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Abstract: Human activity recognition (HAR) using wearable sensors enables continuous monitoring
for healthcare applications. However, the conventional centralised training of deep learning models
on sensor data poses challenges related to privacy, communication costs, and on-device efficiency.
This paper proposes a federated learning framework integrating spiking neural networks (SNNs)
with long short-term memory (LSTM) networks for energy-efficient and privacy-preserving HAR.
The hybrid spiking-LSTM (S-LSTM) model synergistically combines the event-driven efficiency
of SNNs and the sequence modelling capability of LSTMs. The model is trained using surrogate
gradient learning and backpropagation through time, enabling fully supervised end-to-end learning.
Extensive evaluations of two public datasets demonstrate that the proposed approach outperforms
LSTM, CNN, and S-CNN models in accuracy and energy efficiency. For instance, the proposed
S-LSTM achieved an accuracy of 97.36% and 89.69% for indoor and outdoor scenarios, respectively.
Furthermore, the results also showed a significant improvement in energy efficiency of 32.30%,
compared to simple LSTM. Additionally, we highlight the significance of personalisation in HAR,
where fine-tuning with local data enhances model accuracy by up to 9% for individual users.

Keywords: human activity recognition; wearable sensing; LSTM; CNN; spiking neural network;
federated learning

1. Introduction

Human activity recognition (HAR) aims to identify the physical movements of people,
enabling intelligent systems to assist individuals in improving their quality of life with
applications spanning smart homes, healthcare, public safety, and sports [1]. The rapid
proliferation of wearable devices, such as smartphones and smartwatches, has fuelled
advancements in HAR by providing rich contextual data for applications like remote
patient monitoring, sports, and lifestyle management [2]. These advances are particularly
salient in elderly care, where HAR can facilitate independence and timely interventions,
mitigating risks such as falls. Despite these advances, HAR faces critical challenges,
including accuracy, real-time processing, data scarcity, computational complexity, and,
notably, user privacy.

Building on the importance of HAR, especially in the context of independent living for
the elderly, two primary technologies have emerged for data acquisition: vision-based and
sensor-based systems. Vision sensing relies on high-resolution cameras coupled with ad-
vanced computer vision techniques. However, it faces challenges such as privacy concerns
and quality degradation due to lighting conditions and camera limitations [3]. In contrast,
sensor-based techniques offer both wearable and non-wearable solutions. Non-wearable
sensors, especially those utilising radio frequencies (RFs), like channel state information
(CSI) or received signal strength indicator (RSSI), are gaining popularity for indoor hu-
man activity monitoring because of their non-invasive and privacy-conscious nature [4–6].
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Wearable sensors, including pedometers, accelerometers, and gyroscopes, remain popular
choices for HAR, with smartphones and smartwatches emerging as preferred devices for
activity tracking.

The decision to use vision- or sensor-based systems depends on application require-
ments, environment, and user preferences, each with its own advantages and challenges.
However, wearable sensors provide more accurate data for HAR, as they directly capture
detailed human movements. This precision is crucial, especially in dynamic environments,
and is particularly vital for elderly care, where individuals may engage in activities that
vary in intensity and nature [7]. On the other hand, non-invasive sensing techniques,
such as video, present significant privacy concerns, making them less suitable for applica-
tions where user privacy is paramount. Moreover, establishing infrastructure for outdoor
HAR using vision or RF sensing presents challenges, often due to environmental factors,
equipment costs, and maintenance requirements. Additionally, non-invasive RF-based
systems, while promising, still face hurdles in achieving high accuracy, especially when
monitoring multiple individuals simultaneously [8]. The decision between these techniques
requires a careful balance of accuracy, privacy, and feasibility based on the specific context
of the application.

Traditionally, HAR systems are predominantly operated in a centralised architecture,
as depicted in Figure 1. In such setups, various sensors collect data from multiple par-
ticipants and share them with a central server or cloud infrastructure for processing and
analysis [9]. This centralised data processing inherits several limitations, especially when
the volume and variety of data sources have expanded. With the advent of advanced
data analytics, deep learning (DL) has emerged as a powerful tool for HAR, enabling
the extraction of intricate patterns directly from raw sensor data, thereby eliminating the
need for manual feature engineering. DL models, such as convolutional neural networks
(CNNs) [10] and recurrent neural networks (RNNs) [11,12], have shown remarkable suc-
cess in HAR applications, often outperforming traditional machine learning techniques.
However, the adoption of DL approaches in HAR is not without challenges. One of the
primary concerns is data scarcity, especially labelled data, which are crucial for training DL
models. The process of labelling vast numbers of data is labour-intensive and often requires
domain expertise [3]. Furthermore, the centralised nature of HAR systems poses significant
communication and storage costs, especially when transmitting high-dimensional raw
data [13]. Additionally, processing this data in centralised servers can incur additional
latency, especially when dealing with real-time activity recognition tasks. More critically,
centralising user data exposes individuals to potential privacy breaches, a concern that has
gained prominence in the age of stringent data protection regulations [14].

Wi-Fi
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Server

Machine
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.....

Dashboard
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Data
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Figure 1. Conceptual framework of centralised indoor HAR using wearable sensors

To overcome the limitations of centralised model training, federated learning (FL)
has emerged as a promising distributed learning paradigm. FL enables collaborative
learning using multiple participants for model training without any data sharing [15]. This
distributed learning architecture offers privacy by design, reduces communication and
storage overhead, and ensures real-time processing, a crucial requirement for HAR tasks [9].
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Furthermore, the participation of multiple clients in FL offers significant advantages. Each
participant, with their distinct data, contributes to the overall model, resulting in a more
generalised and robust global model that captures a broader range of human activities.
FL enables real-time processing by dividing computational tasks among different devices.
Its decentralised architecture is scalable and can accommodate various devices and data
sources. Additionally, FL’s collaborative training approach allows personalisation, which
is achieved by fine-tuning the global model using local data, improving the accuracy and
relevance of activity recognition. These personalised models use individual-specific data
to provide more precise and context-aware activity recognition, aligning the system’s
predictions with the user’s unique patterns and behaviours.

