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A B S T R A C T   

Sandwich-structured honeycombs (SSHCs) are hierarchical structures comprising sandwiched cell walls and are 
known to exhibit enhanced mass-specific properties. Here, we present an analytical model capable of predicting 
the effective elastic properties of hexagonal SSHCs, employing a sandwich beam theory that accounts for the 
effect of thick faces and regards the core as structurally weak. The analytical solutions of the nine elastic con
stants are compared with the numerical predictions obtained from a finite element-based homogenization 
technique, and an excellent agreement is reported for a wide range of architectural parameters such as the beam 
size, core thickness, and angle. Overall, it is found that SSHCs outperform conventional (monolithic) honeycombs 
in terms of their in-plane elastic and shear moduli, reporting values up to 20 times the monolithic counterparts of 
identical mass. In contrast, the out-of-plane shear moduli of the SSHCs showed reductions of at least 10% as 
compared to the traditional monolithic honeycomb structures.   

1. Introduction 

Honeycomb structures, known for their advantageous mechanical 
and thermal characteristics, have undergone extensive research, and 
found application in various fields. The advancement in understanding 
and designing honeycomb structures, particularly in terms of their me
chanical properties, has been greatly enhanced by a combination of 
theoretical, computational and experimental endeavours [1]. These 
three methodologies are often synergistically employed to offer a ho
listic perspective on optimizing and crafting honeycomb designs [2]. 
The study of a honeycomb’s mechanical response is typically 
approached through analytical and experimental methods [3], while 
advances in computational tools enabled further research via numerical 
modelling [4] and homogenization techniques [5]. Recently, with the 
development of machine learning techniques, the honeycomb design 
can be optimized through neural-network modelling approaches [6] 
alongside multiscale modelling [7] for tailored properties such as stiff
ness, energy absorption and strength. 

In practical applications, the manufacturability of the unit cell’s to
pology plays a crucial role in determining its design. Recent advances in 
additive manufacturing (AM) technologies alleviated the constraints 
imposed by traditional manufacturing methods, and consequently, 

allowed for the emergence of novel honeycomb designs with complex 
architectural configurations [8]. Emerging 3D printing and AM tech
niques have facilitated the fabrication of intricate and custom honey
comb structures across multiple length scales [9,10]. This technological 
progress has unlocked new avenues for realizing highly specialized de
signs across diverse applications [11]. Optimized honeycombs, featuring 
specific architectural configurations and constituent material proper
ties, deliver superior performance metrics, including weight-specific 
stiffness, strength, energy absorption, and impact resistance [12]. 
These advancements have elevated honeycombs to a prominent status 
within a wide spectrum of sectors, including aerospace [13], automotive 
[14], and biomedical engineering [15,16]. 

The architectural configuration of honeycombs encompasses the 
manipulation of cell attributes, including cell size, shape, and arrange
ment, to attain precise mechanical and thermal properties. Variations in 
these cell parameters result in alterations in the relative density (the 
solid volume fraction) of honeycombs, thereby exerting a substantial 
influence on the honeycomb’s performance. Novel honeycomb designs 
are realized by manipulating the unit cell designs with the intention of 
enhancing one or more properties. These design variations can be clas
sified into three categories based on the implemented approach: hybrid, 
graded, and hierarchical honeycombs [8,11]. 
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Hybridization of honeycombs refers to the combination of different 
honeycomb structures with different unit cell topologies or materials to 
create a hybrid structure that harnesses the advantages of each unit cell 
or material. Hybrid honeycombs can involve a combination of various 
cell shapes, sizes, or configurations within a single honeycomb structure. 
For example, combining the re-entrant honeycomb unit cell with a 
regular [17], rhombic [18] and chiral honeycomb unit cells enhanced 
the performance compared to the single unit cell honeycomb. Alterna
tively, they can combine honeycomb structures made from different 
materials or with distinct properties [19]. Graded honeycombs, on the 
other hand, are honeycomb structures in which the properties, such as 
cell size, wall thickness, or material composition, vary gradually or 
systematically across the structure. This gradient in properties can be 
either continuous or stepwise. For instance, the implementation of a 
suitable wall thickness gradient in the out-of-plane direction has been 
proven effective in mitigating catastrophic collapse modes, resulting in 
enhanced energy absorption capacity [2,20,21]. 

Hierarchical honeycombs are lattice structures featuring a multi- 
level or nested arrangement of cells in their architecture. These cells 
exhibit varying sizes, shapes, or structural attributes and are systemat
ically organized in a hierarchical fashion, with smaller cells nested 
within larger ones. In this hierarchical design, the honeycomb structure 
comprises unit cells of different sizes, with the smaller ones positioned at 
the vertices or cell walls of the larger unit cells. This hierarchy is termed 
"self-similar" when both unit cells share the same topology; otherwise, it 
is considered "non-self-similar." Research by Zhang et al. [22] and Tan 
et al. [23] has demonstrated that both self-similar and non-self-similar 
hierarchical configurations enhance stiffness and energy absorption in 
comparison to the original unit cell. Moreover, Li et al. [24] have re
ported that the implementation of hierarchical design in sandwich 
panels can lead to increased bending strength. 

An alternative method to realize a hierarchical honeycomb design 
involves the use of sandwich beams to construct cell walls, as opposed to 
solid beams. Fig. 1 provides a visual representation of the SSHC unit cell 
within a lattice structure. Because honeycombs are typically structures 
that are prone to bending [25], their stiffness is primarily determined by 
the bending stiffness of the cell walls. This stiffness can be significantly 
enhanced by employing the sandwich effect [26]. The use of sandwich 
beams involves the incorporation of lightweight core materials in the 
central region, resulting in a redistribution of mass towards the outer 
surfaces. This, in turn, leads to an increase in mass-specific stiffness [27]. 
Consequently, for a given relative density, it is anticipated that a 
sandwich-structured honeycomb (SSHC) will exhibit superior elastic 
stiffness compared to its monolithic honeycomb (MHC) counterpart. The 
earliest documentation of this concept can be traced back to Bhat et al. 
[28], who referred to it as "micro-sandwiching" in cellular solids. In a 
related study, they introduced principles for the design of "micro-
sandwich honeycombs", covering their properties and fabrication tech
niques [29]. In essence, SSHCs share conceptual similarities with 
micro-sandwich honeycombs but are implemented on a larger scale. 

Additionally, Huang et al. [30] conducted a study modeling the elastic 
properties of hexagonal and square micro-sandwich honeycombs, 
revealing a significant increase in structural efficiency compared to solid 
beam counterparts when optimal design parameters are employed. To 
the best of our knowledge, there have been no reports of micro-sandwich 
honeycombs in other sources. 

In contrast, recently, there has been a growing emphasis on large- 
scale sandwich-structured honeycombs. Fan et al. [31] conducted an 
analytical investigation into the impact of sandwich structuring in an 
isogrid honeycomb, while Yi et al. [32] carried out numerical analyses. 
Their studies revealed a significant increase in collapse load and fracture 
toughness. Likewise, Zhao et al. [33] and Wang et al. [34] observed a 
substantial improvement in specific energy absorption in the Kagome 
honeycomb when sandwich-structured walls were incorporated. Lastly, 
Usta et al. [35] demonstrated that slotted wall regular and re-entrant 
honeycombs achieved a higher compressive modulus through numeri
cal simulations, which were corroborated by experimental results. 

Studies involving honeycombs incorporating sandwich-structured 
walls have demonstrated significant promise for enhancing perfor
mance, underscoring the importance of further exploration in this field. 
Although certain studies have concentrated on specific design aspects, 
there has been limited attention directed towards fully exploring the 
design potential of sandwich-structured cell walls, particularly in cases 
where the unit cell design remains unclear. Additionally, the majority of 
investigations have leaned heavily on experimental or numerical 
methods, often neglecting systematic and in-depth analytical modelling 
of mechanical responses. Notwithstanding these constraints, the com
bined results consistently highlight improved mechanical properties 
when contrasted with traditional honeycomb designs. 

