ARTICLE

https://doi.org/10.1057/s41599-023-02124-9

OPEN

Check for updates

Selection homophily and peer influence for adolescents' smoking and vaping norms and outcomes in high and middle-income settings

The MECHANISMS study investigates how social norms for adolescent smoking and vaping are transmitted through school friendship networks, and is the first study to use behavioral economics methodology to assess smoking-related social norms. Here, we investigate the effects of selection homophily (the tendency to form friendships with similar peers) and peer influence (a social process whereby an individual's behavior or attitudes are affected by peers acting as reference points for the individual) on experimentally measured smoking and vaping norms, and other smoking outcomes, in adolescents from high and middle-income settings. Full school year groups in six secondary schools in Northern Ireland (United Kingdom) and secondary schools in Bogotá (Colombia) participated (n = 1344/1444,six participation = 93.1%, target age 12-13 years). Over one semester, pupils received one previously tested school-based smoking prevention program (ASSIST or Dead Cool). Outcomes included experimentally measured smoking/vaping norms, self-report and objectively measured smoking behavior, and self-report smoking norms, intentions, susceptibility, attitudes, and psycho-social antecedents. We investigated selection homophily and peer influence using regressions and SIENA modeling. Regression results demonstrate lagged and contemporaneous selection homophily (odds ratios [ORs] = 0.87-1.26, p < 0.01), and peer influence effects for various outcomes from average responses of friends, school classes, or school year groups (standardized coefficients $[\beta s] = 0.07 - 0.55$, ORs = 1.14-1.31, $p \le 0.01$). SIENA models showed that comparable proportions of smoking/vaping-based similarity between friends were due to selection homophily (32.8%) and peer influence (39.2%). A higher percentage of similarity between friends was due to selection homophily and/or peer influence for ASSIST schools compared to Dead Cool. Selection homophily was also more important in Bogotá, whilst peer influence was stronger in Northern Ireland. These findings support using social norms strategies in adolescent smoking prevention interventions. Future research should consider selection homophily and social influence jointly, and examine whether these findings translate to other high and low-middle-income settings with varying cultures and norms.

Introduction

very year, over seven million people die from tobacco consumption and 1.2 million die from second-hand smoke (World Health Organization, 2020). Smoking rates are declining in high-income countries, but remain high in low- and middle-income countries (LMICs), with over 80% of the world's 1.3 billion tobacco users living in LMICs (World Health Organization, 2020). Smokers usually start during adolescence when social influences (from observing others' smoking behaviors, attitudes, and norms) are prevalent (Allen and Feigl, 2017; Littlecott et al., 2019). The risk of developing smoking-related diseases increases as the number of smoking years and cigarettes smoked per day increases (Difranza and Richmond, 2008). E-cigarettes are also gaining popularity, particularly amongst adolescents (Perikleous et al., 2018; Schneider and Diehl, 2016). While adult smokers are more likely to use e-cigarettes as a smoking cessation aid (Chan et al., 2021), they are typically used for experimentation amongst adolescents, similar to how adolescents typically use conventional cigarettes and could serve as a "gateway to smoking" (Perikleous et al., 2018; Soneji et al., 2017). Smoking prevention programs usually target younger adolescents (12-13 years), and many use social norms-based approaches or attempt to leverage peer influences (Campbell et al., 2008; Thomas et al., 2015).

Peer influence is a social process by which a focal individual's behavior or attitudes are affected by peers acting as reference points for the individual within social networks (Montgomery et al., 2020; Steglich et al., 2012). Whether it is due to peer influence or selection homophily processes (the tendency for individuals to form friendships with others of similar characteristics and behaviors (Krupka et al., 2016; Steglich et al., 2012)), research shows that adolescent smokers usually have more smoking friends, whilst non-smokers have more non-smoking friends (Liu et al., 2017; Steglich et al., 2012). This correlation between an individual's smoking and the smoking behaviors of their peers has been shown to differ according to cultural characteristics (i.e., to be stronger for adolescent samples drawn from collectivistic, versus individualistic, cultures) (Liu et al., 2017). In general, high-income countries such as those in the United States, United Kingdom (UK), and Europe, tend to be more individualistic, whilst LMICs including those in Latin America tend to be more collectivistic (Peng and Paletz, 2011; Weiss et al., 2019). Schools are appropriate settings for delivering interventions attempting to adjust health behaviors by shaping peer norms and interactions. Most children can be reached through schools, tobacco education fits naturally into school activities, and schools are important determinants of adolescent friendship formation (Thomas et al., 2015). In a 2015 meta-analysis, school-based smoking prevention programs combining social influence and social competence components were most effective (Thomas et al., 2015). However, only four of the 50 included trials were conducted in non-high-income settings (Thomas et al., 2015). In a 2012 review conducted in LMICs, only three of the included interventions incorporated social influence components, and the evidence was inconclusive for whether they were effective in reducing smoking uptake and progression to regular smoking (Munabi-Babigumira et al., 2012). The authors highlighted the need for rigorous studies to be conducted in LMICs, incorporating delivery strategies of interventions that have been successful in high-income settings, and appropriately adapted to account for local contextual factors and culture (Munabi-Babigumira et al., 2012). A more recent review of school-based smoking prevention programs for adolescents in developing countries found only seven articles meeting the eligibility criteria but concluded that peer education programs were effective and could be tailored to the conditions of the country (Huriah and Dwi Lestari, 2020).

Interventions targeting groups of people and social networks may be more effective at reducing health inequalities than those focusing on individuals (Hunter et al., 2019, 2020; Montgomery et al., 2020). The A Stop Smoking in Schools Trial (ASSIST) intervention works by identifying influential pupils in school year groups to promote anti-smoking norms amongst school peers, by aligning a peer-focused education program with social networkbased principles (Campbell et al., 2008). Such group or social network-based interventions frequently act, at least partly, by changing social norms (Hunter et al., 2020). Social norms are defined as rules and standards understood by members of a social group, which guide or constrain social behavior without enforcement by law (Cialdini and Trost, 1998). Injunctive norms are shared perceptions about behaviors that are associated with social approval or acceptance (e.g., peer approval of smoking), while descriptive norms are shared perceptions about behaviors that are undertaken by others in a social group in any given situation (e.g., peer engagement in smoking) (Cialdini and Trost, 1998; Mackie et al., 2015). Whilst social network structures affect how social norms spread, social norms also derive from shared understandings between individuals within social networks (Hunter et al., 2020; Panter-Brick et al., 2006). Therefore, interventions targeting social norms span different levels of the Socio-Ecological Model of behavior change since they rely on individual perceptions of the consequences of non-compliance (at the individual level), and on others' behavior within the social network (at the social environmental level) (Bronfenbrenner, 1977; Hunter et al., 2020; Panter-Brick et al., 2006).

Public health research has traditionally relied on self-report assessments of norms, however, such methods are often charged with being susceptible to social desirability biases (Mackie et al., 2015; Murray et al., 2020). Experimental methods of eliciting social norms, drawn from behavioral economics and game theory, can deepen our understanding of the mechanisms of normsbased public health interventions since they mitigate social desirability bias and provide rich information regarding the distribution of acceptability of various actions (i.e., norms) (Kimbrough and Vostroknutov, 2016, 2018; Krupka and Weber, 2013; Murray et al., 2020). For example, Krupka and Weber used financially incentivized co-ordination games to elicit social norms for choices in a standard dictator game (Krupka and Weber, 2013). The Mechanisms of Networks and Norms Influence on Smoking in Schools (MECHANISMS) study is the first to use these behavioral economics methods (Kimbrough and Vostroknutov, 2016, 2018; Krupka and Weber, 2013) to elicit social norms for adolescent smoking and vaping behaviors (Hunter et al., 2020; Murray et al., 2020). The study aims to investigate the mechanisms through which social norms for adolescent smoking and vaping are transmitted through school friendship networks (Hunter et al., 2020; Murray et al., 2020). To do this we have elicited social norms (for various adolescent smoking and vaping behaviors and actions) (Kimbrough and Vostroknutov, 2016, 2018; Krupka and Weber, 2013) and friendship networks pre- and post-implementation of two different types of school-based smoking prevention programs with proven effectiveness in previous cluster randomized controlled trials: ASSIST and Dead Cool (Campbell et al., 2008; Thurston et al., 2019). The incentivized experimental methods applied in the MECHANISMS study reduce social desirability bias when measuring social norms since they require participants to guess how peers in their school year group would answer. Specifically, participants are provided with monetary incentives to try to 'match' their own response to the most common response in their school year group. Injunctive norms, for example, are measured by asking participants to guess how their peers would rate the

social appropriateness of "a parent smoking in front of young children". Participants are told that they will be paid a fixed amount if their response to a randomly selected question "is the same as the most common response provided in your school year group". The modal answer is elicited as the social norm for the school year group. Since participants are encouraged to think about how peers will respond rather than providing personal opinions the need for social desirability, which affects commonly used self-report assessment methods, is mitigated (Burks and Krupka, 2012). Introducing incentives to guess how most others are guessing, provides further reason to report beliefs truthfully.

This paper aims to investigate selection homophily and peer influence effects for these novel experimental measures of smoking and vaping norms. Previous norms-based public health studies have relied on limited self-report methods of measuring social norms, and have not attempted to empirically measure these effects directly (Hunter et al., 2020). The underpinning methodology will also have broader relevance for studying other health-related behaviors in the future (Hunter et al., 2020). Our study is also novel in that it includes data from schools in two different settings (a high-income setting, and a middle-income setting). Northern Ireland (NI) is a high-income country in the United Kingdom (UK) (The World Bank, 2020b), with approximately 2 million inhabitants (Northern Ireland Statistics and Research Agency, 2019), and current cigarette consumption rates of 4% for adolescents aged 11-16 years (12% report having smoked tobacco at least once) (Foster et al., 2017). Current e-cigarette consumption rates were 4.9% for adolescents aged 11-18 years across the UK in 2019 (15.4% had tried vaping at least once) (Action on Smoking and Health (ASH), 2019). Bogotá is the capital city of Colombia, an upper-middle-income country (The World Bank, 2020a), with over 7 million inhabitants (National Administrative Department of Statistics, 2019), and current cigarette consumption rates of 13.1% for adolescents aged 12-18 years (25.0% of adolescents aged 13-15 years report having smoked at least once) (Ministry of Health and Social Protection, 2020; Ministry of Justice and Law et al., 2016). In 2017, 15.4% of adolescents aged 13-15 years across Colombia reported that they had tried e-cigarettes at least once (Ministry of Health and Social Protection, 2020). Since e-cigarettes are growing in popularity among adolescents, norms for smoking and vaping were both considered in the MECHANISMS study (Perikleous et al., 2018; Schneider and Diehl, 2016). Studying norms for adolescent smoking and vaping in two different settings is an important aspect of the MECHANISMS study since most of the world's tobacco users now live in LMICs, and previous studies have highlighted a lack of relevant research in LMIC settings (Huriah and Dwi Lestari, 2020; Munabi-Babigumira et al., 2012; Thomas et al., 2015).

Our paper also presents an overview of selection homophily and peer influence effects for a broad range of smoking-related psychosocial antecedents that may lead to smoking behavior (e.g., attitudes, self-efficacy, and perceived risks and benefits), and objectively measured smoking behavior. Previous studies examining peer influence and peer selection homophily in adolescent smoking have mostly limited their focus to examining social network processes for smoking behavior, intentions, or susceptibility, and very few have incorporated psychological characteristics. For example, Go et al., examined selection homophily and peer influence processes using mixed-effects logistic regression with propensity score modeling and found both processes explained the association between peer smoking and adolescent smoking initiation (Go et al., 2012). Hoffman et al., modeled peer influence and selection homophily using cross-lagged panel structural equation models (CLPMs) and found that whilst both effects were occurring simultaneously, peer influence was a more salient predictor of adolescents' 'ever smoking' than peer selection (Hoffman et al., 2007). However, a longitudinal social network analysis in the original ASSIST trial found that smoking-based selection of friends explained a greater proportion of smoking behavior similarity over time than peer influence (Mercken et al., 2012). The authors recommended that future adolescent smoking prevention research should not focus solely on social influence, but should also consider selection homophily (Mercken et al., 2012). In a recent paper, Chu et al., used agent-based models to describe cigarette and e-cigarette use with data from the state of Pennsylvania in the United States (children and adults), which showed declines in cigarette, e-cigarette, and total nicotine use when implementing a program of e-cigarette education and policies (Chu et al., 2020). The authors also developed a model that considered a social contagion factor where schools functioned as a transmission vector, but they did not attempt to explore selection homophily and peer influence (Chu et al., 2020).