In the realm of HAR, the need for distributed learning is becoming increasingly impor-
tant, especially given the challenges associated with centralised systems. As we transition
towards more decentralised and edge-based processing, the computational demands of tra-
ditional DL models can become a significant bottleneck, especially on resource-constrained
edge devices [16]. While FL offers several advantages, one major drawback is the hard-
ware available in the market often struggles to support this distributed intelligence with
energy efficiency. To overcome this challenge, neuromorphic computing emerges as a
potential solution. Inspired by the human biological neural systems, neuromorphic com-
puting promises energy-efficient and rapid signal processing. Spiking neural networks
(SNNs), a subset of neuromorphic learning, are gaining attention because of their unique
event-driven processing of binary inputs, known as ’spikes’ [17]. Unlike traditional DL
models, SNNs operate on a temporal, event-driven paradigm, making them particularly
suitable for on-device learning. The real-time and continuous nature of activity data in
HAR accentuates the potential advantages of neuromorphic computing, highlighting the
necessity for models that can adeptly capture the temporal dynamics of human activities.

Although SNNs are computationally efficient, traditional DL models, such as LSTM
networks, are more effective in processing sequential data [18]. Given these considerations,
a compelling need emerges for a model that combines the strengths of SNNs and LSTMs
synergistically. Therefore, we introduce the hybrid neuromorphic federated learning
(HNFL) approach, which integrates the SNN with LSTM, creating a spiking-LSTM (S-LSTM)
model. The S-LSTM is ingeniously crafted to leverage the computational efficiency of
SNNs while harnessing the sequential data processing capabilities of LSTMs. This fusion
offers a harmonious balance between efficiency and accuracy, positioning the S-LSTM as a
pioneering model for HAR in a federated setting. To the best of the authors’ knowledge, no
prior research has presented such a hybrid model for HAR. The key contributions of this
paper are as follows:

• We introduce a novel HNFL framework tailored for HAR using wearable sensing
technology. The hybrid design of S-LSTM integrates the strengths of both LSTM and
SNN seamlessly in a federated setting, offering privacy preservation and computa-
tional efficiency.

• A comprehensive analysis is conducted using two distinct publicly available datasets,
and the results of the S-LSTM are compared with LSTM, spiking CNN (S-CNN),
and simple CNN. This dual-dataset testing approach validates the robustness of the
proposed framework and provides valuable insights into its performance in varied
environments and scenarios.

• This study addresses a significant issue of client selection within the context of feder-
ated HAR applications. We conduct a thorough investigation into the implications of
random client selection and its impact on the overall performance of the HAR model.
This analysis provides valuable insights into achieving the optimal balance between
computation, communication efficiency and model precision, which guides the ideal
approach for client selection in federated scenarios.

The rest of the paper is organised as follows: Section 2 introduces the related work for
FL-based HAR. In Section 3, preliminaries and the system model are discussed, whereas
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Section 4 explains the simulation setup. Section 5 provides the details on results and
discussion, and Section 6 concludes the research findings.

2. Related Work

HAR has witnessed significant advancements, particularly with the proliferation of
wearable sensors across diverse applications. Initially dominated by traditional machine
learning techniques, HAR has shifted towards more sophisticated DL models, offering en-
hanced accuracy and reliability. However, with the digital landscape becoming increasingly
decentralised and privacy-focused, it is imperative to adapt these models to ensure user
privacy while maintaining computational efficiency. Neuromorphic computing, particu-
larly the SNN, emerges as a promising solution to overcome these challenges. Hence, this
section reviews the state-of-the-art work in (a) a centralised learning-based HAR system
and (b) a federated learning-based HAR.

2.1. Centralised Learning-Based HAR Systems

In recent times, various studies have investigated HAR using wearable sensing and
DL. For instance, the authors in [19] proposed a novel heterogeneous convolution operation
that was explicitly introduced for HAR. This approach divides convolutional filters into
two uneven groups. The smaller group of filters undergoes a down-sampling process
and captures the broader perspective from input samples. The output of this process
provides feedback to the larger group of filters, recalibrating the model to enhance feature
diversity. This method demonstrated significant performance improvements through
extensive testing on multiple HAR datasets without necessitating changes to the underlying
network architecture. Notably, the heterogeneous convolution can be seamlessly integrated
into standard convolutional layers without adding computational overhead. In [20], a
novel approach that uses a DL method called neural structured learning was proposed.
This system used LSTM to process wearable sensor data and applied non-linear generalised
discriminant analysis to extract features. The analysis showed a high recall rate of 99%
on a publicly available dataset, surpassing traditional methods, like CNN and RNN,
which only achieved a maximum recall rate of 94%. In [21], a hybrid approach was
introduced for HAR, leveraging a bi-convolutional recurrent neural network (Bi-CRNN)
for feature extraction. The proposed scheme employed a random forest classifier for final
predictions. This approach, enhanced by an auto-fusion technique for multi-sensor data
processing, outperformed existing HAR algorithms. Despite its computational demands,
the feature extraction ability of Bi-CRNN significantly improved its performance, achieving
a remarkable 94.7% accuracy.

The study in [22] proposed a fast and robust deep convolutional neural network
(FR-DCNN) for HAR using smartphone data. This framework optimised computational
efficiency by employing a data compression module, allowing for swift training while
maintaining high precision in recognising 12 distinct activities. The FR-DCNN model
used raw data samples collected from triaxial accelerometers and gyroscopes. Notably, its
performance surpassed other DL algorithms in terms of speed and accuracy, achieving
a prediction accuracy of 95.27%. Even with compressed datasets, the accuracy remained
impressive at 94.18%. Another innovative approach is the merging-squeeze-excitation
(MSE) technique for HAR using wearable sensors [23]. This method recalibrates feature
maps during fusion, allowing the model to emphasise or suppress certain features based on
their relevance. This recalibration, combined with local and global skip connections, global
channel attention, and deeper fusion, enhances the model’s adaptability and precision.
When tested with DL models like LeNet5, AlexNet, and VGG16 for feature extraction, the
proposed methods consistently achieved high accuracy across three different datasets. In
summary, the current landscape of DL for HAR involves the combination of novel architec-
tures, hybrid models, and advanced feature recalibration techniques. These advancements
collectively aim to enhance the accuracy, reliability, and adaptability of HAR systems,
making them more suited for real-world applications.
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2.2. Federated Learning-Based HAR

