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Abstract: This article presents an efficient crypto processor architecture for point multiplication
acceleration of side-channel secured Binary Huff Curves (BHC) on FPGA (field-programmable gate
array) over GF(2233). We have implemented six finite field polynomial multiplication architectures,
i.e., (1) schoolbook, (2) hybrid Karatsuba, (3) 2-way-karatsuba, (4) 3-way-toom-cook, (5) 4-way-
toom-cook and (6) digit-parallel-least-significant. For performance evaluation, each implemented
polynomial multiplier is integrated with the proposed BHC architecture. Verilog HDL is used for
the implementation of all the polynomial multipliers. Moreover, the Xilinx ISE design suite tool
is employed as an underlying simulation platform. The implementation results are presented on
Xilinx Virtex-6 FPGA devices. The achieved results show that the integration of a hybrid Karatsuba
multiplier with the proposed BHC architecture results in lower hardware resources. Similarly, the use
of a least-significant-digit-parallel multiplier in the proposed design results in high-speed (in terms
of both clock frequency and latency). Consequently, the proposed BHC architecture, integrated with
a least-significant-digit-parallel multiplier, is 1.42 times faster and utilizes 1.80 times lower FPGA
slices when compared to the most recent BHC accelerator architectures.

Keywords: crypto processor; architecture/design; side-channel resistance; binary huff curves; FPGA

1. Introduction

The rapid increase in the development of technological devices causes security threats.
Amongst several others, cryptography is one of the choices that offer different security
services such as data encryption/decryption, signature generation/verification, etc. [1].
It has two types, i.e., symmetric and asymmetric. The symmetric cryptography requires
a singular key, named as a private key, to execute encryption and decryption operations.
On the other hand, two distinct keys are needed to operate asymmetric algorithms. Out
of these two keys, the first one is a private key while the other is a public key. Encryption
operation is executed using a private key while decryption is performed with a public
key. Moreover, asymmetric algorithms are becoming more prevalent as these offer secured
cryptographic services [2,3].

The typical examples of asymmetric algorithms are Diffie Hellman (DH) [4], ECC
(Elliptic Curve Cryptography) and RSA (Rivest–Shamir–Adleman) [5–7]. The DH is a key
exchange protocol that was initially proposed to share the public keys between the sender
and recipient to initiate communication. To perform data encryption and decryption, the
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RSA and ECC algorithms were proposed [5–7]. Comparatively, the former takes larger key
lengths, more channel bandwidths, higher hardware resources, and higher computational
cost [2]. For instance, to achieve a 128-bit security level, RSA and DH require 3072-bits
while for identical security levels, ECC requires only 256-bits [8]. Consequently, ECC is an
attractive choice for its counterpart algorithm (i.e., RSA).

The ECC involves several models for implementations such as, (1) Weierstrass [9],
(2) Binary Edward Curves (BEC) [10], (3) Hessian Curves (HC) [11], and (4) Binary Huff
Curves (BHC) [12]. Comparatively, the Weierstrass model is vulnerable to side-channel
attacks (SCA). The reason is that it requires different mathematical operations for point
doubling (PD) and addition (PA) computations. The PA and PD are second layer oper-
ations of ECC and are needed to perform the point multiplication (PM) [9] (third layer
operation of ECC). To resist side-channel attacks, one of the solutions is the employment
of unified point addition and doubling operations. Therefore, BHC, BEC, and HC models
of ECC provide unified mathematical operations for point addition and doubling execu-
tions [10–12]. On the other hand, the HC and BEC models are comparatively better for
achieving a higher throughput. Similarly, to achieve a higher security level, BHC model is
more preferable [13,14]. Therefore, this work intends to describe the hardware implemen-
tation of the most secured BHC model of ECC as it inherently provides resistance against
side-channel attacks.

1.1. Algorithmic Evolution of BHC Model of ECC and the Corresponding Hardware Accelerators

In the context of elliptic curves, the BHC model was first proposed in [12]. The initial
mathematical operations/formulations for the unified addition law of BHC were proposed
in 2011 [15]. In 2013, the PA and PD law of the BHC model was revisited [14]. Recently, in
2018, the unified PD and PA formulations of the BHC model of 2013 were re-evaluated and
a new vulnerability against SCA attacks has been identified [16]. Additionally, the revised
mathematical formulations for the unified addition law of BHC have also been presented.
Two different approaches, i.e., software, or hardware, are available in the literature to
implement the various models of cryptosystems related to ECC. The benefits of software
implementations are a comfort to use and upgrade, low development cost, flexibility and
portability. In addition to these benefits, the corresponding drawbacks include an inferior
performance and vulnerability against the protection of private keys compared to fabricated
hardware [1]. These drawbacks have urged many researchers/investigators to analyze the
hardware demonstrations of various ECC models. Subsequently, the existing hardware
accelerators of the BHC model of ECC are described in [13,14,17–20]. Their architectural
details are provided in the following.

Hardware accelerator based on unified addition law of 2011 [13]: On Xilinx Virtex-
4 FPGA, a dedicated BHC architecture over GF(2233) is presented in [13]. Along with
numerous routing multiplexers, finite field adders and squarer modules, the arithmetic unit
of their design incorporates Itoh-Tsujii inversion algorithm and hybrid Karatsuba multiplier.
The term hybrid stands for the combination of general and simple Karatsuba multiplier. The
general Karatsuba multiplier is used mainly because over smaller bits, it is more suitable to
efficiently utilize the look-up tables, whereas, over longer bits, simple Karatsuba multipliers
aids towards minimizing the gate counts. Based on these architectural characteristics, they
achieve an operational clock frequency of 81 MHz. Moreover, the area cost of their design
in terms of FPGA slices is 20,437. The latency (time to operate one PM operation) of their
architecture is 73 µs.

Designs concerning the unified addition law of 2013 [14,17–19]: The architecture
described in [14], achieves an operational clock frequency of 183 MHz over GF(2233) on
Xilinx Virtex-7 FPGA, utilizing FPGA slices of 6032 while the computational time for one
PM is 40 µs. Moreover, their design takes 7370 clock cycles for one PM calculation. A
two-stage pipelined design over GF(2233) for PM computation is presented in [17]. Their
architecture utilizes 7681 and 6342 slices on Xilinx Virtex-6 and Virtex-7 FPGA devices,
achieving the clock frequency of 296 and 369. The time needed for one PM execution is
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39 and 32 µs. Another FPGA implementation, of both Weierstrass and BHC curves over
GF(2163) and GF(2233) is implemented in [18] using a digit-parallel multiplier with digit
length of 32-bits for the computation of PM. Their design utilizes 4520 and 8866 slices over
GF(2163) and GF(2233), respectively, on Xilinx Virtex-7 FPGA. Moreover, they achieved the
frequency of 280 and 271 MHz for key lengths of 163 and 233, respectively.

