generate a Doppler range map, a moving target indication

(MTI) filter was applied. Spectrograms were created using
the following parameters: overlap percentage, window length
set to 128, fast Fourier transform (FFT), and padding factor
set to 16. A second MTI filter, a Butterworth 4th-order filter,
was used. Each chirp underwent an initial FFT transformation
to produce a range profile. Subsequently, a second FFT was
performed on a specific number of chirps in a sequence for
each range bin. Spectrograms were created using the Short-
Time Fourier Transform (STFT), which segments the data
and applies the Fourier transform to each segment, providing
information about both time and frequency. The radar data’s
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Doppler information depends on the hardware sampling rate,
and the highest unambiguous Doppler frequency in radar is
determined by the chirp time, given by the formula Fd,max =
1
2tc

.
Head movements recognition at a distance D(t) from a

specified location such as the head is the focus of this paper.Ts
is the transmitted signal, while V (t) is the target position in
front of the RADAR,

Ts(t) = E cos(2πft). (1)

The signal received is provided by Rs(t),

Rs(t) = É cos(2πf(t− 2D(t)

c
)), (2)

where the speed of light is c and E is the reflection coefficient.
The signal that is reflected off the target points at an angle
theta to the direction of the RADAR and is denoted by the
symbol Rs(t).

Rs(t) = É cos(2πf(1 +
2v(t)

c
)(t− 4πD(θ)

c
)). (3)

The corresponding Doppler shift can be expressed as,

fd = f
2v(t)

c
. (4)

The signal that is received back is composed of a number of
moving parts, including the head and other small motions of
the body. Each component moves with its own acceleration
and speed. The received signal can be written as if i were the
various moving parts of the head. We can write as

Rs(t) =

N∑
k

Ak cos(2πf(1 +
2vk(t)

c
)(t− 4πDk(0)

c
)). (5)

The Doppler shift is the result of a complex interaction of
multiple Doppler shifts due to various head movements. The
feature of doppler signatures depends on the detection of
head movements. After getting the spectrogram of different
subjects, It was divided into two datasets: (i) Data Training
and (ii) Data Testing. The spectrogram fed into the proposed
pre-trained DL classification algorithm for the classification of
the head movements dataset.

B. Wi-Fi Data Processing
The data was transmitted using OFDM symbols with 52

subcarriers that were tightly spaced. As shown by Eq. 6, data
were collected in a matrix form having frequency responses
of subcarriers N=51.

H = [H1(f), H2(f), · · · , HM (f)]K , (6)

Here, the Hl-frequency subcarrier can be expressed as

Hl (f) = |Hl (f) |el∠Hl(f), (7)

where, amplitude |Hl(f)| and phase ∠Hl(f) are responses
of the lth subcarrier. All subcarrier responses correlated with
system input and output as shown in Eq. 8,

Hk(f) =
Yl(f)

Xl(f)
, (8)

where input and output Fourier transformations are denoted
by Xl(f) and Y l(f), respectively. The received CSI data
often contain environmental noise. Therefore, the collected
data is processed by eliminating the mean received power for
each subcarrier from every sample. To observe the maximum
variation due to head movements, the subcarrier with the
highest variance was identified for feature extraction. These
10 features were extracted from the dataset namely minimum,
median, variance, eight peaks, standard deviation, high order
moments, mode, skewness, kurtosis, and moments. After tak-
ing features which were in comma-separated form (CSV) file,
which was used to train various machine learning algorithms
that are described in other section. After that, to accurately
classify the head movement classes, training, and testing were
carried out using the test-train split evaluation method.