With the evolution of the digital landscape, user privacy and data decentralisation are
becoming more important. Hence, FL offers a paradigm shift from traditional centralised
training, allowing models to be trained directly on an edge node (participant) without
transferring raw data to a central server. This preserves user privacy and reduces commu-
nication overheads, making it suitable for HAR applications. In recent years, numerous
studies have investigated FL-based HAR. For instance, the authors in [13] proposed a
multimodal data fusion approach for fall detection in an FL environment. The time-series
data from wearable sensors are initially transformed into images using the gramian angular
field method. The fusion process combines the transformed data with visual data captured
using cameras. This input-level fusion enhanced fall detection accuracy, achieving 99.92%
for binary fall detection and 89.76% for multi-class fall activity recognition. The study
in [3] introduced FedHAR, a personalised framework designed to deal with privacy, label
scarcity, and real-time processing using smartphone and wearable sensing data. Further-
more, a novel algorithm was proposed for computing unsupervised gradients and an
aggregation strategy to handle concept drift and convergence instability in online learning.
Experimental results from two real-world HAR datasets show that FedHAR outperformed
existing methods. Notably, when customised for unlabelled clients, it achieved an average
improvement of around 10% across all metrics.

In real-world environments, HAR systems often face challenges due to non-independently
and -identically distributed (Non-IID) data, in which the data distribution varies across de-
vices, leading to imbalances and inconsistencies. This can severely impact the performance
of HAR systems, as they may become biased towards specific activities or users, reducing
their generalisation capability across diverse real-world scenarios. Hence, the study in [24]
proposed ProtoHAR, a prototype-guided FL framework designed for sensor-based HAR, to
deal with Non-IID data. ProtoHAR addressed this issue by decoupling representation and
classifiers, using a global activity prototype to correct local representations and optimising
user-specific classifiers for personalised HAR. This ensured privacy and reduced local model
drift during customised training. The study also showed that ProtoHAR outperformed existing
FL methods in terms of accuracy and convergence speed when tested on four publicly HAR
datasets. However, it is important to note that the current ProtoHAR model assumes a static
activity data distribution and cannot continuously learn from new data without retraining. The
study in [25] introduced ClusterFL, a novel clustering-based FL system tailored for HAR. This
approach was designed to understand the intrinsic relationships among data from different
users. This framework minimised training loss across multiple models while intuitively iden-
tifying clustering relationships among nodes, allowing it to exclude slower or less-correlated
participants within each cluster efficiently and, hence, leading to faster convergence without
sacrificing accuracy and reducing communication overhead by 50%. Similarly, a novel federated
learning via augmented knowledge distillation (FedAKD) was designed for the collaborative
training of heterogeneous DL models [26]. FedAKD showed significant communication ef-
ficiency, surpassing the federated averaging (FedAvg) algorithm by 200 times. Additionally,
it achieved 20% higher accuracy than other knowledge distillation–based FL methods. In
summary, FL has emerged as a revolutionary approach to HAR. The studies highlighted in the
literature underscore the versatility of FL in handling Non-IID data distributions and optimising
communication efficiency in various scenarios.

As the digital landscape evolves, demand for on-device processing is increasing. How-
ever, conventional DL algorithms often struggle to run efficiently on edge devices because
of computational demands, particularly in real-time processing. Neuromorphic computing,
particularly SNNs, emerges as a promising solution to address this challenge. Several
recent studies, including [16,27,28], have investigated the potential of SNNs. These studies
have explored the use of SNNs as an alternative to traditional DL models, demonstrating
how they can improve energy efficiency and accuracy in federated environments.

However, it is important to note that the HAR domain has significantly shifted from
traditional machine learning to more advanced DL models and then to FL. The focus has
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been primarily on individual aspects, such as accuracy (in centralised systems), communi-
cation efficiency, and privacy (in FL). Furthermore, most existing studies in the literature
focused on the energy efficiency of SNNs, and no study has yet harnessed the combined
power of DL and SNNs, specifically for HAR. Additionally, as HAR devices continue to
miniaturise, the desire for on-device processing grows, requiring an energy-efficient model.
Hence, we propose a hybrid model S-LSTM that combines the computational efficiency
of SNNs with the sequential data processing capabilities of LSTMs. This fusion aims to
provide a balanced trade-off between the energy efficiency and accuracy of HAR using
wearable sensors.

3. Preliminaries and System Model

This section explains the foundational principles of FL and SNNs and introduces a
hybrid model, S-LSTM, that combines both paradigms to improve the performance of HAR.

3.1. Federated Learning

FL is a distributed learning approach that trains the model across multiple participants,
where the dataset is highly decentralised. As illustrated in Figure 2, this framework consists
of a federated server (FS) and N participants capable of processing data effectively. The
FS is the controlling entity that orchestrates the model training and aggregation process.
FL is an iterative process involving several communication rounds between the FS and
participants to obtain an updated global model. Initially, the FS initialises and shares the
global model parameters. The participants at the edge train its model using the local data
and send back updates to the server. The server aggregates the global model and shares the
updated model with participants. This process continues until the global model achieves
the desired accuracy or maximum number of rounds reached.

Participant  1

FS 1. Send Generic model to all clients 

2. Local model training

3. Send local models to server

4. Model aggregation

5. Global model sharing

...

Participant 2 Participant 3 Participant  N

Figure 2. Conceptual FL framework for HAR using wearable sensing in the outdoors.

