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Abstract4

We develop a deep learning method to enhance sensor detection for depth5

prediction. Our novel system combines sensor hardware and Bayesian infer-6

ence to solve the underlying inverse problem, recovering depth from mea-7

surements. The hardware comprises single sensor non-scanning time-of-8

flight laser detection with synchronised video to produce a 3D depth map.9

The Bayesian framework provides depth prediction with uncertainty quantifi-10

cation. A conditional generator-discriminator adversarial network is adapted11

to learn a compact representation of the scene that recovers 3D depth at 3012

Hz using a large training set. We transfer the network to a real hardware13

system and compare with ground truth depth information. Our novel synthe-14

sis of hardware and machine learning technologies addresses the important15

challenge of providing accurate absolute depth prediction at video rate with16

efficient and cost-effective non-scanning laser detection technology. This17

flexible and compact system has many exciting applications for autonomous18

vehicles, drones and wearable technology.19

1 Introduction20

Highly accurate scene reconstruction, in terms of reflectivity and depth, can be21

achieved using a time-of-flight laser detection and ranging system (LiDAR) [22,22

16, 3]. However, recovery of the transverse spatial information requires laser scan-23

ning or detector arrays which adds expense, size and inflexibility to the system.24

Also, with such high-dimensional data arising from LiDAR, the overall acquisition25

and reconstruction cost is high. LiDAR measures the full temporal signal from a26
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powerful pulse laser source and has a range of up to 100 metres outdoors, but lim-1

ited to around 10 metres when laser eye-safe powers are a requirement. By contrast,2

single-photon sensitive LiDAR, operating in Geiger mode, provides a histogram of3

the arrival times of individual photon events, extending the range and improving4

the depth resolution. This technology also has its drawbacks as it requires high5

repetition rate lasers, limiting the unambiguous depth range, and is easily blinded6

by bright objects which are close. In this work we overcome these drawbacks by7

combining a single sensor non-scanning laser detector with 3D video. In order to8

do so, we build on state-of-the-art machine learning techniques.9

1.1 Deep Learning for 3D Depth Reconstruction10

Several studies have looked at reconstructing depth from RGB-only, including11

[8, 7, 20, 6, 18, 25, 5]. While these results can be perceptually pleasing, and suit-12

able for certain tasks, they are based on relative spatial information and not absolute13

depth. Hence they are not appropriate for applications such as determining distance14

between cyclist and car in autonomous driving situations, where depth precision is15

required for responsible reasoning and reaction. Moreover, the computational ex-16

pense associated with very deep networks (250 layers or more) makes attaining a17

video rate of 30 Hz infeasible. Recently, a study [10] investigated ways of fusing18

RGB with ‘cheaper/faster to obtain’, sparse, low-resolution data from bulky Li-19

DAR equipment [12]. Computational analogues of depth estimation from context,20

parallax and motion cues have also been developed. So-called RGB-D techniques21

[2] can estimate depth from a single image by using a pre-trained neural network22

to learn context. However, these networks can be large and computationally ex-23

pensive. Although they can produce convincing depth maps, these may have poor24

absolute depth accuracy, due to the limits of the cues they are using. Hence they are25

also vulnerable to optical illusions, in the same way the human eye can be tricked26

by dependence on particular cues such as shading and shadows.27

The challenge of depth recovery is being tackled in many ways with data fusion28

techniques being used to combine single pixel [19, 26, 24, 11], dual pixel [11] and29

SPAD arrays [23, 15]. However, we are approaching this challenge in a different30

way with an emphasis on a compact solution with new applications for wearable31

tech, drones and mobility vehicles. We are also interested in providing uncertainty32

quantification, which is possible when stochasticity through noise is introduced33

into the system with a generative model, rather than a deterministic deep learning34

approach.35

1.2 Deep Bayesian Inversion36

Many applications need to reliably recover high dimensional parameters from noisy37

indirect observations. Such inverse problems are often ill-posed and unidentifi-38

able: small errors in the data may lead to large errors in the model parameters;39

and several possible model parameter values may be consistent with the observa-40
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Figure 1: Green Light Laser Experimental Set-up. Illustration of the physical
set-up of the camera, pulsed laser, and detector. The laser illuminates the scene
and the detector measures the time signal of the back reflected signal, where the
digitiser is synchronised with the output laser pulse via a trigger pulse.