To accomplish an improved throughput over area ratio, a 4-stage pipelined design over
GF(2233) is shown in [19]. They reviewed the mathematical illustration of BHC with an
objective to lessen the hardware resources and consequently, they acquired a 43% decrease.
To work on the throughput, two techniques they have utilized: (i) critical path reduction
with the use of pipeline registers and (ii) reduction in the clock cycles by the scheduling of
mathematical operations of unified addition law.

Architectures supporting the unified addition law of 2018 [20]: In [20], the first hard-
ware accelerator for a recently proposed unified addition law of BHC is presented, which is
a four-staged pipelined architecture utilizing a total of 7123 FPGA slices on Virtex-7 target
device. For the computation of one PM. Their design takes a total of 15,495 clock cycles.
Moreover, after post-place-and-route-level, a maximum clock frequency of 188 MHz is
achieved. The time needed to operate one PM is 82.4 µs.

1.2. Limitations in the Existing Architectures

Section 1.1 demonstrates the state-of-the-art hardware architectures proposed for PM
computation of BHC [13,14,17–19]. These designs are constructed on elder unified addition
formulations, published in 2011 [15] and 2013 [14]. A hardware implementation of the most
recently proposed unified addition law (published in 2018 and is constructed in [16]) of
BHC utilizes a higher hardware area and takes more computational time [20]. It is important
to note that security is always a critical demand in almost all cryptographic applications,
e.g., RFID (radio-frequency-identification-networks), WSN (wireless sensor networks), IoT
(internet-of-things) [21], etc. These applications require minimum hardware resources for
cryptographic computations in a reasonable time. Therefore, there is a real need for the
area-optimized implementations of side-channel resistant cryptographic algorithms for
area-constrained applications.

1.3. Novelty and Contributions

To address the limitations, described in Section 1.2, the novelty of this work includes:
(1) a novel PM architecture, (2) implementation and integration of several polynomial
multipliers into our novel PM architecture, and (3) a comprehensive description of the
implementation of our novel PM design and evaluation results along with a comparison to
state-of-the-art. To achieve this, our contributions are as follows:

• Crypto processor architecture: We have presented an area-optimized FPGA-based
crypto processor architecture responsible for accelerating the PM of the BHC model of
ECC over GF2233.

• Design trade-offs for various multipliers: For performance and area trade-offs of poly-
nomial multipliers, we have implemented six different multiplication architectures:
(1) schoolbook, (2) hybrid Karatsuba, (3) 2-way-karatsuba, (4) 3-way-toom-cook, (5)
4-way-toom-cook and (6) digit-parallel-least-significant, in a Verilog HDL.

• Design trade-offs for BHC model of ECC: We have integrated each polynomial multi-
plication architecture in our novel BHC processor architecture for design trade-offs (or
performance evaluations), concerning hardware resource utilization, clock frequency,
latency (time for execution of one PM) and consumed power.

• Finally, a dedicated controller is utilized for the management and coordination of
various processing tasks.

The polynomial multipliers and the proposed PM architecture over GF(2233) are
implemented in Verilog HDL and tested on Xilinx FPGA devices. The implementation
results show that the integration of hybrid Karatsuba multiplier with the proposed BHC
architecture results in minimum hardware resources (8498 slices, 3999 LUTs and 5209 FFs).
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Similarly, the least-significant-digit-parallel multiplier, integrated with the proposed BHC
design, results in high-speed (in terms of both clock frequency (164 MHz) and latency
(80 µs)). To summarize, the proposed BHC architecture, integrated with a least-significant-
digit-parallel multiplier, is 1.42 times faster. Moreover, the hardware resource (FPGA slices)
utilization is 1.80 times less than the most recent BHC accelerator, published in [20].

The remainder of this work is structured as follows: Section 2 provides the related
background about the BHC model of ECC. Our proposed crypto processor architecture
for BHC model of ECC is described in Section 3. The implementation results and various
design trade-offs are discussed in Section 4. Finally, Section 5 concludes the findings of
this work.

2. Related Background

Generally, ECC includes four layers of model for implementations [3,9]. The lowermost
layer contains the finite field addition, multiplication, squaring, inversion and subtraction.
Moreover, the layer two operations are PA and PD, which are giverned by layer one
operations. The third layer operation of ECC and its execution depends on the calculations
of PA and PD operations. Finally, the highest layer is known as protocol and is used for
the execution of encryption and decryption operations. Consequently, to implement the
four-layer model of ECC, there are several choices for the designers to choose different
settings according to the cryptographic applications. These choices are described in the
text that follows:

Basis representation: To implement ECC, two kinds of representations are available as
state-of-the-art, i.e., polynomial, and normal [3,19]. The prior is significant where frequent
finite field multiplications are needed to compute while the latter is more convenient where
frequent finite field squares are essential to perform [18]. Therefore, the BHC model of ECC
requires frequent multiplications (will be described later in this paper), so we have used
polynomial basis representations in this work.

Coordinate systems: Two coordinates system representations are commonly available,
i.e., affine coordinates and the Projective coordinates [1,9,19]. The general affine coordinate
representation requires finite field inversion during the calculation of each PA and PD
computation while the projective coordinates are helpful to decrease the related inversion
cost. In addition, the projective coordinates are more beneficial to increase the speed
or throughput of the designed cryptosystem. There are various projective coordinates
for the implementation of different models of ECC [9]. However, the most frequently
used are (1) Standard, (2) Jacobian, and (3) the Lopez Dahab. These projective coordinate
systems have their pros and cons. To understand complete comparison over these projective
coordinate systems, we refer interested readers to [9]. Therefore, to reduce the inversion
cost a Lopez Dahab projective coordinate system has been used in this work.