To bridge this knowledge gap, our study is centred on the unit cell 
design of SSHC and a thorough examination of their elastic response. 
Predicting the elastic properties of sandwich-structured honeycombs is 
crucial for understanding their mechanical behavior, especially as cur
rent models primarily apply to conventional honeycomb designs. We 
introduce an analytical model rooted in sandwich beam theory, specif
ically incorporating thick-faced sandwich beams, and validate it through 
numerical simulations across a diverse range of unit cell designs. 
Through the incorporation of the sandwich effect into this model, our 
objective is to provide a comprehensive understanding of how various 
design parameters influence the elastic properties of SSHCs. This, in 
turn, facilitates the identification of optimal design configurations to 
maximize performance. The analytical model’s predictive capabilities, 
coupled with numerical validation, establish a robust foundation for 
exploring the mechanical characteristics of sandwich-structured hon
eycombs, offering the potential for their efficient utilization in practical 
engineering applications. 

2. Analytical model 

Analytical formulations for predicting the elastic response of peri
odic 2D regular honeycombs are based on beam theory to describe the 
flexural stiffness of the beams constituting the unit cell geometry. The 
type of beam theory involved controls the accuracy of the analytical 
formulation. One of the earliest models presented in the literature is the 
Gibson–Ashby (GA) model [36], which employs classical beam theory 
for determining closed-form expressions for the nine elastic constants. 
This model can predict the elastic constants accurately for a small range 
of relative densities, since the inclined beams dominate the unit cell 
deformation over this range. However, at higher relative densities, the 
vertical beams and nodal areas contribute greatly to the unit cell 
deformation, and the GA model becomes roughly accurate at higher 
relative densities. 

The Malek-Gibson (MG) model [37] is a more accurate version of the 
GA model and takes a close form to the latter. It employs a similar ki
nematics framework with a comprehensive inclusion of deformation 
modes for both inclined and vertical beams, mainly derived from 

Fig. 1. Schematic of a periodic SSHC with a unit cell bounded by the dashed 
box. White areas represent core material, and the remainder is face material. 
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Timoshenko beam theory [38]. This model also accounts for the effect of 
the nodal areas in the analysis for in-plane and out-of-plane loading, 
since their effect becomes prominent at higher relative densities. The 
model exhibits accuracy as well as flexibility with regards to unit cell 
geometry and beam material. It was proven accurate in the cases of 
asymmetric hexagonal honeycombs such as a 45◦ angle honeycomb and 
a non-uniform length honeycomb. In terms of material selection, the 
model is applicable for beams composed of isotropic, transversely 
isotropic or orthotropic materials. The MG model is not applicable for 
SSHCs, as it was formulated for honeycombs consisting of solid beams, 
which will be referred to as monolithic honeycombs (MHC) in the 
following. 

However, the kinematic framework presented in the MG model is 
applicable to any hexagonal honeycomb, and this provides a basis to 
formulate a similar model suitable for predicting the effective elastic 
properties of hexagonal SSHCs. In fact, both conventional honeycombs 
and SSHCs possess the same material symmetry and belong to the family 
of orthotropic materials. Their elasticity matrix consists of nine elastic 
constants: three elastic moduli {E∗

1,E∗
2,E∗

3} three shear moduli {G∗
12,G∗

23,

G∗
13} and three Poisson’s ratios {ν∗12,ν∗23,ν∗13}. In the following sections, 

we derive the effective elastic constants of SSHCs by integrating sand
wich beam theory into the kinematic framework of the MG model. 

2.1. SSHC unit cell 

As shown in Fig. 2, the SSHC unit cell considered herein consists of 
eight inclined and four vertical sandwich beams along with six nodal 
areas at the intersections. For the sake of simplicity, the SSHC is assumed 
to be of unit width, B. For a regular honeycomb composed of a hexag
onal arrangement of monolithic beams with equal length, the elastic 
response is determined by the thickness and configuration of the beams 
(length L, thickness H, angle θ) and the elastic modulus of the parent 
solid material, Es. Integrating the sandwich beam geometry into the 
honeycomb unit cell design, the elastic response becomes a function of 
additional parameters namely the face sheet thickness and core thick
ness, denoted by tf and tc, respectively, and the elastic moduli of the faces 
Ef and added core material Ec. Thus, the response of the SSHC unit cell is 
controlled by six parameters: (L, H, θ, tc, Ef, Ec). The additional param
eters broaden the range of possible unit cell designs in terms of beam 
geometry and material pairings that grant this honeycomb design a great 
level of tunability. This paper focuses on hexagonal SSHCs composed of 
beams of equal length and arranged with varying angles θ. 

For simplicity, the SSHC geometry can be defined by dimensionless 
parameters: 

H =
H
L
, tc =

tc

H
(1)  

where H and tc represent the beam height-to-length ratio and the 
normalized core thickness, respectively. The normalized face thickness 
can be expressed as tf = 2tf/H = 1 − tc. 

The nodal area connecting the angled and vertical beams is 
comprised of a large triangle (N) lying between two smaller symmetric 
triangles (n) [37], as sketched in Fig. 3. The large triangle has a base H 
and height hN: 

hN = H
(

2 − sinθ
2cosθ

)

(2)  

and the adjacent triangles have a height H and base length ln: 

ln = H
(

2sinθ − 1
2cosθ

)

(3) 

Note that the two small triangles vanish at an angle θ = 30◦. From 
Fig. 2a the horizontal and vertical boundaries of the unit cell can be 
expressed as 

SH = 4
[

(L+ ln)cosθ+
H
2

]

(4)  

SV = 2[(L+ ln)sinθ+ L+ hN ] (5) 

Additionally, the length connecting two node centers (see Fig. 2a) in 

Fig. 2. Schematic of the SSHC showing the major dimensions of the (a) unit cell and its (b) sandwich-structured walls.  

Fig. 3. Sketch of the nodal area showing the center nodal triangle N and the 
smaller adjacent triangles n configuration for a honeycomb with θ > 30◦ (a) and 
θ < 30◦ (b). 
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the honeycomb is expressed as 

L′ = L +
H

2cosθ
(6) 

The relative density of the prismatic SSHC unit cell can be expressed 
in terms of a fraction of the face material density and area: 

ρSSHC =

(
ρ∗

ρf

)

=

(
ρc

/
ρf

)
3Ltc + 3Ltf + 2An + AN

SV SH
(7)  

where AN = HhN/2 and An = Hln/2 are the areas of the small and large 
triangles, respectively (see Fig. 3). It is seen from Eq. (7) that the relative 
density of the SSHC not only depends on the honeycomb geometry but 
also on the material density ratio ρc/ρf. Analogous to conventional 
honeycombs, the elastic response of the SSHC is controlled by the 
bending and shearing deformations induced in the cell walls which can 
be described using sandwich beam theory discussed next. 

