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Abstract: Background and scope: The late Villafranchian large mammal age (~2.0–1.2 Ma) of the
Early Pleistocene is a crucial interval of time for mammal/hominin migrations and faunal turnovers
in western Eurasia. However, an accurate chronological framework for the Balkans and adjacent
territories is still missing, preventing pan-European biogeographic correlations and schemes. In
this article, we report the first detailed chronological scheme for the late Villafranchian of south-
eastern Europe through a comprehensive and multidisciplinary dating approach (biochronology,
magnetostratigraphy, and cosmogenic radionuclides) of the recently discovered Lower Pleistocene
vertebrate site Tsiotra Vryssi (TSR) in the Mygdonia Basin, Greece. Results: The minimum burial
ages (1.88 ± 0.16 Ma, 2.10 ± 0.18 Ma, and 1.98 ± 0.18 Ma) provided by the method of cosmogenic
radionuclides indicate that the normal magnetic polarity identified below the fossiliferous layer
correlates to the Olduvai subchron (1.95–1.78 Ma; C2n). Therefore, an age younger than 1.78 Ma is
indicated for the fossiliferous layer, which was deposited during reverse polarity chron C1r. These
results are in agreement with the biochronological data, which further point to an upper age limit at
~1.5 Ma. Overall, an age between 1.78 and ~1.5 Ma (i.e., within the first part of the late Villafranchian)
is proposed for the TSR fauna. Conclusions: Our results not only provide age constraints for the local
mammal faunal succession, thus allowing for a better understanding of faunal changes within the
same sedimentary basin, but also contribute to improving correlations on a broader scale, leading to
more accurate biogeographic, palaeoecological, and taphonomic interpretations.

Keywords: Villafranchian; Pleistocene; Balkans; southeastern Europe; mammals; biochronology;
palaeomagnetism; cosmogenic radionuclides

1. Introduction

The fascinating world of the Pleistocene has long attracted the interest of scientists
from different disciplines. The rich mammal record, including iconic animals such as
mammoths, saber-toothed cats, giant hyenas, and giant deer; the evolution and dispersals
of our own genus Homo; and the large-scale global climatic fluctuations are only some
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of the highly intriguing research areas that characterize the Pleistocene. The late Vil-
lafranchian large mammal age, defined in Europe as starting at ~2.0 Ma [1–3] and ending at
~1.2 Ma [4–6] at the beginning of the subsequent Epivillafranchian, is a crucial period in the
evolution of the Early Pleistocene terrestrial ecosystems of Eurasia. The climatic conditions
during the late Villafranchian resulted in the (intermittent) expansion of open-forest and
savanna-like landscapes from the Transcaucasian to the European peri-Mediterranean
regions [7,8]. In turn, this affected the structure and dynamics of the western Eurasian
mammal palaeocommunities tremendously, triggering faunal turnovers, extinctions, and
dispersal events [2,7,9], including the first arrival of hominins at the gates of Europe [10,11].
Indeed, the fossil record of the northern/eastern peri-Black Sea region and southern Europe
documents the arrival during this period of new immigrants of Asian and African origin
along with the regional extinction of several, previously well-adapted lineages [1,2,7,12].
The analysis and interpretation of these mammal bioevents and their underlying mecha-
nisms necessitate the establishment of an accurate chronological framework. The discovery
of several new fossiliferous localities and the re-assessment of older ones, in combination
with improved dating methodologies, have substantially enhanced our knowledge about
the Early Pleistocene of Europe. However, there are still several open issues that need to be
addressed. For instance, the dating methods (either direct or indirect) that are commonly
applied to Quaternary deposits and fossils, have their own assumptions, as well as assets
and limitations (see [13] for an overview) that bring uncertainties in age estimations, thus,
limiting high-resolution correlations across different sites. Moreover, although Early Pleis-
tocene local European records and faunal successions have been relatively well explored
and defined through time, pan-European biogeographic correlations and schemes (large-
scale biochronology) are still limited (see also [1]) and poorly supported by an accurate
chronological framework, especially for the Balkans and adjacent territories. As a result,
our understanding of the palaeoecological conditions, including corridors or barriers that
may have enabled or impeded the dispersal of several large mammals in this timeframe, is
highly obscured. Additionally, these continental-scale biogeographic extrapolations rely
mostly on spot data from sedimentary basins from distant geographic regions, such as Italy,
Spain, France, and the Balkans (Figure 1), which, as stated above, are difficult to correlate,
resulting in the following uncertainties especially when attempting to resolve: (i) possible
discontinuities in the fossil record, both local or composite (faunal units); (ii) the degree
of diachrony or synchrony of the various dispersal events in response, for example, to
Pleistocene climate variability; and (iii) the different geological, climatic, environmental,
and taphonomic conditions at the various sites (see also [14,15]).
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The Lower Pleistocene fossiliferous localities of the Mygdonia Basin (central Mace-
donia, Greece) have been known since the end of the 1970s [16–18]. Numerous fieldwork
campaigns, carried out for several decades, have led to the discovery of several sites, and to
the excavation and study of a great number of fossils. This work has significantly enriched
the Pleistocene fossil record of Greece [19–22]. Currently, there are twelve open-air Lower
Pleistocene vertebrate sites known in the Mygdonia Basin (Figure 2), located in at least three
distinct stratigraphic horizons and correlated to different parts of the late Villafranchian.
Owing to their rich and diversified fauna of different evolutionary stages, the Mygdonia
sites (1) permit identification and tracking of faunal and evolutionary changes within the
stratigraphic succession of the same sedimentary basin, and thus enhance our knowledge
on the evolution and taxonomy of several vertebrate taxa and mammal turnovers; (2) allow
a more precise biostratigraphic correlation with other fossil assemblages of Greece and
southeastern Europe; and (3) contribute to palaeogeographical interpretations and the
better understanding of the palaeoenvironmental conditions, offering overall valuable in-
sights into the Early Pleistocene terrestrial ecosystems of Europe. Moreover, Greece and the
Balkans in general, located in the southeastern corner of Europe, occupy a critical position
for the dispersals of mammals and hominins to and from Europe, western Asia, and the
Levant/Africa [22–27], highlighting the need for systematic and deeper investigations in
key locations, such as the Mygdonia Basin. Importantly for the Pleistocene continental
biostratigraphy of Greece, the late Villafranchian localities of the Mygdonia Basin, together
with the older ones from the Aliakmon Basin (e.g., Dafnero) and the younger ones from the
Megalopolis Basin (e.g., Marathousa-1 and Kyparissia sites), all of which are characterized
by long stratigraphic sequences, altogether cover a rather continuous faunal sequence span-
ning from the middle Villafranchian to the Galerian [22,28–31], and permit the detailed
study of the Early–Middle Pleistocene fossil and palaeoenvironmental record of Greece.
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In this article, we report the first detailed chronological scheme for the late Vil-
lafranchian from southeastern Europe. This has been achieved through a comprehensive
and multidisciplinary dating approach (biochronology, magnetostratigraphy, and cosmo-
genic radionuclides) of the recently discovered Lower Pleistocene vertebrate site Tsiotra
Vryssi (TSR) in the Mygdonia Basin. More specifically, the aims of the present study are
the following: (1) to precisely constrain the age of the site by means of a combination of
dating methods; (2) to follow more thoroughly the regional mammal succession through

