
1.  Introduction
Globally, 29% of the world's population is exposed to flood risk and insecure water supplies, yet knowledge of 
the river discharges upon which flood and water resource management depends remains inadequate (Rentschler 
& Salhab, 2020). Global monitoring networks for quantifying river discharge are in decline, gauging remains 
logistically difficult and there are political influences on data sharing (King et al., 2018; Lins, 2008; Zakharova 
et al., 2020). However, satellite-based remote sensing approaches to monitoring discharge are helping to alleviate 
these issues (e.g., Sichangi et al., 2016).

Approaches to satellite-based river discharge monitoring typically rely upon statistical and hydraulic approxi-
mations to make indirect estimates of river discharge. Widely applied satellite radar altimetry measures water 
elevations at virtual river cross-sections (Revel et al., 2023; Tarpanelli et al., 2013; Zakharova et al., 2020) and 
near-simultaneous optical imagery can be used to infer water surface flow velocity from space (Kääb et al., 2019). 
Other satellite approaches have relied on remote sensing of discharge (RSQ) algorithms, which retrieve hydrau-
lic variables from remotely sensed data and then relate these quantities to river discharge (Q) (e.g., Gleason & 
Durand, 2020; Riggs et al., 2022). These techniques are limited by relatively coarse spatial resolution and the 
requirement for near-simultaneous satellite swath overlaps, constraining global coverage.

High resolution commercial satellite video sensors can record the dynamics of river flow and floods. Optical flow 
measurement algorithms can estimate velocity by tracking the movement of visible features between frames (e.g., 
Eltner et al., 2020; Perks et al., 2020). Currently, optical satellite video acquired by low earth orbiting sensors 
offer spatial resolutions (pixel sizes) ranging from 0.9–1.2 m at frame rates up to 30 Hz [for example, SkySat 
(Bhushan et al., 2021) and Jilin-1 (European Space Agency, 2022) constellations]. Inference of flow velocities 
using satellite video has previously been demonstrated by Legleiter and Kinzel (2021a), who used 17 frames of 
cloud-free satellite video acquired by Planet Labs SkySat constellation of the Tanana River in central Alaska. 
Surface flow velocities were estimated to within 8.65% of radar gauging measurements and were further assessed 
using asynchronously acquired acoustic Doppler current profiler (aDcp) velocity data.

Abstract  We demonstrate that river discharge can be estimated by deriving water surface velocity estimates 
from satellite-derived video imagery when combined with high-resolution topography of channel geometry. 
Large Scale Particle Image Velocimetry (LSPIV) was used to map surface velocity from 28 s of 5 Hz satellite 
video acquired at a 1.2 m nominal ground spacing over the Darling River, Tilpa, Australia, during a 1-in-5-year 
flood. We stabilized and assessed the uncertainty of the residual motion induced by the satellite platform, 
enhancing our sub-pixel motion analysis, and quantified the sensitivity of image extraction rates on computed 
velocities. In the absence of in situ observations, LSPIV velocity estimates were validated against predictions 
from a calibrated 2D hydrodynamic model. Despite the confounding influence of selecting a surface velocity 
depth-averaging coefficient, inference of discharge was within 0.3%–15% compared with gauging station 
measurements. These results provide a valuable foundation for refining satellite video LSPIV techniques.

Plain Language Summary  Estimates of river flow are needed to manage water resources and flood 
risk. However, many of the world's rivers are not gauged, limiting hydrological understanding of river response 
to changing environmental conditions and storm events. We demonstrate that satellite video can be used to map 
velocity by tracking surface water features from one video frame to the next, and scaled to compute discharge 
where river geometry is known. Using a video of a flood on the River Tilpa, Australia, our results agree with 
ground-based measurements to within 0.3%–15%. The ability to deploy satellites to acquire video anywhere 
globally could contribute to measuring discharge on ungauged rivers.
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We apply and test the use of satellite video-based velocities for estimating discharge. We couple freely available, 
high-resolution topographic data with velocity estimates derived from satellite video Large-Scale Image Veloci-
metry (LSPIV) (Lewis et al., 2018; Muste et al., 2008) and some critical assumptions regarding channel hydrau-
lics to estimate flood discharge following monsoonal rainfall in Darling River at Tilpa, Australia. The accuracy 
of satellite video-derived velocity estimates was assessed via comparison to hydraulic model simulations; and 
discharge estimates were compared with in situ gauging station observations.