2.2. Sandwich beam deformations 

Sandwich beam theory is a type of beam theory that accounts for 
transverse shear deformations that occur primarily in the core of the 
sandwich even in case of high slenderness [39]. Hence, the total 
deflection δ(x) at position x on the sandwich beam can be written as 

δ(x) = δb(x) + δs(x) (8)  

where δb and δs denote the bending and shear deformations, respec
tively. These partial deflections are typically expressed as functions of 
the bending stiffness D and shear stiffness S of the sandwich. For a 
sandwich beam of unit thickness B, the bending stiffness D is given by 
[40]: 

D = 2Df + Do + Dc =
Ef tf

3

6
+

Ef tf d2

2
+

Ectc
3

12
(9)  

where d = tc + tf is the distance separating the faces’ centerlines (see 
Fig. 2b), while Df and Dc are the flexural rigidities about the individual 
neutral axes of the faces and core, respectively. The Do term represents 
the flexural stiffness of the faces due to bending about the centerline of 
the entire sandwich and is obtained through the parallel axis theorem. 
Note that Eq. (9) is applicable for the case of symmetric faces only. 
According to [39], the shear stiffness of a sandwich beam (unit thickness 
B) can be expressed as 

S =
Gcd2

tc
(10) 

Standard sandwich beam theory assumes that the faces are thin, tf ≪ 
tc, and that the core is weak, Ec ≪ Ef , which ensures simple solutions to 
standard sandwich beam problems found in many engineering appli
cations. The core is considered weak, if its flexural rigidity Dc is 1% of Do 
[39]. However, sandwich beams in the SSHC can be thick-faced and less 
slender than generic sandwich beams, due to the size constraints 
imposed by the honeycomb design. Hence, it is essential to formulate the 
SSHC model to accommodate a broad range of sandwich beam designs 
for enhanced tunability of the properties of SSHCs. Assuming that the 
faces attain a relatively larger shear stiffness than the core, the shear 
deformations in the faces can be neglected. Accordingly, a solution for a 
thick-faced sandwich beam can be obtained by solving the differential 
equations: 

d2T
dx2 − b2T = − b2Ttot (11)  

dδs

dx
=

T
S

(12)  

where b is a constant defined as 

b2 =
S

2Df
(13) 

Here, Ttot denotes the shear force carried by the two faces and the 
core, while T represents the shear force carried by the core alone. 

For a hexagonal honeycomb subject to in-plane loading, equilibrium 
dictates that the shear force across the inclined cell walls (or beams) is 
constant, Ttot = const., thus yielding a linear bending moment distri
bution with maximum bending moments induced at the nodal points. As 
sketched in Fig. 4, the antisymmetric deflection profile of the inclined 
beams in the honeycomb can be described by the bending deformation 
of two cantilever beams in series, each of length L/2 and loaded by a tip 
force P = Ttot. Taking each cantilever as a thick-faced sandwich beam, 
Eqs. (11)–(12) can be solved for the shear deformations δs(x) using 
appropriate boundary conditions: T(0) = 0, T(L/2) = P and δs(0) = 0. 
The solution is [39]: 

δs(x) =
P
S

[
1
b
⋅
eb(x− L) + e− bx − e− bL − 1

1 − e− bL + x
]

(14) 

With the help of Eq. (14), the bending deformations δb can now be 
obtained by solving 

− D
d3δb

dx3 = S
dδs

dx
= T (15)  

with respect to the boundary conditions 

dδb

dx

⃒
⃒
⃒
⃒

x=0
= 0, δb(0) = 0, M(L) = 0 (16)  

where the total bending moment is given by 

M = − D
d2δb

dx2 − 2Df
d2δs

dx2 . (17) 

The resulting bending deflection becomes: 

δb(x) =
P
D

[
1
b3⋅

e− bL + 1 − eb(x− L) − e− bx

1 − e− bL −
x3

6
+

Lx2

4
−

x
b2

]

(18) 

The axial deformation of the sandwich can be obtained by a simple 
rule-of-mixture calculation which yields Eq. (19) for a sandwich beam of 
length L subject to an axial force N: 

δa =
NL

2
(
2Ef tf + Ectc

) (19) 

For tc = 0, the sandwich beam is reduced to a monolithic beam 
possessing the elastic properties of the face material. In the latter case, b 
→ ∞ and S → ∞, and Eqs. (14) and (18) simplify to match the solution of 
classical beam theory: 

δs(x) = 0, δb(x) =
Px2

6
(
2Df + D0

)

(
3L
2
− x
)

(20) 

For tf = 0, the sandwich beam is reduced to a monolithic beam with 
elastic modulus Ec. Then, b → ∞ and D = Dc , yielding a solution that 
accounts for the shear deformations: 

δs(x) =
Px
S
, δb(x) =

Px2

6Dc

(
3L
2
− x
)

(21)  

2.3. In-plane elastic constants 

Suppose that the SSHC unit cell shown in Fig. 2a (of unit width) is 
loaded by a compressive force F1 parallel to the X1 direction which in
duces a compressive deformation δ1. The effective elastic modulus E∗

1 is 
obtained by dividing the normal stress induced in the X1 direction, σ1, 
with the applied strain, ε1: 
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E∗
1 =

σ1

ε1
=

F1

δ1

SH

SV
(22) 

Loading in the X1 direction results in axial, bending and shearing 
deformations in the inclined beams of the SSHC, while the vertical 
beams remain undeformed. Accordingly, the total deformation δ1 can be 
resolved into axial, bending and shearing deformations of the inclined 
beams, δA, δB, and δS, respectively. Since the load is transferred through 
four inclined beams in the unit cell, the latter relation can be written as 

δ1 = 4δAcosθ + 4(δB + δS)sinθ (23) 

Note that Eq. (23) assumes that all deformation occur in the cell walls 
of the honeycomb. 

With reference to Fig. 4, the axial and transverse forces induced at 
the nodal points of the inclined sandwich beams are functions of the 
applied force F1 and angle θ: 

N =
F1

2
cosθ (24)  

T =
F1

2
sinθ (25) 

As shown in Fig. 4, the bending and shearing deformations of the 
inclined sandwich beams are twice the tip deflections of a cantilever 
beam of length L/2 and can be obtained by setting P = T = F1sinθ/2 and 
x = L/2 in Eqs. (14) and (18): 

δB = 2δb(L / 2) =
F1

D

[
1
b3⋅

e− bL − 2e− bL
2 + 1

1 − e− bL +
L3

24
−

L
2b2

]

sinθ (26)  

δS = 2δs(L / 2) =
F1

S

[
1
b
⋅
2e− bL

2 − e− bL − 1
1 − e− bL +

L
2

]

sinθ (27) 

Similarly, the axial deformations of the inclined sandwich beams are 
twice the cantilever deformation. Using Eq. (24), we obtain the axial 
deflection in Eq. (28). 

δA = 2δa =
F1Lcosθ

2
(
2Ef tf + Ectc

) (28) 

By substituting Eqs. (23), (26)–(28) into Eq. (22), the final expression 
for the effective elastic constant E∗

1 is:   

Along the same analysis, the effective Poisson’s ratios ν∗12 can be 
calculated: 

ν∗
12 = −

ε22

ε11
= −

δ2

δ1

SH

SV
(30)  

where δ1 is defined in Eq. (23) and δ2 = − 2δAsinθ + 2(δB + δS)cosθ. 
Combining the latter equations with Eqs. (26)-(28) and Eq. (30) yields:   

Now assume that the SSHC unit cell is loaded by a force F2 in the X2 
direction, inducing a total deformation δ2. Continuity of the displace
ments in the X2 direction dictates that 

δ2 = 2δAsinθ + 2(δB + δS)cosθ + 2δAv (32)  

where δAv is the axial displacement induced in a vertical beam of the 
SSHC unit cell carrying a force F2/2: 

δAv =
F2L

2
(
2Ef tf + Ectc

) (33) 

The axial and shear forces in the inclined beams are now given by 

Fig. 4. Free body diagram of an inclined beam in the SSHC represented by two cantilever beams in series with equal and opposite center loads P.  