https://land.copernicus.eu/
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time and to enhance our knowledge about the relationships among the various Mygdonia
Basin localities; and (3) to correlate TSR with other Lower Pleistocene localities of western
Eurasia, thus, placing TSR within the larger discussions on Early Pleistocene mammal
diversity and bioevents. As one of the first such studies from the Early Pleistocene of
Greece and Southeastern Europe in general, and the first from the Mygdonia Basin, this
study aspires to render TSR and the surrounding fossil sites to be a western Eurasian
reference region for the chronological correlation of other localities and for the study and
comparison of their vertebrate assemblages.

2. Geological Setting and Fossiliferous Locality

The Mygdonia Basin is located in central Macedonia (Greece), to the northeast of Thes-
saloniki, and represents an elongated east-west trending tectonic depression, the formation
of which started during the early–middle Miocene with the incipient development of the
Pre-Mygdonia Basin (Figure 2). During the Neogene–Early Pleistocene, the basin was filled
with fluvial/fluvio-torrential and lacustrine sediments, while at the beginning of the Middle
Pleistocene a new tectonic event led to further subdivisions into smaller basins, which were
subsequently filled mostly by lacustrine sediments [32]. These Neogene to Quaternary de-
posits were subdivided into two high-rank lithostratigraphic units, namely the Pre-Mygdonian
Group (Neogene to Early Pleistocene) and the Mygdonian Group (Middle Pleistocene to
Holocene). The Pre-Mygdonian Group can be further subdivided into three successive lithos-
tratigraphic formations (Fm), the Chryssavgi Fm, the Gerakarou Fm and, the Platanochori
Fm [19]. The following six Lower Pleistocene fossiliferous sites have been discovered, to date,
in the upper part of the Gerakarou Fm: Gerakarou-1 (GER), Vassiloudi (VSL), Krimni-1 and -2
(KRI and KRM), Kalamoto-2 (KLT), and Tsiotra Vryssi (TSR). The study of their assemblages
indicated that, although the localities are not isochronous, all of them can be correlated to
the first part of the late Villafranchian (Early Pleistocene) [19–21]. The overlying Platanochori
Fm includes six more fossiliferous sites, i.e., Apollonia-1 (APL), Ravin of Voulgarakis (RVL),
Riza-1 (RIZ), Marathoussa (MAR), Kalamoto-1 (KAL), and Platanochori-1 (PLN) (Figure 2),
which are correlated to the second part of the late Villafranchian [19–21]. More information
on the stratigraphy and the fossiliferous sites can be found in [19] and [21].

