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Abstract 51 

Fulvestrant is used to treat patients with hormone receptor positive advanced breast 52 

cancer but acquired resistance is poorly understood. PlasmaMATCH Cohort A 53 

(NCT03182634) investigated the activity of fulvestrant in patients with activating 54 

ESR1 mutations in circulating tumor DNA (ctDNA). Baseline ESR1 mutations Y537S 55 

associated with poor, and Y537C with good outcome. Sequencing of baseline and 56 

EOT ctDNA samples (n=69) revealed 3/69 (4%) patients acquired novel ESR1 F404 57 

mutations (F404L, F404I, F404V), in cis with activating mutations. In silico modelling 58 

revealed that ESR1 F404 contributes to fulvestrant binding to ERα through a pi-59 

stacking bond, with mutations disrupting this bond. In vitro analysis demonstrated 60 

that single F404L, E380Q, and D538G models were less sensitive to fulvestrant, 61 

while compound mutations D538G+F404L and E380Q+F404L were resistant. 62 

Several oral ERα degraders were active against compound mutant models. We have 63 

identified a resistance mechanism specific to fulvestrant, that can be targeted by 64 

treatments in clinical development. 65 

66 

Statement of significance 67 

Novel F404 ESR1 mutations may be acquired to cause overt resistance to 68 

fulvestrant when combined with pre-existing activating ESR1 mutations. Novel 69 

combinations of mutations in the ER ligand binding domain may cause drug-specific 70 

resistance, emphasising the potential of similar drug-specific mutations to impact 71 

efficacy of oral ER degraders in development. 72 

73 
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Introduction 74 

For estrogen receptor positive (ER+) breast cancer, which accounts for 75% of 75 

breast cancers, hormonal therapy forms the backbone of treatment. In advanced 76 

breast cancer (ABC), the selective estrogen receptor degrader (SERD) fulvestrant is 77 

licenced for use in the first and second line, both as a single agent, and in 78 

combination with targeted therapies including CDK4/6 inhibitors and alpelisib(1-3). 79 

Fulvestrant acts by competitively inhibiting the binding of estradiol to ERα(4), 80 

impeding receptor dimerization and nuclear localisation(5,6), preventing the 81 

activation of estrogen response elements within the regulatory regions of estrogen 82 

sensitive genes. Fulvestrant-bound ER is also unstable, leading to increased 83 

degradation of the estrogen receptor(6). Although a standard therapy for patients 84 

with ABC, few studies have investigated mechanisms of resistance to fulvestrant. 85 

Activating estrogen receptor mutations (ESR1 mutations) are acquired through prior 86 

aromatase inhibitor therapy for ABC(7), with circulating tumour DNA analysis 87 

demonstrating that the mutations are present in 15-40% of patients treated with prior 88 

aromatase inhibition(8-10). Activating ESR1 mutations, that cluster at specific amino 89 

acids in the ligand binding domain (LBD), result in ligand independent activation of 90 

ESR1. Fulvestrant binding to mutant ERα is partially impaired, with higher 91 

concentrations of fulvestrant required to inhibit mutant ERα in vitro(5,11). It is 92 

considered unlikely that fulvestrant achieves concentrations required to optimally 93 

inhibit mutant ESR1 in the clinic, and new oral SERDS that do fully inhibit ESR1, 94 

such as elacestrant, have improved activity as single agents(12-14). 95 

The plasmaMATCH trial investigated the activity of a range of targeted treatments in 96 

patients selected based on plasma circulating tumour DNA (ctDNA) testing. Cohort A 97 
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enrolled patients with ER+ ABC with activating ESR1 mutations for treatment with 98 

fulvestrant. Prior clinical research suggests a fulvestrant dose response (15,16), and 99 

patients were treated with extended dose fulvestrant (500mg) given every 2 weeks, 100 

twice as frequent as standard dosing, to increase fulvestrant exposure and target 101 

ESR1 mutant cancers. Median progression free survival was 2.2 months (17). Here 102 

we investigate the genomic associations of response and resistance to fulvestrant in 103 

Cohort A of the plasmaMATCH trial. We demonstrate that baseline ESR1 variants 104 

are predictive of response to fulvestrant, with frequent acquisition of potentially 105 

targetable mutations. We identify mutations at F404 in estrogen receptor, that occur 106 

in cis with classical activating ESR1 mutations, and are acquired as a mechanism of 107 

resistance to fulvestrant, identifying the first mechanism of acquired resistance 108 

specific to fulvestrant. 109 

110 
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Results 111 

Baseline ESR1 variants and differential fulvestrant activity 112 

Of the 84 patients enrolled onto Cohort A treated with extended dose fulvestrant, 79 113 

(94%) had targeted sequencing results available for analysis, all of whom had 114 

detectable ctDNA. The observed baseline mutations reflected the profile of 115 

aromatase inhibitor pre-treated advanced breast cancer. Mutations in ESR1 (96%, 116 

76/79 patients), PIK3CA (43% 34/79 patients) and TP53 (30% 24/79 patients) were 117 

the most commonly identified at baseline (Figure 1A). Median PFS in patients with 118 

neither PIK3CA nor TP53 mutations was not significantly altered (Supplementary 119 

Figure 1A and B). The most frequent activating ESR1 alterations in the Cohort were 120 

D538G (n = 44, 55.7%), Y537S (n = 34, 43.0%), E380Q (n = 22, 27.9%), Y537N (n = 121 

22, 27.9%), Y537C (n = 11, 13.9%), L536R (n = 7, 8.9%) and S463P (n = 4, 5.1%; 122 

Figure 1B). We assessed the impact baseline ESR1 mutations had on fulvestrant 123 

efficacy. Patients with detectable baseline Y537C alterations had longer median 124 

progression-free survival (PFS) on fulvestrant compared to patients with other 125 

baseline ESR1 mutations (5.6 month detected versus 2.0 months not detected, HR 126 

2.8 [95% CI 1.3 to 5.9]; Figure 1C left panel). Conversely, patients with a baseline 127 

