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1. Introduction

This is a continuation of [3] and [4], except that the focus here is on Lie algebra aspects 
of the problem. The setting is Mn(C). Given a linear norm ‖ · ‖ on Cn, the numerical 
range V (T ) of a matrix T is defined by

V (T ) = {f(Tx) : x ∈ Cn, f ∈ Cn′, ||x|| = ||f ||′ = f(x) = 1}

and T is Hermitian if V (T ) ⊂ R. We study the Hermitians H in Mn(C). Basic facts 
about Hermitians can be found in [1] and [2]; in particular T is Hermitian if and only if 
| exp(itT )| = 1 (t ∈ R) where | · | is the operator norm. Each H is a real Lie algebra with 
Lie product A •B = i(AB−BA). In standard expositions of real Lie algebras in Mn(C)
the Lie product is taken to be A ◦B = AB − BA. Fortunately there is a trivial way to 
move between the two different Lie products. Let φ(A) = −iA for A ∈ Mn(C), so that 
φ is a real linear transformation. Let L be any real Lie algebra in Mn(C) with product 
◦. Then we have

φ(A ◦B) = φ(A) • φ(B)

so that −iL is a real Lie algebra under • and φ is a Lie isomorphism between (L, ◦) and 
(−iL, •), with inverse map ψ given by ψ(B) = iB.

Perforce we have I ∈ H and so it is useful to have the following notation. Given a 
real Lie algebra (L, •) in Mn(C) with I /∈ L, let L1 be the real Lie algebra generated by 
L and I; thus L1 = {A + rI : A ∈ L, r ∈ R}. As a first step we should try to identify all 
simple real Lie algebras L for which L1 is H for some norm.

The classical real Lie algebras Aν , Bν , Cν , Dν (see, for example [6]) are simple except 
for D1 and D2, but they have the wrong Lie product for Hermitians. For any such K we 
may replace it with the isomorphic copy (−iK, •). Since every such K contains nilpotents 
the same is clearly true for (−iK, •) which thus always contains non-Hermitians. Our 
first project is to modify the classical real Lie algebras into ‘self-adjoint’ variants (in the 
sense that all matrices, now with complex entries allowed, are self-adjoint). Self-adjoint 
matrices have real eigenvalues and hence are natural candidates to be Hermitians. We 
denote the ‘self-adjoint’ variants by saAν , saBν , saCν , saDν . With the exception of 
saD1 and saD2 these are all simple real Lie algebras. The case saAν is essentially the 
well understood C∗ case. The orthogonal variants, saBν , saDν are isomorphic to a one 
parameter family of simple Lie algebras which appeared in [3] and [4], and are denoted 
here by Ln. It is shown in [4] that every L1

n is H for some norm. The symplectic variants 
saCn have a very surprising property. Any norm that makes saCn all Hermitian makes 
all self-adjoints Hermitian, so that saC1

n is not H for any norm. These simple real Lie 
algebras are the (−iL, •) for some of the simple real Lie algebras (L, ◦) which appear in 
[5], but our construction of them is entirely elementary and does not require a working 
knowledge of real forms of simple complex Lie algebras regarded as Lie algebras over the 
reals.
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Some of our results may be deduced easily by using the substantial technical machinery 
in Lie algebra theory. Our aim is to provide proofs by entirely elementary arguments.

Here we introduce some notation and some computations that will be used in later 
proofs. In any application the dimension of each of these matrices will be clear from the 
context. For any j, k ∈ N, we write Ejk for the usual elementary matrix. For j �= k, we 
define

Fjk = Ejk + Ekj , Gjk = iEjk − iEkj .

Note that Fkj = Fjk, Gkj = −Gjk. For square matrices A, B recall that A • B =
i(AB −BA). If and only if {j, k} ∩ {u, v} = ∅, we have

Fjk • Fuv = O, Fjk •Guv = O, Gjk •Guv = O. (1.1)

With m �= k, we also have

Fjk • Fjm = Gkm, Fjk •Gjm = −Fkm, Gjk •Gjm = Gkm. (1.2)

Other equations are easily derived by switching the order of the suffices. Finally we have

Fjk •Gjk = 2(Ejj −Ekk). (1.3)

2. Self-adjoint variants of the classical Lie algebras

We now define the self-adjoint variants of the classical real Lie algebras and prove first 
that each is a real Lie algebra. Unless otherwise stated we use the bases for the classical 
Lie algebras as given in [6, pp. 2-3] but with the following minor alterations: in the basis 
for Bν replace

B = E1,ν+j+1 − Ej+1,1 with −B (1 ≤ j ≤ ν).

These changes ensure that the non-diagonal basis matrices all occur as pairs B, B′ where 
B′ is the transpose of B. Let K stand for any of the classical Lie algebras and let W be 
its corresponding basis. Let Δ denote the diagonal matrices. Define

X = {A ∈ W : A ∈ Δ} and Y = W \ X .

Then W = X ∪ Y. For B ∈ Y define

B+ = B + B′ and B− = i(B −B′).

Let Y0 be a subset of Y consisting of exactly one of each pair B, B′ in Y. The choice of 
B or B′ does not affect the following definition of saK, but once we have established in 
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Lemma 2.1 that saK is a real Lie algebra we make specific choices to define a standard 
basis for each case. Define

Y+ = {B+ : B ∈ Y0} and Y− = {B− : B ∈ Y0}.