Finite fields: A field contains a set F with multiplication, denoted by (.), and addition,
represented by (+), operations. Moreover, a field is supposed to be limited if the set F is lim-
ited. In ECC, prime GF(p), and binary GF(2m) fields are most frequently used [9,17,19,20].
The primary fields are more appropriate for software implementations, whereas for hard-
ware implementations, use of binary fields is a preferable choice. Therefore, we have
selected GF(2m) field for computations as we are dealing with hardware implementations.

2.1. Bhc over GF(2m)

A non-singular elliptic curve over GF(2m) in general affine coordinate system is
defined by using Equation (1):

y2 + xy = x3 + ax2 + b mod (F(x)) (1)

In Equation (1), a and b are the elliptic curve parameters while b 6= 0. The variables x
and y are the base point coordinates. Finally, F(x) is the irreducible polynomial. The Huff
model for elliptic curves (as introduced in Section 1), using Equation (1) was presented
in [12] in 2010. Therefore, the Equation (2) defines the BHC model of ECC over a binary
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field in a Lopez Dahab projective coordinates. For complete mathematical formulations,
we turn readers to [12].

aX(Y2 + YZ + Z2) = bY(X2 + XZ + Z2) (2)

In Equation (2), the curve parameters a and b belong to GF(2m) when a 6= b. Moreover,
X, Y and Z are the projective Lopez Dahab points.

2.2. Point Multiplication

For PM computation, (1) an initial point P on the curve and (2) an integer k whose size
is equal to the size of the field which is under consideration [22] are required. Then, the PM
is performed by adding the k copies of point P, i.e., Q = k.P = P + P + P. A variety of PM
algorithms are available as state-of-the-art. However, a descriptive comparison over various
PM algorithms is provided in [1]. We notifying that the HC, BEC and BHC curves have more
computational complexity when compared to the Weierstrass ECC curve. Therefore, the
following Algorithm 1 is more frequently utilized for PM computation in HC, BEC and BHC
curves of ECC and is (also) used in our work.

Algorithm 1: Double and Add PM Algorithm [17,19,20])

Input: k = (kn−1, . . . , k1, k0) with kn−1 = 1, P = (x, y) ∈ GF(2m)
Output: Q = k.(P)

1 X1 = xp, Y1 = Y2 = yp, Z1 = 1, X2 = x4
p + b, Z2 = x2

p

2 for (i from m-1 down to 0) do
3 Q =UAL(Q, Q)
4 if ki = 1, then
5 Q =UAL(P, Q)
6 end
7 end if
8 end for
9 end

10 Return : (xq, yq) = (X2
Z2

, Y2
Z2

2
)

There are three main steps in Algorithm 1: (1) affine to projective conversions (see
operations given in line 1 of Algorithm 1), (2) PM computation in projective coordinates (see
operations given in lines 2 to 9 of Algorithm 1) and (3) reconversions to affine coordinates
(see operations given in line 10 of Algorithm 1). As shown in Algorithm 1), the PM is
depending on the unified addition law. If the ith bit of k in Algorithm 1 becomes one, then
only the PA operation (see line 5) is performed. Similarly, if the ith bit of k becomes zero,
then PA followed with PD is required to compute (see lines 3 and 5).

2.3. Unified Addition Law (UAL) of BHC

The first formal construction of unified PA law of Huff model over GF(2m) field was
presented in [15]. The vulnerabilities against unified addition law of [15] were presented
in [14] and a new mathematical formulation was constructed. The unified law of [14] has
been re-evaluated in [16] and provided some new vulnerabilities. Consequently, the unified
addition law of BHC model of ECC, presented in 2011, 2013 and 2018, is shown in columns
two to four of Table 1.

In Table 1, the X1, Y1, and Z1 are the initial projective points, X2, Y2, and Z2 are new
computed points and X3, Y3, and Z3 are the final Lopez Dahab projective points. While
computing unified PA law the temporary storage elements (m1 to m12) are responsible to
keep the intermediate results. The curve constants, (α and β) can be computed as, α = a+b

b
and β = a+b

a . It is important here to mention that this work utilizes pre-computed α
and β values as used in [13,14,17–20]. Additionally, we have incorporated mathematical
formulations for computation of UAL from column three of Table 1.
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Table 1. Unified addition laws (UAL) of BHC model of ECC over GF(2m).

Insti UAL Proposed in [15] UAL Proposed in [14] UAL Proposed in [16]

I1 m1 = X1 × X2 m1 = X1 × X2 m1 = X1 × X2

I2 m2 = Y1 ×Y2 m2 = Y1 ×Y2 m2 = Y1 ×Y2

I3 m3 = Z1 × Z2 m3 = Z1 × Z2 m3 = Z1 × Z2

I4 m4 = (X1 + Z1)(X2 + Z2) + m1 + m3 m4 = (X1 + Z1)(X2 + Z2) m4 = (X1 + Z1)(X2 + Z2)

I5 m5 = (Y1 + Z1)(Y2 + Z2) + m2 + m3 m5 = (Y1 + Z1)(Y2 + Z2) m5 = (Y1 + Z1)(Y2 + Z2)

I6 m6 = m1 ×m3 m6 = m1 ×m3 m6 = m1 ×m3

I7 m7 = m2 ×m3 m7 = m2 ×m3 m7 = m2 ×m3

I8 m8 = m1 ×m2 + m2
3 m8 = m1 ×m2 + m2

3 m8 = m1 ×m2 + m2
3

I9 m9 = m6(m2 + m3)
2 m9 = m6(m2 + m3)

2 m9 = m6(m2 + m3)
2

I10 m10 = m7(m1 + m3)
2 m10 = m7(m1 + m3)

2 m10 = m7(m1 + m3)
2

I11 m11 = m8(m2 + m3) m11 = m8(m2 + m3) m11 = m8(m2 + m3)

I12 m12 = m8(m1 + m3) – m12 = m8(m1 + m3)

I13 X3 = α×m9 + m4 ×m11 X3 = α×m9 + m4 ×m11 + Z3 X3 = α×m9 + (m4 + m11)m11 + m2
11 + Z3

I14 Y3 = β×m10 + m5 ×m12 Y3 = β×m10 + m5 ×m8(m1 + m3) + Z3 Y3 = β×m10 + (m5 + m12)m12 + m2
12 + Z3

I15 Z3 = m11(m1 + m3) Z3 = m11(m1 + m3) Z3 = m11(m1 + m3)

It is important to highlight that the unified addition laws of column two, three and
four of Table 1, inherently offers resistance to side-channel attacks. Consequently, we
have considered side-channel prevention at the algorithmic level instead of the design in
our work.