tions. Conditional generative adversarial networks (GANs) as described by Adler1

& Öktem [1] provide a framework that combines a generating model with a prior2

information model to assign probabilities to a model parameter given data (pos-3

terior) for solving large scale inverse problems with deep learning methods. In4

summary, the posterior is explored by sampling from a generator trained using a5

discriminator critic that is defined by a conditional Wasserstein GAN (cWGAN).6

Exploring the posterior allows recovery of the model parameters in a reliable man-7

ner and provides uncertainty quantification.8

1.3 Aims9

Our overall aim is to develop cWGAN technology to create a physical, compact10

system (hardware and software) that combines, for the first time, low cost, low11

power and flexibility, and is capable of accurately reconstructing absolute depth12

(rather than perceptually pleasing relative depth) in a previously unseen scene at13

video rate.14

2 Novel Light Laser Application15

A prototype hardware system was built for model verification. A pulsed laser il-16

luminates the scene, the reflected signal is recorded giving the time-of-flight laser17

response. The physical set-up is illustrated in Figure 1. The prototype system used18

a pulsed laser (Teem Photonics SNG-03E-100) with a 7 kHz repetition rate and 119

ns pulse width. The 532 nm laser light was incident on a square pattern diffuser20

(Thorlabs ED1-S20) to give a top-hat shaped square pattern of light to illuminate21
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the scene. The light back-scattered by the scene was detected with a high-speed1

Si avalanche photodetector (MenloSystems APD 210). The time-of-flight signal2

from the APD was recorded with a 1 GHz digitizer card (NI PXI 5154) within a3

National Instruments PXI chassis. The digitizer was triggered via pick-off light4

from the laser pulse on a photodiode. A measurement time of 1 second was used5

to record the back-scattered signal, which was collated into a timing histogram.6

For a ground truth measurement of the 3D scene a Kinect for Windows V2 was7

used. The RGB camera from the Kinect was used as the camera for the 2D image.8

The single time bin histogram laser response was integrated with G channel video9

frames. Without further processing, the depth prediction was made by inputting10

this data into the pre-trained generator network. We present real-time scene re-11

construction results showing the successful transfer of our neural network to data12

arising from real life situations, see Section 4.2.13

3 Method14

We develop a novel computational method that integrates input from our proposed15

system, denoted Green Light Laser (GLL), with a cWGAN to predict depth. In16

Section 3.1 we briefly discuss the theory. In Section 3.2 we describe the training17

data and simulations, and in Section 3.3 the cWGAN architecture and training.18

Key to the success of our approach is achieving generalisation by training on a19

range of different scenes. To do this we simulate the laser response (GSL) using an20

optics inspired forward model as described in Section 3.2.2. This important step21

leverages the training data and facilitates solution of the inverse problem. Transfer22

and calibration of the trained model to our system is discussed in Section 3.4. In23

Section 2 we present our novel hardware system GLL set-up which is applied in a24

real setting with results in Section 4.2.25

3.1 Deep Bayesian Inversion Theory26

Our computational method is designed to solve the underlying inverse problem27

and to reconstruct a scene in real time. For many reasons, including downstream28

decisions, it is important to build into such a system the ability to estimate the29

error underpinning our depth predictions. This can be done by posing the inverse30

problem in a Bayesian framework and using a generative model to sample from the31

posterior distribution [1]. This technique learns to generate new data with the same32

statistics as the training set.33

Given data, x, GANs learn to generate new data, x̂. The basic idea introduces34

a variable, z, commonly called a latent variable because it is unseen, that comes35

from a Gaussian distribution that is easy to sample from and the objective is to36

learn the conditional probability distribution, π(x|z), so that given some z, also37

referred to as noise, x̂ can be sampled form this learned distribution. A generator38

network is tasked with producing realistic x̂ and a discriminator network is tasked39
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with deciding whether x̂ is real or fake. The discriminator ‘sees’ real x along with1

x̂ and a loss value is passed back to the generator so that it can improve its output2