TSR (GPS coordinates 40◦31′23.2” N, 23◦26′07.5” E and elevation 250 m a.s.l.) is situ-
ated in the Gerakarou Fm, the most widely exposed sedimentary unit across the Mygdonia
Basin (Figure 2) with a thickness in excess of 100 m. The Gerakarou Fm consists of red-
brown sands, gravels, sandy silts, and clays, deposited in a fluvial/fluvio-torrential environ-
ment [19]. TSR was discovered in 2014 during a targeted survey by a joint team from the
Aristotle University of Thessaloniki and the Paleoanthropology working group at the Eber-
hard Karls University of Tübingen [21]. It has since yielded a wealth of large mammal fossils
(Figure 3), as well as some micromammals, reptiles, and birds. The ~1 m thick fossiliferous
unit Geo 2a (Figure 4) consists of pale brown-dark yellowish brown poorly sorted silts, locally
intercalated by cm-thick lenses of medium-coarse grained sands and is relatively more clayey
in its uppermost part. The spatial taphonomic analysis of the faunal remains and the sedimen-
tological and micromorphological studies indicated multiple dispersion events and recurrent
spatial rearrangement of a lag, (peri)autochthonous assemblage, consistent with the cyclical
lateral switching of a braided fluvial system [33]. The large mammal assemblage is rich and
diversified and, so far, comprises 14 species ([21,34–36] and unpublished data; a cranium
belonging to the felid Megantereon was discovered in the excavation season of 2018, whose
complete study is pending, however, the genus is included in the herein updated faunal list).
The fauna is dominated by horses (Equus), but also includes several other herbivore taxa, such
as bovids (Leptobos, Bison, Pontoceros), deer (Cervus, Praemegaceros), rhinos (Stephanorhinus),
mammoths (Mammuthus), and giraffids (Palaeotragus). Carnivores are well represented and in-
clude wolf-like dogs (Canis), giant hyenas (Pachycrocuta), bears (Ursus), and saber-toothed cats
(Megantereon) (Table 1). TSR has yielded more than 2000 mammalian bones and teeth to date,
which are stored at the Museum of Geology, Palaeontology, and Palaeoanthropology of the
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Laboratory of Geology and Palaeontology at the Aristotle University of Thessaloniki, Greece
(LGPUT).
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Figure 3. Tsiotra Vryssi site and excavation photos. (a) General view of the site; (b)
Closer view of the site; (c) Cranium of a bear (Ursus etruscus); (d) Complete front limb
of a horse (Equus sp.); (e) Accumulation of isolated and articulated bones of a large
bovid, a horse, and a rhino (Stephanorhinus sp.); (f) Skeletal remains of a mammoth
(Mammuthus meridionalis).
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Table 1. Preliminary faunal list of the large mammals from Tsiotra Vryssi (excavation seasons 2014–2019). Faunal list
updated from [21], based on [34–36] and unpublished data.

Order Family Genus Species

Proboscidea Elephantidae Mammuthus meridionalis

Carnivora

Canidae Canis sp.
Ursidae Ursus etruscus

Hyaenidae Pachycrocuta brevirostris
Felidae Megantereon sp.

Perissodactyla
Equidae Equus sp. (medium-sized)

Equus sp. (large-sized)
Rhinocerotidae Stephanorhinus sp.

Artiodactyla

Giraffidae Palaeotragus sp.
Cervidae Cervus sp.

Praemegaceros sp.
Bovidae Pontoceros sp.

Leptobos sp.
Bison cf. degiulli
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3. Methodology

Cosmogenic radionuclides: Pairs of in situ-produced cosmogenic radionuclides ana-
lyzed in fluvial sediment can be used for burial dating based on different decay rates of
the two isotopes (e.g., [37,38]). Age determination of sediment deposition in the study
area makes use of simple burial dating with in situ-produced 26Al and 10Be concentrations
in quartz (e.g., [39]). Three sand samples from the same stratigraphic depth located at
~1 m below the bottom of the Geo 2b fossiliferous layer (Figure 4a) were sieved to 0.25 to
0.50 mm. Quartz was separated and cleaned to reach Al concentrations of ~100 ppm. Al
and Be were extracted according to protocols outlined in [40]. The 26Al/27Al and 10Be/9Be
ratios of samples, blanks, and standards were measured at the AMS facility of Cologne
(Germany). The 26Al and 10Be concentrations of samples were corrected for chemistry
blanks of 1.93 × 105 and 4.97 × 104 atoms, respectively. Standards used for calibration of
the 26Al/27Al and 10Be/9Be ratios were KN01-5-3 and KN01-4-3 [41], as well as KN01-6-2
and KN01-5-3 [42], respectively. All sample preparation was conducted at the University
of Tübingen.