Since elements of Y0 never overlap in their support, it follows that, for B1, B2 ∈ Y0, if 
either B+

1 = B+
2 or B−

1 = B−
2 then we have B1 = B2. Hence E = X ∪ Y+ ∪ Y− consists 

of self-adjoint (complex) matrices and |E| = |W|. It is straightforward to verify that the 
elements of E are linearly independent. We define saK to be the real linear span of E . 
Let B ∈ Y. Then B′+ = B+ and B′ − = −B−. Since B or B′ is in Y0 it follows that 
B+ ∈ Y+ while B− ∈ ±Y−. Hence

B+ ∈ saK and B− ∈ saK (B ∈ Y). (2.1)

The following Lemma proves that saK is a real Lie algebra with Lie product •. We note 
that saK and K have the same real dimension. Recall that ◦ denotes the Lie product in 
a classical Lie algebra and • denotes the Lie product in the self-adjoint variant.

Lemma 2.1. Let A, A1, A2 ∈ X and B, B1, B2 ∈ Y. Then U • V ∈ saK for each of the 
following pairs (U, V ):

(A1, A2), (A,B+), (A,B−), (B+
1 , B+

2 ), (B−
1 , B−

2 ), (B+
1 , B−

2 ).

Proof. Let R ∈ K. Then R = ΣjαjPj + ΣkβkQk where the αj and βk are real and the 
Pj and Qk are in X and Y, respectively. Hence, using (2.1),

R + R′ = 2
∑
j

αjPj +
∑
k

βk(Qk + Q′
k) ∈ saK (2.2)

and

i(R−R′) =
∑
k

βki(Qk −Q′
k) ∈ saK. (2.3)

(1) A1 •A2 = O ∈ saK.
(2) A •B+ = i(AB+ −B+A) = i(A(B + B′) − (B + B′))A)

= i(AB + AB′ −BA−B′A) = i(AB −BA) − i(B′A−AB′)
= i((A ◦B) − (A ◦B)′) ∈ saK (using (2.3)).

The remaining cases are similar, making use of (2.2) and (2.3); we present the details 
for one more example and we give only the final formula for the others.

(3) A •B− = (A ◦B′) + (A ◦B′)′ ∈ saK.
(4) B+

1 •B+
2 = i(B+

1 ◦B+
2 ) = i((B1 + B′

1)(B2 + B′
2) − (B2 + B′

2)(B1 + B′
1)

= i(B1B2 + B1B
′
2 + B′

1B2 + B′
1B

′
2 −B2B1 −B2B

′
1 −B′

2B1 −B′
2B

′
1)

= i((B ◦B ) − (B ◦B )′) + i((B ◦B′ ) − (B ◦B′ )′) ∈ saK.
1 2 1 2 1 2 1 2
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(5) B−
1 •B−

2 = −i((B1 ◦B2) − (B1 ◦B2)′) + i((B1 ◦B′
2) − (B1 ◦B′

2)′) ∈ saK.
(6) B+

1 •B−
2 = −((B1 ◦B2) + (B1 ◦B2)′) − ((B1 ◦B′

2) + (B1 ◦B′
2)′) ∈ saK. �

We now list the standard bases EK for saK where K = Aν , Bν , Cν , Dν . Unless otherwise 
stated, when we refer to a basis for saK, we mean EK.

Definition 2.2. The self-adjoint variant of Lie algebra (Aν , ◦) is (saAν , •) with basis 
consisting of ν2 + 2ν matrices in Mν+1(C):

EAν
:
{

Ejj −Ej+1,j+1 (1 ≤ j ≤ ν),

Fjk, Gj,k (1 ≤ j �= k ≤ ν + 1).
(2.4)

Definition 2.3. The self-adjoint variant of Lie algebra (Bν , ◦) is (saBν , •) with basis con-
sisting of 2ν2 + ν matrices in M2ν+1(C):

EBν
:

⎧⎪⎪⎨
⎪⎪⎩

F1,k+1 − F1,ν+k+1, G1,k+1 + G1,ν+k+1 (1 ≤ k ≤ ν),[
0 O

O W

]
(W ∈ EDν

).
(2.5)

Definition 2.4. The self-adjoint variant of Lie algebra (Cν , ◦) is (saCν , •) with basis con-
sisting of 2ν2 + ν matrices in M2ν(C). The additional labels for matrices in ECν

are used 
in Theorem 3.8.

ECν
:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aj := Ejj −Eν+j,ν+j ,

Bj := Fj,ν+j ,

Cj := Gj,ν+j

⎫⎪⎪⎬
⎪⎪⎭ (1 ≤ j ≤ ν),

Pjk := Fjk − Fν+j,ν+k,

Qjk := Gjk + Gν+j,ν+k,

Rjk := Fj,ν+k + Fk,ν+j ,

Sjk := Gj,ν+k + Gk,ν+j

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1 ≤ j < k ≤ ν).

(2.6)

Definition 2.5. The self-adjoint variant of Lie algebra (Dν , ◦) is (saDν , •) with basis 
consisting of 2ν2 − ν matrices in M2ν(C):

EDν
:

⎧⎪⎪⎨
⎪⎪⎩

Ejj −Eν+j,ν+j (1 ≤ j ≤ ν),

Fjk − Fν+j,ν+k, Gjk + Gν+j,ν+k,

F − F , G −G

}
(1 ≤ j < k ≤ ν).

(2.7)
j,ν+k k,ν+j j,ν+k k,ν+j
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3. Simplicity of self-adjoint variants

All Lie algebras saK are simple except for saD1 and saD2. We leave to the reader the 
verification for saA1, saB1, saC1 and saD1.