2.  Study Area
The River Darling at Tilpa (Figure 1) is located within the 502,500 km 2 Murray-Darling basin (Matheson & 
Thoms,  2018; Murray-Darling Basin Authority,  2010). The basin has a strongly episodic climate, with large 
floods followed by lengthy dry spells due to the influence of the El Niño Southern Oscillation (Grimaldi 
et al., 2019). Extensive and prolonged rainfall from late February to early April 2022 led to a flood with a 5-year 
return period (Q = 722 m 3 s −1). This location is ideally suited to testing our ability to measure discharge using 
non-contact, image-based velocity calculation techniques due to the availability of: (a) cloud-free satellite video; 
(b) a high-resolution LiDAR digital elevation model (DEM) acquired during dry river bed conditions; and (c) 
gauged in situ discharge observations at Tilpa (Water NSW, 2023).

3.  Data and Methods
3.1.  Satellite Video

Satellite video was acquired over our study area on 5 February 2022 at 23:12 UTC by a Jilin-1 GF-03 sensor, part 
of the constellation by the Chang Guang Satellite Technology Company. Video had a 1.22 m spatial resolution 
and native frame rate of 5 Hz for 28 s. To counter sensor platform movement and scene “morphing” due to the 
changing view angle of the satellite overpass, we stabilized the video using FIJI's TrakEM2 plugin (Cardona 
et al., 2012; FIJI-ImageJ, 2020; Schindelin et al., 2012). FIJI is an open-source image processing toolkit. TrakEM2 
relies on a Scale Invariant Feature Transform (SIFT) algorithm to align image stacks based on common features. 
To avoid geometric distortions, and because all video frames had a similar resolution, we utilized an affine trans-
form to register our image stacks.

Temporal displacement errors related to image stabilization can significantly influence the accuracy of LSPIV 
velocities. We quantified the temporal distribution of frame-by-frame residual motion, by evaluating the cumula-
tive frame-by-frame displacement (d) of six manually selected ground control points (GCPs; Figure 1) in every 
frame of the stabilized frame sequence. The movement of these GCPs post-stabilization provided a clear picture of 
the residual motion. To analyze this residual motion, we employed the differential Root Mean Square Difference 
metric (d(RMSD)) (Ljubičić et al., 2021). The d(RMSD) metric quantified the magnitude of the residual displace-
ment of static features, based on a pixel intensity RMSD. This RMSD metric operates by directly comparing 
several subregions within subsequent images. In each subregion, it calculates the differences in pixel intensities at 
corresponding locations between two images. These differences are then squared, summed over all pixels in the 
subregions, and averaged. The square root of this average provides the d(RMSD) value. This value quantified resid-
ual motion magnitude and aided in understanding the temporal distribution of residual displacements in the video.

3.2.  Large-Scale Particle Image Velocimetry

LSPIV, based on Eulerian principles of motion (Euler, 2008), was originally introduced by Fujita et al. (1998), 
enabling the estimation of instantaneous flow velocities from a series of consecutive images. Here, LSPIV veloc-
ities were computed using PIVlab (Thielicke & Sonntag, 2021; Thielicke & Stamhuis, 2014).

Computation of surface flow velocities in PIVlab is attained by cross-correlation algorithms applied to orthorec-
tified images recorded at a known time interval. We evaluate the accuracy of both Fast Fourier Transform window 
deformation (direct FFT correlation with multiple passes and deforming windows) and Ensemble correlation 
(Figure 2). Interrogation areas (IA), which are small windows of defined size (in pixels), are used to track the 
displacement of image patterns within a chosen larger search area (SA) in subsequent images. The multi-pass 
FFT window deformation approach allows for the spatial resolution of velocity measurements to be improved 
through multiple reductions in the size of the interrogation areas over which correlations are calculated. Ensem-
ble correlation is better suited for sparsely seeded images as it relies on averaging correlation matrices followed 
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by detecting a correlation peak with the resultant benefit of lower bias and displacement errors (Thielicke & 
Sonntag, 2021). Given the relatively coarse spatial resolution of satellite video frames for PIV, where inter-frame 
movement of features are small, often less than the width of a single pixel (e.g., Legleiter & Kinzel, 2021a), 
PIVlab's sub-pixel motion estimation functions allow for more accurate and reliable sub-pixel peak determina-
tion. PIVlab implements both 2.3-point and 9-point Gaussian functions to resolve sub-pixel displacements (see 
Thielicke, 2014 for detail) making sub-pixel motion estimation possible.