Simple burial dating was performed with a MatLab script modified from [40] based
on [39]. Decay constants used for 26Al and 10Be were (9.830 ± 0.250) × 10−7 [43] and
(4.997 ± 0.043) × 10−7 [44,45]. The sea level and high latitude (SLHL) production rates for
26Al were 28.54, 0.84, and 0.081 atoms/(g(qtz) yr) for nucleonic, stopped muonic, and fast
muonic production, respectively [46,47]. The SLHL production rates used were 3.92, 0.012,
and 0.039 atoms/(g(qtz) yr) for nucleonic, stopped muonic, and fast muonic 10Be production,
respectively [46,47]. The 26Al/10Be ratio of production at SLHL was ~7.4. The SLHL
production rates were scaled to the sample location with the online calculator of Marrero
et al. [48] using the scaling procedure “SA” based on Lifton et al. [49]. Production rates
at individual sampling depths were calculated based on nucleonic, stopped muonic, and
fast muonic adsorption lengths, which were 157, 1500, and 4320 g/cm2, respectively [46].
Overburden was assumed to be at least 3000 cm with a constant density over time of
2.0 ± 0.1 g/cm3. This overburden results in a calculated simple burial age, which can be
considered to be a minimum burial age [39]. The production rate at the sample location was
used as the production rate of the sediment source area, because the production rate of the
palaeo-sediment source area was unknown. Therefore, this production rate is considered
to be a minimum production rate for a source area located at higher elevation, and hence
results in a maximum calculated burial age. Thus, based on the above, the calculated
simple burial age has the potential to be either younger or older than the actual age, and we
interpreted it to be the best estimate of the actual burial age given with available constraints.

Palaeomagnetism: A total of 52 standard (10 cc) samples were recovered from 4.5
stratigraphic meters of the Tsiotra Vryssi section (Figure 4a), either by manually inserting
plastic boxes in the outcrop section (32 specimens) or by hand-sampling six oriented blocks,
each yielding up to 5 specimens, which were subsequently consolidated and cored in the
laboratory. All analyses were conducted at the Alpine Laboratory of Paleomagnetism
(ALP) of Peveragno (Italy), with the exception of the thermal demagnetization experi-
ments, which were performed at the Department of Geophysics of the Aristotle University
of Thessaloniki.

The low-field magnetic susceptibility (κ) was measured with an AGICO KLY-3 Kap-
pabridge. Then, samples were AF (Alternating Field) demagnetized in steps of 5–10 mT
up to 100 mT with a 2G Enterprises AF Degausser. The natural remanent magnetization
(NRM) was measured after each demagnetization step with a 2G Enterprises 755 DC-
SQUID cryogenic magnetometer located in a magnetically shielded room. The directions
of the NRM were plotted on standard vector end-point demagnetization diagrams and the
characteristic remanent magnetization (ChRM), where present, was isolated with standard
principal component analysis on selected data. Isothermal remanent magnetization (IRM)
acquisition experiments were performed on 6 representative samples using an ASC Sci-
entific IM-10-30 impulse magnetizer and an AGICO JR-6 spinner magnetometer. Finally,
thermal demagnetization experiments of a three-component IRM adopting 2 T, 0.5 T, and
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0.1 T orthogonal fields were performed on another set of 4 samples with a Minispin spinner
magnetometer (Molspin) at the Department of Geophysics of the Aristotle University
of Thessaloniki.

Faunal similarity analysis: In order to examine the similarities and relationships of
TSR with other Early Pleistocene localities, we performed hierarchical cluster analysis
at the genus level. Twenty-four faunas/sites were selected ranging geographically from
Georgia to Spain and spanning chronologically from ~2.5 to ~0.8 Ma (middle Villafranchian
to Epivillafranchian). A total of 56 genera of large mammals (excluding primates) were
considered. The analysis was conducted with the PAST software, version 4.04 [50]. The
Q-mode dendrogram (with unweighted pair-group average (UPGMA) algorithm) was
acquired by applying the similarity index Raup-Crick, which is used to statistically test
presence and absence data through a randomization method [51]. The faunal assemblages
considered are Fonelas P-1 [52], Untermassfeld [53,54], Gerakarou-1, Krimni-1, Apollonia-
1, Libakos [55], Slivnitsa [56], Poggio Rosso [57], Kalamoto-2 [20], Dmanisi [11], Pirro
10 [58], Sima del Elefante (TE-) Lower Red Unit (LRU) TE8–14 [59], Vallparadís Estació
Middle Unit, Layers EVT6–VT8 [60,61], Venta Micena [62], Val di Chiana [9], Pietrafitta [9],
Trlica 11–10 [63], Vallonnet [64], Fuente Nueva 3 [62], Barranco León [62], Pantalla [65],
Dafnero [66] and Taurida [67], with faunal updates and taxonomical reviews by us for the
Greek sites.