[13]. This loss function, defined by the discriminator, is potentially more flexible3

and task specific than a standard regression loss function.4

Further development in GANs has introduced the Wasserstein GAN with sta-5

bility of learning, to overcome issues such as mode collapse and to provide mean-6

ingful learning curves useful for debugging and hyper-parameter searches [4] with7

improved training using gradient penalty [14]. A notable extension is the condi-8

tional GAN [21]. The benefits of combining conditional and Wasserstein GANs9

in order to control image generation, conditioned on both discrete and continuous10

attributes are described in [9].11

In Bayesian inversion, the ground truth, x, and measured data, y, are assumed12

to be generated by random variables X and Y respectively. The aim is to recover13

the posterior π(x|y) which describes all possible solutions X = x along with14

their probabilities given data Y = y. The deep posterior sampling approach sam-15

ples from a generator trained using a conditional discriminator. We assume that16

π(x|Y = y) can be approximated by a parameterised family {Gθ(y)}θ∈Θ of prob-17

ability measures on X . The best approximation is defined as Gθ∗(y) where θ∗ ∈ Θ18

solves19

θ∗ ∈ argmin
θ∈Θ

W (Gθ (y) , π (x|y)) , (1)

and where W quantifies the distance between probability measures on X . The20

distance should be finite and differentiable almost everywhere for computational21

feasibility using stochastic gradient descent. For this reason, we use the Wasser-22

stein 1-distance W in (1). However this formulation requires access to the poste-23

rior. Also, the distribution of the data is often unknown and evaluating Wasserstein24

1-distance from its definition is not computationally feasible. Results in [1] show25

that all these drawbacks can be circumvented by rewriting equation (1) as an ex-26

pectation over the joint law (x, y) ∼ µ. This makes use of specific properties of27

the Wasserstein 1-distance (Kantorovich-Rubenstein duality) and defines (θ∗, ϕ∗)28

via29

argmin
θ∈Θ

{
sup
ϕ∈Φ

E(x,y)∼µ
z∼η

[Dϕ (x, y)−Dϕ (Gθ (z, y) , y)]

}
. (2)

Here, Gθ : Z × Y → X (generator) is a deterministic mapping such that z ∼ η30

is a random variable that can be sampled in a computationally feasible manner and31

Dϕ : X × Y → R (discriminator) is a measurable mapping that is 1-Lipschitz32

in the X variable. With access to supervised training data, samples generated by33

(x, y) ∼ µ, the µ-expectation can be replaced by averaging over training data.34

The 1-Lipschitz condition on the discriminator is enforced by including a gradient35

penalty to the training objective.36
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3.2 Training Data and Simulated Laser Signal1

3.2.1 Training Data2

Our computational model takes as input a LiDAR signal and a light channel (green)3

image from a RGB camera and outputs the underlying depth map. The green chan-4

nel is chosen, as most informative, for indoor scenes. The NYUdepth dataset com-5

prises more than 100,000 sequential video frames and synchronised Kinect depth6

measurements from over 100 indoor scenes [8]. Further, the camera viewpoint of7

these sequential frames changes within scenes and hence creates a realistic training8

environment for general non-static scene reconstruction. In order to leverage this9

resource, we develop an optics inspired forward model to simulate the green light10

laser response from synchronised RGB video and Kinect depth. Our objective is11

to capture the most relevant depth information contained in the signal, namely the12

position and relative height of the peaks.13

3.2.2 Green Light Laser Simulation14

From the synchronised RGB frames and Kinect depth measurements, we extract15

the G channel, gN , and the depth map, dN , where N denotes the number of pix-16

els in the image plane. We discretise dN over the time bins, t, which are chosen17

to match the performance of the current technology (75 ps). The laser response18

is simulated by summing gN over each time bin and correcting by 1
(dN )2

. This19

approach is adequate for training. Visualisation of the simulated signal and com-20

parison with the raw and smoothed real signal is discussed in Section 4.2. The21

signals are standardised so that the peak signal takes value 1.22

3.3 GAN Architecture and Training Options23

Our key algorithmic developments are to adapt a cWGAN to fuse LiDAR and RGB24

inputs so that the learned feature representations of spatial and depth information25