E∗
1 =

SH

4SV sin2θ

[
Lcot2θ

2
(
2Ef tf + Ectc

)+

(
e− bL/2 − 1

)2

1 − e− bL

(
1

Db3 −
1
Sb

)

+
L3

24D
+

L
2

(
1
S
−

1
2Db2

)]− 1

(29)   

ν∗
12 =

SH

SV

sin2θ
4sin2θ

[
Lcot2θ

2
(
2Ef tf + Ectc

)+

(
e− bL/2 − 1

)2

1 − e− bL

(
1

Db3 −
1
Sb

)

+
L3

24D
+

L
2

(
1
S
−

1
2Db2

)]− 1

×

[
− L/2

2Ef tf + Ectc
+

(
e− bL/2 − 1

)2

1 − e− bL

(
1

Db3 −
1
Sb

)

+
L3

24D
+

L
2

(
1
S
−

1
2Db2

)]
(31)   
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N =
F2

4
sinθ, T =

F2

4
cosθ. (34) 

Following the same procedure as for E∗
1, the effective elastic constant 

E∗
2 is obtained as: 

E∗
2 =

F2SV

δ2SH
=

SV

SHcos2θ

[
Ltan2θ

2
(
2Ef tf +Ectc

)+

(
e− bL/2 − 1

)2

1 − e− bL

(
1

Db3 −
1
Sb

)

+
L3

24D
+

+
L
2

(
1
S
−

1
2Db2

)

+
L

(
2Ef tf +Ectc

)
cos2θ

]− 1

(35) 

The effective Poisson’s ratio ν∗
21 is defined as 

ν∗
21 = −

ε11

ε22
= −

δ1

δ2

SV

SH
(36)  

where δ2 is given in Eq. (32) and δ1 = − 4δAcosθ + 4(δB + δS)sinθ. With 
the latter equations, ν∗21 can be written in expanded form:   

In-plane shear loading of the SSHC by a stress τ12 induces a shear 
strain γ12 in the unit cell, which is the sum of the shear strain of the 
inclined beams γi and the vertical beams γv. To calculate the latter shear 
strains, it is instructive to consider the nodal area of the unit cell shown 
in Fig. 5. 

The shear strain γv can be calculated from the horizontal displace
ment of the vertical beam δv, while γi results from the vertical 

displacements of the inclined beams at mid-span δi: 

γv =
2δv

L′(1 + sinθ)
, γi =

2δi

L′cosθ
. (38) 

Hence, the effective shear modulus G∗
12 of the unit cell shown in Fig. 2 

is 

G∗
12 =

τ12

γ12
=

F12

SH(γi + γv)
. (39)  

where F12 is the shear force acting on the top face of the unit cell. 
The deflection of the vertical beam consists of bending and shearing 

deformations, δBv and δSv, respectively, as well as deflections due to 
nodal rotations δϕv: 

δv = δϕv + δBv + δSv (40) 

The deflections δSv and δBv can be found in the same way as in the 
derivation of E∗

1 above, but with only the deflection of a single cantilever 
beam considered. Hence, we set x = L/2 and P = F12/2 in Eqs. (14) and 
(18) to obtain expressions for δSv and δBv, respectively. Following [25, 
37], the nodal rotation ϕ can be obtained by calculating the bending 
deformation δBi induced in the inclined beam by the nodal moments M =

± F12L′/8: 

ϕ =
δBi

L′ =
F12

4DL′

[
1
b3⋅

e− bL − 2e− bL
2 + 1

1 − e− bL +
L3

24
−

L
2b2

]

. (41) 

The displacement due to the nodal rotation then follows as δϕv = ϕL/ 
2 which can be substituted into Eq. (40) together with the expressions 
for δSv and δBv (not given explicitly for the sake of brevity) to obtain: 

δv =
F12

2D

(

1+
L

4L’

)[
1
b3⋅

e− bL − 2e− bL
2 + 1

1 − e− bL +
L3

24
−

L
2b2

]

+
F12

2S

[
1
b

⋅
e− bL − 2e− bL

2 + 1
1 − e− bL +

L
2

]

(42) 

The deformations of the inclined beams at mid-span, x = L/2, can be 
written as 

δi = δAisinθ + δSicosθ (43)  

where δAi and δSi are axial and shearing deformations that result from the 
shear force T = F12/4 and axial load N = (F12/4)[cosθ + (1 + sinθ)tanθ] 
carried by the inclined beams (see Fig. 5). 

With the help of Eqs. (14) and (19), Eq. (43) can be expressed as 
follows: 

Fig. 5. Free body diagram of the SSHC unit cell considered for the in-plane 
shear loading case. 

ν∗
21 =

SV

SH

sin2θ
cos2θ

[
Ltan2θ

2
(
2Ef tf + Ectc

)+

(
e− bL/2 − 1

)2

1 − e− bL

(
1

Db3 −
1
Sb

)

+
L3

24D
+

L
2

(
1
S
−

1
2Db2

)

+

+
L/cosθ

2Ef tf + Ectc

]− 1
[

− L/2
2Ef tf + Ectc

+

(
e− bL/2 − 1

)2

1 − e− bL

(
1

Db3 −
1
Sb

)

+
L3

24D
+

L
2

(
1
S
−

1
2Db2

)]
(37)   
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δi =
F12L[cosθ + (1 + sinθ)tanθ]sinθ

8
(
2Ef tf + Ectc

) +
F12

4S

[
1
b
⋅
e− bL − 2e− bL

2 + 1
1 − e− bL +

L
2

]

cosθ.

(44) 

The shear modulus is then computed by substituting Eqs. (38), (42) 
and (44) into (39):   

2.4. Out-of-plane constants 

For loading in the X3 direction, the cell walls of the honeycomb are 
subject to uniform axial stresses; hence, the constant E∗

3 can be calcu
lated using the rule of mixture where the expressions in the first and 
second parentheses represent the fractions of face and core material, 
respectively. 

E∗
3 = Ef

(
3Ltf + 2Ae + Ad

SV SH

)

+ Ec

(
3Ltc

SV SH

)

(46) 

In conventional honeycombs, the effective out-of-plane Poisson’s 

ratios, ν∗
31 and ν∗

32, are equal to the Poisson’s ratio of the constituent 
material, ν∗

31 = ν∗
32 = νs [37]. With the presence of sandwich beams in 

the honeycomb unit cell, ν∗
31 and ν∗

32 become functions of the Poisson’s 
ratios of the face and core materials, νf and νc, respectively. 

Now suppose that a single sandwich beam (length L, unit width B) is 
isolated from the SSHC and loaded in the X3 direction, resulting in a 
transverse strain εT along the span. Equilibrium in the transverse di

rection dictates that: 

2Ef tf
(
νf εT − νeff εT

)
= Ectc

(
νeff εT − νcεT

)
(47)  

where νeff is the effective Poisson’s ratio of the sandwich. Re-arranging 
Eq. (47) then yields: 

ν∗
31 = ν∗

32 = νeff =
2Ef νf tf + Ecνctc

2Ef tf + Ectc
(48) 

Note that setting tf = 0 gives νeff = νc, and if tc = 0 the effective 
Poisson’s ratio becomes that of the face material. The remaining out-of- 
plane Poisson’s ratios are obtained through the reciprocal equations: 

Fig. 6. Schematic of the parametric study for testing the effect of beam height-to-length ratio H, core thickness tcand angle θ. Representative geometries are given in 
each aspect for illustration. 