4. Results
4.1. Cosmogenic Radionuclides

In situ produced cosmogenic radionuclide concentrations of 26Al and 10Be from three
samples (Figure 4a) range from (31.88 ± 1.74) to (37.07 ± 1.91) × 104 atoms/g(qtz) and
(9.40 ± 0.33) to (10.51 ± 0.42) × 104 atoms/g(qtz). The 26Al/10Be ratios are 3.53 ± 0.23,
3.18 ± 0.20, and 3.39 ± 0.22 for the three samples from the same stratigraphic layer. These
ratios result in simple burial ages of 1.88 ± 0.16 Ma, 2.10 ± 0.18 Ma, and 1.98 ± 0.18 Ma,
respectively (Table 2).

Table 2. Cosmogenic radionuclide information for samples from the stratigraphic layer Geo 2b of Tsiotra Vryssi.

Sample
ID Lab ID Grain Size

(µm)

Qtz
Dissolved

(g)

m(27Al)
(ppm)

26Al/27Al 1σ Error
(%)

26Al Conc.
104

atoms/g(qtz)

m(9Be)
(mg)

10Be/9Be 1σ Error
(%)

10Be Conc.
104

atoms/g(qtz)
26Al/10Be

Simple
Burial Age

(Myr)

COSMO 1 GL11 250–500 46.76 121 1.39 × 10−13 4.46 37.07 ± 1.91 0.3397 2.16 × 10−13 3.60 10.51 ± 0.42 3.53 ± 0.23 1.54 ± 0.10
COSMO 2 GL7 250–500 76.52 81 1.80 × 10−13 5.23 32.48 ± 1.70 0.2868 4.10 × 10−13 3.34 10.23 ± 0.34 3.18 ± 0.20 1.75 ± 0.10
COSMO 3 GL8 250–500 55.97 65 2.20 × 10−13 5.44 31.88 ± 1.74 0.2874 2.76 × 10−13 3.51 9.40 ± 0.33 3.39 ± 0.22 1.62 ± 0.10

4.2. Magnetic Properties

Values of κ are relatively low all along the section (Figure 4c), with an average value
of 105 × 10−6 SI. Samples from the basal part of the sequence, between 0 and 2 m from the
base, show the lowest values (15–60 × 10−6 SI), whereas peak κ values were measured
from samples collected at 2 m (ca. 150 × 10−6 SI), 3.5 m (ca. 215 × 10−6 SI), and 4.5 m
(ca. 275 × 10−6 SI). The IRM acquisition curves indicate the dominance of low to medium
coercivity phases (80 to 400 mT) with saturation reached at 2500 mT, suggesting the
presence of a mixture of magnetite/maghemite and hematite (Figure 5A). The three-axis
IRM experiments [68] show that the medium (0.5 T) and high-coercivity (2 T) curves have
maximum unblocking temperatures of 650–675 ◦C (Figure 5B), consistent with the presence
of hematite. The low-coercivity (0.1 T) curve declines at a rather constant pace from room
temperature up to 350–400 ◦C, before recording a rapid decrease at ~600 ◦C, followed by a
slower decrease up to 650–675 ◦C (Figure 5B); this behavior could be interpreted to reflect
progressive oxidation of an original maghemite/magnetite phase into a secondary hematite.
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4.3. Magnetostratigraphy

Bipolar ChRM component directions, oriented north-and-down or south-and-up in
in situ coordinates and within a field range of ~10–70 mT, were isolated in 23 of 38 de-
magnetized samples from the Tsiotra Vryssi section (Figure 6). The mean ChRM direction,
calculated by applying standard Fisher statistics on n = 23 ChRM directions (declina-
tion = 176.8 ◦E, inclination = −40.5◦, α95 = 10.7◦, Table 3 and Figure 7), led to a palaeomag-
netic pole position of latitude 72.4 ◦N and longitude 213.2 ◦E (A95 = 7.8◦). The McFadden
and McElhinny [69] reversal test applied to the ChRM component directions in in situ
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coordinates result was indeterminate (k1 6= k2, type I), probably due to the small number
of components used.
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When plotted versus stratigraphic depth, the latitude (positive for normal polarity,
negative for reverse polarity) of virtual geomagnetic poles (VGPs) calculated for each
ChRM component direction (Figure 4) define a lower incomplete normal magnetic polarity
interval overlain by an incomplete reverse polarity interval (Figure 4).