Y537S mutation had shorter median PFS (1.8 detected versus 3.5 months not-128 

detected, HR 0.53 (95% CI 0.33 to 0.86; Figure 1C right panel). Median PFS in 129 

patients on fulvestrant with a baseline D538G, E380Q, and Y537N mutations was 130 

not significantly different compared to patients with other baseline ESR1 mutations 131 

(Supplementary Figure 1C-E). To assess the impact of common activating mutations 132 

on fulvestrant activity in vitro, we conducted a screen of MCF7 cells with transient 133 

transfection of mutant ESR1 expression constructs, assessing the impact of 134 

mutations on fulvestrant activity on an ERE reporter construct. Matching the clinical 135 
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observations, Y537S induced a high level of resistance to fulvestrant, whilst Y537C 136 

was more sensitive (Figure 1D). This provides further evidence for fulvestrant 137 

resistance of Y537S mutations, adding to the prior data in vitro and in vivo (11,18-138 

20), and clinical trial data (21). 139 

Acquired mutations on fulvestrant. 140 

Progression plasma DNA was sequenced in 70 patients, of whom 69 had a baseline 141 

plasma sequenced (69/84, 82% enrolled patients). Pathogenic alterations were 142 

acquired in 51% patients (35/69), particularly within estrogen and PI3K/AKT 143 

signalling pathways (Figure 2A and Supplementary Figure 1F), including 17/69 144 

(25%) patients who acquired potentially targetable alterations, in genes including 145 

PTEN, BRCA1/2, PIK3CA, HER2 and BRAF (Figure 2A). The total number of 146 

acquired alterations was not different in patients who gained clinical benefit (PR/SD 147 

>=24 weeks) versus those that did not (Supplementary Figure 1G). For ESR1 148 

mutations, the majority of patients (n = 50, 72.5%) maintained their respective poly- 149 

or monoclonal ESR1 mutations, with 5.8% (n = 4) acquiring polyclonal disease 150 

through the course of treatment. In all 14/69 (20%) patients acquired ESR1 151 

mutations at progression, including with 6/69 (9%) patients who acquired L536 152 

mutations. This matched the result of our ESR1 activation mutation ERE screen, in 153 

which L536 mutations were the most resistant to fulvestrant (Figure 1D), likely 154 

suggesting that L536 clones were selected through treatment due to fulvestrant 155 

resistance. 156 

Identification and investigation of ESR1 F404, a novel acquired mutation. 157 

We noted that 3/69 (4%) patients acquired mutations at F404 on progression (Figure 158 

2B), a mutation that had not previously been described amongst ESR1 mutations, 159 

including one patient with five separate F404 mutations. The F404 locus is situated 160 
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within the LBD of ESR1, with codon TTT encoding the phenylalanine (Figure 2C). All 161 

three patients had either a partial response or stable disease as their best response 162 

on fulvestrant. Of the patients with PFS ≥16 weeks, 12% acquired F404 mutations. 163 

We additionally identified H356Y mutations in 3/69 (4%) patients, all in patients with 164 

an activating L536P mutation, although subsequent functional experiments 165 

suggested H356Y mutation did not impact ERα function (Supplementary Figure 2A 166 

and 2B). 167 

All 3 of the patients with acquired F404 mutations harboured activating ESR1 E380Q 168 

mutations at baseline, whilst two of the patients also had baseline D538G mutations. 169 

Cis/trans analysis of the three patients with co-mutant E380Q (a loci close enough to 170 

F404 to be able to establish cis/trans patterns in ctDNA) revealed that 6/7 F404 base 171 

changes detected in these patients occurred in cis with the E380Q mutation (Figure 172 

2D; Supplementary Figure 3). The patient with the mutation in trans with E380Q had 173 

additional ESR1 mutations (D538G, S463P and Y537N), and it is possible that the 174 

F404 mutation was in cis with one of those mutations. 175 

In the absence of prior fulvestrant exposure F404 mutations were very rare. Only 176 

1/800 (0.1%) screening plasma samples from the plasmaMATCH study had an F404 177 

mutation, and this one patient had previously received fulvestrant and had activating 178 

mutations in ESR1 at D538G, E380Q, S463P and Y537N. Furthermore, we 179 

interrogated other ctDNA data sets. In the PIPA combination study of fulvestrant, 180 

palbociclib and taselisib, 1/16 (6%) patients acquired an F404 mutation at 181 

progression (22). In the SERENA-1 study of the novel SERD camizestrant, baseline 182 

F404 mutations were identified in 2/214 (1%) patients both of whom had had prior 183 

fulvestrant exposure and had other activating ESR1 mutations(23). Therefore, F404 184 

mutations were found only with prior fulvestrant exposure, only in combination with 185 
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other classical activating ESR1 mutations, and occurred in cis with activating 186 

mutations expected to result in a translated protein that would carry the compound 187 

amino acid changes. 188 

The F404 amino acid residue contains an aromatic ring that, when estrogen is bound 189 

to the receptor, forms a pi-stacking bond with a corresponding aromatic ring within 190 

estrogen. Within the patients who harboured a F404 alteration, all base changes 191 

lead to substitution of phenylalanine with one of either isoleucine, valine, or leucine, 192 

all of which lack an aromatic ring (Figure 2E). Fulvestrant has a similar structure to 193 

estrogen and includes an aromatic ring that forms a pi-staking bond with F404 in 194 

structural modelling (Figure 2F). In silico analysis of binding energies 195 

(Supplementary Methods), on mutant ESR1 backgrounds (Y537S or L536S), 196 

suggested mutations at F404 reduced the binding affinity of estrogen and fulvestrant 197 

to the estrogen receptor (Supplementary Table 1). This potentially explains the 198 

clinical observation that F404 mutations only occurred in the presence of other 199 

activating ESR1 mutations, as F404 mutation might otherwise impair estrogen 200 

binding and receptor activation in a wild-type ERα receptor. 201 

Generation and validation of ESR1 F404L models 202 

We investigated the functional consequences of F404 alteration, and the potential 203 

role in fulvestrant resistance, using both CRISPR knock in models and transfection 204 

of expression constructs. For both approaches, ESR1 1210T>C (F404L), one of the 205 

most frequently identified F404 variants, was modelled as a single mutation (F404L) 206 

or as a compound mutation in cis alongside activating ESR1 mutations, D538G 207 

(1613A>G) and E380Q (1138G>C) selected for investigation as the most frequently 208 

co-occurring mutations in the clinical dataset. 209 
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MCF7 cells were subjected to CRISPR-Cas9 with homology directed repair (HDR) to 210 