G∗
12 =

L′

SH

[(
L(sinθ + (1 + sinθ)tan2θ

)

4
(
2Ef tf + Ectc

) +
1

2S

(
1
b
⋅
(
e− bL/2 − 1

)2

1 − e− bL +
L
2

))

+
1

(1 + sinθ)
×

(
1
D

(

1 +
L

4L′

)(
1
b3⋅
(
e− bL/2 − 1

)2

1 − e− bL +
L3

24
−

L
2b2

)

+
1
S

(
1
b
⋅
(
e− bL/2 − 1

)2

1 − e− bL +
L
2

))]− 1
(45)   
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ν∗
13 =

E∗
1

E∗
3
ν∗

31, ν∗
23 =

E∗
2

E∗
3
ν∗

32 (49) 

Out-of-plane shear moduli for a SSHC derive exactly to match the 
formulation of the Malek-Gibson model [37] due to similar shear flow 
along the beams. The sole difference lies within the shear stress flowing 
in the three layers of the sandwich beam instead of one in the solid 
beam. This difference is translated by replacing the original shear 
modulus Gs with an effective shear modulus term: 

Geff =
2Gf tf + Gctc

2tf + tc
(50) 

Thus, the out-of-plane effective shear moduli can be expressed as 

follows: 

G∗
13

Geff
=

H/L′

(1 + sinθ)cosθ

[
3
4

H
L′ tanθ+

L
L′cos2θ −

1
2
(2sinθ − 1)cosθ

]

(51)  

G∗
23

Geff
=

H/L′

(1 + sinθ)cosθ

[
L

2L′ +
L
L′sin2θ −

1
2

H
L′ tanθ

(

2sin2θ − sinθ −
3
2

)]

(52) 

For a detailed derivation of the latter equations, the reader is referred 
to Malek et al. [37]. 

3. Numerical model 

Linear elastic finite element (FE) calculations were performed in 
ABAQUS/Standard (version 2019) to validate the analytical model for a 
wide range of SSHC designs. Herein, the unit cell shown in Fig. 2 was 
chosen as the representative volume element (RVE) for computational 
homogenization of the periodic SSHCs. The face and core materials in all 
RVEs were considered as isotropic and linear-elastic with constant 
elastic properties of Ef = 69 GPa and νf = 0.3 for the faces, and Ec = 600 
MPa and νc = 0.2 for the cores. These values correspond to the ho
mogenized properties of non-homogeneous materials such as metal 
foams and hexagonal lattices. Note that the latter selection of properties 
(Ec ≪ Ef) ensured that the cores are weak compared to the faces in all 
RVEs. 

3.1. Unit cell geometry 

SolidWorks (2014) was used to develop 3D CAD models of SSHC unit 
cells with the design parameters H, tc and θ ranging between 
0.1 ≤ H ≤ 0.4, 0.17 ≤ tc ≤ 0.95 and 25◦ ≤ θ ≤ 45◦, respectively. These 
ranges were used in a parametric study to test the validity of the model 
over a wide range of geometries within the design space as shown in 
Fig. 6. The study revolved around investigating the influence of three 
distinct design parameters on the elastic properties: beam height-to- 

Fig. 7. Convergence of the nine effective elastic properties at different mesh 
sizes for a SSHC of H=10%. The vertical axis shows the effective property value 
(P) normalized by the converged value (Pc), while the horizontal axis indicates 
the beam size ratio (H) normalized by the element length (le). This plot indi
cated a ratio of 0.1 to generate a suitable mesh size for each of the geometries 
referenced in Fig. 6. 

Fig. 8. Effective elastic moduli (a), effective shear moduli (b), and Poisson’s ratios ν∗12 (c) and ν∗31 (d) of SSHCs as functions of H for different choices of normalized 
core thickness tc and constant θ = 30◦; the dashed and solid lines indicate the solutions obtained from the analytical model while the colored squares represent the FE 
predictions for discrete data points. 
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length ratio H, core thickness tc and angle θ. The CAD models were 
imported in ABAQUS and discretized using quadratic 20-node brick el
ements (denoted C3D20 in ABAQUS). The fully integrated second order 
element is suitable for linear elastic calculations as it can accurately 
capture stress concentration on the surface of the honeycomb structure 
[41]. This feature is crucial for this study, especially that it is able to 
eliminate errors associated with shear-locking and hour-glassing that 
commonly occur in linear elements as reported in [37,42]. 

3.2. Boundary conditions 

It has been established that the numerical solution is closest in 
capturing the effective elastic response of the periodic honeycomb when 
periodic boundary conditions (PBCs) are applied [43], and this approach 
was also followed herein, making use of the micromechanics plugin in 
ABAQUS [44]. The homogenized response of the RVE is determined 
through mean-field homogenization that predicts volume average 
stresses σij defined in Eq. (53). In practice, the average stress is 
approximated by normalizing the sum of stresses at integration points by 

the current RVE volume [42]: 

σij =
1
V

∫

V

σijdV (53)  

where V is the volume of the RVE. 
For the case of elastic constants, the RVEs were subjected to three 

axial and three shear strain-driven loading scenarios, ensuring that all 
strains remained small (< 5%). Average responses from each scenario 
were then fed into a post processing scheme that calculates the ho
mogenized elastic constants {E∗

1,E∗
2,E∗

3,G∗
12,G∗

23,G∗
13,ν∗12,ν∗23,ν∗31}. 

3.3. Solution convergence 

A mesh convergence analysis was performed to ensure suitable mesh 
size selection for each of the SSHC geometries. The analysis indicated 
that the nine effective elastic constants converge when H/le> 0.1 (see 
Fig. 7), where le is the element length (in units of length). This ratio 
specifies the element size required to ensure a converged solution based 

Fig. 9. (a) FE contour plot of σ22 for loading of a SSHC with H = 0.3, tc = 0.75, and θ = 30◦ in the X2 direction; (b) close-up view of the σ22 contours in the nodal 
area; (c) contour plot of the axial stress σ′11 induced in the inclined sandwich beams with respect to the local rotated coordinates (X′1, X′2); all units in MPa. 

Fig. 10. (a) FE contour plot of τ12 for in-plane shear loading of a SSHC (H = 0.3, tc = 0.75, θ = 30∘); (b) close-up view of the σ22 contours in the nodal area; (c) 
contour plot of the axial stress σ′11 induced in the inclined sandwich beams with respect to the local rotated coordinates (X′1, X′2); all units in MPa. 
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on each SSHC geometry. Accordingly, it was observed that this ratio 
corresponded to a minimum of four elements in the honeycomb faces. 
The analysis results are shown in Fig. 7 for a SSHC with H = 10%, where 
P is the property value normalized by the converged property value Pc. 

4. Results and discussion 

4.1. Analytical model validation 

Fig. 8 presents the numerical and analytical predictions of the 
effective elastic constants as functions of H for SSHCs with tc = 0.66,
0.75, 0.83 and constant θ = 30◦ (see Fig. 6). Note that the predicted 
elastic moduli and shear moduli of the SSHCs were normalized by the 
core properties, Ec and Gc, respectively. At an angle of θ = 30◦, the 
predicted in-plane elastic moduli (E∗

1, E∗
2) and Poisson’s ratios (ν∗12,ν∗21) 

were practically identical, as in the case of conventional monolithic 
honeycombs [37]; the same applies to the out-of-plane shear moduli 
(G∗

13 = G∗
23) and Poisson’s ratios (ν∗13 = ν∗23). Hence, Fig. 8a–d only 

include the elastic constants E∗
1/Ec, E∗

3/Ec G∗
12/Gc, G∗

13 /Gc, ν∗12 and ν∗13, 
respectively. Overall, the analytical solutions show excellent agreement 
with the numerical predictions for the range of architectural parameters 
examined here with a difference of less than 2% from analytical 
solutions. 

Both elastic and shear moduli in Fig. 8a and b increase with 
increasing beam size H = H/L, which is mainly attributed to the 
concomitant increase in the bending and shearing stiffness of the 
sandwich beams. As seen in Fig. 8a, the out-of-plane elastic moduli of 
the SSHCs, E∗

3/Ec, were found to be almost two orders of magnitude 
higher than their respective in-plane moduli, E∗

1/Ec. This is expected 
because loading of the SSHC in the X3 direction within the elastic regime 
is associated with a stiff stretch-dominated mechanism, while under in- 
plane loading, the stiffness of the SSHC is limited by bending and 
shearing of the cell walls. Similar trends were reported for the shear 
moduli (see Fig. 8b). Looking at the effect of the core thickness, both 
elastic and shear moduli were found to be inversely proportional to tc. 