can mutually aid depth recovery and scene reconstruction.26

The generator and discriminator, Gθ and Dϕ, are built and trained using the27

MATLAB Deep Learning Toolbox [27]. An overview of the generator architecture28

is shown in Figure 2. The architecture design and training options are informed29

by MATLAB code developed for a range of GANs in https://github.com/30

zcemycl/Matlab-GAN. Our approach is to combine translation at the pixel31

level [17] with a conditional improved Wasserstein GAN [4] by including a dis-32

criminator architecture and adding a gradient penalty to the discriminator loss. The33

patch discriminator penalizes structure at the scale of patches to improve modelling34

of high-frequencies. In addition an ℓ1 penalty is added to the generator loss to en-35

force correctness at low frequencies.36

A second important step that we introduce is to interpret the laser response,37

the timed arrival of photons, as a random variable from a Poisson distribution, z.38

Sampling depth values is computationally feasible and introduces randomness into39
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the neural network model in a realistic way. It exploits knowledge of the physics1

and is robust to background noise and time bin step sizes and can be used with-2

out additional training across both simulated and real laser measurement scenarios3

where levels of background noise and time bin sizes may differ. The discretisation4

level is chosen to be 7.5mm resulting in 532 time bins.5

3.3.1 Generator Architecture6

The Generator U-net Architecture comprises encoding layers with convolutional7

blocks that each down-sample the input by a factor of two and decoding layers8

with convolutional blocks that each up-sample the encoder output by a factor of9

two. See Appendix A for more details about the composition of the convolutional10

blocks. Input into the network is a concatenation of the laser response, L, and11

image frames I . The U-Net architecture has skip connections between each layer12

i in the encoder and layer n − i in the decoder, where n is the total number of13

layers. This addition allows the up-sampling decoder to see the corresponding14

down-sampling encoder and hence is a powerful design for applications, such as15

ours, mapping from one spatial domain (light) to another spatial domain (depth).16

3.3.2 Discriminator Architecture17

The Patch Discriminator Architecture comprises encoding layers with convolu-18

tional blocks. See Appendix B for more details about the composition of the con-19

volutional blocks.As for the generator, convolutions are 4×4 spatial filters applied20

with stride 2 which down sample by a factor of 2.21

3.3.3 Training22

Training is conducted on a single TITAN Xp GPU. The discriminator is updated23

five times for every update of the generator. The model is stopped at 80 epochs24

when the validation set indicates over fitting.25

Results are discussed in Section 4.1.26

3.4 Transfer and Calibration27

Having developed and tested a cWGAN for scenes up to 10 metres, and shown28

proof of principle, we refine and streamline the model for transfer to our system.29

We find that we can reduce the number of convolutional blocks (from 7 to 5) and30

also the number of filters at each layer. This modification was found to improve31

efficiency without compromising robustness and accuracy. Previously, we sampled32

from the laser signal to obtain input L. We now add a fully connected input layer33

with the objective of learning how to sample from the laser signal. We also add34

a convolutional layer after the last decoding block with the objective of learning35

how to weight the decoding output. Further, a simpler version of Wasserstein loss,36

clipping the weights rather than constraining them [4], is found adequate for our37
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needs. This lightweight model was then retrained on 32 scenes, up to 5 metres, and1

tested on unseen real datasets.2

Results are discussed in Section 4.2.3

4 Results4

4.1 Depth Prediction Comparison5

For 1,000 test video frames, depth prediction based on RGB-only was performed6

using the NYUdepth pre-trained model and toolbox [8]. The simulated laser re-7

sponse for each test frame was combined with the video information and the depth8

prediction obtained from our pre-trained generator network. The predictions are9

evaluated against the Kinect depth map in terms of the reconstruction signal-to-10

noise ratio (RSNR), which weights the error with the reference depth. RSNR is11

defined as RSNR = 10 log10 ∥x∥2/∥x̂− x∥2 where x is the reference depth and x̂12

is the reconstructed depth, with components ranging over all pixels. RSNR scores13

are evaluated for RGB-only and Green Simulated Laser (GSL).14

Results for two bedroom scenes are illustrated in Figures 3 and 4. The average15

RSNR scores for GSL are 17.8 and 15.0 which are higher than the averages of 15.416

and 11.8 for RGB-only, for bedroom scenes 1 and 2 respectively. GSL outperforms17