For each participant i = 1, . . ., N, there is a local copy of the dataset, which is repre-
sented by |D(i)| ≡ D, where D(i) is the subset of the dataset at the ith device and the entire
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dataset is given by D = ∑N
n=1 |D(i)|. Given the model parameter vector ψ and loss function

p(ψ, x) for any example x, the local empirical loss at the ith participant is denoted as

P (i)(ψ) =
1
|D(i)| ∑

x∈D(i)

p(ψ, x), (1)

where P (i)(ψ) represents the local loss function for ith participant based on the param-
eter vector ψ. Using the local loss function, FL optimises the global function on the FS
mathematically represented as

min
ψ
P(ψ) :=

1

∑N
i=1 |D(i)|

N

∑
i=1
|D(i)|P (i)(ψ), (2)

where P(ψ) is the global loss function based on the dataset D. FL is an iterative process;
hence, for time iterations t = 1, . . ., T, each participant compute local gradient using
following equation:

ψ(i)(t) = ψ̃(i)(t− 1)− η∇p(ψ̃(i)(t− 1), x(i)(t)), (3)

where ψ(i)(t) represents model parameters at the ith participant, η is the learning rate,
ψ̃(i)(t− 1) represents the model parameters of previous iteration, and ∇p(ψ̃(i)(t− 1), x(i)

is the gradient of loss function p with respect to model parameters for the data point x(i)(t).
The FS performs the model aggregation once all the local updates are received, and this
process is mathematically represented as

ψ(t) =
1

∑N
i=1 |D(i)|

N

∑
i=1
|D(i)|ψ(i)(t) (4)

3.2. Spiking Neural Network

SNNs are inspired by biological neural networks that use discrete events ’spike’ for
information processing, as shown in Figure 3. SNNs offer substantial improvements in
computational efficiency over traditional DL models because of their event-driven activa-
tion, sparse information coding, and lower precision arithmetic. Event-driven computing
is enabled using discrete spikes for processing, allowing them to remain inactive until
incoming spikes are received [16]. Additionally, at any given time, only a subset of neurons
in SNN are actively spiking to achieve sparsity. Furthermore, spike signals in SNNs are
binary (1s and 0s), which are processed using low-precision arithmetic. Collectively, these
attributes allow SNNs to operate using significantly fewer computations per data sample,
making SNNs uniquely well-suited for efficient processing on resource-constrained edge
devices [29].

Weights

Output  Spikes 

Intput  Spikes 

Input
Neurons 

Neuron 

Figure 3. Spiking neurons propagation process.
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Each spiking neuron has a membrane potential that accumulates spike signals received
from other neurons. Depending on the duration t, the membrane potential of a neuron can
increase, decrease, or stay the same. If the potential exceeds a certain threshold voltage
vth, the neuron generates a spike signal that is transmitted to the next layer of neurons.
After this, the neuron enters a short refractory phase, where its membrane potential stays
constant, regardless of any incoming spikes. To simulate the spiking behaviour of neurons,
we utilised a widely recognised leaky-integrate-and-fire (LIF) model because of its straight-
forwardness and adaptability [30]. This model is closely analogous to an electrical circuit
comprising a capacitor Q, a resistor Z, a power source V, and an input current J. The LIF
model in layer l for a neuron with index number i can be mathematically represented as
follows [31]:

τq
dV(l)

i (t)
dt

= −(V(l)
i (t)−Vres) + ZJi(t), (5)

where τq = Q · Z denotes the membrane potential time constant decay, V(l)
i (t) is the

neuron’s membrane potential at time t, Z is the resistance, and Ji(t) represents the input
current at time t, which denotes the pre-synaptic inputs. When V(l)

i (t) exceeds the given
threshold vth, the neuron generates a spike and resets its membrane voltage to Vres. Hence,
for a specific layer l and neuron index i, the membrane potential V(l)

i at time step t can be
expressed as [31,32]

V(l)
i (t) = βV(l)

i (t− 1) + ∑
j

ψijo
(l−1)
j (t), (6)

where β (0 < β < 1) is the leakage factor, j represents the number of neurons in the

previous layer l − 1, ψij is the weight from neuron j in layer l − 1 to neuron i in layer l, and

o(l−1)
j (t) is the binary output of neuron j in layer l− 1 at time t. The spike sequence emitted

by neuron i in layer l at time t, when V(l)
i (t) is greater than the firing threshold vth, can be

defined as [31]

o(l)i (t) =

{
1, if V(l)

i (t) ≥ vth

0, otherwise
(7)

In SNNs, neurons communicate through discrete spike events, where the decision is based

on a step function, which is non-differentiable at the threshold. This non-differentiable
behaviour poses challenges for gradient-based optimisation methods, like backpropagation,
which rely on continuous and differentiable activation functions [33]. The core issue
is that the step function’s gradient is either zero or undefined, preventing meaningful
weight updates during training. To address this, surrogate gradient methods have been
introduced, which employ a smooth, differentiable approximation of the step function
during the backward pass, allowing for gradient computation. This approach ensures that
the network can be trained using traditional techniques but still operate with the unique
spiking behaviour of SNNs during inference. The surrogate piece-wise linear function,
aligning with the previously established notation, is mathematically represented as [16,31]:

∂o(l)i (t)

∂V(l)
i (t)

= γ max

(
0, 1−

|V(l)
i (t)− vth|

vth

)
, (8)

where γ is a scaling factor controlling the SNNs’ update magnitude and vth is the
threshold voltage for spiking. In essence, the backpropagation method in SNNs mirrors
that of ANNs, with the exception of using a surrogate function to approximate the non-
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differentiable threshold function. Hence, the weight update rule on the local participant for
layer l at a given time is mathematically represented as [32]

ψ
(l)
ij (t) = ψ

(l)
ij (t− 1)− η

∂p(t)

∂ψ
(l)
ij (t− 1)

, (9)

where ψ
(l)
ij (t− 1) represent the model parameters at t− 1 for neuron j in layer l to neuron i.

Several training techniques have been proposed to harness the full potential of SNNs
and address inherent challenges, such as the non-differentiability of spike functions. One
of the unsupervised methods, spike timing–dependent plasticity (STDP), employs tem-
poral learning principles, making it suitable for unlabelled data [34]. For tasks requiring
supervised learning, the backpropagation through time (BPTT) method extends the conven-
tional backpropagation technique to propagate errors across multiple timesteps [16]. This
proves invaluable for spatiotemporal datasets, capturing their inherent time dependencies.
Furthermore, surrogate gradient learning was introduced to provide a continuous differ-
entiable approximation to the non-linear spike function, thus allowing for gradient-based
optimisation techniques [16]. Similarly, reward-modulated STDP combines concepts from
reinforcement learning by using rewards to modulate STDP in an episodic trial-and-error
manner [28]. Our problem involves training an SNN with diverse data using supervised
learning. Hence, we have developed a system that combines surrogate gradient learning
with BPTT as given in [35]. This integration serves two purposes. Firstly, the spike function
in SNNs is non-differentiable, which makes traditional gradient-based optimisation tech-
niques challenging. Surrogate gradient learning offers a solution by providing a continuous,
differentiable approximation of the non-linear spike function, allowing for gradient-based
optimisation. Secondly, to effectively capture the temporal dependencies in HAR data, we
need a training technique that can handle these sequences. BPTT extends conventional
backpropagation to propagate errors across multiple time steps, minimising a loss function
p by applying a gradient descent that propagates backwards in time. As a result, the
gradient of the loss p with respect to the weights ψ and membrane potential is given by [35]:

∂p(t)
∂ψij

= ∑
t

∂p(t)

∂V(l)
i (t)

· o(l−1)
j (t), (10)

∂p(t)

∂V(l)
i (t)

=
∂p(t)

∂o(l)i (t)
·

∂o(l)i (t)

∂V(l)
i (t)

+ β
∂p(t)

∂V(l)
i (t + 1)

, (11)

where o(l−1)
j (t) represents the spike of neuron j in the previous layer l − 1 at time t, con-

tributing to the input of neuron i in layer l.

3.3. Long Short-Term Memory Networks

LSTM networks are a special type of recurrent neural network (RNN) that can learn
long-term dependencies in sequence prediction tasks. LSTMs address the vanishing and
exploding gradient problems of traditional RNNs by employing gates that regulate infor-
mation flow [36]. Each LSTM unit contains a cell and three types of gates: input, output,
and forget gates. These gates manage information flow into and out of the cell, enabling
the LSTM to store information over extended time periods. The operations within an LSTM
unit at time t for a single cell can be described using the following equations [37]:

it = σ(ψxi · xt + ψhi · ht−1 + bi) (12)

ft = σ(ψx f · xt + ψh f · ht−1 + b f ) (13)

ot = σ(ψxo · xt + ψho · ht−1 + bo) (14)
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C̃t = tanh(ψxc · xt + ψhc · ht−1 + bC) (15)

Ct = ft ∗ Ct−1 + it ∗ C̃t (16)

ht = ot ∗ tanh(Ct) (17)

where σ represents the sigmoid function and it, ft, and ot are the input gate, forget gate,
and output gate activations at time t, respectively. C̃t is the candidate memory state, Ct
is the cell state, ht is the hidden state of the LSTM unit, ψ denotes the weight matrices, xt
is the input vector at time t, and b represents the bias vectors. LSTMs have the unique
ability to remember and forget information in a selective manner, which makes them highly
suitable for handling complex tasks involving sequential data like language processing,
speech recognition, and time-series prediction. Integrating LSTMs into the proposed S-
LSTM model enables the processing of temporal dependencies present in the data while
leveraging the computational efficiency offered by SNNs. This results in a powerful
framework that can be used for HAR applications in environments with limited resources.

3.4. Proposed S-LSTM Model

Our proposed S-LSTM model seamlessly combines LSTM units with the spiking
behaviour of LIF neurons, as shown in Figure 4. The model starts with an LSTM layer
consisting of 100 neurons to process input data. This LSTM layer returns sequences,
ensuring that the temporal dependencies in the data are captured. Next, the spiking layer
with LIF replaces the conventional activation functions. The spiking layer has a trainable
threshold that determines neuron firing and uses a surrogate gradient to approximate the
gradient during backpropagation due to the non-differentiable nature of spiking behaviour.
After this, another LSTM layer with 100 units processes the sequences further, followed by
a dense layer with 300 neurons, which employs LIF neurons to replace the typical activation
function. A dropout layer is added to mitigate over-fitting, followed by a fully connected
output layer. The output layer uses a SoftMax activation function, producing a probability
distribution over the possible activity classes. The training process of federated S-LSTM for
HAR is given in Algorithm 1.

Input
 LSTM activated with LIF SNN

100
LSTM
100

Dense activated with LIF SNN  
300

Dropout 
40%

Output
Dense 

Neuron Type : LSTM

Activation function
:Linear leaky-integrate-

and-fire Activation
function : ReLu

Neuron Type : Dense

Activation function
:Linear leaky-integrate-

and-fire

Activation
function : Softmax

Neuron Type : Dense

Neuron Type : LSTM

Figure 4. Proposed hybrid S-LSTM model where input LSTM layer activated by LIF.
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Algorithm 1 Federated S-LSTM training with surrogate gradient and BPTT.

1: Input: Initial model parameters ψ0, clients i = 1, 2, . . ., N
2: Output: Trained model parameters ψ
3: Procedure: Initialisation
4: for each client i in parallel do
5: D(i) ← local dataset
6: ψ(i) ← ψ0 {Initialise local model}
7: end for
8: Procedure: FL training
9: for round r = 1, 2, . . ., R do

10: for each client i = 1, 2, . . ., N in parallel do
11: ∆ψ(i) ← LOCALTRAINING(ψ(i), D(i))
12: end for
13: ψr+1 ← SERVERUPDATE({∆ψ(i)}N

i=1) {Aggregate updates}
14: broadcast ψr+1 to clients
15: end for
16: Procedure: LocalTraining(ψ, D)
17: Initialise local parameters ψ(i), learning rate η
18: for each time step t = 1, . . ., T do
19: Compute local gradient using surrogate gradient and BPTT {Based on Equations

(8)–(11)}
20: Update local model parameters ψ(i)(t)
21: end for
22: return model update ∆ψ

23: Procedure: ServerUpdate({∆ψ(i)}N
i=1)

24: ψ← aggregate({∆ψ(i)}) {Based on Equation (4)}
25: return updated model parameters ψ

4. Simulation Setup

This section provides a detailed discussion of the datasets, performance evaluation
strategy, and metrics used in this study.