This effect is a consequence of the reduction in the faces thickness as 
the core thickness is increased, which leads to a reduction in the bending 

and shearing stiffnesses of the sandwich beams, reducing the overall 
stiffness of the SSHC. FE contour plots in Fig. 9 support this conclusion 
showing the sandwich beam’s faces carrying most of the applied load. 
Hence, increasing the face thickness would increase the load bearing 
capacity. 

The Poisson’s ratio ν∗12 and ν∗13 exhibit a non-linear relationship with 
increasing H, as shown in Fig. 8c and d, respectively. The values of ν∗12 

decline with higher H values, and the effect is amplified with increasing 
core thickness tc. However, ν∗12 was only weakly sensitive to the pa
rameters H and tc, reporting variations < 10% over the parameter range 
shown in Fig. 8c. Moreover, ν∗12 tends towards unity (preserving area) as 
H→0, in line with the findings of [37] for the case of monolithic hon
eycombs with θ = 30◦. The Poisson’s ratio ν∗31 predicted by the FE model 
is constant with respect to H (see Fig. 8d), in line with Eq. (48), and was 
minutely sensitive to core thickness, as a result of Ef ≫ Ec. It is safe to 
conclude that, in this range, Eq. (49) can be simplified to ν∗31 = ν∗32 ≈ νf .

With the presence of sandwich beam faces and core in the honey
combs, the induced stresses can attain a unique distribution which is 
discussed in the following. Fig. 9a illustrates the in-plane uniaxial 
loading of a SSHC (H = 0.3, tc = 0.75, θ = 30◦) in the X2 direction with 
close-up views of the stress fields induced in the nodal area and the 
inclined sandwich beams shown in Fig. 9b and c, respectively. It is clear 
from these figures that the load transfer takes place mainly through the 
faces of the sandwich beams and the nodes, due to Ef ≫ Ec. It can also be 
seen that the stress fields in the faces of the vertical beams are nearly 
uniform (see Fig. 9a), indicating that these members deform pre- 
dominantly by axial stretching. The inclined beams, on the other 
hand, undergo both bending and stretching, which is evident from the 
stress gradients in the faces along the through-thickness direction of the 
sandwich beam, as shown in Fig. 9c with axial stresses shown in the local 
rotated coordinates. A similar behavior was reported for MHCs in [37]. 
Moreover, the peak (axial) stresses in the inclined and vertical beams 
appear to be nearly identical, as seen from Fig. 9b and c. The stress 
contours also indicate that the cantilever beam analogy used for the 
inclined beams in the analytical model is appropriate (recall Fig. 4). 

For the case of in-plane shear loading, Fig. 10 presents contour plots 
of the shear stresses τ12 in the global (X1, X2) coordinates (Fig. 10a), a 

Fig. 11. FE contour plots for out-of-plane shear loading of a SSHC (H = 0.3, tc = 0.75, θ = 30∘): (a, c) contours of τ13 for loading in the X1–X3 plane; (b, d) contours 
of τ23 for loading in the X2 – X3 plane. 

O. El-Khatib et al.                                                                                                                                                                                                                              



International Journal of Mechanical Sciences 265 (2024) 108883

11

close-up view of the corresponding σ22 contours in the nodal region 
(Fig. 10b), and a contour plot of the axial stress σ′11 induced in an in
clined sandwich beam in local (X′1, X′2) coordinates (Fig. 10c). Similar to 
what was observed for loading in the X2 direction, the load transfer in 
the SSHC unit cell takes place primarily through the faces of the sand
wich beams and two narrow strips of material within the nodes. How
ever, the stresses in the faces are more localized near the nodes for the 
case of shear loading, since axial loads play only a minor role in the 
response of the SSHC under this type of loading. In fact, the vertical 
beams deform only by bending and shearing and do not experience axial 
forces, as seen from Fig. 10b, where the σ22 stress field is symmetric (in 
magnitude) about the mid-plane of the sandwich beam. Note that this is 
not the case for the inclined member shown in Fig. 10c, where the tensile 
surface stresses σ′11 are greater than the compressive ones on the 

opposite face, pointing to the presence of tensile axial stresses in these 
members. Comparing Fig. 10b and c, the highest tensile stresses are 
induced in the faces of the vertical sandwich beams for the case of in- 
plane shear loading, and this is also applicable to MHCs, as reported 
in the literature [25,37]. 

Fig. 11a and b presents contour plots of τ13 and τ23 for out-of-plane 
shear loading of the SSHC in the X1− X3 and X2− X3 plane, respec
tively; close-ups of the τ13 and τ23 stress fields near the nodal region are 
also shown in Fig. 11c and d, respectively. For X1− X3 shear loading (see 
Fig. 11a), only the inclined beam faces transfer the load to adjacent 
beams through the connecting nodes. Small areas of stress concentra
tions can be observed at the outer corner of the nodes similar to what has 
been reported for MHCs previously [37]. 

For the SSHC, however, we also observe a distinct stress 

Fig. 12. Effective elastic constants of a SSHC with H = 0.1, tf = 0 – 1, θ = 25◦, 30◦, 45◦: (a) elastic moduli (E∗
1,E∗

2), (b) elastic modulus (E∗
3), (c) shear modulus (G∗

12), 
(d) shear moduli (G∗

13,G∗
23), (e) Poisson’s ratio (ν∗12, ν∗21) and, (f) Poisson’s ratio (ν∗31). 
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concentration near the top corners of the node in Fig. 11c, due to the 
shear loads being transferred from the faces to the node across the sharp 
corners of the relatively weak sandwich cores. For shear loading in the 
X2–X3 plane, all the members of the SSHC contribute to the load transfer, 
as seen from Fig. 11b. However, the shear stresses in vertical beam faces 
are significantly higher than those induced in the inclined beam faces 
because, in the vertical beam, the shear loads of two inclined beams 
combine via load transfer through the connecting node (see Fig. 11d). 
Since the sandwich cores only play a minor role in the latter load 
transfer, they hinder the smooth flow of shear stresses through the SSHC, 
resulting in stress concentrations near the lower corner of the node in 
Fig. 11d. 

Having demonstrated that the analytical model accurately predicts 
the elastic constants of SSHCs with constant angle θ = 30◦ and varying 
slenderness ratio H, we now examine whether this is also the case for 
different angles θ, and a wider range of core thickness parameters tc. To 
this end, we plot, in Fig. 12, the analytical and FE predictions of the nine 
elastic constants as functions of the normalized face thickness, tf = 1 −
tc = 2tf/H, for different choices of angles θ = 25◦, 30◦, 45◦ and constant 
H= 0.1. Again, the analytical calculations accurately capture the trends 
predicted by the FE model for all nine elastic constants of the SSHC with 
less than 5% difference from analytical solutions. 

In line with the results presented in Fig. 8a, the elastic moduli in
crease in a nonlinear manner with increasing tf (see Fig. 12a). For 0 <
tf < 0.05 the elastic constants E∗

1/Ec and E∗
2/Ec climb rapidly by around 

one order of magnitude (see Fig. 12a and b), demonstrating the signif
icant role of the sandwich effect in stiffening the honeycomb even with 
very thin face thicknesses. At θ = 25◦ and 45◦, the in-plane elastic 
constants are not equivalent (E∗

1 ∕= E∗
2). In the case of E∗

1 /Ec, the stiffness 

of the unit cell is higher for θ < 30◦ and lower for θ > 30◦, as shown in 
Fig. 12a. This is expected because the inclined beams in the SSHC unit 
cell become more aligned with the loading direction as θ decreases, 
resulting in additional load to be carried by axial stretching, rather than 
bending and shearing. Ultimately, as θ → 0◦, the beams become in line 
with the loading direction, and the unit cell exhibits more stretch- 
dominated deformation. Opposite trends are observed for E∗

2/Ec, 
where θ > 30◦ yields enhanced stiffness, as expected. Along the same 
reasoning, the inclined beams for θ > 30◦ are aligned with loading in X2 
leading to less bending and shearing deformations. 