“Knock In” the target mutations. Clones were screened by Sanger sequencing of 211 

genomic DNA. Any clones identified to harbour the targeted mutations were 212 

expanded and expression of the mutant transcript confirmed by RT-PCR and Sanger 213 

sequencing (Figure 3A). 3/72 (4%) F404 clones harboured the mutation, of which 214 

only 1/3 (33%; F404L_D10) was found to express F404L. 3/59 (5%) D538G clones 215 

harboured the mutation, all which 3/3 (100%) expressed the mutant protein. One of 216 

D538G clones, D538G_D6C was noted to be homozygous for the mutation providing 217 

an ideal background into which to knock in the p.F404L (Figure 3A). A second round 218 

of CRISPR was used to introduce F404L into the D538G_D6C model, with cells 219 

divided into pools and subjected to estrogen free conditions without (E) and with (EF) 220 

fulvestrant (0.5µM). 4/24 (17%) clones selected in the absence of estrogen (E) had 221 

expression of F404L (Figure 3A). In contrast, 28/30 (93%) of clones selected with 222 

fulvestrant (EF) had expression of F404L, providing clear evidence of preferential 223 

selection. 224 

Growth of both the parental MCF7 and F404L_D10 cells was estrogen dependent. In 225 

contrast, all models expressing D538G, and compound D538G+F404L, exhibited 226 

estrogen independent growth (Figure 3B and 3C). Similarly, D538G expressing 227 

models showed estradiol independent expression of the estrogen target gene 228 

progesterone receptor (PgR) and trefoil factor1 (TFF1; Figure 3D), whereas F404L 229 

showed estradiol dependent expression. Using an ERE-luciferase reporter gene 230 

construct and transient expression, we further assessed the impact of F404L and 231 

compound F404L+D538G mutations on estrogen mediated signalling (Figure 3E). 232 

Cells transfected with D538G tended to increase ERE activity in the absence of 233 

estrogen compared to cells expressing wild type ESR1 (Figure 3F). Notably, cells 234 
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expressing F404L showed lower ERE activity compared to cells expressing wild type 235 

ESR1 when exposed to estrogen (P=0.0488, n=4; Figure 3F). Similarly, the 236 

combination of E380Q, a less potent activator of ER signalling than D538G, and 237 

F404L reduced ERE activity compared to wild type ESR1 (P<0.023, n=4). Together 238 

these results are consistent with the hypothesis that F404L impacts the LBD of ERα, 239 

without activating the receptor. 240 

241 

Compound F404 mutations and resistance to fulvestrant 242 

We explored the impact of F404L on sensitivity of MCF7 cells to fulvestrant. CRISPR 243 

models expressing F404L had modestly reduced in sensitivity to fulvestrant 244 

compared to parental MCF7 cells in both short- and long-term assays (Figure 4A, 4B 245 

and 4C). Resistance to fulvestrant was substantially more marked in compound 246 

D538G+F404L models showing profound resistance (Figure 4A and 4B). Similarly, 247 

quantification of long-term colony formation assays show the compound 248 

D538G+F404L models clear resistance to fulvestrant (Figure 4C). Single mutant 249 

CRISPR F404L, D538G models and parental MCF7 cells had decreased expression 250 

of PgR, TFF1 and ERα when treated with fulvestrant (Figure 4D). In contrast, models 251 

with compound D538G+F404L had limited changes in expression of PgR, TFF1 and 252 

ERα when treated with fulvestrant (Figure 4D). Supporting these observations, ERE 253 

activity associated with transient expression of single and compound ESR1 variants 254 

was reduced by treatment with fulvestrant, with the exception of D538G+F404L 255 

which maintained ERE activity compared to cells treated with estradiol alone (Figure 256 

4E). Consistent with this, the combination of F404L+L536P, a combination not seen 257 

in the clinical dataset, maintained ERE activity when treated with fulvestrant 258 

(Supplementary Figure 3). Together this data confirms that the combined effect of 259 
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compound F404 and activating ESR1 mutations in cis in the same protein caused 260 

profound fulvestrant resistance. 261 

Compound F404 mutations increase estrogen dependent gene expression. 262 

To extend the observations of increased estrogen signalling in F404 compound 263 

models treated with fulvestrant (Figures 3C and 4C), RNAseq was performed for 264 

models grown in estradiol (1nM) with and without fulvestrant (1M) for 24 hours 265 

(n=3). Gene set enrichment analysis (GSEA) of D538G+F404L compound mutant 266 

models grown with estrogen had decreased “Early estrogen pathway” expression but 267 

were otherwise similar to D538G mutant cells (Figure 5A, FDR adjusted q<0.05;). 268 

However, when treated with fulvestrant for 24hr, E2F transcription, MYC, 269 

proliferation and estrogen mediated signalling were all significantly increased in the 270 

compound mutant model (Figure 5B, FDR adjusted q<0.05;). The F404L-D10 model 271 

had significant upregulation of estrogen signalling compared to the wildtype control 272 

(FDR adjusted q<0.05). Similarly, estrogen signalling was increased in the D538G-273 

D6C model compared to the wildtype control maintained with and without fulvestrant 274 

treatment (FDR adjusted q<0.05; Figure 5C). Addition of F404L to D538G 275 

(D358G+F404L_EF models), showed significant activation of both E2F target and 276 

estrogen response (early and late) pathways with fulvestrant treatment (FDR 277 

adjusted q<0.05; Figure 5C). Differential response of the late estrogen response 278 

genes illustrated in Figures 5D (estradiol; Supplementary Figure 4A) and 5E 279 

(Fulvestrant; Supplementary Figure 4B). 280 

We noted two observations that suggested ESR1 F404 mutations might be 281 

deleterious in the absence of fulvestrant. F404 Compound mutations had lower 282 

“Early estrogen pathway” expression (Figure 5A), and introduction of F404 reduced 283 
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ERE activity compared to wildtype protein in the presence of estrogen (Figure 3E).  284 