4.1. Dataset Description

Despite HAR being a well-investigated topic, attempts to evaluate it using smartphone
data is a recent and very active area of research. Several datasets have been collected using
smartphones, which exhibit severe challenges, including sensor configuration, sampling
frequencies, accessibility, realism, size, heterogeneity, and annotation quality. Additionally,
there is an extreme class imbalance due to the stark differences in activity patterns between
classes. Thus, HAR is the perfect testbed for assessing neuromorphic federated learning
in practical heterogeneous contexts. Furthermore, our focus was on reproducibility, het-
erogeneity, and realistic datasets, which led us to select two publicly available datasets.
The UCI dataset [38], which is one of the most commonly used in HAR benchmarking
studies, was chosen first. However, UCI was collected in a strictly controlled laboratory
environment, and the sample size was also very limited. Therefore, we also employed the
Real-World dataset [39], recorded outdoors without restrictions. The details of these two
datasets are explained below:

4.1.1. UCI Dataset

The UCI dataset is obtained using Samsung Galaxy S II smartphones worn by 30 vol-
unteers from distant age groups and genders. The volunteers were engaged in six daily
routine activities: sitting, standing, lying down, walking, walking downstairs, and walking
upstairs. Each subject repeated these activities multiple times with two distant scenarios
for device placement. These scenarios included the placements of a smartphone on the left
wrist and one on the preferred position of each subject. The smartphone’s embedded ac-
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celerometer and gyroscope sensors captured triaxial linear acceleration and angular velocity
at a rate of 50 Hz. The raw signals were pre-processed to minimise noise interference, and
17 distinctive signals were extracted, encompassing various time and frequency domain
parameters, such as magnitude, jerk, and fast Fourier transform (FFT). For analysis, signals
were segmented into windows of 2.56 s, with an overlap of 50%, culminating in 561 di-
verse features per window derived from statistical and frequency measures. This dataset
contained 10,299 instances, with a strategic split of 70% for training and 30% reserved
for testing.

However, the dataset was merged and split into five subsets to make a local dataset of
each participant. The data distribution among the participants was kept highly unbalanced
to ensure the actual case for the FL scenario. Furthermore, the dataset of each client was
further divided into training (80%) and testing (20%) splits, and the test split of each client
was combined to create a global test set for performance evaluation.

4.1.2. Real-World Dataset

Although the UCI dataset is very commonly used in HAR studies, it has limitations, as
it was collected in a controlled laboratory environment. Additionally, the sample size was
very small to explore the true potential of FL. Hence, we chose a more realistic dataset col-
lected by Sztyler and Stuckenschmidt [39]. Data were gathered from 15 participants (eight
male, seven female) executing eight common, real-world activities, including jumping, run-
ning, jogging, climbing stairs, lying, standing, sitting, and walking. The accelerometer data
were collected from seven different locations on the body, which included the head, chest,
upper arm, wrist, forearm, thigh, and shin. In the data collection process, smartphones and
a smartwatch were mounted on the aforementioned anatomical sites, collecting the data at
the frequency of 50 Hz. The dataset incorporated 1065 min of accelerometer measurements
per on-body position per axis, amounting to extensive volume.

Additionally, the Real-World dataset was also well-suited for the HAR study as it is
captured in a naturalistic environment, exhibiting the realistic class imbalance. For instance,
the jumping activity comprised 2% of the data compared to standing, which constituted
14% of the total data. Additionally, factors such as high-class imbalance and the availability
of separated user data made this dataset an appropriate choice for an extensive study on
FL approaches for HAR.

4.2. Performance Metrics

HAR is treated as a multi-class classification problem where various metrics are used
to evaluate the performance of a model. One commonly used metric is accuracy, defined
as the ratio of correctly predicted instances to the total number of cases. However, the
accuracy limitations become pronounced in the context of highly imbalanced datasets. For
example, in scenarios where one class dominates a dataset, a model may achieve higher
accuracy by simply predicting that class, disregarding the distribution of other classes.
This phenomenon is known as the accuracy paradox, highlighting the risk of relying solely
on accuracy as a performance metric when dealing with diverse datasets. Therefore, the
alternative metrics to evaluate the performance of the model are precision, recall, and
F1-score, defined as follows:

Precision: This metric quantifies the number of correct positive predictions made by
the model relative to the total number of positive predictions mathematically represented as

Precision =
TP

TP + FP
, (18)

where TP and FP are true positives and false positives, respectively.
Recall (sensitivity): This metric measures how well the model can correctly identify

positive instances, which is particularly important in contexts where missing positive
instances (false negatives) can have serious consequences. Recall is mathematically repre-
sented as
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Recall =
TP

TP + FN
, (19)

where FN represents a false negative.
F1-score: It is the harmonic mean of precision and recall, which provides a balance

between the two metrics, especially when there’s an uneven class distribution. F1-score is
mathematically represented as

F1-score = 2× Precision× Recall
Precision + Recall

(20)

Furthermore, all experimental procedures were conducted in a simulated environment
for a comprehensive evaluation. This allowed us to gauge the effectiveness of the models’
two metrics: global performance evaluation and personalised model assessment. The
global metric was used to determine the proficiency of the model across an entire dataset
using a global test set, which helped to assess its generalisation capabilities. On the other
hand, personalised performance assessments were performed at the participant level, with
the best global model fine-tuning using local data. This personalised training created a
customised model, and its performance was evaluated using the local test set. We compared
the results of both personalised and global models for each participant. Additionally,
the energy efficiency of the proposed model was also evaluated, which mainly depends
on the two factors, i.e., the computation time required for local training and parameter
transfer during each communication round. This metric is defined as the energy estimate
mathematically given as [40]

Eest = R[(α ∗ tcom) + N(β ∗ Ptrn)], (21)

where α is the computation constant having dimensions of energy per second and β is
communication constant with dimension of energy per kilobytes. R represents the number
of communication rounds; N is the number of participants; tcom is the computation time,
which is dependent on the device type; and Ptrn is the size of parameters transferred in
each communication round.

5. Results and Discussion

In this study, the performance of neuromorphic federated learning in the context
of HAR was evaluated using two distinct datasets: the UCI dataset and the Real-World
dataset. Each dataset offered a unique perspective on the challenges and intricacies of HAR,
making them invaluable for a comprehensive assessment. The UCI dataset was divided into
5 participants, and the Real-World dataset was already collected for 15 subjects, which was
used to train participants. As discussed earlier, there was an 80–20 split on each participant
to obtain the local training and testset. Furthermore, the local testset for each participant
was combined to obtain a global testset used to evaluate the generalised performance of
the model. The results of each dataset are discussed in the subsequent sections.