3. Proposed Architecture

The proposed architecture for the unified BHC model of ECC is shown in Figure 1.
The proposed architecture contains a memory unit, two routing multiplexers (Mux_3 and
Mux_4), an arithmetic and logic unit (ALU), and a finite state machine (FSM)-based control
unit. The ALU is responsible for performing arithmetic operation (addition, multiplication
and squaring). The memory unit stores the intermediate results of PM while implementing
the Algorithm 1. Inside the memory unit, two multiplexers and a demultiplexer have been
used to perform data read and write back. The FSM-based dedicated control unit governs
the overall functions of the proposed hardware architecture of BHC.

Figure 1. Proposed hardware architecture of BHC for PM computation.
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3.1. Memory Unit (MU)

For the storage of intermediate and final results of Algorithm 1, we first have to
identify the required memory size. Concerning this, we have rewritten the unified addition
law of column three of Table 1 in Table 2. Column one in Table 2 provides the number
of instructions while the list of instructions is shown in column two. The last column in
Table 2 provides the additional details for the number of instructions needed for polynomial
addition, multiplication and squaring operations.

Table 2. Unified addition law of 2018 (shown in column three of Table 1) according to singular adder,
multiplier and squarer.

Sequence of Instructions List of Instructions Corresponding Details

1 t1 = X1 × X2

2 t2 = Y1 ×Y2

3 t3 = Z1 × Z2

4 T1 = X1 + Z1

5 T2 = X2 + Z2

6 t4 = T1 × T2

7 T1 = Y1 + Z1

8 T2 = Y2 + Z2

9 t5 = T1 × T2

10 t6 = t1 × t3

11 t7 = t2 × t3

12 T1 = (t3)
2

13 T2 = t1 × t2

14 t8 = T1 + T2

15 T1 = t2 + t3

16 T2 = (T1)
2

17 t9 = t6 × T2 Total Intructions = 37

18 T2 = t1 + t3

19 T3 = (T2)
2 Multiplication instructions = 17

20 t10 = t7 × T3 Addition instructions = 15

21 t11 = t8 × T1 Squaring instructions = 05

22 t12 = t8 × T2

23 Z3 = t11 × T2

24 T1 = t11 + t4
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Table 2. Cont.

Sequence of Instructions List of Instructions Corresponding Details

25 T2 = T1 × t11

26 T1 = (t11)
2

27 T3 = T1 + T2

28 T1 = α× t9

29 T2 = T1 + T3

30 X3 = T2 + Z3

31 T1 = t5 + t12

32 T2 = T1 × t12

33 T3 = (t12)
2

34 T1 = T2 + T3

35 T2 = β× t10

36 T3 = T1 + T2

37 Y3 = T3 + Z3

As shown in Table 2, it has been analyzed that there are 37 instructions in the unified
addition law of BHC when considered as a singular operator form for implementation.
Based on these instructions we brought the idea for the required memory unit size. Con-
sequently, we have used a register array of size 24×m to store the intermediate and the
final results for PM computation of BHC. Here, the value for m represents the size of each
memory address and is equivalent to the size of field under consideration (i.e., 233-bits). To
read data from the memory unit, two multiplexers have been used in the proposed archi-
tecture, as shown in Figure 1. Similarly, a single demultiplexer is employed for updating
the contents of each particular register, as shown in Figure 1. The corresponding control
signals, i.e., C1, C2, and C3—shown in Figure 1, required for read/write operations are
with size 5-bits.

3.2. Routing Multiplexers

As presented in Figure 1, two routing multiplexers (Mux_3 and Mux_4) have been
used in the proposed hardware architecture. The two inputs to Mux_3 are initial curve
parameters with third input coming as an operand from the register array of a memory
unit. The output of Mux_3 is first input to the ALU, as shown in Figure 1. Another
multiplexer, i.e., Mux_4, is incorporated outside the ALU to select an appropriate result
after polynomial addition, multiplication and squarer unit for writeback over memory
unit using the demultiplexer. C4 and C5 are the corresponding control signals, as shown
in Figure 1.

3.3. Arithmetic and Logic Unit

The ALU comprises of an adder unit, a multiplier unit, and a squarer unit, as shown
in Figure 1. Two inputs to ALU are from, (1) the routing multiplexer Mux_3, and (2) the
register array of a memory unit. There are three outputs, i.e., one from the polynomial adder
unit, second from the multiplier unit, and last from the squarer unit, from ALU to routing
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multiplexer Mux_4 . Implementation of these arithmetic operators (adder, multiplier, and
squarer) is further described in the next subsequent sections:

3.3.1. Adder and Squarer Units

An array of a bitwise exclusive-(OR) gates is used to perform polynomial addition,
as implemented in solutions [14,17–20]. The length of two inputs and an output is m-bit.
Following [18,20], polynomial squaring is performed by inserting a 0 after each input
data bit. The input to squaring unit is an m-bit polynomial and the size of output is
2×m− 1 bits.

3.3.2. Multiplier Unit

The performance of the entire model of ECC mainly depends on the utilized multiplier.
As shown in column three of Table 2, 17 out of 37 instructions are required for multiplication
operation while the remaining instructions are for addition and squaring. However, to
evaluate the performance of the recently proposed unified BHC model of ECC, described
in [16], six different multipliers have been incorporated in the datapath of our proposed
architecture. Therefore, the employed multipliers are: (1) schoolbook, (2) hybrid Karatsuba,
(3) 2-way-karatsuba, (4) 3-way-toom-cook, (5) 4-way-toom-cook and (6) least-significant-
digit-parallel. All these multipliers takes two polynomials as input each with size m-bit
resulting in an output of 2×m− 1 bit polynomial. A descriptive implementation trends
for schoolbook, 2-way-karatsuba, 3-way-toom-cook and 4-way-toom-cook multipliers are
presented in [23,24]. It is important to mention that these multipliers are not shown in
Figure 1; however, the implementation details of these multipliers are described in the text
that follows:

• Schoolbook multiplier: The multiplication using the schoolbook method is executed
by generating simple partial products. After generating partial products, shift and
add operations are used yielding a result of size 2×m− 1 bits. A total of m− 1 clock
cycles are needed to perform one multiplication for input operands length of m-bits.
Moreover, a schoolbook multiplication method is more convenient to save hardware
resources without considering the clock cycles [23].