Consistent with this the three double mutants expressing F404L models that were 285 

selected in the presence of estrogen “E” (Figure 3A), all lost the F404L mutation in 286 

long term growth (Supplementary Figure 5), likely suggesting a subclonal mutation 287 

that was outcompeted by the F404F wildtype clone in long-term growth in the 288 

absence of fulvestrant. 289 

Compound F404 mutations are sensitive to novel SERDs. 290 

In silico analysis of binding energies suggested mutations at F404L may increase the 291 

binding affinity of second-generation oral SERDs (Supplementary Table 1). 292 

Therefore, we investigated if fulvestrant resistance generated through compound 293 

F404 mutations could be overcome by novel SERDs in clinical development, or by 294 

the selective estrogen receptor modulator (SERM) tamoxifen. All novel SERDS 295 

investigated were active against CRISPR models with both single F404L mutations 296 

and D538G+F404L compound mutations, including elacestrant, camizestrant, 4OH 297 

tamoxifen and giredestrant (Figure 6A-E, Table 1; Supplementary Figures 6-9). In 298 

particular, models with D538G+F404L compound mutations that were overtly 299 

resistant to fulvestrant, showed sensitivity to other SERD/SERMs comparable to 300 

other D538G expressing models (Figure 6A-E; Supplementary Figures 6-9). 301 

Similarly, elacestrant, camizestrant, 4OH tamoxifen or giredestrant all fully inhibited 302 

ERE activity following transient transfection of D538G+F404L and E380Q+F404L 303 

(Figure 6F), despite transfection of these compound mutations resulting in 304 

substantial resistance to fulvestrant. Interestingly, 4OH tamoxifen did not completely 305 

suppress activity of the ERE reporter gene assay, with ~10-20% activity irrespective 306 

of ESR1 mutation (Figure 6F), potentially reflecting the difference in mechanism of 307 

action between it and the SERDs. 308 
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Discussion 309 

Here, we present a robust genomic analysis of resistance to fulvestrant in ESR1310 

mutant breast cancer using paired circulating tumour DNA sequencing in patients 311 

treated with fulvestrant in the plasmaMATCH study(17). We identify novel ESR1 312 

mutations that alter F404, that occur only in patients treated with fulvestrant with pre-313 

existing activating ESR1 mutations in their cancer. F404 mutations are acquired in 314 

cis with a pre-existing activating ESR1 mutation, with the resulting compound 315 

mutation resulting in profound resistance to fulvestrant, but with retained sensitivity 316 

to a range of novel SERDs, identifying a treatment strategy to overcome acquired 317 

resistance conveyed by F404 mutations. 318 

Mutations at F404 do not appear to occur in the absence of fulvestrant exposure, 319 

and then also only in the presence of other activating ESR1 mutations. F404 has 320 

previously been predicted to form pi-stacking bonds with plant polyphenols identified 321 

in a screen of compounds as candidates with anti-estrogenic properties (24). 322 

Similarly, structural analysis suggested that F404 forms a pi-stacking bond with an 323 

aromatic ring in both estradiol and fulvestrant. Consistent with these predictions, in324 

vitro, the introduction of F404 mutations resulted in lower levels of ERE activity 325 

compared to wildtype ESR1 (Figure 3). Mutation of F404 would likely reduce ESR1 326 

activity in the absence of other ESR1 mutations, which may have a deleterious effect 327 

on tumour growth, explaining the lack of F404 mutations observed without prior 328 

acquisition of an activating ESR1 mutation. Compound F404 mutations resulted in 329 

profound resistance to fulvestrant, with single F404 mutant models showing more 330 

limited fulvestrant resistance. It is likely that the effect of ESR1 activating mutations 331 

on the ligand binding pocket, combined with the loss of the pi-stacking bond, result in 332 
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an impairment of fulvestrant affinity for the ligand binding pocket. In silico analysis of 333 

binding energies was consistent with this hypothesis, although formal in vitro studies 334 

in the future would be required to assess this (Supplementary Table 1), with the 335 

alternative hypothesis being that F404X mutations do not impact the binding of 336 

fulvestrant, but impact the conformational change induced by fulvestrant binding. 337 

Interesting in silico analysis predicted that binding energies of novel SERDs were not 338 

affected by, or even promoted by, F404 mutations, and consistent with this the 339 

efficacy of novel SERDs, was unaffected by mutations in F404, providing a 340 

therapeutic option to circumvent this mechanism of resistance. Investigation of a 341 

wider range of SERDs/SERMs is required to confirm whether this resistance 342 

mutation is, as is currently suggested, specific to fulvestrant. This endocrine therapy 343 

resistance mechanism is unique in leading to re-activation of the estrogen receptor 344 

itself, in contrast to other mechanisms such as inactivating NF1 and ARID1A 345 

mutations (25,26), emphasising the need to identify whether further drug specific 346 

mutations may limit the efficacy of oral ER degraders in clinical development. 347 

Interestingly, our results predict that although F404 compound mutations promote 348 

growth in the presence of fulvestrant, this conditional advantage may come at the 349 

come at the cost of reduced fitness in the absence of fulvestrant, as F404 mutations 350 

may reduce ER signalling in the absence of fulvestrant and therefore come at the 351 

cost of impaired clonal growth once fulvestrant is withdrawn (Supplementary Figure 352 

5). This suggests that for patients with resistance to fulvestrant generated by F404 353 

mutations, there may be the possibility of rechallenging with fulvestrant after a 354 

treatment break, as has been seen rechallenging with cetuximab in patients who 355 

KRAS mutations in colorectal cancer(27). 356 
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Our study emphasises the extent to which tumour genomes may evolve through 357 

fulvestrant therapy, with 25% patients acquiring a potentially targetable driver 358 

mutation. Evidence suggests that ER positive breast cancers may become 359 

substantially heterogeneous after progression on endocrine therapy, and that 360 

heterogeneity presents a considerable challenge to subsequent treatment efficacy 361 

(21,28,29). The high incidence of mutation ‘acquisition’ was largely driven by gain of 362 

ESR1 mutations, and likely reflects clonal selection in the cancer, whilst emphasising 363 

the importance of ctDNA liquid biopsy testing to match treatment to current genomics 364 