Selection homophily and peer influence are both mechanisms producing homogeneity of peer networks (Go et al., 2012), and disentangling the two processes has been recognized as challenging (Ragan et al., 2019; Shalizi and Thomas, 2010). This paper aims to explore the behavioral mechanisms underlying the influence of social norms on adolescent smoking and vaping by examining whether changes in the experimentally elicited norms measures over time are correlated amongst friendship cliques, and broadly within the larger school community (e.g., school classes and school year groups). Our statistical approach draws upon the work of Krupka et al. (2016), who studied selection homophily and peer influence effects for university freshmen's economic preferences (and related self-report outcomes), and our study's power calculation was also based on the work of Krupka et al., to detect changes in these effects (Hunter et al., 2020). Specifically, we examine selection homophily processes using mixed-effects logistic regressions to investigate whether similarity with another pupil on the smoking and vaping outcomes increases the likelihood of nominating them as a friend (objective 1). Peer influence effects (from the average responses of pupils' friendship networks and broader social communities within school classes and school year groups) are examined using ordinary least square regressions (objective 2). Previous healthrelated and behavioral economics studies have used similar regression-based approaches to investigate selection homophily and social influence (Flashman and Gambetta, 2014; Fowler and Christakis, 2008; Go et al., 2012; Hoffman et al., 2007; Miething et al., 2016; Parkinson et al., 2018; Rohrer et al., 2021). To examine selection homophily and peer influence effects simultaneously, we also conducted longitudinal CLPMs examining crosslagged and auto-regressive effects between adolescent and friends' smoking and vaping outcomes between baseline and follow-up (objective 3). This is similar to the approach adopted by Hoffman et al., to examine peer influence and selection homophily for adolescent smoking behavior (Hoffman et al., 2007). Finally, we compared the results of our regressions and CLPMs with simulation investigation for empirical network analysis (SIENA) models, which simultaneously estimate selection homophily and peer influence effects, whilst accounting for network dynamics, network structure, and the characteristics of the actors in the network (Mercken et al., 2009, 2012; Ripley et al., 2022; Steglich et al., 2010) (objective 4). This is similar to the approach of Ragan et al. who compared estimates of selection homophily and peer influence effects derived from conventional regression methods to estimates from SIENA models for adolescents' deviance and school performance and found no evidence that the regression methods tended to be biased toward overestimating peer influence compared to SIENA (Ragan et al., 2019). For the SIENA models, we also investigated differences across subgroups of

schools defined by setting (NI versus Bogotá), and intervention program (ASSIST versus Dead Cool; objective 4). In previous work, our group combined Latent Transition Analysis (LTA) with Separable Temporal Random Graph Models (STERGMs) to examine selection homophily and peer influence processes in terms of the MECHANISMS study experimental measures of smoking and vaping norms (Montes et al., 2023). In the LTA, pupils were classified into unobserved ("latent") groups characterized by whether they changed their smoking/vaping injunctive and descriptive norms ("favorable towards smoking" or "against smoking") between baseline and follow-up. The STERGM showed that pupils were more likely to be friends with others who had social norms against smoking, but that pupils with social norms favorable towards smoking had more friends with similar views than the pupils with perceived norms against smoking. Subgroup analyses also showed that the proportion of pupils who changed their norms to be "against smoking" was higher for ASSIST schools compared to Dead Cool (Montes et al., 2023). The current paper adds to our previous work by providing a broader overview of selection homophily and peer influence for our experimental smoking and vaping norms measures (in terms of pupils' observed scores on the scales, and individual 'norms' items), comparing statistical methods used to address these questions in behavioral economics (regression, e.g., Krupka et al., 2016) and network sciences (SIENA, e.g., Mercken et al., 2012), examining peer influence from proximal (e.g., nominated friends) versus distal (e.g., school classes and school year groups) peers, and also examining selection homophily and peer influence for our study's other (self-report) smoking outcomes and objectively measured smoking behavior.

Thus, the aim of this paper is primarily to investigate selection homophily and peer influence effects for our experimental measures of smoking and vaping norms (that is, how norms for different smoking/vaping-related actions are diffused through school friendship networks). As a secondary aim, we have also investigated selection homophily and peer influence for related self-report outcomes (including self-report smoking norms, behavior, intentions, knowledge, attitudes, and other psychosocial antecedents), and objectively measured smoking behavior.

Methods

Study design. The MECHANISMS study is a pre-post quasiexperimental study (Hunter et al., 2020). Twelve schools (N = 6NI, N = 6 Bogotá; participation = 93.1%, n = 1344/1444 pupils) participated in the MECHANISMS study between January and November 2019 (Hunter et al., 2020). Study procedures have previously been described in the study protocol and related publications (Hunter et al., 2020; Murray et al., 2020; Sánchez-Franco et al., 2021). We recruited full school year groups (NI Year 9, Bogotá Year 7; target age 12-13 years). In NI, schools were recruited for the full phase of the MECHANISMS study between November 2018 and January 2019. Schools were prioritized if they were non-selective secondary education schools not already enrolled in the Dead Cool program, mixed gender, had over 100 pupils in Year 9, were of higher deprivation levels, and ranged in geographical location (urban, rural) and sector (controlled, maintained, integrated). In Bogotá, schools were recruited between March and May 2019. A list of 40 private and public schools was prioritized based on health risks outlined by the Education and Health secretaries. From this list, 13 schools were invited to participate according to the following criteria: schools in urban areas; mixed gender; having enrolled between 90 and 150 students in 7th year (equivalent of Year 9 in NI). Only six schools accepted the invitation and were selected for the final sample. Schools were assigned to one of two smoking prevention

programs: ASSIST (which is specifically designed to leverage peer influence) or Dead Cool (which is based on more conventional classroom pedagogy) (Campbell et al., 2008; Thurston et al., 2019). In a pre-post design, pupils participated in incentivized (monetary) norms elicitation experiments, designed on behavioral economics and game theory principles (Kimbrough and Vostroknutov, 2016, 2018; Krupka and Weber, 2013), and completed a self-report survey over one semester.

Ethics approval was granted from Queen's University Belfast in September 2018 (reference 18:43) and Universidad de los Andes in July 2018 (reference 937/2018). Prior to the baseline assessment, each school was provided with Teacher information sheets, Pupil information sheets, Parent/guardian information sheets, Pupil consent forms, and Parent/guardian opt-out forms. All pupils were required to complete written consent forms indicating whether they agreed or declined to participate. Parents/ guardians who did not wish their child to take part were asked to return completed opt-out forms. The experimental protocol, and all data collection procedures, were carried out in accordance with institutional guidelines for research involving human participants and with the Declaration of Helsinki. Experiments and surveys were delivered via Qualtrics (Qualtrics, Provo, UT, USA) and completed on tablet computers. Participants were instructed not to communicate with classmates during data collection. Prior to implementation in Bogotá, all study materials were culturally adapted, including translation into Spanish language (Sánchez-Franco et al., 2021). Further details on study procedures are available in the Supplementary Information (see the Supplementary Methods, 'Study Procedures' subsection, the study flow diagram in Supplementary Fig. S1, and participants' baseline characteristics in Supplementary Table S1).

Incentivized experiments. The game theory experiments included several incentivized tasks (Kimbrough and Vostroknutov, 2016, 2018; Krupka and Weber, 2013). Part 1 included a rule-following task measuring individuals' social norms sensitivities (Kimbrough and Vostroknutov, 2016, 2018). Participants were given five minutes to allocate 50 balls across two buckets following an arbitrary rule with explicit monetary costs: "The rule is to put the balls in the blue bucket". Individuals' norms sensitivities were elicited as the number of balls allocated to the rule-following bucket ('Rule-following').

Parts 2-3 included incentivized co-ordination games to elicit injunctive and descriptive norms for smoking and vaping in whole school year groups (Krupka and Weber, 2013). Participants were informed they would receive a payment if their response to a randomly selected question matched the most common answer in their school year group. The financial incentives are included to encourage participants to match their ratings/estimates to others in their school year group instead of providing personal opinions. Injunctive norms, reflecting shared beliefs about what actions people ought to take (Krupka and Weber, 2013), were assessed by asking participants to 'co-ordinate' with others in their school year group (as described above) to rate the social appropriateness of eight smoking- and vaping-related scenarios (P2S2-P2S9). The scenarios included: a parent smoking in their own home in front of children under the age of 5 (P2S2); an adult smoking in a car with children under the age of 16 in the car (P2S3); someone selling cigarettes to a teenager who looks younger than 16 without requesting proof of age (P2S4); in a recent superhero movie the lead actor is seen smoking in the opening scene (P2S5); an older student from school is smoking outside school, for example, at a bus stop (P2S6); a pupil from school is using an e-cigarette while walking to school (P2S7); a pupil from school shares a photograph of him/herself using an e-cigarette on social media

(P2S8), and; a pupil from school is chewing tobacco (P2S9). Pupils provided their ratings on a six-point scale ("extremely socially inappropriate" to "extremely socially appropriate"). Descriptive norms, reflecting shared beliefs about what actions people actually do take (Krupka and Weber, 2013), were assessed with two items asking participants to 'co-ordinate' with others in their school year group to estimate the proportion of their school year group who would be accepting of a close friend smoking (P3Q1) or vaping (P3Q2). Pupils provided their ratings on a sixpoint scale ("none of my peers" to "all of my peers"). For each situation, the 'norm' was elicited as the modal response in the school year group.

Part 4 assessed participants' willingness to pay to support antismoking norms. Participants were informed that they would receive ten virtual tokens of equal monetary value, asked how many they wanted to donate to the organization responsible for delivering the smoking prevention program in their school, and informed that they would receive a payment equal to the amount not donated. The extent of a participant's willingness to incur a cost to make a higher donation to a smoking prevention program reveals their support for creating anti-smoking norms ('Donation to ASSIST/Dead Cool').

Participants received participation fees of £5.00 (NI; COP\$5000 Bogotá), and could earn money in each part of the experiment (maximum £30 NI, COP\$50,000 Bogotá) depending on their answers and answers provided by others in their school year group. Payments were received after the follow-up experiment. See the 'Game Theory Experiments' and 'English and Spanish language versions of the experimental protocol' subsections of the Supplementary Methods. Supplementary Table S2 shows the assessed smoking- and vaping-related scenarios, and numerical coding of responses.

Self-report survey and carbon monoxide measurements. A survey was used to collect socio-demographics (gender, age, ethnicity, socio-economic status), friendship networks, self-report smoking outcomes, personality characteristics, and wellbeing. In NI, socio-economic status was based on the Northern Ireland Multiple Deprivation Measure (NIMDM2017) (Northern Ireland Statistics and Research Agency, 2017). The NIMDM2017 ranks NI postcodes based on seven domains of deprivation (Northern Ireland Statistics and Research Agency, 2017). In Bogotá, socio-economic status was determined as the socio-economic level index provided by the Colombian National Administrative Department of Statistics (National Administrative Department of Statistics, 2021).

Survey items were previously validated and adopted from studies of similar-aged participants (Hunter et al., 2020). Selfreport injunctive smoking norms (IN1-IN7) were assessed with seven items enquiring about perceived approval of smoking from groups of important others, including "most of the people who are important to me" (IN1), "my mother" (IN2), "my father" (IN3), "my brother(s)" (IN4), "my sister(s)" (IN5), "my friends" (IN6), and "my best friend" (IN7). Pupils provided their answers on a five-point scale ("think(s) that I definitely should smoke" to "think(s) that I definitely should not smoke") (Cremers et al., 2012). Self-report descriptive smoking norms were assessed with two scales (DN1.1-DN1.5; DN2.1-DN2.3) (Cremers et al., 2012). The first scale consisted of five items enquiring about how often groups of important others engaged in smoking behavior, including "best friend" (DN1.1), "mother" (DN1.2), "father" (DN1.3), "brother(s)" (DN1.4), and "sister(s)" (DN1.5). Pupils provided their answers on a five-point scale ("very often" to "never"/"don't know"). The second scale consisted of three items enquiring about the proportion of groups of important others

who are smokers, including "friends" (DN2.1), "other family members" (DN2.2), and "classmates" (DN2.3). Pupils provided their answers on a five-point scale ("almost all of them" to "almost none of them"/"don't know"). Other self-report smoking outcomes included past/current smoking behavior (Dunne et al., 2016; Fuller and Hawkins, 2012), smoking intentions and susceptibility (Dunne et al., 2016; Mazanov and Byrne, 2007; Pierce et al., 1998), smoking knowledge (Cremers et al., 2012), attitudes towards smoking (Ganley and Rosario, 2013), selfefficacy (emotional, friends, and opportunity subscales) (Condiotte and Lichtenstein, 1981; Lawrance, 1989), perceived risks (physical, social, and addiction subscales) (Aryal et al., 2013; Halpern-Felsher et al., 2004; Song et al., 2009), perceived benefits (Aryal et al., 2013; Halpern-Felsher et al., 2004; Song et al., 2009), perceived behavioral control (easy to quit smoking) (Smith et al., 2006), and perceived behavioral control (to avoid smoking) (Smith et al., 2006).