4.4. Biochronology

The presence of the large-sized hyena Pachycrocuta brevirostris in the TSR fauna indi-
cates a post-middle Villafranchian age, as the migration of this species to Europe, referred
to as the “Pachycrocuta brevirostris event”, is tentatively dated at ~2.0 Ma [3] and marks
the beginning of the late Villafranchian [2]. Approximately at the same time, Canis sensu
stricto also becomes widespread [70,71]. This taxon’s earliest occurrences in the Balkan
Peninsula are traced at Slivnitsa (Bulgaria) and Gerakarou 1, correlated to the middle/late
Villafranchian boundary [24,72,73]. The bear Ursus etruscus from TSR differs from the
middle Villafranchian specimens of Saint-Vallier (France) and is more similar to the typical
U. etruscus from Upper Valdarno (Olivola and Tasso Faunal Units (FUs) of Italy); however,
it is most similar to the specimens from Pietrafitta (Farneta FU) [36], tentatively dated at
ca. 1.7–1.5 Ma [1,3,74]. The large-sized deer Praemegaceros and the spiral-horned antelope
Pontoceros first occur at Dmanisi and are present soon after in the northern peri-Black Sea
region and the Balkan Peninsula [75,76], while Praemegaceros appears in Italy during the
Farneta FU [1] and in Spain after ~1.6 Ma, at the Orce sites [77]. The giraffid Palaeotragus is
well recorded during the middle Villafranchian, and is also present in the late Villafranchian
of Fonelas P-1, Dmanisi, Libakos, and Denizli-Kocabaş [78], but has not been documented,
as yet, in the fossil-rich Pirro Nord, the Orce sites, Apollonia 1, or Untermassfeld, collec-
tively correlated to the second half of the late Villafranchian and Epivillafranchian [1,7].
The strongest biochronological indicator recovered so far from TSR is the co-existence
of the large-sized bovids Leptobos and Bison. Leptobos was present in Europe during the
early and middle Villafranchian but also survived during the first part of the late Vil-
lafranchian (e.g., [65,79]). The earliest record of bisons in western Eurasia is documented at
Dmanisi (~1.8 Ma), while they subsequently dispersed into peri-Mediterranean Europe
from ~1.7–1.5 Ma onwards (e.g., Farneta FU, Orce sites, Pirro Nord, Apollonia-1, Sima
del Elefante-TE9). The Leptobos-Bison co-existence is relatively rare; apart from TSR, it is
recorded in Mygdonia Basin at Krimni-1 and Kalamoto-2, as well as further afield at Trlica
11–10 in Montenegro, the Taurida Cave in Russia and Pietrafitta in Italy [35,67,75,79,80].

In order to examine more comprehensively the overall faunal relationships and similar-
ities between TSR and other middle Villafranchian–Epivillafranchian localities of western
Eurasia, we conducted hierarchical cluster analysis at the genus level. The resulting Q-mode
dendrogram (Figure 8) clusters the faunas chronologically (rather than geographically).
Two main clusters emerge, reflecting the significant faunal reorganization (even at genus
level) close to ~2.0 Ma at the middle/late Villafranchian boundary, i.e., cluster A, including
the middle and middle/late Villafranchian faunas (Dafnero and Slivnitsa) and cluster B
encompassing the late Villafranchian to Epivillafranchian ones. Cluster B is further divided
into two subclusters, i.e., B1 consisting of the late Villafranchian to Epivillafranchian faunas
younger than ~2.0–1.9 Ma and B2 including those faunas that are at or slightly after the
middle/late Villafranchian boundary, at ca. 2.0 (Fonelas P-1 and Gerakarou-1). Subcluster
B1 is separated into B1.1 of the late Villafranchian to Epivillafranchian faunas of Europe and
B1.2 of Dmanisi. The former is further divided into B1.1.1 (~2.0–1.5 Ma) and B1.1.2 (after
~1.6–1.5 Ma). This distinction signifies the small-scale reorganization of the faunas at the
genus level during the middle part of the late Villafranchian, leading to the faunas (B1.1.2)
of the second part of the late Villafranchian and the Epivillafranchian, which have “lost”
middle Villafranchian relics and have mostly “renewed” their faunal elements. B1.1.1 is
separated into B1.1.1a, which includes the 2.0–1.8 Ma faunas of Poggio Rosso and Pantalla
(both within Olivola/Tasso FUs [1,81]; and B1.1.1b, with the faunas dated between ~1.8
and ~1.5 Ma. B1.1.1b, including TSR, represents the time interval, which documents the
co-existence of Leptobos and Bison, the earliest occurrences of Praemegaceros in Europe, and
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is overall characterized by the mixture of middle (“archaic“) Villafranchian components
and “modern” late Villafranchian newcomers.
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Considering all biochronological data, TSR is younger than the middle Villafranchian
(~2.6–2.0 Ma) faunas and older than the latest Villfranchian and Epivillafranchian ones
(~1.5–0.8 Ma, e.g, the Orce sites, Apollonia-1, Pirro Nord, Untermassfeld, and Vallonnet).
On the basis of the large mammals, a biochronological age between ~1.8 and 1.6–1.5 Ma is
expected for TSR.