V. PARAMETER SETTINGS OF THE ML AND DL
ALGORITHMS

The presented head movements classification approach was
divided into two parts: (i) system training and (ii) system
testing: For Wi-Fi dataset ML algorithms such as NN( Neu-
ral network pattern) recognition, Tree( Medium tree), and
Ensemble(Boosted trees) were applied. while on radar data,
the VGG16, VGG19, InceptionV3, and SqueezeNet. DL pre-
trained models were applied to the radar data-generated spec-
trogram images.
The ML and DL model parameter settings are shown in the
table. I.
VGG16 Model: The data was input into the VGG16 models
convolution layers with rectified linear unit (ReLU) activation
functions and 3×3 kernel sizes. Each convolution layer was
followed by a max-pooling layer with 2×2 kernel sizes. The
final layer comprised three fully connected layers (FC). The
convolution layer and FC layers contained the training weights,
which determined the number of parameters.

VGG19 Model: The data was passed through a different
layer which consists of 3×3 filters with five stages of convo-
lutional layers, five pooling layers, and three fully connected
layers to get image information. The convolution kernel depth
has been increased from 64 to 512 of the VGG16 network
for better image feature vector extraction. Every stage of
convolutional layers was followed by pooling layers which
have the size and step size of 2×2.
InceptionV3 Model: The dataset was processed using the
InceptionV3 deep learning model, which consists of 48 layers.
The architecture of the model involves a sequence of three
convolution layers, followed by a max pooling layer, two
more convolution layers, and another max pooling layer. Spec-
trograms were input into the model, which then underwent
multiple convolutions using various filters. This process was
repeated several times across the entire network to facilitate
image classification.
SqueezeNet Model: SqueezeNet is an 18-layer deep convolu-
tional neural network. Spectrograms of the input were sent to
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Fig. 4. Wi-Fi and radar signal representation of head movement activity. (a) A visual representation of head movements from various angles. (b)
Wi-Fi data samples representing various classes of head movements without walls. (c) Radar data samples representing various Head movement
classes without the wall. (d) Wi-Fi data samples representing various classes of head movements with walls. (e) Data samples from radar that
represent different head movement classes with the presence of a wall.

the layers. The last convolution layers were added as follows
the dropout layer was set to 50%, convolution layers with
stride, Relu as activation function, Global average pooling,
and softmax layer were added before the classification output
layer.
NN (Neural Network Pattern Recognition) Model: The pat-
tern recognition neural network used in this study comprises
two-layer feed-forward networks with hidden neurons using
sigmoid activation functions. SoftMax activation functions
were applied to the output layer neurons. The network was
trained using the scaled conjugate gradient backpropagation
algorithm, which involved updating the weight and bias values
as data passed through these layers. Subsequently, the dataset
was partitioned into training, validation, and testing subsets.
The network’s performance was assessed based on cross-
entropy and misclassification error metrics.
Tree (Medium Tree) Model: Data were fed to decision trees,

classification trees, and regression trees for classification. It
followed the decisions in the trees down to a leaf node in
order to forecast a reaction. The response was located in the
leaf node. Classification trees provided nominal answers, such
as ”true” or ”false”.
Ensemble (Boosted Tree) Model: The classifier has the
ability to combine the results of multiple low-quality learners
into a single high-quality model. The data were input to
the booting ensemble algorithm, which identified the highest
breakpoints or branch points to handle the depth of tree
learners. The experimental setup achieved improved precision
with a learning rate of 0.1.

VI. RESULTS AND DISCUSSION

Two RF sensing technologies were used in two different
experiments with and without a wall, i.e., Wi-Fi and radar.
Data collection involved the capture of six head movements:
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Fig. 6. Feature fusion of radar and Wi-Fi time-frequency maps.
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DL/ML Model Parameters Settings

VGG16

Number of Layers
Learning rate
Batch size
Learning algorithm
Loss function
Number of epochs

16
0.0001
16
Adam
Cross entropy
25

VGG19

Number of Layers
Learning rate
Batch size
Learning algorithm
Loss function
Number of epochs

19
0.0001
16
Adam
Cross entropy
25

InceptionV3

Number of Layers
Learning rate
Batch size
Learning algorithm
Loss function
Number epochs

48
0.0001
16
Adam
Cross entropy
25

SqueezeNet

Number of Layers
Learning rate
Batch size
Learning algorithm
Loss function
Number of epochs