(17). This heterogeneity may be more marked in ESR1 mutant cancer, as ESR1 365 

mutations may co-occur with other mechanisms of genetic resistance, potentially 366 

reflecting cancers that are pre-disposed to acquiring genetic mechanisms of 367 

resistance (21,29) Recently, acquisition of secondary mutations in cis with hotspot 368 

driver mutations in PIK3CA were described (30), leading to increased signalling and 369 

tumour growth. PIK3CA double mutants were found to have increased sensitivity to 370 

PI3K inhibitors (30). Similarly, we report double mutations in ESR1 where the 371 

primary mutation has been widely described (11,19,21,29,31), acquired in response 372 

to exposure to aromatase inhibitors (7). In contrast to PIK3CA double mutations 373 

which enhance PI3K signalling, acquisition of F404 only provides a growth 374 

advantage in the context of exposure to fulvestrant. 375 

In conclusion, we identify a novel ESR1 mutation at ERα F404, that when acquired in 376 

combination with an activating ESR1 mutation induces resistance to the widely used 377 

SERD fulvestrant. Mutations at this codon result in changes at F404 to amino acid 378 

residues which lack an aromatic ring, disrupting the pi-stacking bond with both 379 

estradiol and fulvestrant. The resistance of F404 double mutants is specific to 380 

fulvestrant and can be overcome by use of alternate SERDs, suggesting a route to 381 
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overcome therapeutic resistance in the clinic. Mutations in the estrogen receptor can 382 

confer resistance to ER binding drugs, without promoting ER activity, identifying a 383 

new mechanism through which the cancer can become resistant to hormonal 384 

therapies. 385 

386 
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Materials and Methods 387 

Patient enrolment into plasmaMATCH and blood sampling 388 

The plasmaMATCH trial (NCT03182634). was co-sponsored by the Institute of 389 

Cancer Research and the Royal Marsden National Health Service (NHS) Foundation 390 

Trust, London, UK, and approved by a Research Ethics Committee (16/SC/0271), as 391 

previously reported (17). Baseline ctDNA testing was conducted with droplet digital 392 

PCR (ddPCR), and from partway through the trial with targeted sequencing in 393 

parallel to ddPCR. For patients enrolled prior to prospective targeted sequencing, a 394 

banked pre-treatment plasma sample was retrospectively sequenced. An additional 395 

plasma sample taken at disease progression was also subject to targeted 396 

sequencing. 397 

For the baseline ctDNA test, 30-40ml of blood was collected in 3–4 10ml cell-free 398 

DNA BCT Streck tubes. 30ml of blood was shipped at ambient temperature to a 399 

central laboratory (Centre for Molecular Pathology, Royal Marsden Hospital) for 400 

ddPCR testing and retrospective targeted sequencing. In addition, from partway 401 

through the trial 10ml blood were shipped to Guardant Health (Redwood City, 402 

California, USA) for targeted sequencing. An additional sample was collected at 403 

cycle 1 day1, and end of treatment sample in 2 x 10mL BD Vacutainer® EDTA 404 

tubes, centrifuged within 1 hour of collection, for retrospective targeted sequencing. 405 

Computer modeling of estrogen pi-stacking with ER 406 

Models of estrogen ligand A-ring pi-stacking with F404 in the ligand binding pocket of 407 

ERα were generated as follows: There is no crystal structure for fulvestrant bound to 408 

ERα; the only related crystal structure is for ICI 164,384, a close fulvestrant analog, 409 

in the other ER subtype, ERβ (PDB ID 1HJ1).  Therefore, we removed the ICI 410 
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164,384 ligand from this structure, modified the side chain to match that of 411 

fulvestrant, and modelled it into the ERα crystal structure for the antiestrogen 412 

Bazedoxifene after removing the Bazedoxifene ligand (PDB ID 6PSJ); the fitting was 413 

done using Schrödinger Glide (https://www.schrodinger.com/products/glide). The 414 

estradiol structure in ERα is from PDB ID 3UUD. 415 

ctDNA testing and analysis. 416 

ctDNA targeted sequencing was conducted with Guardant360 that identifies single 417 

nucleotide variants (SNVs), indels, copy number alterations and fusions within 418 

protein-coding regions of 73 (version 2.10) or 74 genes (version 2.11), as previously 419 

described(29,32). 420 

Variants from Guardant 360 were annotated with VEP version 96(33). Germline calls 421 

were identified by Guardant360 with additional calls (identified based on a 422 

combination of VAF frequency around 50%+− 2% and VAF in general population in 423 

the Genome Aggregation Database >0.001%) excluded. To identify pathogenic 424 

mutations, variants were annotated with OncoKB(34) and CancerHotspots(35). 425 

Mutations were classified as pathogenic based on Cancer Hotspots or OncoKB 426 

annotations or recurrent mutations in key breast cancer genes (ESR1, HER2, 427 

PIK3CA, EGFR, RB1 and FGFR2) or splicing mutations. All analyses presented are 428 

based on mutations assessed as likely pathogenic. Targetability was assigned using 429 

OncoKB annotation, a manually curated database of alterations(34). 430 

Cell Lines 431 

MCF7 cell lines were obtained from ATCC and cultured in phenol free RPMI media 432 

(32404-014, Life technologies) supplemented with 10% dextran/charcoal stripped 433 

FBS (12676029, Life Technologies), 1nM oestradiol (Sigma), glutamine (25030149, 434 
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Life technologies), penicillin and streptomycin (15140-122, Life technologies). Cell 435 

lines were banked in multiple aliquots on receipt to reduce risk of phenotypic drift 436 

and identity confirmed by STR profiling with the PowerPlex 1.2 System (Promega). 437 

Cell cultures were routinely tested for presence of mycoplasma using MycoAlert® 438 

Detection kit (LT07-318 Lonza). 439 

Antibodies and Drugs 440 

Antibodies used were ERα (sc543, Santa Cruz Biotechnology), PGR (8757, Cell 441 

Signaling Technology), TFF1 (15571, Cell Signaling Technology) and βactin (A5441 442 