5. Discussion
5.1. Age Estimation: Age Constraints

The minimum burial ages (1.88 ± 0.16 Ma, 2.10 ± 0.18 Ma, and 1.98 ± 0.18 Ma)
provided by the cosmogenic radionuclide method indicate that the normal magnetic
polarity interval encompassing Geo 2b and the bottom part of Geo 2a correlates to the
Olduvai subchron (1.95–1.78 Ma, C2n). As a result, the whole magnetic polarity sequence
corresponds to the late part of the Olduvai and the early part of the succeeding Matuyama
Chron, whose base is currently dated to 1.78 Ma [82]. Therefore, an age younger than
1.78 Ma is indicated for the fossiliferous layer (the bulk of Geo 2a), which was deposited
during reverse polarity chron C1r. These results are in very good agreement with the
biochronological data, which also indicate an upper age limit at ~1.5 Ma for the fossil
accumulation. Therefore, an age between 1.78 and ~1.5 Ma (within the first part of the late
Villafranchian) is proposed for the TSR fauna (Figure 9).
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Figure 9. Correlation with the geomagnetic polarity time scale (GPTS) [82], simple burial ages
provided by cosmogenic radionuclides, and biochronological range of selected large mammals from
Tsiotra Vryssi.

Table 2. Cosmogenic radionuclide information for samples from the stratigraphic layer Geo 2b of
Tsiotra Vryssi.

Sample
ID

Lab
ID

Grain
Size
(µm)

Qtz
Dis-

solved
(g)

m(27Al)
(ppm)

26Al/27Al
1σ

Error
(%)

26Al Conc.
104

atoms/g(qtz)
m(9Be)
(mg)

10Be/9Be
1σ

Error
(%)

10Be Conc.
104

atoms/g(qtz)
26Al/10Be

Simple
Burial Age

(Myr)

COSMO 1 GL11 250–500 46.76 121 1.39 × 10−13 4.46 37.07 ± 1.91 0.3397 2.16 × 10−13 3.60 10.51 ± 0.42 3.53 ± 0.23 1.54 ± 0.10
COSMO 2 GL7 250–500 76.52 81 1.80 × 10−13 5.23 32.48 ± 1.70 0.2868 4.10 × 10−13 3.34 10.23 ± 0.34 3.18 ± 0.20 1.75 ± 0.10
COSMO 3 GL8 250–500 55.97 65 2.20 × 10−13 5.44 31.88 ± 1.74 0.2874 2.76 × 10−13 3.51 9.40 ± 0.33 3.39 ± 0.22 1.62 ± 0.10
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Figure 9. Correlation with the geomagnetic polarity time scale (GPTS) [82], simple burial ages provided by cosmogenic
radionuclides, and biochronological range of selected large mammals from Tsiotra Vryssi.