We prove that saAν (ν ≥ 2) is simple directly from the definition in two stages: we 
show first that any non-zero ideal contains a basis element and then that it contains all 
basis elements. We use the standard basis EAν

given in (2.4):

1-parameter elements Ap = Epp −Ep+1,p+1 (1 ≤ p ≤ ν),
2-parameter elements Fj,k, Gj,k (1 ≤ j < k ≤ ν + 1).

Lie products of 2-parameter basis elements appear at the end of Section 1. Other prod-
ucts, involving 1-parameter basis elements, are as follows.

For . . . Ap • Fjk Ap •Gjk

1 ≤ j < p, k = p −Gjk Fjk

1 ≤ j < p, k = p + 1 Gjk −Fjk

j = p, p + 1 < k ≤ ν + 1 Gjk −Fjk

j = p + 1, p + 1 < k ≤ ν + 1 −Gjk Fjk

j = p, k = p + 1 2Gjk −2Fjk

Otherwise O O

Lemma 3.1. Let X =
∑ν

r=1 αrAj where not all αr are zero. Then, for some p with 
1 ≤ p ≤ ν, X •Gp,p+1 is a non-zero multiple of Fp,p+1.

Proof. Note that we include the case where only one αr is non-zero. We have X•Gp,p+1 =
βpFp,p+1 where

βp =

⎧⎪⎨
⎪⎩

−2α1 + α2 if p = 1,
αp−1 − 2αp + αp+1 if 2 ≤ p ≤ ν − 1,
αν−1 − 2αν if p = ν.

If all βp = 0 (1 ≤ p ≤ ν − 1) then αr = rα1 (1 ≤ r ≤ ν) and if, in addition, βν = 0 then 
all αr are zero, contradicting the given hypothesis. So at least one βp is non-zero and 
the result follows. �
Lemma 3.2. Let I be a non-zero ideal in saAν. Then I contains some basis element of 
saAν .

Proof. Every non-zero X ∈ I has a non-zero number of basis elements in its support, 
suppX. Denote this number by |X|. Let m be the minimum of |X| for all non-zero X
in I and let Y ∈ I with |Y | = m. If m = 1, we are done. Let m ≥ 2.
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If suppY contains only 1-parameter basis elements then Lemma 3.1 applies to give 
some Fjk ∈ I.

If suppY contains a 2-parameter basis element, let Fg,k or Gg,k be such an element 
where g is the least first parameter. Then Z = Ag • Y ∈ I. By Lemma 3.1, Z �= O and 
|Z| ≤ |Y | so that, by minimality, |Z| = m, and further, suppZ contains no 1-parameter 
basis element and only 2-parameter basis elements with first parameter g or g + 1.

Case 1. Let suppZ contain Fg,u and Hg,v with u < v where {Hg,v, Kg,v} =
{Fg,v, Gg,v}. Then

Fg,u • Fg,u = O and Gg,u •Hg,v = λKu,v

for some λ �= 0. Again using Lemma 3.1, W = Fg,u •Z �= O, W ∈ I and |W | < m giving 
a contradiction. A similar argument applies when suppZ contains Gg,u and Hg,v or with 
g replaced with g + 1.

Case 2. If |Z| ≥ 3 then we can always choose two elements of suppZ which satisfy 
Case 1. So we are left to consider |Z| = 2, with one element having first parameter g
and the other, g + 1. Let suppZ = {Fg,u, Hg+1,v} where Hg+1,v = Fg+1,v or Gg+1,v. 
[suppZ = {Gg,u, Hg+1,v} can be dealt with similarly.] If {g, u} ∩ {g + 1, v} �= ∅ then 
either u = v in which case |Fg,u • Z| = 1, or u = g + 1 in which case |Fg,g+1 • Z| = 1, 
and the minimality of m is contradicted. If {g, u} ∩ {g + 1, v} = ∅ then

Fg,u •Gg,u = 2(Egg − Euu) and Hg+1,v •Gg,u = O

so that supp(Z•Gg,u) contains only 1-parameter basis elements and Lemma 3.1 concludes 
the proof. �
Theorem 3.3. For ν ≥ 2, saAν is simple.

Proof. Let I be a non-zero ideal in saAν . By Lemmas 3.1 and 3.2, I contains a 2-
parameter basis element. Then product rules (1.2) and (1.3) in Section 1 guarantee that 
I contains all basis elements. Hence I = saAν as required. �

We establish the simplicity, or otherwise, of saBν and saDν (ν ≥ 2) by comparing 
them with the Lie algebras which appeared in [3, pp 287–289] and [4, Theorem 4.1] as 
subalgebras of examples of H, and for which we need to provide further results. For 
n ≥ 2, let Ln ⊂ Mn(C) denote the real Lie algebra with basis Gjk for 1 ≤ j < k ≤ n and 
Lie product •. It is an easy exercise to verify that L3 is a simple real Lie algebra. The 
three-dimensional simple real Lie algebras A1, B1, C1 are Lie isomorphic to each other 
but not to L3. It is easy to show that A1 over C is Lie isomorphic to L3 over C, thus 
showing a difference between complex Lie algebras and real Lie algebras. To see the 
non-isomorphism, recall the usual basis for A1 given by

P = E11 −E22, Q = E12, R = E21.
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Now let

x = 1
2P, y = 1

2 (Q−R), z = 1
2 (Q + R)

so that {x, y, z} is also a basis with

x ◦ y = z, y ◦ z = x, z ◦ x = −y.

For L3 take the usual basis {a, b, c}, where a = G12, b = G13, c = G23, so that

a • b = c, b • c = a, c • a = b.