We focused on two cloud-free and straight river reaches A and B (Figure 1) to reduce computational cost. Image 
pre-processing was performed to amplify the visibility of surface tracers with respect to the background (river-
banks/static ground), applying a Contrast-limited adaptive histogram equalization (CLAHE) filter (with a window 
size of 8 pixels, matching our smallest IA size, see Section 3.2.1) to enhance image contrast (Li & Yan, 2022; 
Masafu et al., 2022). Pre-processing of images for LSPIV has a significant impact on the quality of flow velocity 
estimates. Although image enhancement techniques such as high pass filters and intensity capping (amongst 
a multitude of others) exist, CLAHE offered a balanced approach to image enhancement due to its ability to 
enhance local contrast and visibility of tracer particles without excessively amplifying noise.

Distinct features on the water surface were difficult to discern in the raw images, which would be expected in 
natural rivers observed from the height of the optical sensor. However, CLAHE contrast enhancement enabled 
the tracking of seeding surrogates in the image sequences, which occur when specular reflection formed by inci-
dent light interacts with free-surface deformations on the river. Image intensity variations associated with these 
surface deformations were visible in post-processed images.

3.2.1.  Sensitivity to Image Frame Rate and PIV Algorithm

The primary free parameters in LSPIV are the sampling frequency (frame extraction rate), interrogation (IA) 
and search (SA) areas; optimal configurations vary significantly (Kim et al., 2008; Legleiter & Kinzel, 2020; 
Sharif,  2022). IA should be small enough to eliminate spurious velocities whilst being large enough to 

Figure 1.  Study area indicating investigated reaches A and B.
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accommodate an adequate window for surface pattern tracking(Tauro et al., 2018; Zhu & Lipeme Kouyi, 2019). 
Sampling frequency (frame extraction rate) and the IA are closely coupled and must be considered in tandem, 
with frame-to-frame displacement influencing the accuracy of pattern/particle detection on images.

FFT window deformation and Ensemble correlation algorithms were utilized with the maximum allowable number 
of PIV algorithm passes within PIVlab (four) for our sensitivity analysis (see Zhu & Lipeme Kouyi, 2019). We 
processed images using an IA of 64 × 64 pixels, with successive passes of 32 × 32, 16 × 16, and 8 × 8 pixels, all 
with 50% overlaps, corresponding to a minimum spatial distance of 9.8 m. SA sizes for our analyses were 128, 
64, 32, and 16 pixels. For the ∼70 m wide river, this was sufficient to allow the detection of displaced surface 
features. Whilst smaller IAs would allow for higher-resolution vector maps, this would also significantly increase 
noise and thus the number of erroneous correlations.

We processed two configurations based on FFT window deformation and ensemble correlation algorithms at 
three sampling rates (1, 0.5, and 0.25 Hz), resulting in 6 different LSPIV runs for each scenario. These sampling 
frequencies resulted in image sequences consisting of 28, 14, and 7 frames which enabled us to experiment with 
varied frame extraction rates for image-based velocity analysis. Subsampling our original 5 Hz video to lower 
frame rates (similar to the approach taken by Legleiter & Kinzel, 2021a) was beneficial for detecting velocities, 
especially for slower-moving phenomena. At a lower frame rate, features in our video had more time to move 
between frames, resulting in larger displacements that are easier to detect and measure, particularly when dealing 
with a nominal ground resolution of 1.2 m.

Figure 2.  Discharge estimation and validation workflow. Green shaded boxes show the required input data.
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Following LSPIV cross-correlation, we post-processed the resultant velocity fields to filter out spurious veloci-
ties. Specifically, we utilized filters that removed velocity vectors that differed by 8 ×  (PIVLab's default thresh-
old) the standard deviation from the mean velocity, and further applied a local median filter threshold of 3 × 3 
pixels to remove outliers. Velocity vectors were georeferenced within PIVlab from an image coordinate system 
back into a projected coordinate reference system (GDA 1994 MGA Zone 55). We used GCP coordinates to 
assess the accuracy of our georeferencing against actual locations, using 1 m Maxar satellite imagery.

3.2.2.  Validation of PIV Velocity Vectors

Validation of LSPIV velocities with 2D hydrodynamic models offers an alternative where the deployment of 
velocity sensors (e.g., aDcps) is complex, time-consuming, or hazardous. We used velocity predictions from a 
calibrated 2D HEC-RAS (Brunner et al., 2020) hydraulic model (see Supporting Information S1), which solved 
the full-momentum Saint-Venant equations. A discharge hydrograph from the Tilpa gauging station (Figure 1) 
was used as the upstream boundary condition.