5.2. Placement of TSR within the Greek and European Context

The TSR fauna lacks typical middle Villafranchian (~2.6–2.0 Ma) large mammal asso-
ciations, including the cervids Croizetoceros, Metacervocerus, and Eucladoceros; the bovids
Gazella, Gazellospira, and Gallogoral; the canid Nyctereutes; and the hyaenids Chasmapor-
thetes and Pliocrocuta, present in the Saint-Vallier FU, Varshets (Bulgaria), as well as in
the Greek fossil record, for example, in Dafnero, Sesklo, Vatera, and Volax [1,22,56,83].
TSR also appears younger than the “Canis” or “Panthera” sites of the Costa San Giacomo
FU, Senéze (France), La Puebla de Valverde (Spain) and Slivnitsa, correlated close to the
middle/late Villafranchian boundary, and which preserve most of the genera mentioned
above [56,61,81,84]. However, TSR retains some middle Villafranchian taxa, which also
survived until the beginning of the late Villafranchian, such as Leptobos and Palaeotragus.
On the other hand, the TSR fauna includes several late Villafranchian newcomers, such
as Pachycrocuta, Pontoceros, Bison and Praemegaceros. The association Palaeotragus + Prae-
megaceros (+ Leptobos in [85]) is so far only recorded in Fîntîna lui Mitilan (Romania, [86]),
the association Leptobos + Bison + Pontoceros + Praemegaceros + two Equus species is docu-
mented to date only in Trlica 11–10 [75], while the association Leptobos + Bison + Pontoceros
+ two Equus species in Taurida Cave [67]. TSR is also close to Dmanisi, whose faunal
record includes Palaeotragus, Bison, Pontoceros, Praemegaceros, and two Equus species [11].
With respect to localities of the central/western sector of the Mediterranean region, TSR is
chronologically younger than Fonelas-P1, Poggio Rosso, and Upper Valdarno localities, all
correlated to the beginning of the late Villafranchian (ca. 2.0–1.8 Ma), and it is older than
Venta Micena, Pirro Nord, Fuente Nueva-3, and Barranco León, collectively dated after ca.
1.6–1.5 Ma, fitting best with the Farneta FU of Italy.
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Within the regional faunal succession, TSR is younger than Gerakarou 1 yielding
the late Villafranchian “marker” Pachycrocuta brevirostris, but otherwise still retaining a
more “middle Villafranchian character” in its fauna including the bovid Gazella (in Italy
not later than the Costa San Giacomo FU [79,87]) and the suid Sus strozzi (see [88]). On
the other hand, TSR is older than Apollonia 1, where middle Villafranchian relics are
absent, and typical late Villafranchian components are present, such as Canis apolloniensis
(Canis ex gr. mosbachensis), Bison, Praemegaceros, and Pontoceros, accompanied by various
caprines/ovibovines [22], the latter, so far, absent from TSR. The current data indicate that
TSR is perhaps chronologically close (although faunal and perhaps chronological differ-
ences do exist) with Krimni-1 and Kalamoto-2, where leptobovine bovids also coexist with
bisons. Outside the Mygdonia Basin, Libakos (Aliakmon Basin) might be of comparable age
to TSR. Libakos has yielded Leptobos, Palaeotragus, Pachycrocuta, Pontoceros, Equus altidens,
and two Canis species, in association, however, with the more “modern” Hippopotamus
antiquus, and the cervids Praedama savini and Dama vallonnetensis [22,89].

6. Conclusions

Cosmogenic radionuclide dating provides numerical age constraints on the normal
polarity detected from the magnetostratigraphic analysis below the fossiliferous layer,
correlating it to the Olduvai Subchron. The reverse polarity interval identified in the fossil-
iferous layer, combined with the biochronological data, indicate that the TSR sediments
were deposited during the early part of the Matuyama Chron, between 1.78 and ~1.5 Ma.
Overall, TSR presents faunal similarities with Dmanisi, the Farneta FU, Trlica 11–10, Tau-
rida, and the Greek faunas of Libakos, Krimni-1, and Kalamoto-2. Our results not only
provide constraints for the age of the local mammal faunal succession, but also help to
improve correlations on a broader scale between northern Mediterranean and peri-Black
Sea sites, thus, leading to more accurate biogeographic, palaeoecological, and taphonomic
interpretations during a crucial interval of time for mammal/hominin migrations and
faunal turnovers.

The dating of TSR at ca. 1.78–1.5 Ma places the site close to (or shortly after) the
age of Dmanisi, which documents the earliest presence of hominins in western Eurasia.
Additionally, this interval records the last occurrences of a number of Villafranchian taxa, as
well as the onset of a gradual displacement of other taxa by large mammals that characterize
the following Epivillafranchian and Galerian large mammal ages [1,7,9]. Inter-regional
differences in the timing and extent of faunal renewals, dispersals, and changes in the struc-
ture of mammal palaeocommunities reflect the variability in biotic responses to ecological
stimuli according to the geographic setting and prevailing environmental conditions [9,90].
Chronological frameworks serve as the building blocks that allow us to assess potential
synchroneity, asynchrony, or diachrony in faunal dynamics. Such detailed studies have
been lacking until recently for the Pleistocene of the Greek peninsula. Together with the
current investigations for the middle Villafranchian [31,66], our study contributes to filling
this gap by providing, for the first time, palaeomagnetic and radiometric constraints to a
late Villafranchian locality in the Balkans, and in the Mygdonia Basin in particular, which is
one of the most important and richest fossiliferous basins in southeastern Europe. Further
refinement of the chronostratigraphic framework of the Mygdonia Basin would provide a
better understanding of faunal changes within this sedimentary basin and help calibrate
biochronological correlations with other, supra-regional faunal complexes.
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