Pupils had their smoking behavior in the last 24 h objectively measured using hand-held carbon monoxide monitors (PICOAdvantage Smokerlyzer, Bedfont) (Bedfont Scientific Ltd., 2018), which measure expelled air carbon monoxide in parts per million (Bedfont Scientific Ltd., 2018). Objectively measured smoking behavior was analyzed as a continuous variable (Thurston et al., 2019). Details of all measurement instruments are available in Supplementary Table S2.

Social networks data. School friendship networks were assessed by asking pupils to name up to ten of their closest friends in their school year group (Dunne et al., 2016). The social network data was anonymized by matching participants' nominations to class rosters containing unique study IDs, using the 'agrep' function in R (R Core Team, 2022). The 'agrep' function automatically matched 90% of nominations. The remaining 10% were independently hand-matched by two researchers, with discussion to resolve disagreements. Throughout this paper, references to 'friendship networks' mean all of the nominated closest friends in the school year group for each focal participant (up to 10).

Statistical analysis. Analyses were conducted using Stata 13 (StataCorp, 2013) and R version 4.2.1 (R Core Team, 2022). Due to multiple testing, we have discussed our results with reference to a significance level of $p \le 0.01$. Throughout the results tables and supplementary tables, we have also highlighted which results would have attained statistical significance ($p \le 0.05$) after using the Holm–Bonferroni procedure to adjust the *p*-values for multiple testing (Holm, 1979). Means and standard deviations were computed, and histograms were graphed to visualize distributions. Cronbach's alpha coefficients for individual scales and Wilcoxon matched-pairs signed-ranks tests (Wilcoxon, 1945) examining pre-post intervention changes in outcomes are reported in Table 1.

For objectives 1–4, we investigated selection homophily and peer influence processes in terms of our smoking and vaping outcomes, namely: experimentally measured injunctive smoking and vaping norms (P2S2–P2S9), experimentally measured descriptive smoking and vaping norms (P3Q1–P3Q2), number of tokens donated to ASSIST/Dead Cool, self-report injunctive norms (IN1–IN7), self-report descriptive norms scale 1 (DN1.1–DN1.5), self-report descriptive norms scale 2 (DN2.1–DN2.3), self-report smoking behavior, self-report smoking intentions, smoking knowledge, attitudes towards smoking, self-efficacy (emotional, friends, and opportunity subscales), perceived risks (physical, social, and addiction subscales), perceived behavioral control (easy to quit), perceived behavioral control (easy to avoid), objectively measured

	Northern Irelan	d (N = 6)*	Bogotá (N=6)*		All schools (N $=$	12)*	Wilcoxon signed	rank tests
	Baseline	Follow-up	Baseline	Follow-up	Baseline	Follow-up	No. of -/+/O signs	z-statistic, p-value
Experiment, <i>n</i> Survey, <i>n</i>	625 630	620 590	646 644	631 619	1271 1274	1251 1209		
Carbon monoxide readings, <i>n</i> Experiment Part 1 (rule-following)	591	591	648	620	1239	1211		
Balls allocated to blue rule- following bucket (0-50)	29.4 (19.2)	29.1 (20.3)	32.6 (16.6)	32.9 (17.8)	31.0 (18.0) [30]	31.0 (19.2) [33]	-ve: 409; +ve: 425; 0: зта	z = 0.27, p = 0.79
Experiment Part 2 (injunctive social norms;	$\alpha = 0.78; -1 = "extr$	emely socially inappre	ppriate" to $+1 =$ "extrem	nely socially appropi	riate")			
P2S2: Parent smoking in their own home in front of children under age of 5	-0.8 (0.3)	—0.8 (0.4)	-0.9 (0.2)	-0.9 (0.2)	—0.9 (0.3) [—1]	-0.8 (0.3) [-1]	-ve: 120; +ve: 214; 0: 857	z = 5.12, p < 0.001 [†]
P2S3: An adult smoking in a car with children under the age of 16 in	-0.7 (0.4)	—0.7 (0.4)	-0.7 (0.3)	—0.7 (0.3)	-0.7 (0.4) [-0.6]	-0.7 (0.3) [-0.6]	-ve: 292; +ve: 318; 0:	z = 1.11, p = 0.27
the car P2S4: Someone selling cigarettes	-0.9 (0.3)	-0.8	6.0-	-0.8	-0.9 (0.3)	-0.8 (0.3)	- 582 — ve: 158;	z = 6.62,
to a teenager who looks younger than 16 without requesting proof of		(0.3)	(0.3)	(0.3)	[-1]	[-1]	+ve: 306; 0: 726	p < 0.001 [°]
ase. P2S5: In a recent superhero movie the lead actor is seen smoking in the ononing creme	-0.3 (0.4)	—0.3 (0.4)	—0.4 (0.4)	-0.4 (0.4)	—0.4 (0.4) [_0.2]	-0.3 (0.4) [-0.2]	- ve: 304; +ve: 377; 0: 512	z = 2.95, p = 0.003
and opening socies P2S6: An older student from school is smoking outside school, for example, at a bus stop	-0.5 (0.4)	-0.5 (0.4)	—0.5 (0.4)	-0.5 (0.4)	-0.5 (0.4) [-0.6]	-0.5 (0.4) [-0.6]	- ve: 288; + ve: 418; 0: 483	z = 4.77 , $p < 0.001^{\circ}$
P2S7: A pupil from school is using an e-cigarette while walking to	-0.5 (0.4)	-0.5 (0.4)	—0.5 (0.4)	-0.5 (0.4)	-0.5 (0.4) [-0.6]	-0.5 (0.4) [-0.6]	- ve: 312; +ve: 399; 0:	z = 3.08, p = 0.002
P2S8: A pupil from school shares a photograph of him/herself using an e-riarrette on social media	-0.5 (0.4)	-0.5 (0.4)	—0.4 (0.4)	-0.4 (0.4)	-0.5 (0.4) [-0.6]	-0.5 (0.4) [-0.6]	+00 - ve: 300; +ve: 386; 0:	z = 3.03, p = 0.002
P2S9: A pupil from school is chewing tobacco	-0.8 (0.4)	—0.7 (0.4)	-0.8 (0.3)	-0.7 (0.3)	-0.8 (0.3) [-1]	—0.7 (0.4) [—1]	- ve: 201; + ve: 350; 0: 641	z = 6.29, p < 0.001 [†]
Experimental injunctive norms scale (average P2S2 to P2S9)	-0.6 (0.3)	-0.6 (0.3)	-0.7 (0.2)	-0.6 (0.2)	-0.6 (0.2) [-0.7]	-0.6 (0.3) [-0.6]	- ve: 448; + ve: 610; 0: 123	z = 5.74, $p < 0.001^{\circ}$
Experiment Part 3 (descriptive social norms P3Q1: Proportion of school year group accepting of a close friend senoking	5; $\alpha = 0.85$; $-1 = "n_0$ -0.5 (0.5)	ne of my peers" to +: -0.3 (0.5)	I = "all of my peers") -0.5 (0.5)	-0.3 (0.5)	-0.5 (0.5) [-0.6]	-0.3 (0.5) [-0.6]	-ve: 249; +ve: 481; 0: 463	z = 8.68, p < 0.001 [†]
P3Q2: Proportion of school year group accepting of a close friend vaping	-0.3 (0.6)	-0.2 (0.6)	-0.4 (0.5)	—0.3 (0.6)	0.4 (0.6) [-0.6]	—0.2 (0.6) [_0.2]	- ve: 255; + ve: 523; 0: 414	z = 9.18, p < 0.001 [†]

	Northern Ireland (N = 6)*	Bogotá (N = 6)*		All schools (N =	12)*	Wilcoxon signed-	rank tests
	Baseline	Follow-up	Baseline	Follow-up	Baseline	Follow-up	No. of -/+/0 signs	z-statistic, p-value
Experimental descriptive norms scale (average P3Q1 to P3Q2)	-0.4 (0.5)	-0.3 (0.5)	-0.5 (0.5)	—0.3 (0.5)	-0.4 (0.5) [-0.6]	-0.3 (0.5) [-0.4]	-ve: 311; +ve: 622; 0:	z = 9.96, p < 0.001 [†]
Experiment Part 4 (willingness to pay to su Donation to ASSIST/Dead Cool (0 to 10).	upport anti-smoking norr 3.5 (3.1)	ns; 0 = "0 tokens c 3.0 (2.8)	lonated to ASSIST/De 3.9 (2.6)	ad Cool" to 10= "10 3.6 (2.4)	tokens donated to AS 3.7 (2.9) [4]	SIST/Dead Cool") 3.3 (2.6) [3]	-ve: 445; +ve: 333; 0:	z = -4.37, p < 0.001 [°]
Survey: Self-report injunctive social norms (IN1: Most of the people who are important to me	$(\alpha = 0.75; -2 = "think(s 1.7 (0.7))$	s) that I definitely s 1.7 (0.7)	hould smoke" to +2 = 1.8 (0.7)	: "think(s) that I defin 1.7 (0.8)	itely should not smok 1.7 (0.7) [2]	e") 1.7 (0.7) [2]	413 - ve: 131; + ve: 116; 0:	z = -1.05, p = 0.30
IN2: Mother	1.9 (0.3)	1.9 (0.4)	1.9 (0.4)	1.9 (0.5)	1.9 (0.4) [2]	1.9 (0.4) [2]	902 -ve: 54; +ve: 44; 0:	z = -1.04, p = 0.30
IN3: Father	1.8 (0.6)	1.8 (0.6)	1.7 (0.7)	1.7 (0.7)	1.7 (0.7) [2]	1.7 (0.7) [2]	1053 — ve: 93; + ve: 83; 0:	z = -0.76, p = 0.45
IN4: Brother(s)	1.4 (0.9)	1.4 (0.9)	1.4 (0.9)	1.5 (0.8)	1.4 (0.9) [2]	1.4 (0.9) [2]	971 — ve: 138; + ve: 159; 0:	z = 1.29, p = 0.20
IN5: Sister(s)	1.4 (0.9)	1.4 (0.9)	1.3 (0.9)	1.4 (0.9)	1.4 (0.9) [2]	1.4 (0.9) [2]	850 - ve: 116; + ve: 139; 0:	z = 1.50, p = 0.14
IN6: Friends	1.5 (0.9)	1.5 (0.9)	1.3 (0.9)	1.3 (0.9)	1.4 (0.9) [2]	1.4 (0.9) [2]	893 - ve: 197; + ve: 221; 0:	z = 1.09, p = 0.27
IN7: Best friend	1.7 (0.7)	1.7 (0.8)	1.5 (0.9)	1.5 (0.9)	1.6 (0.8) [2]	1.6 (0.8) [2]	731 - ve: 169; + ve: 155; 0:	z = -0.64, p = 0.53
Self-report injunctive norms scale (average IN1-IN7)	1.6 (0.5)	1.6 (0.5)	1.5 (0.5)	1.6 (0.5)	1.6 (0.5) [1.7]	1.6 (0.5) [1.7]	826 - ve: 322; + ve: 351; 0:	z = 1.13, p = 0.26
Survey: Self-report descriptive social norms DN1.1: Best friend	1 (α = 0.54; 1= "smoke 4.8 (0.8)	e(s) very often" to : 4.7 (0.8)	5 = "never smoke(s)"/ 4.9 (0.6)	"don't know") 4.8 (0.6)	4.8 (0.7) [5]	4.8 (0.7) [5]	470 - ve: 88; + ve: 59; 0:	z = -2.34, p = 0.02
DN1.2: Mother	4.2 (1.4)	4.3 (1.3)	4.6 (0.9)	4.6 (0.9)	4.4 (1.2) [5]	4.5 (1.1) [5]	- ve: 90; + ve: 107; 0:	z = 1.24, p = 0.21
DN1.3: Father	4.1 (1.4)	4.2 (1.4)	4.4 (1.1)	4.5 (1.1)	4.3 (1.3) [5]	4.3 (1.3) [5]	956 -ve: 101; +ve: 120; 0: 931	z = 1.27, p = 0.20