3.3.  Discharge Estimation Using LSPIV Velocities

The standard velocity-area method was used to calculate discharge (Q) (Turnipseed & Sauer, 2010) (see Text S2 
in Supporting Information S1, for detail). Water depths were estimated by intersecting the flood extent limits in 
the satellite imagery with a DEM. Depths at each vertical are computed by subtracting the local bed elevation 
from the maximum water elevation along a cross-section from a 1 m resolution LiDAR DEM with a vertical and 
horizontal accuracy of 0.3 and 0.8 m respectively (Geoscience Australia, 2022). The DEM was acquired when 
the river channel was dry, thus incorporating bathymetry. Discrete PIVLab velocity measurements were interpo-
lated by inverse distance weighting to obtain continuous velocity maps. LSPIV-derived surface velocities were 
converted to depth-averaged using a specified coefficient α. Hauet et al. (2018) and Le Coz et al. (2010) constrain 
α between 0.8–1 for deep natural channels experiencing flood discharges.

4.  Results
4.1.  LSPIV Velocity Accuracy

Stabilization and georectification of frames used in PIV are subject to errors that propagated uncertainty to 
computed velocity estimates. Maximum, minimum, and mean displacement errors associated with stabilization 
of extracted frame sequences were 0.420, 0.055, 0.237 and 0.442, 0.15, 0.261 pixels for reach A and B respec-
tively, all less than a single pixel width. Total georectification root mean square error (RMSE) was 0.50 and 
0.77 m at reach A and B, respectively. Since our smallest search area was 8 pixels, equivalent to a distance of 
9.8 m, our residual georeferencing errors were 5.1% and 7.9% of the spacing between our PIV velocity vectors.

Results of the frame-by-frame analysis of residual motion showed that our GCP locations had a high R 2 of the 
d(RMSD) metric at both reach A and B (Figures 3a and 3b). The displacement of our GCPs in the stabilized 
frame sequence further confirmed that all our residual motion at both reaches was within the subpixel range, with 
average displacements of 0.475 and 0.462 pixels at reach A and B respectively (Figures 3c and 3d).

Figure 4 summarizes the results of the quantitative velocity accuracy assessment of LSPIV (processed using both 
FFT and Ensemble correlation PIV algorithms at frame rates of 0.25, 0.5, and 1 Hz) against calibrated HEC-RAS 
2D model predictions. Regression analysis results in R 2 values of 0.32–0.51 (p < 0.001) between LSPIV esti-
mates and HEC-RAS 2D model velocities. To contextualize these results, Legleiter and Kinzel (2021a) attained 
R 2 values of between 0.34–0.39 when comparing aDcp versus satellite video-based PIV velocities across their 
study area. Root Mean Square Error (RMSE) values at the 0.25 Hz frame rate were 0.18 m s −1 for FFT and 
0.22 m s −1 for EC in Reach A, and 0.16 m s −1 for FFT and 0.20 m s −1 for EC in Reach B. Our results indicated a 
tendency of the FFT algorithm to underestimate flow velocities in both study reaches. Specifically, for Reach A, 
the Mean Error observed was −0.071 m s −1 suggesting that the FFT algorithm, on average, estimated velocities 
lower than those predicted by the HEC-RAS model. Similarly, in Reach B, this underestimation persisted, albeit 
to a slightly lesser degree, with a Mean Error of −0.041 m s −1.

4.2.  Discharge Accuracy

The measured discharge was 582.01 m 3 s −1 at the Tilpa gauge at 23:12 UTC on 5/2/2022. LSPIV-based discharge 
estimates were computed at three cross-sections located in each reach (Figure 1) and ranged from 429.7 m 3 s −1 

 19448007, 2023, 24, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
105839 by N

es, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [14/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geophysical Research Letters

MASAFU ET AL.

10.1029/2023GL105839

6 of 11

to 710.1 m 3 s −1, with median discharges of 536.2 m 3 s −1 (reach A) and 483.4 m 3 s −1 (reach B). Mean absolute 
percentage error for LSPIV-based discharge estimate was 10% (reach A) and 19.7% (reach B), with significant 
sensitivity to α. At both reaches, we experimented with α values between 0.7–1.0; previous studies have found 
that α values of between 0.8–1 are appropriate for computing depth-averaged velocities in natural rivers with a 
depth of greater than 2 m (Hauet et al., 2018; Vigoureux et al., 2022). At reach A, α values in the range 0.8–0.9 
minimize the difference between PIV-derived discharge and gauged discharge to within 15%. At reach B a narrow 
band of α values in the range 0.94–0.97 minimize the error, and values in the range 0.9–1.0 result in MAE < 10%.