Suppose, towards a contradiction, that φ is a Lie isomorphism from L3 to A1 determined 
by

φ(a) = λ1x + λ2y + λ3z, φ(b) = μ1x + μ2y + μ3z, φ(c) = ν1x + ν2y + ν3z,

where λj , μj , νj ∈ R. With respect to our bases, φ has corresponding matrix

M =
[
λ1 μ1 ν1
λ2 μ2 ν2
λ3 μ3 ν3

]
.

The equations

φ(c) = φ(a) ◦ φ(b), φ(a) = φ(b) ◦ φ(c), φ((b) = φ(c) ◦ φ(a)

give nine equations relating the entries of M . In particular we have

λ1 = μ2ν3 − μ3ν2, μ1 = ν2λ3 − ν3λ2, ν1 = λ2μ3 − λ3μ2

and

λ2 = μ1ν3 − μ3ν1, μ2 = ν1λ3 − ν3λ1, ν2 = λ1μ3 − λ3μ1.

Expand detM by the first two rows to give

detM = λ2
1 + μ2

1 + ν2
1 = −(λ2

2 + μ2
2 + ν2

2).

Since M is invertible, no rows are zero and we conclude with the contradiction detM = 0.
The Lie algebra L4 is not simple since it is the direct sum of two ideals I1, I2 where 

I1 has basis

1 (G12 + G34), 1 (G14 + G23), 1 (G24 −G13),
2 2 2
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and I2 has basis

1
2 (G12 −G34), 1

2 (G14 −G23), 1
2 (G13 + G24).

The Lie product table for each of these bases, taken in the above order, matches exactly 
that of the standard basis for L3 in order G12, G13, G23. The ideals I1, I2 are thus each 
Lie isomorphic to L3. The next two Lemmas show that Ln is simple for n ≥ 5.

Lemma 3.4. Let n ≥ 5 and let I be a non-zero ideal of Ln. Then I contains some Gjk.

Proof. Let X =
∑m

r=1 ηrZr ∈ I with m ≥ 2, where Zr are distinct basis elements and 
ηr �= 0.

(i) If m = 2 then, since n ≥ 5, we can find a basis element Z0 (say) such that Z0•X ∈ I
is a non-zero multiple of a single basis element.

(ii) If m ≥ 3 and every pair of basis elements Zr has zero Lie product then suppose, 
without loss, that Z1 = Gpq and Z2 = Guv with p < u. Using (2.2) it follows that 
Gpu •X ∈ I is a linear combination of two basis elements and (i), above, applies.

(iii) If m ≥ 3 and two basis elements, without loss Z1 and Z2 (say), have non-zero 
Lie product then (1.2) guarantees that Y = Z1 • Z2 �= ±Z1 • Zr for any r ≥ 3. Hence 
Y ∈ I is non-zero and is a linear combination of at most m − 1 basis elements. We can 
repeat this process until we have a single basis element in I or we have case (i) or (ii), 
above. �
Lemma 3.5. Let I be an ideal of Ln that contains one of the Gjk. Then I contains every 
Gjk.

Proof. Suppose that Gjk ∈ I and let Guv be any other basis element. Either j �= u or 
k �= v. If j �= u, using (1.2), we have

(Gjk •Guk) •Gjv = Gju •Gjv = Guv.

If k �= v we have

(Gjk •Gjv) •Gku = Gkv •Gku = −Guv.

Hence Guv ∈ Ln. �
Combining Lemmas 3.4 and 3.5 we have the following result.

Theorem 3.6. For n ≥ 5, Ln is simple.

We now construct Lie isomorphisms from appropriate Ln to saDν and saBν . We begin 
with the case saDν , with ν ≥ 2. Our proof is simplified by the introduction of another 
basis E for L2ν .
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E :

⎧⎪⎪⎨
⎪⎪⎩

Gj,ν+j (1 ≤ j ≤ ν),

Gjk + Gν+j,ν+k, Gjk −Gν+j,ν+k,

Gj,ν+k + Gk,ν+j , Gj,ν+k −Gk,ν+j

}
(1 ≤ j < k ≤ ν).

(3.1)

For any invertible 2ν×2ν matrix T , the similarity φ(Z) = T−1ZT gives a Lie monomor-
phism. We take

T =
[
J −J

I I

]
(3.2)

where J = diag(i, −i, i, −i, · · · ) = i diag((−1)r+1) and I is the identity matrix. Note that

2T−1 =
[
−J I

J I

]

and

Ej,ν+k =
[
O Ejk

O O

]
, Eν+j,k =

[
O O

Ejk O

]
, Eν+j,ν+k =

[
O O

O Ejk

]
.

For j, k = 1, 2, . . . , n matrix computation gives

φ(Ejk) = 1
2 (−1)j+k(Ejk −Ej,ν+k − Eν+j,k + Eν+j,ν+k),

φ(Ej,ν+k) = 1
2 (−1)j i(Ejk + Ej,ν+k −Eν+j,k − Eν+j,ν+k),

φ(Eν+j,k) = 1
2 (−1)k i(−Ejk + Ej,ν+k − Eν+j,k + Eν+j,ν+k),

φ(Eν+j,ν+k) = 1
2 (Ejk + Ej,ν+k + Eν+j,k + Eν+j,ν+k).