RGB-only almost everywhere in bedroom scene 1 (Figure 3) and by at least 318

points throughout the scene (Figure 4).19

Figure 5 shows results for a living room scene with over 250 frames. Here,20

the average RSNR score for GSL is 18.9 compared with 14.6 for RGB-only. For21

illustration, the data and reconstruction are shown for frames 44 and 213. GSL22

outperforms RGB-only across the whole sequence as the room viewpoint changes.23

Inspection of the reconstructions indicates that GSL better captures the full room24

depth than RGB-only. The RGB-only reconstruction looks correct to the human25

eye but over-reliance on RGB information comes at the expense of relative accu-26

racy over absolute accuracy.27

4.1.1 Average RSNR performance28

Based on 35 test video sequences, Table 1 shows the average RSNR scores grouped29

by scene type. GSL performs best on five out of six scene types and generally does30

better in scenes such as bedrooms and some study/living rooms with predominantly31

low spatial frequencies. The scenes vary in terms of content, viewing angles and32

light sources. We aimed for model transferability by including 100 different scenes33

in our training and these results indicate that we have, on average, achieved this34

goal. Improvements could be obtained by increasing scene content, for example to35

include more objects with high spatial frequency such as chair and table legs.36

In terms of computing time, the GSL reconstruction is an order of magnitude37

faster than that of RGB-only, due to the use of a much smaller network.38
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Table 1: Average RSNR performance. Based on 35 test video sequences, GSL
performs best on five out of six scene types and generally does better in scenes
such as bedrooms and some study/living rooms with predominantly low spatial
frequencies.

Scene Type Number of Scenes RGB-only GSL

Classroom (7) 14.7 15.5
Dining room (7) 11.8 12.7
Home office (4) 13.5 13.4
Living room (7) 13.5 14.1
Study room (3) 12.4 12.9
Bedroom (10) 13.6 15.5

4.2 Real-time Reconstruction using Novel Hardware1

4.2.1 Calibration of the Laser Signal2

Using the novel hardware system described in Section 2, one hundred video frames3

and laser responses were collected for a scene, along with depth estimates from a4

Kinect camera. Also collected was the instrumental response, measured within5

the camera, and hence noise-free, shown in Figure 6. Our system is designed to6

take, as input, one noisy frame so the option of removing background noise by7

collecting several frames is not considered. Instead we filter the raw signal with8

the instrumental response and then smooth using a sliding window. The aim of this9

pre-processing step is to capture the relevant weight distribution of light over the10

depth time-bins to enable transfer of the neural network trained with a simulated11

signal to the real set-up. We compare the filtered and smoothed signal with the12

simulated signal and measure the accuracy of the predicted results in terms of the13

peak signal-to-noise ratio (PSNR) performance. The results are consistent between14

the frames and between the simulated (PSNR mean 25.2, std 0.080) or real laser15

signal (PSNR mean 25.5, std 0.131) indicating that our system transfers well to16

real data and is robust to varying input.17

4.2.2 Depth Prediction for Real Datasets18

The results in Section 4.1 used simulated laser responses. We now test the method19

with real data acquired with our own hardware. We use GLL to denote the Green20

Light Laser method. Pixel reconstruction results for four input images and cor-21

responding smoothed LiDAR signals, and for three methods RGB-only, GLL and22

Kinect are shown in Figure 7 with the horizontal axis representing depth in metres.23

The depth maps are viewed from above (top view) to more clearly show the depth24

line. PSNR performance scores for methods GLL and RGB-only (in brackets),25

compared with Kinect, are 36.6 (32.0), 34.8 (32.2), 39.9 (24.4) and 26.9 (13.3) re-26

spectively. Figure 7 shows that GLL is more accurate than RGB-only at matching27
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the Kinect depth line and indicates that GLL is able to predict absolute depth by1

fusing the image with the LiDAR signal.2

4.2.3 Uncertainty Quantification3

The results in Section 4.2.2 were obtained by sampling once from the generator4

model which, in this Bayesian framework, is equivalent to sampling from the pos-5

terior. This is the standard real-time operating mode. We can however, extend the6

approach to explore the posterior landscape by repeated sampling from the gen-7

erator model. In this way we can check the reliability of the model parameters8

and quantify uncertainty. For illustration, Figure 8 shows histograms of obtained9

depth prediction values, computed by applying posterior sampling to the test data10