5.  Discussion
5.1.  LSPIV Velocity Estimation

We quantified video stabilization uncertainties using the d(RMSD) metric. Our mean values of displacement 
following stabilization were both within the subpixel range, with mean d(RMSD) being slightly higher than the 
mean displacement values we obtained following initial stabilization using SIFT (Section 4.1). The presence of 
a lower mean displacement alongside higher d(RMSD) values highlighted the complex nature of surface flow 
dynamics and the challenges in capturing these using satellite based LSPIV. It underscored the importance of 
considering not just the average movement but also the distribution and variability of movement across the video 
frames. Given our discharge analysis was conducted using velocities derived from a 0.25 Hz sampling rate (i.e., 
displacements >1 pixel), stabilization errors did not significantly impact the accuracy of our computed velocities 
(at the 0.25 Hz sampling rate, which provided best correspondence to modeled velocities).

Our sensitivity analysis (Section 3.2.1) highlighted the significance of frame sampling frequency when comput-
ing LSPIV velocities, similar to other investigations (e.g., Legleiter & Kinzel, 2021a; Muste et al., 2008; Pearce 

Figure 3.  Displacement versus RMSD for Ground Control Points in reach A (a) and B (b). Each color-coded scatter point corresponds to a different GCP, showing how 
the displacement within a predefined area around each point affects the RMSD. Stabilization effectiveness across Ground Control Points (GCPs) in reach A (c) and B 
(d). These plots present the calculated RMSD values for each GCP across different frames, showing the stabilization performance. Each point represents the distance 
(distortion measure) at a GCP for a specific frame, offering insights into the temporal consistency of stabilization accuracy.
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et al., 2020). In lieu of reference field velocity measurements, we conducted a direct comparison to 2D model 
velocity predictions. Statistical analysis of LSPIV velocity deviations, using our best-case scenario of 0.25 Hz 
processed using the FFT algorithm, showed that LSPIV tended to underestimate velocities compared to 2D model 
predictions. Our analysis showed variability in the performance metrics (R 2, RMSE, ME) across different algo-
rithms and settings, indicating the accuracy and reliability of satellite PIV can be context-dependent: R 2 values 
for both algorithms ranged from 0.29 to 0.51. Potential reasons for this variability include limitations due to 
satellite image resolution, atmospheric interference, and the inherent limitations of PIV in capturing the complex 
flow dynamics. Both algorithms generally performed better at Reach B than at Reach A, indicating that channel 
geometry and flow conditions could impact PIV accuracy. Additionally, some variability may be associated with 
2D hydrodynamic model uncertainty (Bates, 2022; Dewals et al., 2023; Pasternack, 2011). Whilst calibrated 2D 
models are a viable means to assess PIV velocities for cases where flows exceed the safe operating ranges of 
conventional sensors, we recommend PIV velocity assessment with aDcp measurements.

5.2.  Discharge Accuracy Assessment

LSPIV-based surface velocities, combined with preexisting, independent information on channel bathymetry, 
have been successfully used to obtain river discharge estimates in previous studies (e.g., Le Coz et al., 2010; 
Lewis et al., 2018). Using the velocity-area technique, we estimate discharge with a maximum mean absolute 
error of 35% which could be reduced to 0.3% and 3.78% at reaches A and B, respectively, by tuning α. The 
accuracy and precision of our reported discharge estimates compare favorably with Sun et al. (2010) and Lewis 
et al. (2018) who computed river discharges using LSPIV-based measurements to within −5 to 7% and <20% 

Figure 4.  Comparative visualization of river flow velocities. (a, d): HEC-RAS 2D model-derived velocity fields at reaches A and B. (b, c, e, and f): Surface velocity 
vectors derived from satellite-based LSPIV, computed using different algorithms. The LSPIV velocity vectors are positioned to correspond precisely with the locations 
used in the HEC-RAS 2D model. (g–h): scatter plots showing correlations between LSPIV velocities and HEC-RAS 2D model predictions.
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respectively. The ephemeral nature of the River Darling at Tilpa is advantageous for acquiring high accuracy 
bathymetric topography, here using airborne LiDAR. In other ephemeral locations, lower resolution data sets 
with near-global coverage could be used for large rivers. In temperate and tropical locations, direct bathymetric 
surveys or bathymetry derived from multispectral satellite imagery, altimetry (e.g., Liu et al., 2020; Moramarco 
et al., 2019) or the inference of depths from PIV-derived velocities using a flow resistance equation-based frame-
work (Legleiter & Kinzel, 2021b) would be required. Despite these additional data demands, our results demon-
strate that satellite-based optical video sensors could be deployed for near real-time estimation of riverine velocity 
and discharge, within tolerable uncertainties common to traditional discharge estimation techniques.