• Hybrid Karatsuba multiplier: The Karatsuba multiplication method uses the divide
and conquer approach for the multiplication of two polynomials each of size m-bits.
The divide and conquer approach is performed in chronological order, i.e., polynomial
multiplications starting from lower to higher bits. Moreover, the hybrid approach
is attained by implementing the simple and general Karatsuba multipliers as used
in [13]. A simple Karatsuba multiplier is utilized to perform multiplication over
smaller bits, whereas the general Karatsuba multiplier is employed to perform multi-
plication over longer bits. The objective of using a simple Karatsuba multiplier is the
reduction of logic delays, whereas for minimizing the overall gate counts the general
Karatsuba multiplier is used. It requires only a single clock cycle for one polynomial
multiplication and is more suitable to reduce the latency of the PM operation.

• 2-way-karatsuba multiplier: Two m-bit input polynomials are divided into two sub-
polynomials to perform multiplication. The sub-polynomials can then multiplied
either by using simple Karatsuba, general Karatsuba, or the schoolbook multiplication
method [25]. However, in this work, a schoolbook multiplication method is incorpo-
rated to compute the inner products (required to compute in the 2-way-karatsuba).
Finally, it requires m

2 clock cycles [23,24], when m is the length of the input polynomial
or the underlying field.

• 3-way-toom-cook multiplier: In this multiplier, two m-bit input polynomials are
divided into three sub-polynomials. The sub-polynomials are then multiplied by
using a schoolbook multiplication method to compute the inner products (required to
compute in the 3-way-toom-cook). Finally, it requires m

3 clock cycles [23], when m is
the length of the input polynomials.
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• 4-way-toom-cook multiplier: Similar to other multipliers, i.e., 2-way-karatsuba, and
3-way-toom-cook, two m-bit input polynomials are divided into four sub-polynomials
to perform multiplication. The sub-polynomials are then multiplied by using a school-
book multiplication method to compute the inner products (required to compute in
the 4-way-toom-cook). Subsequently, it requires m

4 clock cycles [24], when m is the
length of the input polynomials.

• Least-significant-digit-parallel multiplier: Two input polynomials (A(x) and B(x))
each having size of m-bits, are multiplied by creating digits of polynomial B(x) (with
size of each digit 32-bits). The input polynomial A(x) is multiplied with each created
digit of size 32 bits, to produce the resulting polynomials of size d + m− 1 bits, where
d is the size of a created digit. By using the addition and shifting of polynomials of size
d + m− 1 bits, the final polynomial generated having a size of 2×m− 1 bits. Similar
to the hybrid Karatsuba multiplier, the digit parallel multiplier takes one clock cycle
for computation.

3.3.3. Reduction Unit

The resulting bit size after every squaring and multiplication is double i.e., 2×m− 1
bits for an m bit input. Therefore, a polynomial reduction operation is needed after each
finite field multiplication and squaring operation [13,18,21]. Therefore, to perform a poly-
nomial reduction, in this work, we used the NIST (National Institute of Standards and
Technology) recommended reduction algorithm (see Algorithm 2.42 of [9]). It takes one
clock cycle for computation because it can easily be implemented using numerous wires in
Verilog HDL.

3.3.4. Polynomial Inversion Computation

The polynomial inversion computation is not shown in Figure 1. However, to compute
polynomial inversion, the square Itoh-Tsujii algorithm (originally described in [26]) is
implemented in this work. It requires only field squaring’s and multiplications. For
GF(2m) with m = 233 bit key length, inversion is computed by using m − 1 squarer
operations followed with 10 field multiplications [3]. The implemented addition chain
for inversion computations is 1, 1, 3, 1, 7, 14, 1, 29, 58 and 116. The computational cost of
inversion depends on the used multiplier. In this work, we employed six multipliers, so
the computational cost for inversion is also different. For our various units of the proposed
architecture, clock cycles information will be provided in the next subsequent section.

3.4. Control Unit

An FSM-based dedicated control unit is used for governing the functionalities of
proposed processor design. The controller is responsible for generating the corresponding
control signals for reading/writing (C1, C2 and C3) and routing multiplexers (C4 and C5),
respectively. In order to implement Algorithm 1, the proposed architecture consists of
100 states (State 0 to 99), as shown in Figure 2. The corresponding details for these states
are as follows.

Figure 2. Dedicated control unit of proposed hardware architecture.
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• Affine to Lopez Dahab projective conversions (States 1 to 3): State 0 is an idle state
where none of the operations is performed. From, state 1 to 3, the arithmetic operations
involved in line 1 of Algorithm 1 is performed.

• Point doubling states (States 4 to 40): The states from 4 to 40 generates control signals
for the computation of point doubling (using a list of instructions shown in column
two of Table 2). Moreover, state 40 is responsible to check each bit of k, i.e., ki (the
signal ki is shown in Figure 2). Once the value for ki = 1 then the next state will be 41,
otherwise, the next state will be 4. Additionally, state 40 is also in charge of checking
the count signal (shown in Figure 2) for counting the number of points on the defined
BHC curve. Initially, the value for count is set to m− 2. Once the value for count = 0
then the next state will state 78 otherwise the next state will be 4.

• Lopez Dahab to affine coordinate system (States 78 to 99): The states from 78 to 99
generates control signals for the computation of Lopez Dahab to a general affine
coordinate system. As shown in line 10 of Algorithm 1, an associated inversion opera-
tion is required to perform. Therefore, 78 to 96 states are responsible to perform an
inversion operation using the square version of the Itoh-Tsujii algorithm. Furthermore,
additional operations of line 10 of Algorithm 1 are implemented from 97 to 99 states.

Clock Cycles Calculation

For our proposed hardware architecture, Equation (3) can be used to determine the
total number of clock cycles.

3 + {(17n) + 20}(m− 1) + {(17n) + 20)}(m− 1
2

) + {(10n) + (m− 1)}+ (2n) + 1 (3)

• Affine to Lopez Dahab projective conversions: As shown in Equation (3), conversions
from affine to Lopez Dahab projective coordinate system takes a total of 3 clock cycles.