For E∗
3/Ec in Fig. 12b, the stiffness increases proportionally with face 

thickness tf due to further addition of the stiffer face material to the unit 
cell. For instance, at θ = 30◦, the SSHC unit cell contains less area at the 
nodes since An = 0, and, according to Eq. (47), is less stiff in the X3 di
rection compared to other angles. It is also observed that E∗

3/Ec is highest 
for θ = 45◦ followed by θ = 25◦ and θ = 30◦, which conforms to the area 
of the small triangles, An, within the nodes. 

As shown in Fig. 12c, the in-plane shear modulus G∗
12 complies with 

the same trends of the elastic modulus E∗
2 discussed previously. Since the 

in-plane shear modulus G∗
12 is governed by the stiffness of both inclined 

and vertical beams, varying the angle prompts a larger influence in 
terms of total deflections. In the first, the alignment of the inclined 
beams controls the extent of shearing, where δSi is reduced for θ > 30◦

similar to E∗
2. As for the vertical beams, the influence of the angle lies 

mostly within the deflections due to nodal rotations as δϕv∝1 /L′. For θ >
30◦, the node-to-node distance L′ increases (addition of small triangles 
n), reducing the nodal effects, and consequently, the total shear strain 
γ12. In fact, our analytical calculations suggest that shear strains in the 
vertical beams are one order of magnitude larger than those of inclined 

Fig. 13. Enhancemnt ratio maps of E∗
1 at of a SSHC with H = 0 − 0.5, tc = 0.6 − 0.9, and angles (a) θ = 30◦, (b) θ = 15◦, (c) θ = 45◦. The plots were generated for 

SSHCs with constant density ratio ρc/ρf = 0.05. The dashed lines represent contours of constant relative density of the SSHC. 
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beams, i.e., γv > γi, implying that the vertical beams carry most of the 
load. It is noteworthy for θ = 25◦ that L′ is reduced compared to the other 
angles even when An > 0, which is a direct consequence of the nodal 
configuration illustrated in Fig. 3. 

For the shear modulus G∗
13, increasing the angle yields a reduction in 

the stiffness (see Fig. 12d). When loading the SSHC in the X1− X3 plane, 
the shear stress τ13 is transferred through the inclined beams’ faces and 
the connecting nodes solely (see Fig. 11c). Increasing the beam angle 
reduces its ability in effectively transferring the shear flow through its 
length, leading to reduced shear stiffness. With this reasoning, the 
additional nodal triangles aggravate this effect since they increase the 
length of the beam by 2ln. The opposite holds for lower angles. 

In contrast, the shear modulus G∗
23 is seen to increase with increasing 

angle θ in Fig. 12d, which is explained as follows. The shear stress τ23 
flows through both inclined and vertical beams which alleviates full load 
bearing from the inclined beams, as found in [37]. This is supported by 
the stresses shown in Fig. 11a and b, where maximum values of 55 MPa 
and 40 MPa were reported for τ13 and τ23, at θ = 30◦ (ln = 0), respec
tively. Increasing the angle in this case facilitates shear flow transfer to 
the vertical beams as the inclined beams become relatively more up
right. If the angle was reduced, the shear flow is impeded by a sharper 
turn from the inclined to the vertical beams causing a reduction in 
stiffness. 

As shown in Fig. 12e, the in-plane Poisson’s ratios ν∗12 and ν∗21 are 
(nearly) identical at θ = 30◦, but gradually diverge with more deviation 
from this angle |θ − 30◦|. This can be explained by recalling the recip
rocal theorem, ν∗12/ν∗21 = E∗

1/E∗
2, where the ratio E∗

1/E∗
2 increases with 

increasing deviation of θ from 30◦, as discussed previously. For example, 
at θ = 45◦, ν∗21 reached a maximum of ~2.2 and ν∗12 a minimum of ~0.5, 
while at θ = 25◦, the change between the conjugate in-plane Poisson’s 
ratios ranges between 0.75 – 1.25. 

As seen from the analytical predictions in Fig. 12f, the out-of-plane 
Poisson’s ratio ν∗31 reaches a value of νc at tf = 0 and νf at tf = 1. 
Starting from ν∗31 = 0.2, the Poisson’s ratio climbs rapidly to ~95% of νf 
at only tf = 0.05. With that, most of the plotted range reads ratios close 
to νf, in line with the trends predicted by the FE model. Looking at the 
points 0.66, 0.75 and 0.83, the Poisson’s ratio values coincide with 
values reported in Fig. 8d for H = 0.1. Lastly, the results shown in 
Fig. 12f clearly indicate that ν∗31 is predominantly dependent on the core 
and face properties rather than the geometry of the honeycomb. 

4.2. Enhancement ratio maps 

Enhancement ratio is a measure of performance enhancement of the 
SSHC relative to its monolithic equivalent at a fixed relative density. It is 
defined as the SSHC elastic constant normalized by the corresponding 

elastic constant of a MHC. For example, the enhancement ratio for E∗
1 is 

determined by the predicted value from Eq. (29) normalized by the 
value predicted by the MG model for E∗

1 [37]: 

RE =
E∗

1,SSHC

E∗
1,MHC

(54) 

If RE > 1, the SSHC exhibits enhanced performance. To determine the 
elastic constant of the mass-equivalent MHC, its wall thickness H must 
be calculated to obtain the same relative density as the corresponding 
SSHC. This is done by identifying the height-to-length ratio H through 
the relative density in Eq. (8). The relative density of the MHC as 
function of the non-dimensional solid beam size is: 

ρMHC =
H2

(4 − 5sinθ) + 6Hcosθ
4cos2θ

(
H2

(1 − sinθ) + 2Hcosθ + sinθ + 1
) (55) 

By setting the value of ρMHC = ρSSHCand solving for H yields: 

HMHC = −
cosθ

[
(9 − 4ρSSHC(sinθ − cos2θ − 1))

1
2 + 4ρSSHCcos2θ − 3

]

5sinθ + 4ρSSHCcos2θ(1 − sinθ) − 4
(56) 

Using Eq. (56), arbitrary solid beam dimensions L and H were ob
tained and plugged into the respective MG equation. Reiterating the 
same process for a range of SSHC relative densities, enhancement ratio 
maps were obtained for the elastic and shear moduli. The maps are a 
valuable tool for laying the foundation for SSHC design optimization by 
offering preliminary performance indicators for a selected set of design 
parameters and their impact on the elastic response. A thorough opti
mization analysis for the SSHC was not considered in this study. 

Fig. 13 illustrates the enhancement ratio maps for E∗
1 at three 

different honeycomb angles θ  = 15◦, 30◦, 45◦. The ratios were 
computed over the range tc = 60 – 90% and H= 1 – 50%, since within 
these ranges, the SSHC model was numerically validated. Also included, 
in Fig. 13, are contours of relative density ρ (dashed lines) with their 
respective numerical values. For the SSHC, the face properties were 
taken as ρf  = 1, Ef = 69 GPa, νf = 0.3, and the properties of the core were 
set to ρc = 0.05, Ec = 600 MPa, νc = 0.2. For the MHC, the properties of 
honeycomb walls were chosen equal to those of the face material in the 
SSHC. 