5.1. UCI Results

In the UCI case, the total number of communication rounds was kept at 500, where
each participant trained the local model for 3 epochs. The results depicted in Figure 5
illustrate the comparison of learning curves for four distinct models, S-LSTM, LSTM, CNN,
and S-CNN, analysed within this investigation. These curves exhibit a classical learning
behaviour, with a steep rise in the initial training rounds, followed by a steady increasing
phase. The S-LSTM model achieved a peak accuracy of 97.36%, demonstrating its superior
ability to process and learn from sequential data. The LSTM model followed closely,
achieving a peak accuracy of 96.30%. In contrast, the CNN model peaked at 95.14%, and
the S-CNN model at 93.25%, indicating a less optimal performance for these architectures
in the context of time-series data characteristics of the UCI HAR dataset. The results
in Figure 6 depict the normalised confusion matrices for the CNN, S-CNN, LSTM, and
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S-LSTM models, providing insights into each model’s predictive accuracy across various
activities in the UCI HAR dataset. The diagonal elements of the confusion matrix represent
the precision of predictions for each class. Notably, in Figure 6d, the confusion matrix of
the S-LSTM model demonstrates its ability, with true positive rates exceeding 0.99% for
classes 1, 2, and 3. Furthermore, distinguishing between classes 4 (sitting) and 5 (standing)
was inherently complex, but the S-LSTM model showed impressive proficiency with a
misclassification rate of only 0.06%. This demonstrates its enhanced ability to identify the
subtle temporal patterns that differentiate these activities. The CNN and S-CNN models
displayed misclassification rates of 0.12% and 0.11%, respectively, for class 4 and class 5,
while the LSTM showed a rate of 0.11%. It is worth noting that class 6 (lying) was predicted
with perfect accuracy by all models. The true positive rate of 100% was consistently
achieved, which can be attributed to the easily distinguishable features of the lying activity
in comparison to other activities.
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Figure 5. Learning curve for UCI-dataset, trained for 500 communication rounds.

The results in Table 1 present a comprehensive comparative analysis of precision,
recall, and F1-score for the four models under consideration when trained on the UCI
dataset. The evaluation covered six daily activities to showcase each model’s ability to
classify these distinct actions. The results show that the S-LSTM performed better compared
to other models with consistently high F1-scores, peaking at 0.99% for both walking and
walking upstairs and achieving a perfect score of 1.00 for walking downstairs and lying
Each model accurately classified lying because of its distinct motion patterns. Nonetheless,
the results also reveal a relative challenge in distinguishing between sitting and standing.
While the S-LSTM model exhibited slightly better performance with F1-scores of 0.93% for
sitting and 0.94% for standing, the CNN and S-CNN models showed marginally lower F1-
scores, ranging from 0.88% to 0.90%. This indicates that the motion patterns for sitting and
standing activities are closely related, resulting in difficulty in discerning them, particularly
for the CNN and S-CNN models.
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Table 1. Comparative results of global models for CNN, S-CNN, LSTM, and S-LSTM for the UCI
dataset trained in federated environment.

CNN S-CNN LSTM S-LSTM

Class Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Walking 0.98 0.97 0.98 0.93 0.95 0.94 0.99 0.98 0.99 0.99 0.99 0.99
Walking upstairs 0.98 0.98 0.98 0.93 0.96 0.95 0.99 0.99 0.99 0.99 0.99 0.99
Walking downstairs 0.98 0.99 0.98 0.93 0.88 0.91 0.99 0.99 0.99 1.00 1.00 1.00
Sitting 0.89 0.88 0.88 0.90 0.88 0.89 0.91 0.90 0.91 0.93 0.94 0.93
Standing 0.89 0.90 0.89 0.89 0.91 0.90 0.91 0.92 0.91 0.94 0.93 0.94
Lying 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Figure 6. The confusion matrix for four DL models compared in this study. The index represents
the activity where the label corresponding to the activities are (1) walking, (2) walking upstairs,
(3) walking downstairs, (4) sitting, (5) standing, and (6) lying.

5.2. Real-World Dataset Results

In the case of the Real-World dataset, the experimental setup runs for 500 communi-
cation rounds, wherein each participant was trained for five epochs locally. The results
in Figure 7 present a comparative learning curve analysis using the Real-World dataset.
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The learning curves exhibit classical learning, and the results underscore the enhanced
capabilities of the spiking models, with both S-LSTM and S-CNN outperforming the con-
ventional LSTM and CNN models. The S-LSTM model achieved an accuracy of 89.69%,
while the S-CNN closely follows with an average accuracy of 86.90%. The conventional
LSTM and CNN models, on the other hand, attained maximum accuracies of 85.85% and
84.97%, respectively.
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Figure 7. Learning curve for Real-World dataset, trained for 500 communication rounds.

The confusion matrix of the four models considered in this study is illustrated in
Figure 8. More specifically, Figure 8d provides a detailed overview of the S-LSTM model’s
classification capabilities for eight different activities in the Real-World HAR dataset. The
diagonal elements indicate the recall score of the predicted class, where the results show
that the S-LSTM model was proficient in classifying more prominent activities, with a
score of 0.96% for jumping, 0.86% for running, and 0.91% for walking. However, the
confusion matrix also reveals that the S-LSTM model encountered challenges in classifying
activities with subtle motion patterns, such as climbing down 0.88%, climbing up 0.87%,
and standing 0.80%. Misclassifications mainly arose between activities that share similar
motion characteristics. For example, climbing down was occasionally misclassified as
walking, climbing up was confused with running, and sitting was sometimes classified
as standing.

The results in Table 2 provide a thorough comparison of the models trained on the
Real-World HAR dataset in a federated environment. The results show that the S-LSTM
model consistently outperformed its counterparts across the spectrum of classification
metrics: precision, recall, and F1-score. For example, in the activity walking, S-LSTM
achieved a precision of 0.94%, recall of 0.93%, and F1-score of 0.94%, better than the other
models considered. Notably, in activities that involve complex motion patterns, such
as climbing down and climbing up, the S-LSTM model achieved the highest F1-score of
0.94% and 0.93%, respectively. This indicates its capability to capture and classify intricate
temporal patterns more accurately. Additionally, it is worth noting that all models faced
challenges in differentiating between sitting and standing, with F1-scores hovering around
the 0.73% to 0.85% range, with S-LSTM achieving higher scores compared to others.
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Table 2. Comparison of classification metrics between different DL techniques for Real-World dataset.