Hence, for 1 ≤ j < k ≤ ν, we have

φ(Gjk) = 1
2(−1)j+k(Gjk −Gj,ν+k + Gk,ν+j + Gν+j,ν+k),

φ(Gν+j,ν+k) = 1
2(Gjk + Gj,ν+k + Gj,ν+j −Gν+j,ν+k)

and for 1 ≤ j, k ≤ ν,

φ(Gj,ν+k) = 1
2 (−1)j(−Fjk − Fj,ν+k + Fj,ν+k + Fν+j,ν+k).

For φ(Gk,ν+j) interchange j and k in the above line.
It remains to consider the action of φ on the basis E . Recall the basis EDν

listed in 
(2.7). For 1 ≤ j ≤ ν, we have

φ(Gj,ν+j) = (−1)j(−Ejj + Eν+j,ν+j) ∈ ±EDν
.



248 J. Duncan, C.M. McGregor / Linear Algebra and its Applications 682 (2024) 238–256
For 1 ≤ j < k ≤ ν,

φ(Gjk + Gν+j,ν+k) = 1
2 (−1)j+k(Gjk −Gj,ν+k + Gk,ν+j + Gν+j,ν+k)

+1
2 (Gjk + Gj,ν+k −Gk,ν+j + Gν+j,ν+k).

Hence φ(Gjk + Gν+j,ν+k) is (Gjk + Gν+j,ν+k) if j + k is even, and is (Gj,ν+k −Gk,ν+j)
if j + k is odd. Similarly, φ(Gjk − Gν+j,ν+k) is −(Gjk − Gν+j,ν+k) if j + k is even, 
and is −(Gj,ν+k + Gk,ν+j) if j + k is odd. We next find that φ(Gj,ν+k + Gj,ν+k) is 
∓(Fjk − Fν+j,ν+k) if j, k are both even, or both odd, and is ∓(Fj,ν+k − Fk,ν+j) if the 
parities are opposite. A similar result holds for φ(Gj,ν+k − Gk,ν+j). Hence φ(E) is in 
±EDν

, is one-one on E , and all of EDν
appears. Thus the similarity φ is a monomorphism 

from L2ν onto saDν .

Theorem 3.7. (1) For ν ≥ 3, saDν is Lie isomorphic to L2ν and hence is simple.
(2) saD2 is Lie isomorphic to L4 and hence is not simple.

Proof. (1) We have shown, above, that φ : L2ν → saDν is a Lie isomorphism. Since, by 
Theorem 3.6 (n = 2ν), L2ν is simple, it follows that saDν is simple.

(2) The Lie isomorphism φ : L2ν → saDν is defined for ν = 2 but, as was previously 
shown, L4 is not simple. �

We show next that L2ν+1 is Lie isomorphic to saBν when ν ≥ 2. Note that from here 
up to the statement of Theorem 3.8 all Fjk, Gjk explicitly mentioned are in M2ν+1(C). 
We use the basis E for L2ν listed at (3.1) to define another basis E+ for L2ν+1.

E+ :

⎧⎪⎪⎨
⎪⎪⎩

G1,k+1 (1 ≤ k ≤ 2ν),[
0 O

O Z

]
(Z ∈ E).

(3.3)

The basis EBν
for saBν listed at (2.5) can be written as E1 ∪ E2 ∪ E3 where

E1 = {F1,k+1 − F1,ν+k+1 : (1 ≤ k ≤ ν)},
E2 = {G1,k+1 + G1,ν+k+1 : (1 ≤ k ≤ ν)},

E3 =
{[

0 O

O W

]
: (W ∈ EDν

)
}
.

Let

U =
[√

2 O

O T

]
where T is defined by (3.2), (3.4)

and define the similarity ψ(V ) = U−1V U . Straightforward computations show that



J. Duncan, C.M. McGregor / Linear Algebra and its Applications 682 (2024) 238–256 249
ψ(G1,k+1) ∈ ± 1√
2E1 (1 ≤ k ≤ ν),

ψ(G1,k+1) ∈ 1√
2E2 (ν + 1 ≤ k ≤ 2ν)

and, for V =
[

0 O

O W

]
with W ∈ EDν

, ψ(V ) ∈ ±E3. Also we have that ψ is one-to-one 

on E+ and all of EBν
appears. It follows that the similarity φ : L2ν → saDν is a Lie 

isomorphism. This, together with Theorem 3.6 (n = 2ν + 1), establishes the following 
result.

Theorem 3.8. For ν ≥ 2, saBν is Lie isomorphic to L2ν+1 and hence is simple.

We show next that saCν (ν ≥ 2) is simple, but without a ready made simple Lie 
algebra like Ln for comparison we revert to the method used for saAν . We use the labels 
given in (2.6) for the elements in the basis ECν

. There are three types parametrized by j:

Aj , Bj , Cj (1 ≤ j ≤ ν)

and four types parametrized by (j, k):

Pjk, Qjk, Rjk, Sjk (1 ≤ j < k ≤ ν).

For our proof of the theorem it is essential to have many zero Lie products. Any products 
of Aj , Bj , Cj with j′ �= j′′ give zero product. Any products of 2-parameter basis elements 
with {j′, k′} ∩ {j′′, k′′} = ∅ give zero product. We give below a partial Lie product table 
for 1 ≤ j < k ≤ ν. In fact the products hold equally with j > k, and this enables us to 
calculate products such as Ak • Pjk, since Pjk = Pkj , Qjk = −Qjk, etc.