• Point doubling: The PD requires {(17n) + 20)}(m− 1) clock cycles, where 17n deter-
mines the clock cycles for 17 multiplication instructions in the UAL of BHC while n
presents the clock cycle for one finite field multiplication. Additional 20 clock cycles
are needed for the computation of addition and squaring instructions. The value for
m presents the key length.

• Point addition: Similarly, the PA requires {(17n) + 20)}(m−1
2 ) clock cycles, where

(17n) determines the clock cycles for the computation of 17 multiplication instructions
in the UAL of BHC while n determines the clock cycle for one multiplication. Addi-
tional 20 cycles are needed to compute addition and squaring instructions. The value
for m shows the key length.

• Lopez Dahab to affine coordinate system: Finally, {(10n) + (m− 1)}+ (2n) + 1 clock
cycles are needed for conversion from Lopez Dahab to affine coordinates. A total
of {(10n) + (m− 1)} clock cycles are needed for each finite field inversion. In this
work, the inversion is computed using a square Itoh-Tsujii inversion algorithm. For
the remaining operations in Lopez Dahab to affine coordinate conversions, additional
(2n) + 1 clock cycles are needed.

Consequently, the total number of calculated clock cycles for our proposed hardware
architecture are given in Table 3. Column one provides the name of the employed multiplier
in the datapath of our proposed BHC architecture. Column two provides the clock cycles
(n) for one finite field multiplication. Columns three to five presents the clock cycles for
various steps of Algorithm 1. Affine to Lopez Dahab conversion is step-1. PA and PD
computations for PM operation determine step-2. The reconversions from Lopez Dahab
to affine conversions is step-3. Finally, the total clock cycles (TCCs) are shown in the last
column of Table 3.
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Table 3. Clock cycles for proposed hardware architecture using various finite field multipliers
over GF(2233).

Employed Multipliers n Step-1
Step-2 Step-3

TCCs
PD PA Inv Ad. Cycles

Schoolbook m− 1 (233) 3 919,648 459,824 2552 465 1,382,492

2-way-karatsuba m−1
2 (116) 3 462,144 231,072 1392 233 694,844

3-way-toom-cook m−1
3 (77) 3 308,328 154,164 1002 155 463,652

4-way-toom-cook m−1
4 (58) 3 233,392 116,696 812 117 351,020

Hybrid Karatsuba 1 3 8584 4292 242 3 13,124

Least-significant-digit-parallel 1 3 8584 4292 242 3 13,124

PD: {(17n) + 20}(m − 1), PA: {(17n) + 20}(m−1
2 ), Inversion (Inv): {(10n) + (m − 1)}. Ad. cycles: (2n) + 1

(these are the additional clock cycles).

For operand lengths of m-bit polynomials, Table 3 show that the hybrid Karatsuba
and least-significant-digit-parallel multipliers demand the minimum clock cycles for com-
putation of the BHC model of ECC as compared to schoolbook, 2-way-karatsuba, 3-way-
toom-cook and 4-way-toom-cook multipliers.

4. Implementation Results and Comparisons

The implementation results and comparison to state-of-the-art are described in
Sections 4.1 and 4.2, respectively.

4.1. Results

Our results for various polynomial multipliers are shown in Section 4.1.1. Similarly,
the results for BHC model of ECC are given in Section 4.1.2.

4.1.1. Implementations of Polynomial Multipliers

For each implemented finite field multiplier, i.e., schoolbook, 2-way-karatsuba, 3-way-
toom-cook, 4-way-toom-cook, hybrid Karatsuba and least-significant-digit-parallel, an RTL
model has been written in Verilog (HDL) with underlying simulation platform of Xilinx
ISE (14.2). The implementations over Xilinx Virtex-6 (xc6vlx550t-2ff1760) FPGA device
after post-place-and-route-level are provided in Table 4. As shown in Table 4, column
one provides the name of the implemented multiplier while column two to column four
provides the area information in terms of flip flops (FFs), slices and look-up-tables (LUTs).
The column five in Table 4 presents the operational clock frequency. Finally, the last column
shows the performance of the finite field multipliers in terms of a ratio of throughput over
area (slices). The throughput is calculated by the ratio of clock cycles (given in column two
of Table 3) over operational frequency.

Area comparison: The schoolbook multiplier utilizes lower hardware resources as
compared to other multipliers, shown in columns two to four in Table 4. When comparing
the hybrid Karatsuba multiplier, it utilizes 6.90 times higher hardware resources (FPGA
slices) when compared with the schoolbook multiplier. Similarly, the hardware resource
utilization of the 2-way-karatsuba, 3-way-toom-cook and 4-way-toom-cook multipliers is
2.42, 2.62 and 3.71 times higher when compared with the bit-serial schoolbook multiplier.
The least-significant-digit-parallel multiplier utilizes only 1.43 times more FPGA slices than
the schoolbook multiplier.
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Table 4. Implementation results of the multipliers over GF(2233).

Implemented Multiplier Slices LUTs FFs Freq. (MHz) T/Slices

Schoolbook 553 1479 493 97 753.4

2-way-karatsuba 1341 3815 1206 86 556.5

3-way-toomcook 1451 4816 3444 94 850.8

4-way-toomcook 2052 4825 4981 436 3748.6

hybrid Karatsuba 3819 12,942 465 231 60,496.0

least-significant-digit-parallel 794 1573 233 416 526,315.7

T/Slices: determines the ratio of throughput over area (slices).

Frequency comparison. As shown in the last column of Table 4, the maximum frequency
(436 MHz) over Virtex 6 FPGA device is achieved for a 4-way-toom-cook multiplier. It is
important to note that the least-significant-digit-parallel multiplier achieves comparable
clock frequency (416 MHz) to the 4-way-toom-cook multiplier and it utilizes 1.43 times
lower hardware resources (794 FPGA slices). Therefore, there is always a trade-off between
clock frequency (throughput) and the utilized area.

Latency comparison. Latency determines the time needed to perform one polynomial
multiplication. It can be calculated using the ratio of clock cycles over frequency. The
clock cycles for the multipliers we implement in this paper, are shown in column two of
Table 3. The latency values for multipliers are not given in Table 4; however, the calculated
values are presented here. Therefore, the latency values for schoolbook, 2-way-karatsuba,
3-way-toom-cook, 4-way-toom-cook, hybrid Karatsuba and least-significant-digit-parallel
multipliers are 2.40 µs, 1.34 µs, 0.82 µs, 0.13 µs, 1.00 µs and 0.56. These values show that
the 4-way-toom-cook and least-significant-digit-parallel multipliers are convenient for
high-speed cryptographic applications because these require minimum time for execution
of one polynomial multiplication.