5.3.  Variability of Surface Coefficient Values, α

Our satellite-video based LSPIV discharge estimation procedure yielded promising results, in terms of absolute 
flow magnitude, but the selection of the coefficient (α), used to convert surface to depth-averaged velocities, 
remains a source of uncertainty in discharge estimation. Fulton et al. (2020), Moramarco et al. (2017), and Welber 
et al. (2016) all observed local variability of α (0.52–0.78; 0.85–1.05, and 0.71–0.92 respectively) when estimat-
ing discharge using non-contact techniques, attributable to variations in stage (especially during higher flows due 
to changes in wetted channel perimeter), channel geometry, slope, and channel alignment. Significant shifts in 
the error of LSPIV-based discharges due to variations in α indicated that sufficient cross-section specificity in 
defining α is critical to our technique.

Higher α values generally led to less error in our discharge estimates, particularly in areas where LSPIV veloci-
ties differed substantially from velocities in the hydraulic model sued for benchmarking. Hauet et al., 's. (2018) 
recommendation of α values based on a river's hydraulic radius and depth, with a noted uncertainty of ±15% at 
a 90% confidence level, are consistent with the optimal values reported here. However, without an empirically 
formulated, river-specific α based on in situ measurements, the appropriate values of α remains largely unclear 
(Legleiter et al., 2023).

When estimating flood flows in remote locations where remote sensing instruments are the sole source of depths 
(i.e., derived from a DEM), experimenting with values provided by Rantz (1982) (α = 0.85 or 0.86), Turnipseed 
and Sauer (2010) (α = 0.84–0.90), and, in extreme cases, α > 1 due to non-standard velocity distributions (see, 
e.g., Moramarco et al., 2017) is a sensible approach to improve the precision of flow measurements from surface 
velocimetry techniques. On average, in our study the α values that led to the closest approximations of observed 
discharge were all less than unity, indicating our velocity-depth distributions could be well approximated using 
logarithmic or power laws. The variability of our best fitting, cross-section averaged α at our reaches implies that 
the commonly used default value of 0.85 is not always appropriate in field conditions where spatial heteroge-
neities in channel beds have a significant impact on velocity profiles. Although we provide a method for assess-
ing  the variability of α, calibration of site-specific α values based on traditional contact measurements remains 
the preferred solution for accurate discharge estimation.

6.  Conclusion
Satellite-based PIV presents a promising tool for estimating river discharges during cloud-free conditions. Key 
to constraining uncertainty and enhancing the accuracy and reliability of LSPIV-derived velocity estimates 
is the stabilization of satellite video frames and the independent assessment of residual error, particularly for 
sub-pixel displacements. Performance metrics from the comparison of PIV velocity magnitude vectors against 
2D model predictions of surface velocity exhibited reasonable correspondence. The FFT algorithm at a frame 
rate of 0.25 Hz, revealed best correspondence, but differences between study reaches highlight how site-specific 
characteristics can influence LSPIV performance. The observed R 2 values (0.3–0.5) highlight the need for careful 
consideration in the application of PIV techniques, particularly for low-frame-rate satellite videos. LSPIV accu-
racy also depends on α. Using realistic α values (0.7–1.0) from literature, our resulting errors were −6.9 m 3 s −1 
and −85.6 m 3 s −1, and biases were −0.01 and −0.15, at our two study reaches, respectively. Despite these uncer-
tainties, when combined with high-resolution topographic data, the ability of satellite-based LSPIV to provide 
large-scale, non-intrusive river surface discharge measurements in inaccessible or dangerous areas remains a 
compelling advantage. The level of accuracy offers a promising foundation for enhancing LSPIV methodologies; 
uncertainties are comparable to traditional methods and avoid the need for extrapolation of rating curves during 

 19448007, 2023, 24, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
105839 by N

es, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [14/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geophysical Research Letters

MASAFU ET AL.

10.1029/2023GL105839

9 of 11

high flow conditions. While acknowledging the necessity for further ground truthing to assess uncertainty, there 
is considerable potential for satellite video to be used to estimate discharge.

Data Availability Statement
Data used in this study are available at Masafu et al. (2023).
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