The SSHC appears to increase the in-plane elastic moduli by a factor 
of 1 – 20 compared to the MHC equivalent. Values higher than 20 occur 
for SSHCs of very slender beams with thick cores and low value of ρ (<
0.04), while values less than one occur for relatively shorter beams with 
thinner cores and higher ρ values (> 0.1). At 15◦ the design space for 
which the sandwich-structuring is beneficial (i.e. RE > 1) is reduced, and 
the opposite is true at 45◦. This indicates that sandwich-structuring 
becomes more beneficial if the honeycomb walls deform 

Fig. 14. Enhancement ratio maps of a SSHC with H = 0 − 0.5, tc = 0.6 − 0.9, θ = 30∘, and ρc/ρf = 0.05 for (a) G∗
12 and (b) G∗

13. The dashed lines represent contours of 
constant relative density of the SSHC. 
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predominantly by bending rather than stretching, which is the case 
when the angle θ increases in a SSHC loaded in the X1 direction. 

The enhancement ratios for the in-plane and out-of-plane shear 
moduli at θ = 30◦ are illustrated in Fig. 14a and b, respectively, 
including contours of ρ (dashed lines). It seems that the in-plane shear 
modulus G∗

12 closely matches the enhancement maps of E∗
1 (see Fig. 14a). 

For the out-of-plane shear modulus G∗
13, the SSHC attains a negative 

enhancement compared to the equivalent MHC (see Fig. 14b), where the 
reduction in the shear modulus ranged between 0.1 – 0.6 over the 
plotted range. The reduction in stiffness is more prominent for thicker 
beams (H= 40 – 50%) and cores (tc= 80 – 90%). It is arguable that the 
sandwich beam reduces the ability to transfer the shear load to adjacent 
beams through the nodes. With thicker beams, the area of the node is 
inherently increased according to Eq. (6), and thus impedes the shear 
flow from one sandwich beam to the other. As a result, the beams suffer 
higher stresses due to the stress concentrations at the core-node in
terfaces, as shown in Fig. 11c and d. Unlike sandwich beams, the solid 
beams of a MHC allow better transfer of the load through the nodes in 
absence of stress concentrations. It is important to note that, since the 
contour lines of constant ρ are almost perpendicular to those of the 
enhancement ratios in Fig. 14b, the reductions in G∗

13 can be mitigated 
by choosing appropriate {H, tc} combinations without affecting the 
relative density ρ of the designed structure. 

4.3. Gibson–Ashby scaling 

The analytical predictions presented in Figs. 13 and 14 were used to 
examine the scaling relations between the in-plane elastic moduli and 
the relative density of SSHCs. In Fig. 15, the normalized elastic constants 
E∗

1/Ef and G∗
12/Gf are plotted as functions of the relative density ρ for 

SSHCs with fixed design parameters H=0.1, θ = 30◦ and ρc /ρf = 0.05; 
the relative density was varied by adjusting the normalized face thick
ness within the range tf = 0.6 − 0.9. Also included in Fig. 15 are the 
corresponding predictions obtained for MHCs with θ = 30◦, where ρ was 
varied by adjusting the parameter H. The plots were then fitted using the 
Gibson–Ashby scaling law: E∗/Es∝ρm [45], where E* is the effective 
property of the honeycomb, Es is the bulk material property and m is the 
scaling exponent governed by the topology. The Gibson–Ashby model is 
most notable in predicting properties of cellular materials and periodic 
structures [46]. Determining the exponent allows to quantitatively 
compare the deformation behavior of the different honeycomb unit 
cells. Depending on the cell topology and loading conditions, a cellular 
solid can exhibit bend-dominated or stretch-dominated deformation, or 
a mixture of both [47]. A purely stretch-dominated structure follows a 
scaling exponent of m ≈ 1, while a bend-dominated 2D structure follows 
m ≈ 3. 

In Fig. 15a and b, the MHC exhibits an exponent of m = 3, indicating 

the expected purely bend-dominated behavior. In contrast, the in-plane 
elastic modulus of the SSHC yields m = 1.6 – 1.8 for tc= 0.6 – 0.9 in 
Fig. 15a, and m = 1.4 – 1.7 for the shear modulus in Fig. 15b. Hence, it is 
evident that the SSHC exhibits a mixed deformation behavior associated 
with reduced coupling between stiffness and relative density, yielding a 
much-improved mechanical performance at low ρ values. 

4.4. Limitations and future work 

The SSHC analytical model offers a powerful tool for predicting the 
effective elastic properties that can aid in performance investigation, 
conceptual design generation and optimization of these structures in 
terms of geometry and face/core material pairings. Nevertheless, the 
current model suffers from some limitations that can be resolved in 
future work. 

Firstly, the weak core assumption narrows the design options of the 
core, and requires careful consideration in material type selection for the 
case of homogenous materials. Other core conditions and material types 
can be investigated in future work. The governing differential equations 
can be customized to derive unique deflection formulas for a desired 
core condition or design that generates a specialized form of the SSHC 
model. 

Secondly, the core design in the current model concerns solid ho
mogenous cores that exhibit isotropic material behavior. Other core 
designs with non-homogenous lattice structures, such as web-cores, can 
be explored using the current model in future work. While not verified in 
this study, the model is expected to provide accurate predictions by 
substituting isotropic core properties with the homogenized properties 
in the equations. Also, the analytical model can be easily adapted to 
other types of honeycombs, such as the square, re-entrant and Kagome 
honeycombs. 

Additionally, the experimental investigation of the elastic response 
of SSHCs was challenging due to difficulties in fabricating periodic SSHC 
structures at a sufficiently small scale. The lack of experimental vali
dation is a limitation in the current study and remains an important 
element for future research. 

Another area of future work is to explore the potential of SSHCs as 
core materials of sandwich panels. Based on a work by Li et al. [17], 
where sandwich panels with hierarchical honeycomb cores were stud
ied, sandwich structures with SSHC cores could offer higher 
weight-specific bending strength as compared to those involving con
ventional honeycomb cores. SSHCs with cellular core architectures are 
also expected to increase the specific energy absorption of sandwich 
panels due to the occurrence of multi-scale collapse processes. This 
feature is directly related to the crushing behavior of the cellular core 
between the face sheets of the SSHC that is dependent on the core ma
terial type and design [27]. Moreover, integrating SSHCs in sandwich 
panels allows for greater tunability of mechanical properties, making 

Fig. 15. Scaling of elastic constants E∗
1/Ef (a) and G∗

12/Gf (b) with relative densities for MHCs (θ = 30◦) and SSHCs (H = 0.1, tc = 0.6 − 0.9,θ = 30∘). The plots were 
generated for SSHCs with ρc/ρf = 0.05. 
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them suitable for a wider range of engineering applications. 

5. Conclusion 

In this study, sandwich-structured honeycombs (SSHCs) were 
examined for their potential to enhance the elastic stiffness of traditional 
hexagonal honeycombs. An analytical model was developed to predict 
the effective elastic response of SSHCs composed of isotropic linear 
elastic face and core materials. The model is based on a sandwich beam 
theory that accounts for the effect of thick faces, assumes a weak core 
and rigid nodes. 

A parametric study was conducted to investigate the sensitivity of the 
elastic constants to variations in the SSHC architectural parameters. The 
analytical solutions of the nine elastic constants were compared to nu
merical predictions obtained from a FE-based homogenization tech
nique, and excellent agreement was reported with errors of less than 5%. 

Enhancement ratio maps were generated to demarcate the regions in 
the design space for which sandwich-structuring yields enhanced elastic 
stiffness. Accordingly, the in-plane stiffness increases in most of the 
design space with pronounced enhancements at lower relative densities. 
However, the SSHCs showed reductions in the out-of-plane shear moduli 
by 10% – 60% due to stress concentrations around the core that hinder 
load transfer to adjacent beams. 

Lastly, Gibson–Ashby scaling showed that the SSHC exhibits scaling 
exponents m = 1.6 – 1.8, that fall between those of the bend-dominated 
conventional honeycomb (m = 3) and a fully stretch-dominated lattice 
(m = 1). This indicates that the integration of sandwich walls in hon
eycomb structures reduces the coupling between elastic stiffness and 
relative density. 
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