18
0.0001
16
Adam
Cross entropy
25

NN

Number of Layers
Training Function
Number of epochs
Loss function

10
Scaled conjugate
Gradient Backpropagation
20
Cross entropy

Tree (Medium Tree)

SplitCriterion
MaxNumSplits
Surrogate
KFold
Loss Function

gdi
20
off
5
Classiferror

Ensemble

Learner type
Ensemble Method
Loss Function
Learning rate
Number of learners
Maximum Number of splits

Decision Tree
AdaBoost
Classiferror
0.1
30
20

TABLE I
PARAMETER SETTINGS FOR THE SELECTED DEEP AND MACHINE LEARNING MODELS

Head up, Head down, Head Right 90, Head Left 90, Head
Right 45, and Head Left 45. These movements were recorded
with subjects in a stationary position and their bodies in a
typical posture. To enhance the dataset’s authenticity, four
participants (two males and two females) took part in both the
radar and Wi-Fi experiments. A total of 2400 data samples
were collected from both experiments using radar and Wi-
Fi, with and without a wall for six classes namely Head up,
Head down, Head Right 90, Head Left 90, Head Right 45, and
Head Left 45 which is shown in Fig. 2c. In each experiment
with wall and without wall using radar, a total of 600 data
samples were collected from four participants, where 25 sam-
ples were taken from each class. Specifically, each participant
repeated each head movement activity 25 times with the
radar. Likewise, the same number of data was acquired from
USRP using the same strategy. The University of Glasgow’s
Research Ethics Committee granted ethical approval for these
experiments (approval no.: 300200232, 300190109). In the
context of radar datasets, both with and without a wall,
the evaluation outcomes for the considered DL algorithms (
VGG16, VGG19, SqueezeNet, and InceptionV3) are presented
in Figure 5a. Notably, all the algorithms produced comparable

results, with VGG16 slightly outperforming the others in both
scenarios, whether with or without a wall, when using a
combined dataset. Specifically, when employing the VGG16
algorithm, a classification accuracy of 80.0% is achieved on
the combined dataset without a wall, which is marginally
reduced to a promising accuracy of 79.2% in the presence
of a wall. The evaluation results for various DL and ML
algorithms (including VGG16, VGG19, SqueezeNet, Incep-
tionV3, Neural network pattern recognition, Tree (Medium
Tree), and Ensemble (Boosted Tree)) for Wi-Fi signals both
with and without a wall are displayed in Figure 5b, using
the combined dataset. It is evident from the graph that the
InceptionV3 algorithm surpasses the others on the combined
dataset. Specifically, when utilizing the InceptionV3 algorithm,
a classification accuracy of 89.0% is achieved without a wall,
whereas the same algorithm yields an 80.0% classification
accuracy with the presence of a wall. The fusion of different
deep learning models was tested which is illustrated in Fig.
6 . The highest accuracy values of 91% without the wall
were achieved with feature fusion at the fully connected layers
of VGG16 and InceptionV3 deep learning models shown in
Fig. 5c. Furthermore, the highest accuracy of 83.33% was
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achieved through the walls with the feature fusion of VGG16
and InceptionV3 deep learning models shown in Fig. 5d.

VII. CONCLUSION

In this work, an RF sensing-based head movement recogni-
tion system is proposed using Wi-Fi and radar, and state-of-
the-art deep and machine learning algorithms. All directions
of head movements were covered, such as Head up, Head
down, Head left 90, Head right 90, Head left 45, and Head
right 45. Wi-Fi data was passed to the InceptionV3 model
and radar data to VGG16 models and the features of the
two models were fused for the highest performance results of
91.85% without the walls and 83.33% accuracy was achieved
through the walls. The proposed work is promising for many
critical applications, such as fatigue detection and drowsiness
for automated pilot monitoring systems and assistive car
driving and alert systems, including wheel chair control for
paralysis patients. Furthermore, the proposed system preserves
the privacy concerns of users, which may exist in vision based
systems.
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