Sigma). Secondary antibodies used were α-rabbit-HRP (7074) and α-mouse-HRP 443 

(7076, Cell Signaling Technology). Fulvestrant (S1191), 4OH-tamoxifen (S7827) and 444 

camizestrant (S8958) were obtained from Selleck Chemicals. Elacestrant (HY-445 

19822A) and giredestrant (HY-109176) were obtained from MedChemExpress. 446 

Generation and analysis of ESR1 mutant CRISPR models 447 

MCF7 cells were subjected to CRISPR-Cas9 genome editing with homology-directed 448 

repair (HDR) using Integrated DNA Technologies’ (IDT) Alt-R™ CRISPR-Cas9 449 

system according to manufacturer’s guidelines. Briefly, the day before transfection 450 

250,000 cells were plated per well of a 6 well plate in antibiotic free media containing 451 

HDR enhancer V2 (2µM, 10007910 IDT). crRNA and HDR templates were designed 452 

using IDT’s Alt-R™ CRISPR HRD design tool (https://eu.idtdna.com/pages/tools/alt-r-453 

crispr-hdr-design-tool; Supplementary table 2). gRNA complexes (1µM) were prepared 454 

by hybridisation of targeting crRNA with tracrRNA-ATTO555 (1075928, IDT). 455 

Ribonucleoprotein (RNP) complexes were prepared by addition of gRNA complexes, 456 

Cas9 (1081060 IDT), HDR template, Cas9 PLUS reagent (ThermoFisher Scientific), 457 

and OptiMEM (31985062, ThermoFisher Scientific), and incubated for 5min at room 458 

temperature. Transfection mixes were prepared using RNP complexes with 459 
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Lipofectamine™ CRISPMAX™ (CMAX00008, ThermoFisher Scientific) and 460 

incubated for 20mins at room temperature. Transfection mixes were added to pre-461 

seeded cells in 6 well plates and incubated overnight. 48h post transfection cells 462 

were spilt into 10cm dishes and cells cultured until colonies had established. gDNA 463 

was extracted from the transfection pool using QuickExtract™ DNA Extraction 464 

Solution (QE09050 Lucigen) and CRISPR editing assessed using Alt-R Genome 465 

Editing Detection kit (1075932 IDT). After approximately 2 weeks individual colonies 466 

were picked into 96 well plates and expanded. gDNA was extracted from colonies 467 

using QuickExtract™ DNA Extraction Solution (QE09050 Lucigen), subjected to 468 

PCR (primer details in Supplementary table 1), PCR products isolated (QIAquick 469 

PCR purification kit, 28104 Qiagen) and screened for presence of targeted mutations 470 

by Sanger sequencing (Azenta Life Sciences). Clones in which targeted mutations 471 

were identified were expanded. 472 

To confirm mutant ESR1 variants were expressed by selected clones, RNA was 473 

extracted using RNeasy Mini Kit (74104, Qiagen), cDNA prepared using SuperScript 474 

IV first strand synthesis kit (18091050, ThermoFisher Scientific) and amplified using 475 

AllTaq PCR Core Kit (203123, Qiagen; primer details in Supplementary table 1). As 476 

described, PCR products were isolated and screened for presence of targeted 477 

mutations by Sanger sequencing (Azenta Life Sciences). 478 

Fulvestrant Screen of ESR1 mutant expressing MCF7 cells 479 

A series of expression constructs with ESR1 point mutations was generated in the 480 

pcDNA3.1 HA-ERα (18). Transfections of MCF7 cells using HA-tagged wild-type or 481 

mutant ERα, with 3×-ERE-TATA-Luciferase reporter and pRL-TK-Renilla luciferase 482 

plasmid (Promega) using Lipofectamine 2000 (Life technologies) were done 483 

according to the methods of Toy et al 2013 (18). Cells were exposed to fulvestrant at 484 
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indicated concentrations 1 day after transfection for 24h, and luciferase activities 485 

were determined using the Dual® Luciferase Reporter Assay System (E2920, 486 

Promega) according to the manufacturer's instructions. Luciferase bioluminescence 487 

measurements were performed with the Veritas Microplate Luminometer (Promega). 488 

ERE assays with transient transfection 489 

pcDNA3.1+/C-DYK plasmids, with the open reading frame of ESR1 (NM_000125.4) 490 

with and without point mutations (estrogen receptor constructs, ERCs; 491 

Supplementary Table 2), were purchased from GenScript (The Netherlands). Sanger 492 

sequencing was used to confirm the presence of the desired mutations within the 493 

custom insert.  MCF-7 cells were seeded in 6 well plates with 250,000 cells per well 494 

in antibiotic free media, the following day transfected using Fugene 6 (Promega, 495 

USA) with the ERC, a plasmid expressing an estrogen response element with firefly 496 

luciferase (ERE-luciferase) (36) and pRL-CMV (Renilla luciferase control, Promega). 497 

24 hours post transfection, experimental conditions were applied for a further 24h, 498 

and firefly luciferase (ERE activity) and Renilla luciferase using the Dual-Glo® 499 

Luciferase Assay System (E2920, Promega) following the manufacturer’s 500 

instructions measured with a VICTOR X3 MultiLab. Experiments were repeated a 501 

minimum of 3 times. 502 

In Vitro Viability Assessment 503 

Colony formation assays were conducted in 6-well plates, seeded with 10,000 504 

cells/well prior to exposure to the indicated experimental conditions. Plates were 505 

fixed with tricyclic acid (10%v/v), stained with sulforhodamine B (S1402, Sigma; 506 

0.37% w/v, in 1% acetic acid) and colonies counted using a GelCOUNT instrument 507 

(Oxford Technologies). For short-term survival assays, 700cells/well were plated in 508 
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384 well plates and exposed to indicated drugs. Survival was assessed after 6 days 509 

of treatment using CellTiter-Glo cell viability assay (G7572, Promega). 510 

Western Blotting 511 

Cells were lysed in NP40 lysis buffer (1% v/v NP40, 10 mmol/L Tris–Cl pH8, 150 512 

mmol/L NaCl, 1 mmol/L EDTA, 1 mmol/L DTT) supplemented with 513 

protease/phosphatase inhibitor cocktail (5872, Cell Signaling Technologies). 514 

Western blots were carried out with precast Bis-Tris gels (Life Technologies). 515 