Throughput/Slices comparison. Higher is the ratio of throughput over slices, higher
will be the performance. The calculated throughput/area values for schoolbook, 2-way-
karatsuba, 3-way-toom-cook, 4-way-toom-cook, hybrid Karatsuba and least-significant-
digit-parallel multipliers are 753.4, 556.5, 850.8, 3748.6, 60,496.0 and 52,6315.7. This demon-
strates that the highest values are calculated for bit-parallel, i.e., hybrid Karatsuba and
least-significant-digit-parallel, multipliers as these require one clock cycle for one finite
field multiplication. Therefore, these multipliers are more suitable for high-speed applica-
tions. The schoolbook, 2-way-karatsuba and 3-way-toom-cook multipliers are appropriate
for applications that need low hardware resource utilization. The implementation of our
4-way-toom-cook multiplier is useful for applications that demand both throughput and
area simultaneously.

4.1.2. Results for Point Multiplication of BHC

Similar to our multiplier implementations, the RTL model for the computation of PM
of our BHC model of ECC has been written in Verilog (HDL) with Xilinx ISE (14.2) design
suite tool as an underlying simulation platform. Thereafter, each implemented multiplier,
i.e., schoolbook, 2-way-karatsuba, 3-way-toom-cook, 4-way-toom-cook, hybrid Karatsuba
and least-significant-digit-parallel, is integrated with the proposed PM architecture to
evaluate the performance of the recently proposed unified addition law of BHC. The
input parameters are selected from NIST recommended document [27]. Therefore, the
implementation results over Xilinx Virtex-6 (xc6vlx550t-2ff1760) FPGA device after post-
place-and-route-level are shown in Table 5. Column one in Table 5 provides the specification
of our implemented design in terms of the used polynomial multiplier. The area information
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in terms of slices, LUTs and FFs is provided in column two to column four. The design’s
timing information in terms of clock cycles (CCs), clock frequency (MHz) and the time
required for the computation of one PM (i.e., latency) is provided in column five to seven.
Finally, the total consumed power is illustrated in the last column, i.e., column eight.

Table 5. Implementation results of the BHC model of ECC, constructed in 2018, over GF(2233).

Ref #.
Area Information Timing Information

Total Power (mW)
slices LUTs FFs CCs Freq. (MHz) Latency (µs)

This Work1 12,870 18,420 6167 1,382,492 49 28,214.1 1.46

This Work2 13,658 20,756 6880 694,844 57 12,190.2 1.83

This Work3 13,768 21,757 9118 463,652 83 5586.1 2.57

This Work4 14,369 21,766 10,655 351,020 119 2949.7 2.92

This Work5 8498 3999 5209 13,124 88 149.1 3.31

This Work6 13,111 18,514 5907 13,124 164 80.0 3.16

This work1: Unified addition law of BHC with schoolbook multiplier. This work2: Unified addition law of BHC
with 2-way-karatsuba multiplier. This work3: Unified addition law of BHC with 3-way-toom-cook multiplier.
This work4: Unified addition law of BHC with 4-way-toom-cook multiplier. This work5: Unified addition law
of BHC with hybrid Karatsuba multiplier. This work6: Unified addition law of BHC with least-significant-digit-
parallel multiplier.

The term latency can be defined as the ratio of required clock cycles to the operational
clock frequency (in MHz), and is defined in Equation (4):

Latency = k.P(µs) =
requiredclockcycles

operationalclock f requency
(4)

As compared to other multipliers (schoolbook, 2-way-karatsuba, 3-way-toom-cook,
4-way-toom-cook and hybrid Karatsuba), the unified addition law of BHC results in lower
latency (i.e., 80.0 µs) when considering the least-significant-digit-parallel multiplier in
the data path, as depicted in the last column of Table 5. Moreover, the overall hardware
resource utilization in terms of slices, LUTs and FFs for the hybrid Karatsuba multiplier
is lower (i.e., 8498 slices, 3999 LUTs and 5209 FFs) when compared to other multipliers
configurations in the data path of our proposed hardware architecture, as shown in columns
two to four of Table 5, respectively. Rather than the hardware resources and computational
time, the lower clock cycles are acquired when hybrid Karatsuba and least-significant-digit-
parallel multipliers are integrated into our PM architecture. When concerning only the clock
frequency for comparison, the use of 4-way-toom-cook and least-significant-digit-parallel
multipliers seem more beneficial as these achieve an operational frequency of more than
100 MHz while other multipliers result in the range from 50 to 100 MHz. The results
presented above show that there is always exist some sort of trade-off between various
design parameters (i.e., clock frequency, area, latency, etc.).

As for as the power consumption of our PM architecture is concerned for comparison,
integration of a bit-serial multiplier, i.e., schoolbook, results in the least value of 1.46 mW, as
compared to 2-way-karatsuba, 3-way-toom-cook, 4-way-toom-cook, hybrid Karatsuba and
least-significant-digit-parallel multipliers where the corresponding power consumption
is 1.83, 2.57, 2.92, 3.31 and 3.16 mW. Moreover, we have analyzed that the use of hybrid
Karatsuba results in higher power consumption (3.31 mW) because its critical path results
in higher delays when compared to the critical paths of other multipliers. If we compare the
power consumption of bit-parallel multipliers, i.e., hybrid Karatsuba, and least-significant-
digit-parallel, the latter is less power-hunger (3.16 mW) as compared to the former.
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Selection of singular implementation for state-of-the-art comparison: We clarify that
it is not possible to compare all state-of-the-art implementations from Table 5. Hence, we
have selected only one design for comparison to the state-of-the-art in Section 4.2. In this
regard, we have defined a design metric in terms of throughput

area , and is calculated using
Equation (5). The higher value of throughput over area ratio higher will be the performance
of the design.

Throughput
Area(slices)

=

1
Latency(µs)

slices
=

106

Latency(ins)× slices
(5)

Figure 3 shows that the highest ratio of throughput over slices value is achieved for our
design named with ThisWork6. Consequently, we have selected the proposed architecture
integrated with a least-significant-digit-parallel multiplier for state-of-the-art comparison.