Partial Lie Product Table for saCν Basis (0 ≤ j < k ≤ ν)
• Bj Cj Pjk Qjk Rjk Sjk

Aj 2Cj −2Bj Qjk −Pjk Sjk −Rjk

Bj 2Aj −Sjk −Rjk Qjk Pjk

Cj Rjk −Sjk −Pjk Qjk

Pjk 2(Aj −Ak) 2(Cj + Ck) −2(Bj + Bk)
Qjk −2(Bj −Bk) −2(Cj − Ck)
Rjk 2(Aj + Ak)

Lemma 3.9. Let ν ≥ 2 and let I be a non-zero ideal of saCν. Then I contains some basis 
element of saCν .

Proof. Let X ∈ I, X �= O. Let u be the smallest j-parameter which appears amongst 
all the basis elements in X. Replace X by X1 = Au •X. Then X1 ∈ I. By the product 
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formulas in the above table, X1 �= O, all basis elements in X1 have j-parameter u but X1
does not include Au. If X1 has no (u, k)-parameter basis elements then X1 = pBu + qCu

with p, q not both zero so that Bu•X1 or Cu•X1 (or both) give Au in I. If X1 does have a 
(u, k)-parameter basis element then X2 = (Au •(Bu •X1)) ∈ I has only (u, k)-parameter 
basis elements and is non-zero. Let v be the largest k-parameter which appears in X2. 
Then X3 = Av •X2 ∈ I, is non-zero and has only (u, v)-parameter basis elements. For 
some a, b, c, d ∈ R, not all zero, we have four elements in I:

X3 = aPuv + bQuv + cRuv + dSuv,

Au •X3 = −bPuv + aQuv − dRuv + cSuv,

Bu •X3 = dPuv + cQuv − bRuv − aSuv,

Cu •X3 = −cPuv + dQuv + aRuv − bSuv,

by the above product table. We shall have Puv ∈ I if we can solve
⎡
⎢⎢⎢⎣
a −b d −c

b a c d

c −d −b a

d c −a −b

⎤
⎥⎥⎥⎦
⎡
⎢⎣
α
β
γ
δ

⎤
⎥⎦ =

⎡
⎢⎣

1
0
0
0

⎤
⎥⎦

for some α, β, γ, δ ∈ R. But the rows of the matrix are orthogonal vectors, all with length √
(a2 + b2 + c2 + d2) �= 0. Thus the matrix is a non-zero real multiple of an orthogonal 

matrix, which completes the proof. �
Lemma 3.10. Let ν ≥ 2, and let I be an ideal of saCν that contains one of the basis 
elements. Then I contains every basis element.

Proof. If I contains Aj it follows from the above product table that I contains every 
basis element with a parameter j and then that it contains 2(Aj −Ak) for any other k. 
Hence I contains all basis elements. If I contains either Bj or Cj then I contains both 
and hence contains 2Aj, and we are done. If I contains any (j, k) basis element, then it 
contains all four (j, k) basis elements and hence contains 2(Aj − Ak) and 2(Aj + Ak), 
and again we are done. �

Combining Lemmas 3.9 and 3.10 we have the following result.

Theorem 3.11. For ν ≥ 2, saCν is a simple Lie algebra.

4. The norm problem

We turn now to the question of whether or not, for a simple Lie algebra saK ⊂ Mn(C), 
there is a norm on Cn such that H for that norm is saK1. For saAν , when we adjoin 
I we obtain all self-adjoint matrices and we are in the C∗ situation. This follows from 
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the Vidav-Palmer theorem [1, Theorem 6.9] but we give an elementary proof using the 
property that, for any t ∈ R and any Hermitian element T , exp(itT ) is an isometry. For 
1 ≤ p < q,

exp(iθGpq) = I + (cos θ − 1)(Epp + Eqq) + i sin θ Gpq.

We take the range of tan−1 to be (−π/2, π/2).

Lemma 4.1. Let n ≥ 2 and let ‖ · ‖ be a norm for Cn such that G1k (k = 1, . . . , n) are 
Hermitian. Then, for r1, . . . , rn > 0,

‖(r1, r2, . . . , rn)‖ = α
√

r2
1 + r2

2 + · · · + r2
n

where α = ‖(1, 0, . . . , 0)‖.

Proof. Let ρ1 =
√

r2
1 + r2

2 + · · · + r2
n and, for k = 2, . . . , n, let ξk = tan−1(rk/ρk) where 

ρk is defined recursively by ρk =
√

ρ2
k−1 − r2

k. Let

T = exp(iξnG1n) exp(iξn−1G1,n−1) . . . exp(iξ2G12).

We consider z = T (1, 0, . . . , 0). Note that, for k = 2, . . . , n, cos ξk = ρj/ρk−1 and sin ξk =
rk/ρk−1.

(i) The 1st coordinate of z is cos ξn cos ξn−1 . . . cos ξ2 = r1/ρ1.
(ii) The 2nd coordinate of z is sin ξ2 = r2/ρ1.
(iii) The jth coordinate (3 ≤ j ≤ n) of z is sin ξj cos ξj−1 . . . cos ξ2 = rj/ρ1.

Case (iii) does not occur when n = 2. Thus T (1, 0, . . . , 0) = ρ−1
1 (r1, r2, . . . , rn) and it 

follows immediately that

‖(r1, r2, . . . , rn)‖ = ρ1‖(1, 0, . . . , 0)‖. �
Theorem 4.2. Let ν ∈ N and let ‖ · ‖ be a norm for Cν+1 such that every element of 
saAν is Hermitian. Then there exists α > 0 such that ‖ · ‖ = α‖ · ‖2, where ‖ · ‖2 is the 
�2-norm on Cν+1.

Proof. Let z = (r1eiθ1 , . . . , rν+1e
iθν+1) where rj > 0 and θj ∈ R (j = 1, 2, . . . , ν + 1). 