Table 1 (continued)	harlout moderold	*\7 N)	Bacaté (N 2)	*	All clocked (M	*101	Lousis accellin	atort dura
	Baseline	Follow-up	Baseline	Follow-up	Baseline	Follow-up	No. of	z-statistic,
							-/+/0 signs	<i>p</i> -value
DN1.4: Brother(s).	4.7 (0.9)	4.7 (0.9)	4.7 (0.8)	4.7 (0.9)	4.7 (0.8) [5]	4.7 (0.9) [5]	– ve: 75; + ve: 50: 0:	z = -2.31, n = 0.02
						L (J	1027	7 2 1
DN1.5: Sister(s)	4.8 (0.7)	4.8 (0.8)	4.8 (0.7)	4.8 (0.7)	4.8 (0.7) [5]	4.8 (0.7) [5]	-ve: 40; +ve: 35; 0:	z = -0.59, $p = 0.56$
Self-report descriptive norms scale 1 (average DN1.1-DN1.5)	4.5 (0.7)	4.5 (0.7)	4.7 (0.5)	4.7 (0.5)	4.6 (0.6) [5]	4.6 (0.6) [5]	1077 - ve: 251; + ve: 227; 0:	z = -1.04, p = 0.30
Survey: Self-report descriptive social norms .	2 ($\alpha = 0.53$; $1 = "alm$	ost all of them smoke	" to 5= "almost nor	ne of them smoke"/"	don't know")		0/2	
DN2.1: Friends	4.7 (0.7)	4.6 (0.8)	4.7 (0.6)	4.7 (0.7)	4.7 (0.7) [5]	4.7 (0.8) [5]	-ve: 155; +ve: 108; 0:	z = -2.92, p = 0.004
DN2.2: Other family members	4.1 (1.0)	4.1 (1.1)	4.4 (0.9)	4.5 (0.9)	4.3 (1.0) [5]	4.3 (1.0) [5]	- ve: 213; + ve: 201; 0: 738	z = -0.56, p = 0.57
DN2.3: Classmates	4.7 (0.7)	4.6 (0.7)	4.8 (0.5)	4.8 (0.6)	4.8 (0.6) [5]	4.7 (0.7) [5]	- ve: 139; + ve: 100; 0: 914	z = -2.56, p = 0.01
Self-report descriptive norms scale 2 (average DN2.1-DN2.3)	4.5 (0.6)	4.5 (0.7)	4.7 (0.5)	4.6 (0.5)	4.6 (0.5) [4.7]	4.6 (0.6) [4.7]	– ve: 322; + ve: 261; 0: 569	z = -2.50, p = 0.01
Survey: Self-report smoking behavior $(1 = $ ^{$*$} s Smoking behavior	sometimes smoke" to 3.8 (0.6)	4 = "never smoked") 3.8 (0.7)	3.7 (0.7)	3.6 (0.7)	3.8 (0.6) [4]	3.7 (0.7) [4]	- ve: 105; + ve: 56; 0: 1003	z = - 3.91, p < 0.001 [†]
Survey: Self-report smoking intentions ($\alpha =$ Intentions (to quit smoking; 1 = "definitely remain a smoker" to $6 = "1 don't smoke"$)	0.77) 5.9 (0.5)	5.9 (0.7)	5.9 (0.6)	5.8 (0.7)	5.9 (0.5) [6]	5.8 (0.7) [6]	1	
Intentions (to try smoking; yes/ don't know), n (%) Intentions (friends; 1 = "definitely	117 (18.6%) 4.6 (0.8)	122 (20.7%) 4.5 (0.9)	204 (31.7%) 4.6 (0.9)	233 (37.7%) 4.4 (1.0)	321 (25.2%) 4.6 (0.9)	355 (29.4%) 4.4 (0.9)		
yes" to 5 = "definitely not".) Intentions (1= "I am a smoker" to 6 = "definitely remain a non- smoker")	5.7 (0.8)	5.7 (0.9)	5.5 (1.1)	5.3 (1.3)	[4] 5.6 (1.0) [6]	[5] 5.5 (1.1) [6]	-ve: 188; +ve: 113; 0: 856	z = - 4.30, p < 0.001 [†]
Survey: Self-report smoking susceptibility (C Susceptible to commencing smoking, n (%) Survey: Salf-report smoking knowledge and) = "not susceptible to 199 (31.6%) attitudes	o commencing smoking 199 (33.7%)	1": 1= "susceptible t 259 (40.2%)	o commencing smoki 315 (50.9%)	ng") 458 (35.9%)	514 (42.5%)		
Knowledge (0 = "0 correct" to 6 = "6 correct")	3.0 (1.5)	3.3 (1.5)	2.2 (1.4)	2.5 (1.5)	2.6 (1.5) [3]	2.9 (1.5) [3]	-ve: 327; +ve: 503; 0: 328	z = 6.31, p < 0.001 [†]

	Northern Ireland	l (N = 6)*	Bogotá (N = 6)	*	All schools (N =	= 12)*	Wilcoxon signed	rank tests
	Baseline	Follow-up	Baseline	Follow-up	Baseline	Follow-up	No. of -/+/0 signs	z-statistic, p-value
Attitudes (1 = "least anti-smoking" to 5 = "most anti-smoking"; $\alpha = 0.81$)	4.0 (0.6)	4.0 (0.6)	3.9 (0.7)	3.9 (0.7)	3.9 (0.6) [4]	3.9 (0.7) [4]	– ve: 507; + ve: 540; 0: 90	z = 0.23, p = 0.82
Survey: Self-report psycho-social antecedent: Self-efficacy (Emotional; 1= "least self-efficacy to resist smoking" to 6 = "greatest self-efficacy to resist	s 5.7 (0.8)	5.7 (0.9)	5.6 (0.8)	5.4 (0.9)	5.6 (0.8) [6]	5.5 (0.9) [6]	-ve: 306; +ve: 198; 0: 645	z = -5.16, p < 0.001 [°]
Self-efficacy (Friends; 1 = "least" to 6 = "greatest"; a = 0.96)	5.7 (0.8)	5.7 (0.8)	5.6 (0.7)	5.5 (0.9)	5.6 (0.8) [6]	5.6 (0.8) [6]	-ve: 323; +ve: 225; 0:	z = −4.48, p < 0.001 [°]
Self-efficacy (Opportunity; 1="least" to 6= "greatest"; ~000	5.8 (0.6)	5.8 (0.6)	5.7 (0.6)	5.6 (0.8)	5.8 (0.6) [6]	5.7 (0.7) [6]	005 - ve: 222; + ve: 146; 0:	z = 4.15, p < 0.001 [†]
a = 0.30) Perceived physical risks (0% ="lowest perceived risk"; ="highest perceived risk"; ~ - 0.87)	62.5 (21.6)	66.0 (20.4)	59,4 (26.5)	62.9 (25.3)	60.9 (24.2) [62.9]	64.4 (23.1) [67.4]	/ 00 - ve: 488; +ve: 631; 0: 28	z = 4.65, p < 0.001 [†]
a = 0.07) Perceived social risks (0% ="lowest" to 100%="highest"; 771)	75.1 (22.0)	75.9 (22.2)	61.5 (29.1)	63.8 (26.8)	68.1 (26.8) [72.7]	69.7 (25.4) [73.3]	-ve: 500; +ve: 556; 0:	z = 2.01, p = 0.04
a — 0.17) Perceived addiction risks (0% ="lowest" to 100%="highest"; ~40	43.4 (24.9)	47.5 (24.0)	27.7 (24.9)	30.2 (25.1)	35.2 (26.1) [33.3]	38.9 (26.1) [37.3]	-ve: 473; +ve: 540; 0: 72	z = 3.36, p < 0.001 [†]
a = 0.49) Perceived benefits (0%="lowest perceived benefit" to 100% ="highest perceived benefit";	23.4 (22.1)	24.0 (20.9)	23.8 (21.1)	23.7 (22.0)	23.6 (21.5) [19.8]	23.8 (21.5) [20.0]	, z – ve: 514; + ve: 525; 0: 51	z = 0.18, p = 0.86
a = 0.77) Perceived behavioral control (easy to quit; 1 = "strongly disagree" to 5 - "chronolv armaa")	2.5 (1.4)	2.4 (1.4)	3.5 (1.3)	3.5 (1.3)	3.0 (1.4) [3]	3.0 (1.5) [3]	- ve: 376; +ve: 359; 0: /1/1	z = -0.63, p = 0.53
Perceived behavioral control (to Perceived behavioral control (to avoid smoking; 1= "strongly agree")	4.3 (1.1)	4.3 (1.0)	4.0 (1.3)	4.0 (1.3)	4.2 (1.2) [5]	4.2 (1.2) [5]	- ve: 302; + ve: 276; 0: 575	z = -0.91, p = 0.37
Objectively measured smoking behavior (exp Parts per million (0-30)	pered air carbon mon 1.5 (1.4)	юхиае геиапидьл 2.0 (1.0)	3.4 (1.5)	3.5 (1.7)	2.5 (1.7) [3]	2.8 (1.6) [2]	-ve: 363; +ve: 506; 0: 268	z = 5.64, p < 0.001†
Reported results are mean (standard deviation) [media "There were 1266 participants who nominated at least o "There were reading and the state of the state state of the state of values show the state of the state of values show the state state of values and values show the state of the st	an] unless otherwise stated and friend at baseline (5 hat allow-up (5404 (992.5%)) wu di nominations were recip s size was 28.3 with a stan porent. using the Holm-Bonferoni level of $p \leq 0.01$	$\frac{1}{2}$, d no identifiable nomination or identifiable nomination recated (follow-up: $n = 456$ dard deviation (SD) of 6.45 dard deviation (SD) of 6.45 procedure to correct the <i>i</i>	is), and 1200 who nominat e 6473-9403 (68.88%) nor 88.8404 [54.7%]). On aw (NI: mean = 24.5, SD = 5.0 >values for multiple testin	ed at least one friend at for intations were of friends st erage, participants made 7. 5. Bogotá: mean = 32.1 , SC g ($p \leq 0.05$; based on all 1	llow-up (3 had no identifiabl com the same school chars. A 5 identifiable friend nomins = 6.2). The average school cests reported in Table 1).	e nominations). There were At follow-us (592/8404 (6) totions at baseline, and 7.0 a year group size was 125.7 v	9538 friendship nominations a 7.7%) nominations were of frie t follow-up (based on particips with an SD of 26.7 (NI: mean =	t baseline (9403 [98.6%] daf from the same school mis providing at least one 127.1, SD = 32.0; Bogotá:

smoking behavior, and smoking susceptibility (a binary outcome variable coded 1 if the individual was susceptible to commencing smoking and 0 if they were not susceptible to commencing smoking). To investigate selection homophily and peer influence for individual norms items, models were run treating the norms outcomes from the experiment and survey as individual items (experimental injunctive norms P2S2-P2S9, experimental descriptive norms P3Q1–P3Q2, self-report injunctive norms IN1–IN7, and self-report descriptive norms DN1.1–DN1.5 and DN2.1–DN2.3). These analyses were repeated including the average of each scale as the outcome variable. For the SIENA models, only the scale averages were considered for the experimental injunctive norms, experimental descriptive norms, self-report injunctive norms, and self-report descriptive norms scales (objective 4).

The statistical methods used to address objectives 1 to 4 have been summarized below, and more detailed descriptions of the methods have been provided in the Supplementary Methods ('Statistical analysis' subsection). Detailed examples of the syntax used to generate the results for objectives 1–4 have also been provided in the Supplementary Methods.

Objective 1: Friendship networks at baseline and follow-up were graphed for each school, and network descriptive statistics were calculated. Descriptive statistics included: the number of edges, network density, dyadic reciprocity, edgewise reciprocity, reciprocated ties, transitive ties, transitivity, transitive triplets, number of actors at distance two, number of three-cycles, and Jaccard similarity indices. See the 'Glossary' subsection of the Supplementary Methods for definitions.

Selection homophily was examined using mixed-effects logistic regressions with binary outcome variables indicating whether the focal participant: (1) nominated the individual as a friend at baseline; (2) added the individual as a friend between baseline and follow-up; or (3) dropped the individual as a friend between baseline and follow-up. The predictor variable was the absolute difference between focal participant outcome scores, and outcome scores of potential friends on the smoking/vaping-related outcomes, at baseline or follow-up. Models included random intercepts at the individual participant level. Standard errors (SEs) were also clustered at the individual level, similar to Krupka et al. (2016). Odds ratios (ORs), SEs, and intraclass correlation coefficients were extracted for each model. To provide comparable effect size estimates for variables with different scales, the mixed-effects logistic regressions were repeated, with the smoking and vaping outcomes re-scaled (0–10), before computing absolute differences. Mixed-effects logistic regressions were also run with binary predictor variables indicating whether the focal participant and potential friend had matching smoking susceptibility statuses.

Previous health-related and behavioral economics studies have used similar approaches, based on logistic or probit regressions, to investigate selection homophily (Flashman and Gambetta, 2014; Parkinson et al., 2018; Rohrer et al., 2021), and our study's power calculation was specifically conducted to detect changes in these effects, based on the work of Krupka et al. (Hunter et al., 2020; Krupka et al., 2016).