RNAseq expression analysis 516 

ESR1 mutant models and controls were treated with 1nM estradiol ± 1µM fulvestrant 517 

for 24hr (9 models with estradiol treatment, 7 of which also had fulvestrant treatment, 518 

n=3), cells harvested, and RNA extracted using RNeasy Mini Kit (74104, Qiagen). 519 

Each cell model was treated in 3 independent experiments. 520 

48 total RNA samples were sent to Novogene (UK) Company Ltd and subjected to 521 

Eukaryotic mRNA-Seq (Illumina Novaseq PE150, Q30 ≥ 80%). Sequencing data for 522 

48 RNA samples for 9 models using bcbio-nextgen,1.2.4 pipeline, reads were 523 

aligned using STAR with version STAR 2.6.1d, counted using salmon,1.4.0. The 524 

data was divided in two parts with respect to treatment with 1nM estradiol and 1µM 525 

fulvestrant as EST and FUL. The data normalized using DEseq2 version ‘1.38.3’. 526 

DESeq2 was also used to determine differentially expressed genes between 527 

different model of single mutants (404_D10, 538_D6C) versus control (MCF7), single 528 

mutants (404_D10, 538_D6C) versus wt_D11 and double mutants (538_404, 529 

404_538) vs single mutants (538_D6C, 404_D10) using shrunken log2 fold changes 530 

in EST and FUL data respectively. Heatmaps were generated using pheatmap 531 

package version ‘1.0.12’and ggplots ‘3.4.2’ R package. GSEA analysis was carried 532 
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out using Molecular Signatures Database ‘Hallmarks’ gene set collection using 533 

package fgsea ‘1.24.0’ and clusterProfiler ‘4.6.2’ R packages. 534 

Statistical analyses 535 

Statistical analysis was carried out using R version 4.0.5 and GraphPad Prism 536 

v8.4.3. Time to event survival data were analysed with log-rank test and hazard 537 

ratios were calculated with Cox regression. Plots were created using GraphPad 538 

Prism v8.4.3 and the R software packages ggplot2 and survminer. 539 

540 

Data Availability Statement 541 

The processed plasmaMATCH Guardant360 sequencing data generated and 542 

analysed during the current study are available as part of Kingston B, et al 2021 (29). 543 

We do not have permission from the patients to publicly deposit the raw sequencing 544 

data. To protect the privacy and confidentiality of patients in this study, clinical data 545 

are also not made publicly available. The data can be obtained by submitting a 546 

formal data access request in accordance with the Institute of Cancer Research 547 

Clinical Trials and Statistics Unit (ICR-CTSU) data and sample access policy. 548 

Requests are to be made via a standard proforma describing the nature of the 549 

proposed research and extent of data requirements which is reviewed by the trial 550 

management group. Data recipients are required to enter a formal data sharing 551 

agreement, which describes the conditions for data release and requirements for 552 

data transfer, storage, archiving, publication, and intellectual property. Trial 553 

documentation including the protocol are available on request by contacting 554 

plasmamatch-icrctsu@icr.ac.uk. 555 

mailto:plasmamatch-icrctsu@icr.ac.uk
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Table 1. Calculated IC50 and EC50 of 4OH tamoxifen and novel SERDs in ESR1 mutant models. 722 

MCF7 WT D11 F404L D10 
D538G 

D6C 
404 538 

1EF 
538 404 

30EF 
538 404 

34EF 
538 404 

36EF 
538 404 

37EF 
Elacestrant IC50 (nM) 12.2 3.9 5.4 27.7 20.1 23.3 34.6 nc 35.5 

EC50 (nM) 16.2 10.7 6.9 59.0 24.9 27.5 46.3 67.0 57.8 
Camizestrant IC50 (nM) 1.0 0.7 1.8 14.0 9.6 9.9 15.1 7.5 15.8 

EC50 (nM) 2.5 2.2 2.2 28.8 10.9 12.2 20.8 47.2 25.3 
4OH tamoxifen IC50 (nM) 5.6 1.2 1.4 16.8 10.3 8.7 14.4 11.1 20.6 

EC50 (nM) 8.9 7.1 3.4 37.9 14.9 11.8 21.7 95.3 46.9 
Giredestrant IC50 (nM) 1.2 0.3 0.4 3.1 2.5 2.5 3.7 1.0 4.2 

 
EC50 (nM) 1.3 0.8 0.5 6.3 3.1 3.2 4.6 9.2 6.9 

nc not calculated 723 

724 
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Figures 725 

Figure 1. Baseline ESR1 mutations and fulvestrant efficacy 726 

A. % Incidence of mutations in indicated genes at baseline in Cohort A (n=79727 

assessable patients). 728 

B. Incidence of baseline ESR1 alterations within Cohort A (n=79 assessable729 

patients). 730 

C. Progression-free survival of patients in Cohort A, divided by baseline ESR1731 

Y537C mutation status (left) and ESR1 Y537S mutation status (right). p-values from 732 

log rank test. HR >1 denotes worse PFS for that group. WT, wild type; mt, mutant 733 

D. MCF7 cells were co-transfected with the indicated ESR1 expression constructs734 

and treated with the indicated concentration of fulvestrant in the presence of 1nM 735 

estradiol for 24 hours and ERE-luciferase reporter activity determined. 2 independent 736 

experiments. 737 

738 

Figure 2. Acquired mutations on Fulvestrant. 739 

A. incidence of acquired alterations (n=69 assessable patients), coloured by740 

targetability of the alterations (methods). Level 2B denotes the highest level of 741 

supporting evidence (“Standard care biomarker recommended by the NCCN or other 742 

professional advice guidelines predictive of response to an FDA-approved drug”), 743 

while Level 4 is the lowest (“Compelling biochemical evidence supports the 744 

biomarker as being predictive of response to a drug”). 745 

B. incidence of acquired ESR1 mutations (n=14 patients), and resultant amino acid746 

changes. 747 
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C. ESR1 F404 locus in the DNA-binding domain of the estrogen receptor. The 748 

number of base changes identified within the dataset that result in the three different 749 

missense mutations are illustrated using https://proteinpaint.stjude.org/ (37). 750 