Continuity extends the result to all rj ≥ 0. Since Ejj −Ej+1,j+1 (1 ≤ j ≤ ν) are in saAν

and hence are Hermitian, and I also is Hermitian, it follows that all Ejj (1 ≤ j ≤ ν + 1)
are Hermitian. Let

U = exp(−iθ1E11)... exp(−iθν+1Eν+1,ν+1).

Then Uz = (r1, ..., rν+1) and using Lemma 4.1 with n = ν + 1 the result follows. �
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For saBν and saDν (ν ≥ 2) we have defined Lie isomorphisms with the Ln Lie algebras 
for which a norm formula was given in [4]. Since the isomorphisms are similarities they 
lead to corresponding formulas for saBν and saDν which are given below. Although saD2
is not simple the arguments do apply to it as well.

Let ‖ · ‖L be the norm for C2ν as defined in [4, Theorem 4.1]. Using T defined by 
(3.2), ‖v‖D = ‖Tv‖L defines a norm on C2ν for which H = saD1

ν . Let

S =
{

(α1, α2, . . . , αν , β1, β2, . . . , βν) ∈ R2ν :
∑

α2
j +

∑
β2
j = 1

}
.

Then, for v = (z1, ..., zν , w1, ..., wν) ∈ C2ν and Tv = u = (x1, ..., xν , y1, ..., yν),

‖v‖D = ‖u‖L = sup
{∣∣∣∑αjxj +

∑
βjyj

∣∣∣ : (α1, α2, . . . , αν , β1, β2, . . . , βν) ∈ S
}
.

Then ∣∣∣∑αjxj +
∑

βjyj

∣∣∣ =
∣∣∣∑αj(−1)j−1i(zj − wj) +

∑
βj(zj + wj)

∣∣∣
=

∣∣∣∑ ξjzj +
∑

ηjwj

∣∣∣
where each ξj = βj ± iαj and each ηj = ξj . Thus we have

‖v‖D = sup
{∣∣∣∑ ξjzj +

∑
ξjwj

∣∣∣ : (ξ1, . . . , ξν) ∈ P
}

(4.1)

where

P =
{

(ξ1, . . . , ξν) ∈ Cν :
∑

|ξj |2 = 1
}
.

Similarly, if ‖ · ‖L+ is the norm for C2ν+1 as defined in [4, Theorem 4.1] then using 
U defined by (3.4), ‖v‖B = ‖Uv‖L+ defines a norm on C2ν+1 for which H = saB1

ν . And, 
for v = (z0, z1, z2, ..., zn, w1, w2, ..., wn) ∈ C2ν+1, we have

‖v‖B = sup
{∣∣∣∑ ξjzj +

∑
ξjwj

∣∣∣ : (ξ0, ξ1, . . . , ξν) ∈ Q
}

(4.2)

where

Q =
{

(ξ0, ξ1, . . . , ξν) ∈ R×Cν :
∑

|ξj |2 = 1
}
.

The 
√

2 in the matrix U is absorbed into the constant ξ0.
This brings us to the surprising case of saCν ; any norm on C2ν which makes all of saCν

Hermitian is essentially the usual inner product norm so that all self-adjoint matrices in 
M2ν(C) are Hermitian for that norm. (In fact it is enough to have a minimal set of Lie 
algebra generators all Hermitian.) We show in the following two lemmas and theorem 
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that such a norm must be the �2-norm or a positive multiple of it. As with the similar 
result for saAν we make repeated use of the property that exp(itT ) is an isometry for 
any t ∈ R and any Hermitian element T .

Recall that Q1k = G1k + Gν+1,ν+k (k = 1, . . . , ν) are basis elements of saCν .

Lemma 4.3. Let n ≥ 2 and let ‖ · ‖ be a norm for C2n such that Q1k (k = 1, . . . , n) are 
Hermitian. Then, for r1, . . . , rn > 0,

‖(r1, r2, . . . , rn, 0, . . . , 0)‖ = α
√

r2
1 + r2

2 + · · · + r2
n

where α = ‖(1, 0, . . . , 0)‖.

Proof. Define ρk (1 ≤ k ≤ n) and ξk (2 ≤ k ≤ n) exactly as in the proof of Lemma 4.1. 
Let

T+ = exp(iξnQ1n) exp(iξn−1Q1,n−1) . . . exp(iξ2Q12).

We consider w = T+(1, 0, . . . , 0). Each exp(iξkQk) can be written as a block matrix
[

exp(iξkG1k) O

O exp(iξkG1k)

]
.

So we can make use of T in the proof of Lemma 4.1 to determine coordinates 1 to n
of w, and dealing with coordinates n + 1 to 2n is straightforward.

(i) The 1st coordinate of w is r1/ρ1.
(ii) The 2nd coordinate of w is r2/ρ1.
(iii) The jth coordinate (3 ≤ j ≤ n) of w is rj/ρ1.
(iv) The kth coordinate (n + 1 ≤ k ≤ 2n) of w is 0.

Thus T+(1, 0, . . . , 0) = ρ−1
1 (r1, r2, . . . , rn, 0, . . . , 0) and the result follows. �

Lemma 4.4. Let ν ≥ 2 and let ‖ · ‖ be a norm for C2ν such that every element of 
saCν is Hermitian. Let z = (r1eiθ1 , r2eiθ2 , . . . , r2νeiθ2ν ) where rj ≥ 0 and θj ∈ R (j =
1, 2, . . . , 2ν). Then ‖z‖ = α

√
r2
1 + r2

2 + . . . + r2
2ν where α = ‖(1, 0, . . . , 0)‖.