Objective 2: Ordinary least square (OLS) regressions with robust (Huber–White) SEs (Huber, 1967; White, 1980) were used to examine peer influence effects for focal participant outcomes at follow-up from the average responses of: (1) their nominated friends; (2) other pupils in their school class, and; (3) other pupils in their school year group (Krupka et al., 2016).

Whilst an individual's current social context may be the most prominent, it may also take an extended amount of time or sustained exposure for influence to occur (Krupka et al., 2016). All models were conducted with peer-group averages at baseline (to examine influence effects from the social context at baseline) and were repeated with peer-group averages at follow-up (to examine influence effects from the contemporaneous social context at follow-up).

Covariate selection was determined using established criteria (Supplementary Fig. S2) (Ferguson et al., 2020; VanderWeele, 2019). The final set of baseline covariates for each focal participant included: gender, age, intervention, ethnicity, socioeconomic status, and baseline values of the outcome. Variance inflation factors (VIFs) were calculated to examine the impact of multi-collinearity (Johnston et al., 2018). VIFs for 'setting' were high for many of the models examining average school class or school year group responses as predictors. Results of models examining average friends' responses are presented before and after adjusting for setting (0 = NI; 1 = Bogotá).

Unstandardized (b) and standardized (β) regression coefficients are reported. Positive coefficients indicated positive influence effects ($p \le 0.01$). Logistic regressions were run with focal participants' smoking susceptibility as the outcome, and robust (Huber White) SEs (Huber, 1967; White, 1980). ORs > 1.00 indicated positive influence effects ($p \le 0.01$). Ordered categorical dependent variables (with at least four categories) were treated as continuous variables (Hayashi et al., 2011). In sensitivity analyses, models including ordered categorical dependent variables ordered categorical dependent variables with six or less categories were repeated using ordered logistic regressions. Analyses were repeated to examine the influence effects from reciprocated friend nominations (where the nominated friend also listed the focal individual as a friend).

Previous health-related and behavioral economics studies have used similar regression-based approaches to investigate peer influence (Fowler and Christakis, 2008; Go et al., 2012; Hoffman et al., 2007; Miething et al., 2016). One of the advantages of the regression models is that they allow us to make important observations in terms of the differences in social influence processes from proximal peers (e.g., close friends) versus distal peers (e.g., members of your school class and school year group). This approach is also similar to previous work conducted by our study's co-investigators, who investigated selection homophily and peer influence effects for university freshmen's economic preferences, comparing influence effects from individuals' friends with their broader network community (Krupka et al., 2016). Our study's power calculation was specifically conducted to detect changes in these effects (Hunter et al., 2020; Krupka et al., 2016).

A common critique of using regression techniques to model selection homophily and peer influence is that they cannot account for endogenous network processes and the inherent nonindependence of network data (Ragan et al., 2019). Peer influence operates between all friendship connections within a network simultaneously, and is inherently a network phenomenon. Using regression techniques to model peer influence ignores this endogeneity by assuming independence among units (i.e., the covariation between focal participant outcomes and friends' outcomes is treated as the isolated product of influence in one direction from a discrete group of friends to one actor) (Ragan et al., 2019). Regression models of peer influence also do not control for selection homophily processes or the structure of the network. This can lead to inflated estimates of peer influence. To overcome these limitations, statistical methods designed for the analysis of network data (e.g., SIENA models) which simultaneously estimate selection homophily and peer influence effects in the same model, whilst accounting for network dynamics, network structure, and the characteristics of the actors in the network, are recommended (Mercken et al., 2009, 2012; Ripley et al., 2022; Steglich et al., 2010). In a study conducted by Ragan et al., the authors specifically set out to compare peer influence estimates from SIENA models, which explicitly address network

Fig. 1 Cross-lagged panel structural equation models simultaneously examining peer influence and selection homophily effects, with crosslagged and auto-regressive effects between focal participant scores and the average scores of their nominated friends between baseline and follow-up. X_{i, t=base}: Focal participant (i) scores on the outcome at baseline. X_i. _{t=fu}: Focal participant (i) scores on the outcome at follow-up. Ave(X)_{-i. t=base}: Average of nominated friends' (-i) scores on the outcome at baseline. $Ave(X)_{-i, t=fu}$: Average of nominated friends' (-i) scores on the outcome at follow-up. Cov_{i, t=base}: Focal participant (i) baseline covariates (gender, age, ethnicity, and socio-economic status). Cross1: Cross-lagged path from Ave $(X)_{-i, t=base}$ to $X_{i, t=fu}$. This path represents the peer influence effect. Cross2: Cross-lagged path from $X_{i, t=base}$ to Ave(X)_{-i, t=fu}. This path represents the selection homophily effect. Auto1: Auto-regressive path from $X_{i, t=base}$ to $X_{i, t=base}$ t=fu. Auto2: Auto-regressive path from Ave(X)_{-i, t=base} to Ave(X)_{-i, t=fu}. Corr1: Correlation path between $X_{i, t=base}$ and Ave(X)_{-i, t=base}. Corr2: Correlation path</sub> between $X_{i, t=fu}$ and $Ave(X)_{-i, t=fu}$.

processes, with more "conventional" regression models (such as we have used under objective 2). However, the authors found no evidence that results from the regression models were biased toward overestimating peer influence, relative to SIENA. They argued that there is no perfect way to model peer influence, and that approaches like SIENA are still subject to limitations (e.g., omitted variable bias) (Ragan et al., 2019). In the current paper, we also aimed to compare the results of regression-based analyses of selection homophily and peer influence for our adolescent smoking/vaping outcomes (objectives 1–3) with estimates derived from SIENA models (objective 4).

Objective 3: CLPMs were used to examine cross-lagged and auto-regressive effects between outcomes reported by the focal participant at baseline and follow-up, and the average outcome reported by their nominated friends at baseline and follow-up. CLPMs aim to examine causal (i.e., directional) influences between variables by examining reciprocal relationships between variables over time (Allen, 2017; Preacher, 2015). Figure 1 shows the structure of our CLPMs. Since peer influence occurs when

adolescents smoke because their friends smoke, it is represented by the association from average friends' responses at baseline to the focal participant's outcomes at follow-up (path "cross1" in Fig. 1). Selection homophily occurs when adolescents select friends due to similar attributes and is represented by the association from the focal participant's outcomes at baseline to their average friends' responses at follow-up (path "cross2" in Fig. 1). Gender, age, ethnicity, and socio-economic status were included as baseline covariates for focal participants' outcomes at baseline and for average friends' responses at baseline (Hoffman et al., 2007). CLPMs were specified with the 'lavaan' package in R (Rosseel, 2012) using maximum-likelihood estimation with robust (Huber-White) (Huber, 1967; White, 1980) SEs and imputation of missing data using full information maximum likelihood (FIML). CLPMs with the binary variable smoking susceptibility as the outcome was specified using the diagonally weighted least-squares estimator. Model fit indices were extracted, including the model chi-square test, comparative fit index (CFI), root mean square error of approximation (RMSEA), and standardized root mean square residual (SRMR). CFI values of ≥0.96, RMSEA values of ≤0.06, and SRMR values of ≤0.09 indicated good model fit (Hooper et al., 2008; Hu and Bentler, 1999). Unstandardized and standardized parameter estimates were extracted.

The CLPMs add to the regressions conducted under objectives 1 and 2 as they investigate selection homophily and peer influence processes simultaneously (i.e., each effect estimate is controlled for the other, in the same model), within the regression-based framework. Hoffman et al., previously modeled peer influence and selection homophily effects for adolescents' smoking behavior using a similar CLPM strategy which showed that both effects were occurring simultaneously (Hoffman et al., 2007).

Objective 4: We also modeled selection homophily and peer influence processes in terms of our smoking/vaping outcomes using SIENA models. SIENA models were conducted using the 'RSiena' package in R (Ripley et al., 2022). SIENA is a statistical modeling technique designed for the analysis of longitudinal network data collected in a panel study with two or more timepoints (Mercken et al., 2009, 2012; Ripley et al., 2022; Snijders et al., 2007; Steglich et al., 2010). SIENA can be used to simultaneously estimate selection homophily and peer influence effects in the same model, whilst accounting for network dynamics (e.g., endogenous network processes and the interdependence inherent in network data), network structure, and the characteristics and behaviors of the actors in the network (Mercken et al., 2009, 2012; Ripley et al., 2022; Steglich et al., 2010). The statistical procedure models probabilistic changes in friendship ties and behaviors using a large number of repeated simulations of the co-evolution of the network and behavior variable from one wave to the next (Ripley et al., 2022). The 'behaviors' investigated in the SIENA models are our smoking/ vaping outcomes. The mathematical specification and statistical estimation procedures for SIENA models of the co-evolution of networks and a behavioral dependent variable have been previously described (Snijders et al., 2007; Steglich et al., 2010). Prior to running SIENA models, smoking/vaping outcomes were categorized as described on the righthand side of Supplementary Table S2 (Ripley et al., 2022).

Each model consisted of two parts: a 'Friendship network evolution' part modeling probabilities of changes in network ties, and a 'Smoking/vaping outcome evolution' part modeling probabilities of changes in the smoking/vaping outcome. Each part of the model was specified with a number of effects hypothesized to be associated with the evolution of the friendship network or smoking/vaping outcomes (including the main "peer selection homophily" and "peer influence" effects, in addition to a number of control effects). All effects included in the SIENA models are described in Table 2.

SIENA models were estimated for each school using the Method of Moments, with SEs estimated using the score function, and 10,000 iterations in phase three (Schweinberger and Snijders, 2007; Snijders et al., 2007). Maximum-likelihood estimation has been noted to produce more efficient estimates, particularly when estimating complex models in smaller networks. When analyzing larger networks, the efficiency advantage is negligible and there is no reason not to use the Method of Moments, which is less computationally intensive and time-consuming (Mercken et al., 2009; Ripley et al., 2022; Snijders et al., 2007). For some SIENA models, various parameters were constrained due to non-convergence or multi-collinearity issues. Score tests for fixed parameters were all non-significant (p > 0.05) indicating the goodness-of-fit of the models was not decreased (Schweinberger, 2012).

Estimates and SEs for each effect parameter in the SIENA models for individual schools were then combined in a metaanalysis, using the multilevel network analysis method of Snijders and Baerveldt (2003). Previous studies using SIENA modeling to investigate the co-evolution of network ties and smoking behavior, and more recently published Stochastic Actor-Oriented Models have used similar meta-analytic procedures to combine estimates across different networks (Block, 2018; Hooijsma et al., 2020; la Roi et al., 2020; Leszczensky and Pink, 2020; Mercken et al., 2009, 2012; Steglich et al., 2012; Windzio, 2021; Zhang et al., 2020). For each effect, the overall null hypothesis that the effect was 0 in all schools was tested using Fisher's combination of one-sided tests procedure with two onesided tests (Fisher, 1925; Hedges and Olkin, 1985). To control for multiple (left and right) testing, there was deemed to be sufficient evidence for a significant effect if a one-sided test produced a pvalue of $p \le 0.005$. The null hypothesis that the effect parameter estimates are constant across schools ("heterogeneity across schools" test) was tested using the methods of Cochran (1954), adapted for social network analysis by Snijders and Baerveldt (Cochran, 1954; Snijders and Baerveldt, 2003). A p-value ≤ 0.01 indicated significant differences across schools.

For each outcome, meta-analyses were repeated for subgroups of schools, and the null hypothesis that effect parameter estimates are constant across subgroups ("heterogeneity across subgroups" test for NI versus Bogotá, and ASSIST versus Dead Cool), was tested using methods described in the Cochrane Handbook (Higgins and Thomas, 2022). A *p*-value ≤ 0.01 indicated significant differences across subgroups. For the peer selection and peer influence effects, we have also highlighted which results would have attained statistical significance after using the Holm–Bonferroni procedure to adjust the *p*-values for multiple testing ($p \leq 0.025$ for Fisher's tests, $p \leq 0.05$ for heterogeneity tests across schools or subgroups) (Holm, 1979).

The relative contribution of peer selection effects, peer influence effects, and control or alternative explaining mechanisms, to similarities in each of the smoking/vaping outcomes between friends was calculated based on the decomposition of the mean Moran's I statistic from networks simulated under different model specifications in each school: (1) including both peer selection and peer influence effects ("Full"); (2) excluding peer selection effects ("Excluding PS"); (3) excluding peer influence effects ("Excluding PI"), and; (4) excluding peer selection and peer influence effects ("Excluding PS and PI"). For each model specification, 500 networks were simulated from the SIENA model results on the observed networks in each school (24,000 simulated networks in total for outcomes with all 12 schools included). Moran's I is a spatial autocorrelation coefficient measuring the similarity of individuals linked in a network on variables of interest (Cliff and

Ord, 1981; Moran, 1950). The percentage of network autocorrelation attributable to peer selection, peer influence, undetermined (either peer selection or peer influence, but not able to distinguish which), and control (or alternative explaining mechanisms), was calculated by comparing the average Moran's I across the simulated networks in each school under model specifications (1)-(4). Violin plots were used to plot the distributions of Moran's I statistics from the simulated networks in each school under each model specification (1)-(4), and stacked bar charts were used to show the relative contribution of peer selection effects, peer influence effects, and control (or alternative explaining mechanisms) to similarities between friends for each of the smoking/ vaping outcomes. Further information on the statistical terms and methods used in the SIENA models is available in the 'Glossary' subsection of the Supplementary Methods.