D. cis/trans analysis of F404 and E380Q in the three patients with assessable751 

targeted sequencing data. Both alleles of chromosome 6 are represented, with 752 

annotated location of the F404 and E380Q on each respective allele representing 753 

the cis/trans relationship of the variants. 754 

E, Mutations at phenylalanine 404 result in substitution of amino acid residues 755 

without an aromatic ring. 756 

F, In silico modelling predicts the aromatic ring of F404 contributes to a pi-stacking 757 

bond between the receptor and both estrogen and fulvestrant. 758 

759 

Figure 3. F404 does not activate estrogen signalling. 760 

A. CRISPR clones of MCF7 cells expressing ESR1 F404L (1210T>C, CRISPR edit761 

indicated by red arrows) or D538G (1613A>G; CRISPR edit indicated by black 762 

arrows) were identified by RT-PCR followed by Sanger sequencing (left hand 763 

panels). Similarly, a second round of CRISPR was used to introduce ESR1 F404L 764 

(1210T>C) into a clone (D6C) that expressed D538G (1613A>G; right hand panels). 765 

B. Estrogen dependent growth was assessed in colony formation assay. Parental766 

MCF7 cells and indicated ESR1 mutant models were grown in either the absence or 767 

presence of estradiol (1nM) for 14 days. 768 

C. Quantification of colony formation assays of ESR1 mutant models treated with769 

and without estradiol (1nM). SRB stained colonies were dissolved and absorbance at 770 
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565nm measured. Mean with sem, n=3 independent experiments, nonparametric 771 

one way ANOVA with Dunn’s multiple comparisons test, **P<0.01. 772 

D. Expression of estrogen target genes, progesterone receptor (PgR) and trefoil773 

factor-1 (TFF1), assessed by western blot in parental MCF7 cells and indicated 774 

ESR1 mutant models grown in either the absence or presence of estradiol (1nM) for 775 

24 hours. 776 

E. MCF7 cells were transfected with ESR1 expression constructs with indicated777 

ESR1 variants. Expression of ERα was determined by western blot. 778 

F. MCF7 cells were co-transfected with the indicated ESR1 expression constructs779 

ERE-luciferase reporter and control construct. Cells were treated in either the 780 

absence or presence of estradiol (1nM) for 24 hours and ERE-luciferase activity 781 

assessed. 2-way repeated measures ANOVA with Dunnett’s multiple comparisons 782 

test, n=4 mean with SD, *P<0.05. 783 

784 

Figure 4. Compound F404L mutations induces resistance to fulvestrant. 785 

A. Compound mutations of D538G-F404L in MCF7 cells, along with single mutations786 

and wildtype, with sensitivity to fulvestrant assessed after 6 days treatment with Cell 787 

Titre Glo viability assay. N=4 mean with SD. 788 

B. Representative images of clonongenic assays grown in indicated concentrations789 

of fulvestrant for 14 days. 790 

C. Quantification of colony formation assays for ESR1 mutant models treated with791 

the indicated concentrations of fulvestrant for 14 days. EC50 and IC50 values were 792 
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calculated from the response curves. SRB stained colonies were dissolved and 793 

absorbance at 565nm measured. Mean with sem, n=3 independent experiments. 794 

D. Expression of estrogen target genes, progesterone receptor (PgR) and trefoil795 

factor-1 (TFF1), assessed by western blot in parental MCF7 cells and indicated 796 

ESR1 mutant models grown in the presence of 1nM estradiol or 1µM fulvestrant. 797 

E. MCF7 cells were co-transfected with the indicated ESR1 expression constructs798 

ERE-luciferase reporter and control construct. Cells were treated with 1nM estradiol 799 

either the absence or presence of fulvestrant (1µM) for 24 hours and ERE-luciferase 800 

activity assessed. 2-way repeated measures ANOVA with Sidak’s multiple 801 

comparisons test, n=4 mean with SD, **P<0.01, ***P<0.001, ****P<0.0001. 802 

803 

Figure 5. Transcriptomic analysis of ESR1 mutant models 804 

A, Gene set enrichment analysis for D538G+F404L models compared to D538G 805 

D6C cells maintained in 1nM estradiol. Pathways highlighted red, false discovery 806 

rate adjusted q value <0.05. 807 

B, Gene set enrichment analysis for D538G+F404L models compared to D538G 808 

D6C cells treated with 1M fulvestrant for 24hr. Pathways highlighted red, false 809 

discovery rate adjusted q value <0.05. 810 

C, Gene Set Enrichment Analysis (GSEA) for ESR1 mutant models. Normalised 811 

enrichment score (NES) is shown for the indicated pathways. *False discovery rate 812 

adjusted q value <0.05. 813 

D, Heat map of “Estrogen response late” genes (Log2 expression) for ESR1 mutant 814 

models maintained in 1nM estradiol.  815 
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E, Heat map of “Estrogen response late” genes (Log2 expression) for ESR1 mutant 816 

models treated with 1M fulvestrant in presence of 1nMestradiol. 817 

818 

Figure 6. Compound F404 mutations are sensitive to novel SERDs. 819 

A-D. Compound mutations of D538G-F404L in MCF7 cells, along with single820 

mutations and wildtype, with sensitivity to elacestrant (A), camizestrant (B), 4OH 821 

tamoxifen (C) and giredestrant (D), assessed after 6 days treatment with Cell Titre 822 

Glo viability assay. N=4 mean with SD. 823 

E. Representative clonongenic assays grown in indicated concentrations of824 

elacestrant, camizestrant, 4OH tamoxifen and giredestrant for 14 days. 825 

F. MCF7 cells were co-transfected with the indicated ESR1 expression constructs826 

ERE-luciferase reporter and control construct. Cells were treated with indicated 827 

concentrations of fulvestrant, elacestrant, camizestrant, 4OH tamoxifen and 828 

giredestrant, in the presence of 1nM estradiol, for 24 hours and ERE-luciferase 829 

activity assessed. 2-way repeated measures ANOVA with Sidak’s multiple 830 

comparisons test, n=3 mean with SD, *P<0.05. 831 
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