Proof. We shall assume all rj > 0. Continuity extends the result to all rj ≥ 0. Each of 
the following products is independent of the order of the exponentials. For j = 1, 2, . . . , ν, 
let ηj = (θν+j − θj)/2 and λj = (θν+j + θj)/2. Recall that Aj = Ejj − Eν+j,ν+j and 
Cj = Gj,ν+j are saCν basis elements. Then

( ν∏
j=1

exp(iηjAj)
)
z = (r1eiλ1 , . . . , rνe

iλν , rν+1e
iλ1 , . . . , r2νe

iλν ) = u (say).

For j = 1, 2, . . . , ν, let μj = tan−1(−rν+j/rj) (so cosμj is +ve and sinμj is −ve). Then
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( ν∏
j=1

exp(iμjCj)
)
u =

(
eiλ1

√
r2
1 + r2

ν+1, . . . , e
iλν

√
r2
ν + r2

2ν , 0, . . . , 0
)

= v (say)

and

( ν∏
j=1

exp(−iλjAj)
)
v =

(√
r2
1 + r2

ν+1, . . . ,
√

r2
ν + r2

2ν , 0, . . . , 0
)

= w (say).

Then, using Lemma 4.3 with n = ν, ‖z‖ = ‖w‖ = α
√

r2
1 + r2

2 + · · · + r2
2ν . �

Theorem 4.5. Let ν ∈ N and let C2ν have norm ‖ · ‖ such that every element of saCν is 
Hermitian.
(1) There exists α > 0 such that ‖ · ‖ = α‖ · ‖2, where ‖ · ‖2 is the �2-norm on C2ν .
(2) Every self-adjoint matrix in M2ν(C) is Hermitian with respect to ‖ · ‖.
(3) For ν ≥ 2, there is no norm for C2ν with respect to which saC1

ν is the (entire) set of 
Hermitian matrices.

Proof. (1) If ν ≥ 2 then ‖ · ‖ satisfies the conditions of Lemmas 4.3 and 4.4, and (1) 
follows. Let ν = 1 and let (a, b) ∈ C2 with a = |a|eiα and b = |b|eiβ . Let

φ = 1
2 (α + β), ψ = 1

2 (β − α), θ = tan−1(−|a|/|b|)

and let U = exp(iθC1) exp(iψA1). Then U(a, b) = eiφ
√
|a|2 + |b|2 (1, 0) so that ‖(a, b)‖ =

α‖(a, b)‖2 where α = ‖(1, 0)‖.
(2) This follows from (1) since every self-adjoint matrix in M2ν(C) is ‖ · ‖2-Hermitian 

and hence ‖ · ‖-Hermitian.
(3) This follows from (2) since not every self-adjoint matrix in M2ν(C) is in saC1

ν . �
Corollary 4.6. The answer to Problem 5.7 in [4] is NO.

Suppose we have a linear norm for which all Fjk are Hermitian. It is then immediate 
from (1.2) that all Gjk are Hermitian and hence that H is all self-adjoint matrices. The 
above remarkable result for the symplectic case might be regarded as a half-way house 
between this example and the case when the initial Lie algebra is Ln. Note also that 
Theorem 4.5 (1) is a stronger version of the Vidav-Palmer theorem for the algebras 
M2ν(C).

5. Some Lie isomorphisms

We noted earlier that saA1, saB1, saC1 are Lie isomorphic to each other. It is well 
known that B3 and C2 are Lie isomorphic, and also A3 and D3; the same is true for their 
self-adjoint variants.
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Theorem 5.1. (1) saB3 is Lie isomorphic to saC2.
(2) saA3 is Lie isomorphic to saD3.

Proof. (1) It is enough to show that L5 is isomorphic to saC2. As a basis for saC2 take

A1 + A2, A1 −A2, B1 + B2, B1 −B2, C1 + C2, C1 − C2, P12, Q12, R12, S12

where the notation is that of (2.6). As a basis for L5 take

G12, G35, −G25, G13, G15, G23, G45, G34, G14, G24

each multiplied by 2. With basis elements taken in this order the Lie product tables then 
match exactly, as required.

(2) It is enough to prove that L6 is isomorphic to saA3. As a basis for saA3 take

diag(1, 1,−1,−1), diag(1,−1, 1,−1), diag(1,−1,−1, 1),
F12 + F34, F12 − F34, F13 + F24, F13 − F24, F14 + F23, F14 − F23,

G12 + G34, G12 −G34, G13 + G24, G13 −G24, G14 + G23, G14 −G23.

As a basis for L6 take

G56, G12, G34, G13, −G24, G45, G36, −G26, G15, G23, G14, G46, −G35, G25, G16,

each multiplied by 2. With basis elements taken in this order the Lie product tables then 
match exactly, as required. �

It is easily checked that neither of the above Lie isomorphisms preserve spectra, and 
hence neither is a similarity.

In [5, pp. 451-455] Helgason presents the long list (up to isomorphism) of the simple 
real Lie algebras. For any such (L, ◦), the mapping defined in Section 1 by φ(A) = −iA

gives the Lie isomorphic (−iL, •). In this form the self-adjoint variants of the classical 
Lie algebras appear as follows: saAν is −i su(ν + 1, 0); for ν ≥ 5, Lν is −i so(ν, 0); saCν
is −i sp(ν, 0). No other examples (with Lie product •) consist entirely of self-adjoint 
matrices.
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