Results

Descriptive statistics and distributions of variables are shown in Table 1, Supplementary Figs. S3-S49, and Supplementary Table S3). Baseline network graphs and statistics for friendship networks collected in each school at baseline and follow-up are shown in Figs. 2 and 3, and Table 3. Supplementary Figs. S50-S73 show network graphs at baseline and follow-up for each school. Supplementary Table S4 shows Moran's I statistics for each of the smoking/vaping outcomes calculated from the observed networks in each school at baseline and follow-up. Supplementary Table S5 shows descriptive statistics for average friend response variables. Throughout the results section, results are reported for models showing significant associations ($p \le 0.01$). Throughout the results tables and supplementary tables, we have also highlighted which results would have attained statistical significance $(p \le 0.05)$ after using the Holm–Bonferroni procedure to adjust the *p*-values for multiple testing (Holm, 1979).

Objective 1: Selection homophily effects estimated using mixed-effects logistic regressions. Mixed-effects logistic regressions examining selection homophily effects are reported in Table 4. Throughout the following paragraphs, ORs are reported for models including the comparable re-scaled predictor variables (0–10).

Predictors of friendship nominations at baseline. The odds of a friendship nomination at baseline were significantly reduced with a one-unit increase in absolute difference between the focal participant and a potential friend for the following outcomes at baseline: experimentally measured injunctive norms P2S7, P2S8, and the experimental injunctive norms scale (average of P2S2-P2S9); experimentally measured descriptive norms P3Q1, P3Q2, and the experimental descriptive norms scale (average of P3Q1-P3Q2); donations to ASSIST/Dead Cool; self-report injunctive norms IN2, IN3, IN5-IN7, and the self-report injunctive norms scale (average of IN1-IN7); self-report descriptive norms DN1.1-DN1.3, DN2.1, DN2.3, and the selfreport descriptive norms scales 1 and 2 (averages of DN1.1-DN1.5 and DN2.1-DN2.3 respectively); self-report smoking behavior, intentions, attitudes, self-efficacy (emotional, friends, opportunity), perceived risks (physical and social), perceived behavioral control (easy to quit); and objectively measured smoking behavior [ORs = 0.87-0.99, $p \le 0.003$]. The odds of a friendship nomination at baseline were significantly increased if the focal participant and potential friend had matching susceptibility statuses at baseline [OR = 1.20, p < 0.001].

Baseline predictors for adding friends between baseline and followup. The odds of adding a potential friend between baseline and

Table 2 Effects included in SIENA models for modeling the co-evolution of friendship ties and smoking/vaping outcomes.

Effects		Description
Friendship network evolution		
Constant friendship rate (period 1)	Rate effect.	A constant term representing the dependence of friendship nominations on the period (i.e., the rate of changing friendship ties in period 1).
Smoking/vaping outcome alter ^a	Peer selection effects	The sum of the smoking/vaping outcome over all actors to whom ego is tied. Represents the association between the smoking/vaping outcome level and the
Smoking/vaping outcome squared alter ^{a,b}		tendency to be nominated as a triend. The sum of the squared (centered) smoking/vaping outcome over all actors to whom ego is tied. Represents the marginal association between the smoking/vaping outcome level and the tendency to be nominated controlling for the previous effect
Smoking/vaping outcome ego ^a		Ego's outdegree (number of friendship nominations) weighted by his/her value of the smoking/vaping outcome. Represents the association between the smoking/vaping outcome level and the tendency to nominate friends.
Smoking/vaping outcome similarity		The sum of centered similarity scores on the smoking/vaping outcome between ego
(peer selection homophily) ^a		and the other actors to whom ego is tied (higher similarity scores indicate greater similarity between ego and the actors to whom ego is tied). Represents the
		tondancy to select a friend based on similarity on the smeking /yaning outcome
Outdegree (density)	Control effects	Ego's out-degree (number of friendship nominations). Represents the general tendency to pominate friends (i.e. the density of the network)
Reciprocity		The number of ego's reciprocated ties. Represents the tendency to return friendship nominations
Transitive ties		The number of actors to whom ego is directly as well as indirectly tied. Represents the tendency to select a friend who is already friends with one of an adolescent's other friends.
Transitive triplets		The number of transitive patterns in ego's relations (i.e., ordered pairs of actors, both of whom are tied to ego, and also tied to each other). Represents the tendency to select further friends of friends in addition to the first such friend, which is represented by the previous "transitive ties" effect.
Number of actors at distance 2		The number of actors to whom ego is indirectly tied, through at least one intermediary. Represents the tendency to be indirectly (through one of your friends) instead of directly connected to others.
Three-cycles		Ego's number of three cycles. Represents a generalized form of reciprocity, or the tendency to stay indirectly tied to other actors within a closed triad (actor 'a' nominates actor 'b', actor 'b' nominates actor 'c', actor 'c' nominates actor 'a'). A significant negative "Three-cycles" effect, in addition to positive "Transitive ties" or "Transitive triplets" effects, may be interpreted as a tendency towards local hierarchy within the network.
Gender alter Gender ego		Tendency for girls/PNTS to be selected as friends more often compared to boys. Tendency for girls/PNTS to select more friends compared to boys
Gender similarity		Tendency to select a friend based on similar gender
Age alter		Tendency for older nunits to be selected as friends more often compared to younger
		pupils.
Age ego		Tendency for older pupils to select more friends compared to younger pupils.
Age similarity		Tendency to select a friend based on similar age.
SES alter ^c		Tendency for pupils with higher SES to be selected as friends more often compared to pupils with lower SES.
SES ego ^c		Tendency for pupils with higher SES to select more friends compared to pupils with lower SES.
SES similarity ^c		Tendency to select a friend based on similar SES.
School class similarity		The number of ties ego has to all other actors in the same school class. Represents the tendency to nominate a friend based on being in the same school class.
Smoking/vaping outcome evolution		
Rate smoking/vaping outcome (period 1)	Rate effect.	A constant term representing the dependence of the level of smoking/vaping outcome on the period (i.e., the tendency for individuals to change their values of the smoking/
Smoking/vaping outcome friends	Peer influence	vaping outcome in period 1). Average similarity effect. The average of centered similarity scores on the
(peer influence) ^a	effects.	smoking/vaping outcome between ego and the other actors to whom ego is tied (higher similarity scores indicate greater similarity between ego and the actors to whom ego is tied). Represents the tendency for ego to change his/her value of the smoking/vaping outcome to become similar to current friends.
Linear shape	Control effects.	Ego's value of the smoking/vaping outcome. Represents the general trend of the smoking/vaping outcome variable.
Quadratic shape ^b		Ego's squared value of the smoking/vaping outcome. Represents the effect of the smoking/vaping outcome on itself, controlling for the previous effect (where the attractiveness of further increases/decreases in the smoking/vaping outcome depends on the actor's current value of the outcome).

Table 2 (continued)	
Effects	Description
Effect from ego's gender	Effect of ego's gender on ego's own value of the smoking/vaping outcome (higher values indicate girls/PNTS tend to have higher values of the smoking/vaping outcome compared to boys).
Effect from ego's age	Effect of ego's age on ego's own value of the smoking/vaping outcome (higher values indicate older pupils tend to have higher values of the smoking/vaping outcome compared to younger pupils).
Effect from ego's SES ^c	Effect of ego's SES on ego's own value of the smoking/vaping outcome (higher values indicate pupils with higher SES tend to have higher values of the smoking/vaping outcome compared to pupils with lower SES).

PNTS prefer not to say, SES socio-economic status, SIENA simulation investigation for empirical network analysis.

^aSmoking/vaping outcomes examined in SIENA models are experimental injunctive norms scale, experimental descriptive norms scale, experimental domation to ASSIST/Dead Cool, self-report injunctive norms scale, self-report descriptive norms scale, self-report descriptive norms scale, self-report descriptive norms scale, attitudes, self-efficacy (emotional, friends, and opportunity subscales), perceived risks (physical, social, and addiction subscales), perceived behavioral control (easy to quit), perceived behavioral control (to avoid smoking), objectively measured smoking behavior, and smoking suscentibility (see details in Suonlementary Table 52).

measured smoking behavior, and smoking susceptibility (see details in Supplementary Table S2). ^bThe "Smoking/vaping outcome squared alter" and "Quadratic shape" effects are not included for the outcome "Smoking susceptibility" (which is a binary outcome variable), as these effects are only relevant for outcomes with three or more categories (Ripley et al., 2022; p. 51).

^cSES effects are not included for school 3 (all actors in the network had the same value of the SES covariate).

The rows highlighted in bold indicate the main "peer selection homophily" and "peer influence" effects.

Fig. 2 Baseline friendship networks for Northern Ireland schools. Note: different colored nodes indicate different school classes. **a** School 1 (Northern Ireland Dead Cool school). **b** School 2 (Northern Ireland ASSIST school). **c** School 3 (Northern Ireland Dead Cool school). **d** School 4 (Northern Ireland ASSIST school). **e** School 5 (Northern Ireland Dead Cool school). **f** School 6 (Northern Ireland ASSIST school).

follow-up were significantly reduced with a one-unit increase in absolute difference between the focal participant and a potential friend for the following outcomes at baseline: experimentally measured injunctive norms P2S2, P2S7, P2S8, and the experimental injunctive norms scale (average of P2S2–P2S9); donations to ASSIST/Dead Cool; perceived physical risks; and objectively measured smoking behavior [ORs = 0.90–0.97, $p \le 0.01$]. The

odds of adding a potential friend between baseline and follow-up were significantly increased if the focal participant and potential friend had matching susceptibility statuses at baseline [OR = 1.16, p = 0.001].

Follow-up predictors for adding friends between baseline and follow-up. The odds of adding a potential friend between baseline

Fig. 3 Baseline friendship networks for Bogotá schools. Note: Different colored nodes indicate different school classes. a School 7 (Bogotá ASSIST school). b School 8 (Bogotá Dead Cool school). c School 9 (Bogotá Dead Cool school). d School 10 (Bogotá ASSIST school). e School 11 (Bogotá ASSIST school). f School 12 (Bogotá Dead Cool school).

and follow-up were significantly reduced with a one-unit increase in absolute difference between the focal participant and a potential friend for experimentally measured injunctive norm P2S8 at follow-up [OR = 0.96, p = 0.001], and significantly increased if the focal participant and potential friend had matching susceptibility statuses at follow-up [OR = 1.26, p < 0.001].

Baseline predictors for dropping friends between baseline and follow-up. The odds of dropping a baseline friend at follow-up were significantly increased with a one-unit increase in an absolute difference between the focal participant and the friend for the following outcomes at baseline: self-report injunctive norms IN3, IN6, IN7, and the self-report injunctive norms scale (average of IN1–IN7); self-report descriptive norms DN1.1, DN1.5, DN2.1, and the self-report descriptive norms scale 2 (average of DN2.1–DN2.3); self-report smoking behavior, self-efficacy (emotional, friends, opportunity), and perceived social risks [ORs = 1.04-1.10, $p \le 0.004$].

Follow-up predictors for dropping friends between baseline and follow-up. The odds of dropping a baseline friend at follow-up were significantly increased with a one-unit increase in absolute difference between the focal participant and the friend for the following outcomes at follow-up: experimentally measured injunctive norm P2S7; experimentally measured descriptive norms P3Q1, P3Q2, and the experimental descriptive norms scale

(average of P3Q1–P3Q2); self-report injunctive norms IN3, IN6, IN7, and the self-report injunctive norms scale (average of IN1–IN7); self-report descriptive norms DN1.1, and DN2.1; self-report smoking behavior, intentions, attitudes, self-efficacy (emotional, friends, opportunity), perceived social risks; and objectively measured smoking behavior [ORs = 1.03–1.19, $p \le 0.007$].

Objective 2: Peer influence effects estimated using ordinary least square regressions. Peer influence effects are reported in Table 5. Throughout the following paragraphs, the word "friends" in parentheses denotes an influence effect from the average responses of the focal participant's friendship network, "class" denotes an influence effect from the average responses of the focal participant's school class, and "year" denotes an influence effect from the average regroup. References to 'positive' influence effects mean that focal participant outcomes were positively associated with the outcomes of friends, school classes, or school year groups, and not necessarily that outcomes were changing in a more favorable (anti-smoking) direction. Throughout the following paragraphs, standardized regression coefficients (β) are reported.