CNN S-CNN LSTM S-LSTM

Class Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Climb down 0.90 0.91 0.90 0.92 0.91 0.91 0.90 0.91 0.90 0.94 0.93 0.94
Climb up 0.90 0.88 0.89 0.92 0.89 0.90 0.90 0.88 0.89 0.93 0.92 0.93
Jumping 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.94 0.96 1.00 1.00 1.00
Lying 0.84 0.90 0.87 0.89 0.89 0.89 0.84 0.90 0.87 0.95 0.89 0.92
Running 0.98 0.88 0.93 0.98 0.87 0.93 0.98 0.88 0.93 0.97 0.91 0.94
Sitting 0.73 0.77 0.75 0.74 0.81 0.77 0.73 0.77 0.75 0.78 0.85 0.82
Standing 0.77 0.77 0.77 0.75 0.83 0.79 0.77 0.77 0.77 0.79 0.83 0.81
Waling 0.91 0.91 0.91 0.92 0.91 0.91 0.91 0.91 0.91 0.93 0.94 0.93
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Figure 8. The confusion matrix for four DL models compared for Real-World data set. The index rep-
resents the activity where the label corresponding to the activities are: (1) climbing down, (2) climbing
up, (3) jumping, (4) lying, (5) running, (6) sitting, (7) standing, (8) walking.

To further enhance our comparative study, we adopted a strategy to select 50% of
participants randomly for training and aggregation in FL settings. The results in Figure 9
depict the accuracy learning curve, providing comprehensive insight into the performance
trajectory over 500 communication rounds. This approach assessed the impact of reduced
client participation on model performance and communication cost benefits. From the
results, S-LSTM emerges as the top performer, achieving an accuracy of 88.10%. S-CNN
follows this with an overall accuracy of 85.10%, LSTM with 84.30%, and the CNN serving
as a baseline with 83.90%.

To further enhance our comparison, the energy efficiency models under consideration
were rigorously evaluated and quantified as energy estimates defined according to Equation
(15). The energy efficiency was calculated in a single communication round with all
participants and randomly selected 50% participants. For the purposes of this assessment,
the computation constant α and communication constant β were assumed to be 0.003
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and 0.0001, respectively, as given in the literature [40]. The results in Table 3 present
the energy estimates Eest, which were contingent upon both the computation time and
the model parameter Ptrn, under the specified client selection criterion. Notably, the S-
LSTM model had minimal computation time for a single communication round, which
stood at 208 s when all participants were included and was further reduced to 121 s with
the selection of 50% of participants. Regarding energy consumption, the S-LSTM model
demonstrated superior efficiency, registering the lowest energy estimate at 6.10 watts. This
result demonstrates a 24.41% decrease in energy requirements compared to the LSTM
model, which recorded an energy estimate of 8.07 watts. The results also confirm that using
a 50% random participant selection strategy significantly improved the energy efficiency
of the model. However, it is important to acknowledge that there is a trade-off between
energy efficiency and model accuracy. Finding the right balance between these two aspects
is crucial when applying deep learning models, especially when energy conservation
is essential.

Table 3. Comparison of energy efficiency of the proposed hybrid model using the metric energy
estimates given in Equation (15). In this case, the 50% random participant selection was made, and
the energy estimate was calculated for one communication round.

Model Model Parameter
Ptrn (KB)

Computation Time
tcom (s)

Energy Estimate
Eest (W)

CNN 25321 258 38.24
143 15.73

S-CNN 19418 252 29.38
136 15.67

LSTM 5231 220 8.07
137 4.32

S-LSTM 3931 208 6.10
121 3.27
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Figure 9. Learning curve for Real-World dataset, with 50% random choosing of participant trained
for 500 communication rounds.

All the previous results discussed were obtained using the global model and combined
global test set. However, the participant had the processing capabilities to fine-tune
the global model to customise it using the local data. Therefore, we also evaluated the
performance of the personalised model using the local test set of each participant, and the
results are compared with the global model. The results depicted in Figure 10 show the
contrast of the test accuracy for global and personalised models at the client level. Spanning
15 clients, the x-axis enumerates each client, with two accuracy plots for each. Personalised
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accuracy was obtained using the local testset after fine-tuning the global model using the
local data. Personalisation improved performance and emphasised the model’s adaptability
to specific local data. All four model architectures, including S-LSTM, which boasts the
highest global accuracy, exhibit this trend. These findings underscore the advantages of
personalisation in FL, where client-specific fine-tuning can substantially improve the local
accuracy, which is evident in the results where the average accuracy for S-LSTM improved
from 89.69% to 97.12%.
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Figure 10. Accuracy comparison graph for global and personalised models for each client using the
local test set. The personalised accuracy was obtained after fine-tuning using the local dataset.

6. Conclusions

This paper proposes an HNFL framework that combines the energy-efficient SNN and
LSTM network for accurate indoor and outdoor HAR using wearable sensor data. The S-
LSTM architecture integrates LSTM layers to capture sequential dependencies in time-series
sensor data with spiking layers that provide event-driven processing for energy efficiency.
The model was trained using a combination of surrogate gradient learning and BRTT, which
enabled supervised end-to-end learning. Extensive evaluations were performed on two
publicly HAR datasets – UCI and Real-World – which exhibited distant data distributions
and activities. The simulation results demonstrated that the proposed S-LSTM model
achieved higher accuracy than LSTM, CNN, and S-CNN models in the federated settings.
For instance, S-LSTM showed an improvement of 1.06% compared to the LSTM model for
the indoor scenarios. In the case of a more diverse Real-World outdoor dataset, S-LSTM
showed an improvement of 3.84% in accuracy compared to simple LSTM. Furthermore, the
results also showed a significant improvement in energy efficiency of 32.30%, compared
to LSTM. Additionally, random participant selection could significantly improve energy
efficiency; however, there was a trade-off between accuracy and efficiency. Additionally,
fine-tuning the global model to achieve personalisation improved the performance by 9%
on average for each participant.
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