100 times, for a randomly chosen pixel from each of four test scenes with different11

depth values in Figure 7.12

4.2.4 New datasets and simulation code13

The new GLL datasets produced for this work, and code for simulating the laser re-14

sponse are available at https://doi.org/10.5525/gla.researchdata.15

1542.16

5 Discussion and Conclusion17

We have developed a novel system for fusing a single non-scanning LiDAR depth18

signal with a single color channel that provides more accurate depth prediction than19

a state-of-the-art deep learning approach using RGB information alone. Further-20

more, by using ten times fewer layers in the network, our approach runs at least an21

order of magnitude more quickly (on both CPU and GPU), allowing for video rate22

to be achieved.23

With this approach an inexpensive video camera provides 2D light levels for24

a scene. A single detector sensor records luminance levels when the whole scene25

is flood-illuminated, with very high timing accuracy (75 ps). A trained network is26

introduced into the computation stream and this new technique removes the need27

for a bulky complex scanning system. We also note that the use of laser technology28

enables a greater range of depths than typical 3D imaging cameras, making it more29

suitable for outdoor use. The lack of scanning electronics and the miniaturisation30

of cameras allows this technology to have a very compact sensor head package, po-31

tentially down to optical fibre sizes. This opens the way for a single central laser,32

detector and computational system to sense from tens of sensor heads distributed33

around the platform; applications include driver-less cars, drones, underwater ve-34

hicles, and wearable technology.35

The use of Bayesian inversion offers two key advantages. First, prior knowl-36

edge can be incorporated to tackle the inherent ill-posedness and unidentifiability37

associated with the inverse problem. Second, this framework provides samples38
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from the posterior that can be used to quantify and manage the inherent uncer-1

tainty in the model. These issues impact on robustness, performance, transparency2

and interpretability, which are important for safety-related applications.3
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A Generator U-net Architecture1

The Generator U-net Architecture comprises an encoder with seven blocks C128-2

C256-C512-C1024-C1024-C1024-C1024 and a U-net decoder with seven blocks3

C1024-C1024-C1024-C1024-C512-C256-C128, where Ck denotes a Convolution-4

BatchNorm-ReLU layer with k filters. Input is a concatenation of z and two se-5

quential image frames y. All convolutions are 4 × 4 spatial filters applied with6

stride 2. Convolutions in the encoder down-sample by a factor of 2, whereas in7

the decoder they up-sample by a factor of 2. After the last layer in the decoder,8

a convolution is applied to map to the number of output channels followed by an9

activation function. As an exception to the above notation, Batch-Norm is not ap-10

plied to the first C128 layer in the encoder. All ReLUs in the encoder are leaky,11

with slope 0.2, while ReLUs in the decoder are not leaky. The U-Net architecture12

has skip connections between each layer i in the encoder and layer n − i in the13

decoder, where n = 7 is the total number of layers.14

B Patch Discriminator Architecture15

The Patch Discriminator Architecture comprises an encoder with five blocks C128-16

C256-C512-C1024-C1024. Input is a concatenation of x and y. As above, con-17

volutions are 4 × 4 spatial filters applied with stride 2 which down sample by a18

factor of 2. After the last layer, a convolution is applied to map to a 1-dimensional19

output, followed by a sigmoid function. As an exception to the above notation,20

Batch-Norm is not applied to the first C128 layer. All ReLUs are leaky, with slope21