Figure 3. Design metric ( throughput
slices ).

4.2. State-of-the-Art Implementations Comparison

The created RTL model for proposed hardware architecture (This work6) has been syn-
thesized for FPGA devices that are used as state-of-the-art implementations, as presented
in Table 6. Therefore, we use xc4vfx100 device for Xilinx Virtex-4 and 7vx690tffg1930 for
Virtex-7 FPGA. It is important to note that although we have several hardware accelerators
for various models of ECC (Weierstrass, BEC, HC and BHC), a realistic comparison to all
these is not possible to provide as these differ in their mathematical formulations for PA and
PD computations. Therefore, for a reasonable comparison, we have compared our results
only with the hardware accelerators for the BHC model of ECC. In Table 6, the column one
provides the name of the reference design while the implemented mathematical model for
the unified addition law of BHC is presented in column two. Column three provides the
implementation device. The area information in terms of slices, LUTs and FFs is provided
in column four to column six. Similarly, column seven to column nine provides the timing
information in terms of clock cycles, clock frequency (MHz) and the time required for the
computation of one PM (latency).
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Table 6. Comparisons to state-of-the-art implementations over GF(2233).

Ref #. IMM Device
Area Information Timing Information

Slices LUTs FFs CCs Freq. (MHz) Latency (µs)

[14] 2013 Virtex 7 6032 – – 7370 183 40

[13] 2011 Virtex 4 20,437 – – 5913 81 73

[17] 2013
Virtex 4 17,393 – – 12,553 162 77

Virtex 7 6342 – – 12,553 369 34

[18] 2013 Virtex 7
6083 22,254 4927 12,553 341 36

8866 23,017 4414 12,553 271 46

[19] 2013 Virtex 7 7017 – – 13,057 434 30

[20] 2018 Virtex 7 7123 – – 15,495 188 82.4

This work6 2018 Virtex 4 13,635 15,545 15,042 13,124 118 111

This work6 2018 Virtex 7 3948 12,652 6456 13,124 223 58

This work6: Unified addition law of BHC with least-significant-digit-parallel multiplier.

4.2.1. Comparison to UAL of 2011

As shown in Table 6, the architecture described in [13] is implemented on Virtex-4
device. Comparatively, the hardware architecture proposed in this paper is 1.52 times
slower in terms of computational time (latency). The reason is that the unified addition law
of the BHC model of ECC (presented in 2011) requires fewer mathematical formulations
(we refer readers to Table 1) as compared to the mathematical model constructed in 2018
(we used this and interested readers can consult Table 2). On the other hand, the hardware
resource utilization (slices) of our proposed architecture is 1.49 times lesser. The reason for
the use of lower hardware resources is the employment of a least-significant-digit-parallel
multiplier instead of combined general and simple Karatsuba multipliers, used in [13].
Additionally, we achieved a higher operational frequency of 118 MHz (shown in column
eight of Table 6) that is comparatively 1.45 times higher.

4.2.2. Comparison to UAL of 2013

For Virtex-4 FPGA, in terms of latency, our proposed architecture is 1.44 (ratio of
111 with 77) times slower than the architecture proposed in [17]. On the other hand, the
hardware resource (slices) utilization of our proposed architecture is 1.27 times lower than
the [17].

The latency of the designs presented in [14,17–19] for the computation of one PM
on Virtex-7 FPGA devices (last column of Table 6), is lower as compared to our design.
This is due to the requirement of a larger number of instructions (total = 37) in the unified
addition law of BHC that was recently proposed in 2018, shown in Table 2. The number of
instructions involved in the unified addition law of BHC, provided in 2013, is 31. Therefore,
there are seven additional instructions in the unified addition law of BHC (proposed in 2018)
that result in higher computational cost (latency) when compared with the BHC model
proposed in 2013. Instead of latency, the use of a least-significant-digit-parallel multiplier
in our work results in lesser hardware resource utilization (slices) when compared with
BHC designs, reported in [14,17–19].
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4.2.3. Comparison to UAL of 2018

The most interesting architecture is described in [20] where two-stage and four-stage
pipelined designs are presented, including the without scheduling and their proposed
scheduling of instructions for unified addition law. On a similar Virtex-7 FPGA device,
our architecture utilizes 1.80 (ratio of 7123 with 3948) times lower slices as compared to
their most optimized 4-stage pipelined design. The reason is the use of multiple arithmetic
operators in the datapath of [20] while we used only single adder, multiplier, squarer
and reduction operators. Moreover, our design requires 1.18 (ratio of 15,495 with 13,124)
times lower clock cycles because the use of pipelining incurs structural hazards in [20]
which results in an increase in the cycles. Additionally, our non-pipelined architecture
results in 1.23 (ratio of 223 with 188) times higher operational frequency. Despite the other
parameters, i.e., area, frequency, and clock cycles, our architecture is 1.42 (ratio of 82.4 with
58) times faster in terms of latency.

5. Conclusions

This article has presented design trade-offs for side-channel resistant Binary Huff
Curves on FPGA. In this regard, we have presented an efficient crypto processor archi-
tecture for PM acceleration of the BHC model of ECC over GF(2233). Moreover, we
have implemented six finite field polynomial multiplication architectures, i.e., schoolbook,
hybrid Karatsuba, 2-way-karatsuba, 3-way-toom-cook, 4-way-toom-cook and digit-parallel-
least-significant. Then for the evaluation of design trade-offs, we have integrated each
implemented polynomial multiplier with our proposed BHC architecture. The selected
polynomial multipliers and BHC model of ECC are implemented in a Verilog HDL using the
Xilinx ISE design suite tool. The implementation results are given on Xilinx Virtex-6 FPGA.
The achieved results show that the integration of hybrid Karatsuba multiplier with our
proposed BHC architecture results in the least hardware resources (8498 slices, 3999 LUTs
and 5209 FFs). The least-significant-digit-parallel multiplier integrated with our proposed
BHC design results in high-speed (in terms of both clock frequency (164 MHz) and latency
(80 µs)). The proposed BHC architecture integrated with a least-significant-digit-parallel
multiplier is 1.42 times faster and utilizes 1.80 times lower FPGA slices as compared to the
most recent BHC accelerator.
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