Peer influence effects from average baseline responses of friends, school classes, and school year groups. There were positive influence effects from average baseline responses for the following

Setting	School	Year group size (nodes)	Time- point ^a	Participants with identifiable nominations	Edges	Mean (SD) nominations ^b	Network density ^c	Dyadic reciprocity ^d	Edgewise reciprocity ^d	Number of reciprocated ties ^d	Total number of transitive ties ^e	Mean (SD) number of transitive ties ^e	Transitivity ^f	Transitive triplets ^f	Mean (SD) number of actors at distance 2 ^g	Mean (SD) proportion of network at distance 2 ^g	Three- cycles ^h	Jaccard index ⁱ
z		83	Base	73 70	537	7.36 (2.40)	0.079	0.45	0.62	167 151	536	6.00 (3.15) E 07 (2.23)	0.45	1513	14 (8) 15 (0)	0.17 (0.10)	430	0.4435
	2	120	Base	105	849	7.47 (2.53) 8.09 (2.53)	0.059	0.40	0.57	243	0.24 838	6.41 (3.60)	0.42	2656	(11) (11) (11)	0.15 (0.09)	722	0.4033
	I	1	Ð	95	755	7.95 (2.49)	0.053	0.38	0.55	208	745	5.51 (3.75)	0.43	2269	15 (10)	0.13 (0.09)	575	
	m	115	Base	101	851 757	8.43 (2.32)	0.065	0.41	0.58	247	848	6.63 (3.54)	0.44	2825	18 (11) 17 (11)	0.16 (0.10)	748	0.4556
	4	125	Base	88 102	0c/ 787	(2.57) 27.7	0.051	0.35	0.52	205	067	5.58 (3.77)	0.37	2316 2015	(11) (1) (1) (1)	0.13 (0.08)	464 494	0.3996
		1	Ð	98	740	7.55 (2.60)	0.048	0.31	0.47	173	732	5.10 (3.69)	0.34	1575	16 (12)	0.13 (0.10)	322	
	5	97	Base	85 00	706	8.31 (2.41)	0.076	0.41	0.58	204	702	6.72 (3.45)	0.44	2192	18 (10)	0.19 (0.11)	550	0.5552
		170	P	93 117	18/	8.46 (2.20)	0.080	0.45	0.62	243	78/	(6/.7) /9//	0.45	9/87		01.0) 12.0	96/	C 717 0
	D	0/1	FLI	140	1015	(24.2) (2.63)	0.037	0.37	0.49	747	998	4.84 (3.57)	0.30	5975	20 (12) 13 (10)	0.08 (0.06)	470 470	0.41.0
Bogotá	7	148	Base	135	957	7.09 (2.71)	0.044	0.32	0.48	232	950	5.56 (3.27)	0.38	2366	17 (9)	0.11 (0.06)	559	0.3433
		1	Ξ,	133	796	5.98 (2.62)	0.037	0.41	0.58	232	787	4.51 (3.04)	0.40	1770	13 (8)	0.09 (0.05)	504	
	ø	107	Base	103	703	6.83 (2.68)	0.062	0.38	0.55	193	698	5.76 (3.01)	0.39	1757	16 (7) 15 (7)	0.15 (0.06)	465	0.4238
	σ	106	Race	97	160	(1277) 10.0 (1277) 12.0	7900	0.41	0.50 17 0	190	045 7.41	5.33 (3.U3) 6.09 (3.28)	0.37	0161	(/) cl (01) 22	0.14 (0.07)	423	0.4108
	•	2	FII	50	641	(1 / 72 (2 84)	0.000	46.0		163	029	5 09 (3 26)	12.0	1789	17 (10)	019 (010)	341	2
	10	133	Base	120	828	6.90 (2.50)	0.047	0.38	0.55	227	821	5.20 (2.91)	0.33	1820	19 (12)	0.14 (0.09)	498	0.327
			5	119	775	6.51 (2.50)	0.044	0.40	0.57	221	768	4.98 (3.02)	0.37	1746	16 (10)	0.12 (0.08)	473	
	11	92	Base	75	473	6.31 (2.80)	0.056	0.35	0.52	122	463	4.32 (3.17)	0.36	166	13 (9)	0.14 (0.10)	255	0.2623
	ç	0.1	5,	63	374	5.94 (2.80)	0.045	0.40	0.57	107	367	3.36 (3.12)	0.46	859	8 (8)	0.09 (0.09)	218	
	2	140	base FU	103	739 590	6.84 (2.69) 5.73 (2.42)	0.030	0.33	0.49	177	/31 584	4.22 (3.44) 3.34 (2.95)	0.33	939 939	11 (9)	0.08 (0.06)	348 233	0.3772
			2			<u>,</u>												
<i>NI</i> Northe ^a Base: ba: ^b Mean (S) up (3 had up (3 had the same identifiabl SD = 6.2) cThe ratio ^d ln directe the propoi eThe total thransitivial	rn Ireland selline; FU O) friends schold nt schold nt rend r of obser number number vy is the r to actor	J. SD stanc I: follow-up ship nomini fiable nomi fiable nomi ass. At folk nomination. rage schoo ved edges ks, reciprot dges in the dges in the dges in the of transitiv c'. The Tr 'c'. The Tr	that deviati ations base nations). T ow-up 569 ow-up 569 s at baselir of year grou to the tota city occurs of metwork t a network t ansitivity a	ion. do n pupils who I here were 95381 here ware 95381 re, and 7.0 at fol up size was 125.7%, the nan actor re when an actor re that are teciprois is to the number is to transitive pul ind Transitive pul ind Transitive pul	friendship nr friendship nr 1) nominatior 1) nominatior 1) nominatior 1) nominatior 1) nomination 1) nomination 2)	least one identifial ominations at basis as were of friends sed on participant. 5 of 26.7 (Ni: from another acto there there is a dil where there is a dil the secont for "world".	ble friend nor leline (9403 [from the sar s providing a an = 127.1, S1 and sends ated ties in th react (friendsh react friendsh react friendsh friendsh react friendsh friendsh react friendsh react fri	mination. There 98.6%J were ic me school class it least one ider 2 = 32.0; Bogol a tie back to thr he network is c mip nomination) reit to that onal ninstitivity (fi.e, al	were 1266 partic lentifiable) and £ Lantifiable friend no tifiable friend no tatione = 124.4 s same actor. Dy alculated as 0.5 as well as an in umber of transiti umber of transiti ctor 'a' nominate	ipants who normi (4.76 friendship nu (4.76 friendship nu (4.76 friendship nu (4.76 friendship nu (4.76 friendship nu (5.45 sec) (5.45 sec) (5.45 sec) (5.45 sec) (1.64 sec) (1.	ated at least or minations at fo) identifiable fri, werage school (ih network had ifers to the pror- cicity)*(Numbe (through a mu stwork A transii ° forominates a	the friend at basel llow-up (8404 [end nominations class size was 2: one component or of edges in the tub friend occurs tive tad occurs xctor 'c', and act	ine (5 had no ide 99.2%) were ide were reciprotal 8.3 with a stand that are symmet i mean (50) nur when if actor 'a' when if actor 'a'	antifiable nomin entifiable). At be lead (follow-up: 1 and deviation (5 ric (i.e., the ratic neber of transitiv sconnected to actor (2).	ations), and 1200 ' iseline 6473/9405 i= 4598/8404 [5 5D) of 6.8 (NI: me 5D) of 6.8 (NI: me ion trutuals to non e tites is based on actor b' and actor	who nominated at lea 3 (68.3%) nominatio 4.7%). On average can = 24.5, SD = 5.0 n-null dyads). Edgew the total number of the total number of the total number of the total number of	st one friend is were of fri participants Bogotá: me: Bogotá: me: se reciprocit is reciprocit to r'c', then	at follow- ands from made 7.5 in = 32.1, r refers to network.
⁸ Mean () ^h Total nui ⁱ Jaccard si at least or	U) numo mber of t milarity ir re of the	er of actor: hree-cycles hdex meast networks [s tied to ea s in the nea ures the de baseline or	ach node througr twork (i.e., closec gree of similarity r follow-up]). Rai	1 at least on d triads in w between the nge: 0 (com	ne intermediary (i. vhich actor 'a' nor e friendship netwo obletely dissimilar	.e., number o minates actor orks at baselir) to 1 (compl	f actors at geo r 'b', actor 'b' n ne and follow-uj letelv similar).	desic distance Z ominates actor ' p in each school.	(שכ) and mean (כ', and actor 'כ' n It is computed fo	proportion or i ominates actor r each school as	the network tiea 'a'). :: (the number of	to each node tr edges that are c	nrougn at least . common to the t	one intermediary. aseline and follow	Calculated baseg on /-up network)/(the t	directed net otal number c	vorks. f edges in

stigating selection homophily effects: (1) for friendship nominations at baseline; (2) for adding friends between	en baseline and follow-up.
ed-effects logistic regressions investigating selection homophily effects: (1,	; or (3) for dropping friends between baseline and follow-up.
Table 4 Results of mix	baseline and follow-up;