0.2.22
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DC1:64x64x8

DC2:32x32x16

DC3:16x16x32

DC4:8x8x64

DC5:4x4x128

UC1:8x8x64

UC2:16x16x32

UC3:32x32x16

UC4:64x64x8

UC5:128x128x8

Output

Input L 532 x 1

Input I 128x128
RFC:128x128

C nal:128x128x1 

Figure 2: Generator U-net Architecture. The input layer concatenates the im-
age I and the laser response, L, up-sampled and reshaped (RFC) to the size of
I . The lightweight generator U-net architecture comprises five encoding convolu-
tional blocks (denoted DC1, DC2, DC3, DC4 and DC5) that each down-sample the
input by a factor of two whilst increasing the number of filters, producing 8, 16, 32,
64 and 128 feature maps respectively. The size of these feature maps, in terms of
width, height and number, are indicated after the block name. After DC5 the output
is up-sampled by a factor of two (UC1) and concatenated with the similarly sized
output from DC4, indicated by ⊕. This step is repeated four times (UC2, UC3,
UC4 and UC5) resulting in eight feature maps with width and height 128 pixels.
A final convolutional layer (Cfinal) learns to weight these features and produces a
depth map. The addition of skip connections between the decoder and the encoder
is a powerful design for applications, such as ours, fusing data and mapping from
one spatial domain (light) to another spatial domain (depth).
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Figure 3: Depth Prediction Comparison of RGB-only with G and Simulated
Laser (GSL): Bedroom Scene 1. RSNR scores (higher is better) upper row: RGB-
only blue line and GSL red line for a previously unseen bedroom video sequence
scene with 250 frames. The average RSNR score was 17.8 for GSL and 15.4
for RGB-only. GSL outperforms RGB throughout the sequence except where the
depth range is reduced making the problem easier, e.g., Frame 200, and the GSL
advantage of predicting actual depth is consequently lessened. Frames 120 and 200
are illustrated in the middle row and bottom row. Second column shows RGB-only
reconstruction. Third column shows simulated laser response data. Fourth column
shows the GSL reconstruction and fifth column the Kinect depth.
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Figure 4: Depth Prediction Comparison of RGB-only with G and Simulated
Laser (GSL): Bedroom Scene 2. RSNR scores (higher is better) upper row:
RGB-only blue line and GSL red line for a previously unseen bedroom video se-
quence scene with just over 100 frames. The average RSNR score was 15.0 for
GSL and 11.8 for RGB-only. GSL outperforms RGB throughout the sequence.
Frames 96 and 83 are illustrated in the middle row and bottom row. Second column
shows RGB-only reconstruction. Third column shows simulated laser response
data. Fourth column shows the GSL reconstruction and fifth column the Kinect
depth.
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Figure 5: Depth Prediction Comparison of RGB-only with G and Simulated
Laser (GSL): Living Room Scene. RSNR scores (higher is better) upper row:
RGB-only blue line and GSL red line for a previously unseen living room video
sequence scene with just under 300 frames. The average RSNR score was 15.2 for
GSL and 11.1 for RGB-only. GSL outperforms RGB throughout the sequence.
Frames 44 and 213 are illustrated in the middle row and bottom row. Second
column shows RGB-only reconstruction. Third column shows simulated laser re-
sponse data. Fourth column shows the GSL reconstruction and fifth column the
Kinect depth. Depth range is also indicated by colour with blue low and red high.
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Figure 6: Comparison of the real signal (green), the simulated signal (blue) and
the filtered+smoothed real signal (red) for 3 different single frame scenes. The
signals were filtered using the instrumental response (column four) and smoothed
using a width of 10 depth/time bins. The signals have been standardised so that the
peak signal takes value 1.
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Figure 7: Depth Prediction for real datasets acquired with our own hard-
ware. Pixel reconstruction results for four input images first row and correspond-
ing smoothed LiDAR signals second row, and for three methods: RGB-only third
row, GLL fourth row and Kinect fifth row; are shown in top view, with the hori-
zontal axis representing depth in metres. Performance scores (PSNR) for methods
RGB-only and GLL, compared to Kinect, are indicated above these reconstruc-
tions. GLL results are closer to the ’gold standard’ Kinect than the RGB-only in
each of the above images.
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Figure 8: Uncertainty Quantification: Posterior Sampling. Histograms of ob-
tained depth prediction values, computed by applying posterior sampling to the test
data 100 times, for pixels from the four test scenes with different depth values in
Figure 7. The true value is indicated on the horizontal axis by a red filled circle.
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