Outcomes	Time- point	(1) Basel	ine friend nomir	lations			(2) Addin	ig friends from th	ie school y	ear group		(3) Drop	ping friends fr	rom the sc	hool year group	
		Original (scale		Re-scaled (0-10)	JCC	Original s	cale		Re-scaled (0-10)	JCC	Original	scale		Re-scaled (0-10)	ICC
		=	OR (SE) ^a	p-value	OR (SE) ^b		=	OR (SE) ^a	p-value	OR (SE) ^b			OR (SE) ^a	p-value	OR (SE) ^b	
Experiment Part 2: Injunctiv	'e norms for	smoking/va	aping $(-1 = "extra}$	emely socially	· inappropriate" to ·	+1 = "extri	emely social	lly appropriate").	200			L				
P252	t = base t = fu	106,804	0.99 (0.04)	0./8	0.998 (0.008)	c10.0	99,869 100.298	0.81 (0.07) 0.91 (0.06)	0.20	0.96 (0.02) 0.98 (0.01)	0.079	6935 (6858 ()./8 (0.08) .86 (0.08)	0.02	0.97 (0.02)	0.130
P2S3	t = base	106,644	0.98 (0.04)	0.55	0.995 (0.008)	0.015	99,723	0.93 (0.06)	0.29	0.99 (0.01)	0.083	6921 1	104 (0.09)	0.68	1.007 (0.02)	0.142
	t = fu						100,455	1.04 (0.07)	0.52	1.009 (0.01)	0.080	6865 1	(010) (0.10)	0.21	1.02 (0.02)	0.132
P2S4	t = base	106,804	0.99 (0.03)	0.77	0.998 (0.006)	0.015	99,869 100,007	0.94 (0.05)	0.30	0.99 (0.01)	0.082	6935 1	1.01 (0.07)	0.89	1.002 (0.01)	0.142
1761	t = tu					1500	100,08/	0.96 (0.06)	16.0		0.080	684/ 1001	(14 (0.09)	0.12	1.03 (0.02)	0.130
CC24	t = base t = fu	106,804	0.94 (0.03)	0.07	(/00.0) 66.0	دו <u>0.</u> 0	99,869 100,455	0.90 (0.06) 0.94 (0.06)	0.08 0.32	0.99 (0.01) 0.99 (0.01)	0.080	6935 6865 1	(10.08) (11) (11) (11) (11) (11) (11) (11) (1	0.04 0.02	1.03 (0.02) 1.04 (0.02)	0.142 0.132
P2S6	t = base	106,478	0.92 (0.03)	0.02	0.98 (0.007)	0.015	99,578	0.93 (0.05)	0.20	0.99 (0.01)	0.083	0069	0.88 (0.06)	0.07	0.97 (0.01)	0.145
	t = fu						100,061	0.94 (0.06)	0.30	0.99 (0.01)	0.081	6847 ((10.0) 0.07)	0.99	0.9998 (0.01)	0.132
P257	t = base	106,804	0.81 (0.03)	<0.001	0.96 (0.007)	0.015	99,869 100 200	0.84 (0.05)	0.004	0.97 (0.01)	0.082	6935 (0.98 (0.07)	0.75	0.995 (0.01)	0.142
PJC8	t — hace	106 804	0 82 (0 03)	<0.001 ^f	0 96 (0 007)	0.015	90 260	0 73 (0.05)		(10.0) 66.0	0.080	1 12000				0142
0	t = fu			2000			100,455	0.82 (0.05)	0.001	0.96 (0.01)	0.080	6865 ((0.08)	0.74	0.99 (0.02)	0.132
P2S9	t = base	106,804	0.92 (0.04)	0.04	0.98 (0.008)	0.015	99,869	0.89 (0.06)	0.05	0.98 (0.01)	0.082	6935 (0.95 (0.08)	0.56	0.99 (0.02)	0.142
	t = fu						100,298	(90.0) 06.0	0.14	0.98 (0.01)	0.080	6858 1	.16 (0.10)	0.08	1.03 (0.02)	0.134
Experimental injunctive	t = base	106,318	0.80 (0.05)	0.001	0.96 (0.01)	0.015	99,432	0.66 (0.08)	0.001	0.92 (0.02)	0.082	6886 (0.95 (0.13)	0.71	0.99 (0.03)	0.144
norms scale (average P2S2-P2S9)	t = tu						99,387	0.82 (0.09)	0.06	0.96 (0.02)	6/0.0	- cl 89	(61.0) 25.	c0.0	1.06 (0.03)	0.131
Experiment Part 3: Descript	ive norms fc	or smoking∕∿	vaping $(-1 = "noi$	re of my peer	s" to $+1 =$ "all of r	ny peers")										
P3Q1	t = base	106,804	0.84 (0.03)	<0.001 ^f	0.97 (0.006)	0.014	99'869	0.89 (0.04)	0.03	0.98 (0.01)	0.081	6935 1	1.06 (0.07)	0.35	1.01 (0.01)	0.143
	t = fu						100,455	0.96 (0.04)	0.34	(600.0) 66.0	0.080	6865 1	1.20 (0.07)	0.002	1.04 (0.01)	0.132
P3Q2	t = base	106,644	0.85 (0.02)	<0.001 [†]	0.97 (0.006)	0.014	99,712 100 4FF	0.98 (0.05)	0.69	0.996 (0.009)	0.082	6932 1	1.02 (0.06)	0.75	1.004 (0.01)	0.143
	t = TU			10001		1000	C17,00	0.93 (0.04)	0.1		0.080		(10.0) (1.0)	0.003		0.133
Experimental descriptive porms scale	t = base + fu	106,644	(20.0) 28.0	-100'0>	(/00.0) 96.0	0.014	99,712 100 455		67.0 71 0			6932 (0.01	(10.0) 866.0	0.133
(average P301–P302)									1.0	(10.0) (2.0	0000		100.00	0000	(10:0) 50:1	2010
Experiment Part 4: Willingr	iess to pay i	to support ai	nti-smoking norm.	s (Donations	to ASSIST/Dead C	ool; 0 = "	0 tokens doi	nated" to $10 = "10$	tokens don	ated")						
Donation to ASSIST/	t = base	106,640	0.97 (0.006)	<0.001 ^f	0.97 (0.006)	0.016	99,718	0.97 (0.009)	0.006	0.97 (0.009)	0.083	6922 ((10.0) 666.0	0.91	0.999 (0.01)	0.143
Dead Cool	t = fu						100,218	0.98 (0.01)	0.03	0.98 (0.01)	0.080	6854 1	(10.0) 20.	0.15	1.02 (0.01)	0.131
Self-report injunctive smoki.	ng norms (-	-2 = "think(;	s) that I definitely	/ should smok	e'' to +2 = "think(.	s) that I d	efinitely sho	uld not smoke").	0		000	2001		;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		0
IN	t = base	113,380	0.96 (0.02)	0.02	(100.0) 86.0	0.01/	106,099		86.0	0.004 (0.01)	0.082	187/	.06 (0.04)	0.11		0.139
CNI	t = hase	113 642	(20,0) 26,0	0.001	(10.0) (0.01)	0.017	1/0/201	(20.0) 866.0 104 (005)	0.34 0.34	(10.0) 666.0 102 (000)	0.081	C02/	(90.0) 201	0.00 0.28	1.02 (0.07)	0.139
4	t = fu						105.952	0.99 (0.04)	0.75	0.995 (0.01)	0.080	7276 1	.10 (0.05)	0.04	1.04 (0.02)	0.133
IN3	t = base	113,320	0.94 (0.01)	<0.001 ^f	0.98 (0.006)	0.016	106,056	0.995 (0.03)	0.86	0.998 (0.01)	0.081	7264 1	13 (0.04)	0.001	1.05 (0.01)	0.134
	t = fu						105,786	1.01 (0.02)	0.54	1.006 (0.01)	0.080	7266 1	(0.03) (0.03)	0.007	1.03 (0.01)	0.134
IN4	t = base	113,044	0.97 (0.01)	0.05	0.99 (0.005)	0.017	105,786	1.008 (0.02)	0.72	1.003 (0.009)	0.082	7258 1	1.04 (0.03)	0.23	1.01 (0.01)	0.140
	t = fu	0.00		,			105,786	0.996 (0.02)	0.87	0.998 (0.009)	0.081	7266 1	1.06 (0.03)	0.04	1.02 (0.01)	0.136
SNI	t = base t - fu	113,218	0.95 (0.01)	<0.001	0.98 (0.005)	0.016	105,953 105 786		0.19	0.99 (0.009) 0 996 (0 009)	0.083	1 265/	.03 (0.03)	0.33	1.01 (0.01)	0.140
IN6	t = base	113.480	0.92 (0.01)	<0.001 ^f	0.97 (0.006)	0.016	106,205	0.96 (0.02)	0.07	0.98 (0.009)	0.082	7275 1		<0.001 ^f	1.05 (0.01)	0.136
	t = fu						105,786	0.98 (0.02)	0.49	0.99 (0.009)	0.081	7266 1	14 (0.04)	<0.001 ^f	1.05 (0.01)	0.131
IN7	t = base	113,480	0.94 (0.01)	<0.001 ^f	0.98 (0.006)	0.017	106,205	0.97 (0.02)	0.24	(600.0) 66.0	0.082	7275 1	1.17 (0.03)	<0.001 ^f	1.07 (0.01)	0.135
	t = fu						105,952	0.97 (0.02)	0.17	0.99 (0.009)	0.080	7276 1	1.15 (0.03)	<0.001	1.06 (0.01)	0.130

4 . ,

Table 4 (continued	0															
Outcomes	Time- point	(1) Basel	line friend nomi	nations			(2) Addin	g friends from th	ie school y	year group		(3) Drop	oping friends fr	om the sc	hool year group	
		Original	scale		Re-scaled (0-10)	ICC	Original s	cale		Re-scaled (0-10)	ICC	Original	scale		Re-scaled (0-10)	ICC¢
		u	OR (SE) ^a	<i>p</i> -value	OR (SE) ^b		u	OR (SE) ^a	<i>p</i> -value	OR (SE) ^b		Ľ	OR (SE) ^a	<i>p</i> -value	OR (SE) ^b	
Self-report injunctive norms scale (average	t = base t = fu	113,480	0.94 (0.01)	<0.001 ^f	0.94 (0.01)	0.016	105,390 105,622	0.997 (0.05) 0.99 (0.04)	0.95 0.86	0.999 (0.02) 0.997 (0.02)	0.082 0.081	7234 ·	I.25 (0.08) I.21 (0.07)	<0.001 ^t 0.001	1.09 (0.03) 1.08 (0.02)	0.135 0.133
Self-report descriptive smo DN1.1	king norms (t = base	DN1: 1= "sı 113.544	moke(s) very ofte 0.94 (0.02)	$n'' \text{ to } 5 = "n\epsilon < 0.001^{f}$	ever smoke(s)"/"do 0.97 (0.007)	n't know"; 0.016	DN2: 1= "a 106.253	lmost all of them (0.98 (0.02)	smoke" to ! 0.41	5 = "almost none of 0.99 (0.01)	them smol 0.081	ce"/"don't 7291	: know"). 1.21 (0.05)	<0.001 ^f	1.08 (0.02)	0.135
	t = fu	200 611		2007		150 0	106,201	0.98 (0.02)	0.30	(600.0) 66.0	0.080	7285	118 (0.04)	<0.001 ^f	1.07 (0.01)	0.136
	t = base t = fu	000/011	(10.0) 06.0		0.90 (0.004)	10.0	106,201	1.001 (0.02)	0.96 0.96	1.0004 (0.007)	0.081	7285	(20.0) 6001	0.47	1.01 (0.01)	0.135
DN1.3	t = base t = fu	113,642	0.97 (0.009)	0.001	0.99 (0.004)	0.017	106354 106.201	1.006 (0.02) 1.004 (0.02)	0.72 0.80	1.002 (0.006) 1.002 (0.006)	0.081 0.081	7288 (0.98 (0.02) 0.002 (0.02)	0.37 0.94	0.99 (0.008) 1.0007 (0.008)	0.140 0.135
DN1.4	t = base	113,544	0.99 (0.01)	0.40	0.996 (0.005)	0.017	106,253	0.99 (0.02)	0.67	0.996 (0.009)	0.082	7291	1.03 (0.03)	0.36	1.01 (0.01)	0.139
DN1.5	t = tu t = base	113,544	0.995 (0.01)	0.73	0.998 (0.005)	0.017	106,253	1.02 (0.02) 1.02 (0.02)	0.38	1.008 (0.01)	0.082	, 1627		0.40 0.004	1.04 (0.01)	0.138
Self-report descriptive norms scale 1 (average	t = fu t = base t = fu	113,120	0.86 (0.02)	<0.001 ^f	0.94 (0.009)	0.017	106,201 105,852 106.201	1.02 (0.02) 0.92 (0.04) 0.98 (0.03)	0.38 0.03 0.46	1.008 (0.009) 0.97 (0.02) 0.99 (0.01)	0.080 0.081 0.080	7285 7268 7285	1.06 (0.04) 1.08 (0.06) 1.10 (0.06)	0.07 0.14 0.07	1.02 (0.01) 1.03 (0.02) 1.04 (0.02)	0.134 0.138 0.134
DN1.1-DN1.5) DN2.1	t = base	113806	0.88 (0.02)	<0.001 ^f	0.95 (0.007)	0.016	106505	1.02 (0.03)	0.55	1.006 (0.01)	0.081	7301	1.26 (0.05)	<0.001 ^f	1.10 (0.02)	0.137
	t = fu						106,201	0.98 (0.03)	0.43	0.99 (0.01)	0.081	7285	1.15 (0.04)	<0.001 ^f	1.06 (0.02)	0.134
DN2.2	t = base t = fu	113,806	0.97 (0.01)	0.03	0.99 (0.005)	0.017	106,505 106,045	1.002 (0.02) 0.97 (0.02)	0.92 0.15	1.0009 (0.009) 0.99 (0.008)	0.081 0.081	7275 0	1.03 (0.03) 0.97 (0.03)	0.25 0.37	1.01 (0.01) 0.99 (0.01)	0.140 0.135
DN2.3	t = base t fu	113,806	0.90 (0.02)	<0.001 ^f	0.96 (0.008)	0.016	106,505 106,201	0.97 (0.03)	0.31	(10,0) (0.01)	0.081	7301 7	1.04 (0.04)	0.37	1.02 (0.02) 0 999 (0.02)	0.140
Self-report descriptive	t = base	113,806	0.85 (0.02)	<0.001 ^f	0.94 (0.01)	0.016	106,505	0.96 (0.04)	0.30	0.98 (0.02)	0.081	7301	1.24 (0.07)	<0.001 ^f	1.09 (0.02)	0.137
norms scale 2 (average DN2.1-DN2.3)	t = fu						106,045	0.94 (0.04)	0.09	0.97 (0.01)	0.081	7275	1.08 (0.06)	0.17	1.03 (0.02)	0.135
Self-report smoking behavi Self-report smoking	ior, intention: t — hase	s, knowledge 114.672	s, attitudes, and p	sycho-social	antecedents, and o.	bjectively n	107326	oking behavior <mark>d</mark> 0 98 (0 03)	0 57		0 081	. 9782	1 23 (0.05)	<0.001 ^f	(100) (01)	0 136
behavior (1- 4)	t = fu	N D T		0000			107,326	1.02 (0.03)	0.49	1.006 (0.008)	0.082	7346	(200) (200) 1.25 (0.05)	<0.001 ^f	1.07 (0.01)	0.133
Intentions (1-6)	t = base	113,856	0.95 (0.01)	<0.001 ^f	0.97 (0.006)	0.016	106,569 106 701	1.01 (0.02)	0.59	1.005 (0.009)	0.082	7287	1.04 (0.03)	0.11	1.02 (0.01)	0.138
Knowledge (0-6)	t = base	114,328	0.98 (0.01)	0.12	(900.0) 66.0	0.017	107,005	0.98 (0.02)	0.15	0.99 (0.01)	0.082	7323	1.002 (0.02)	0.93	1.001 (0.01)	0.139
Attitudes (1- 5)	t = fu t = base	111,298	0.87 (0.02)	<0.001 ^f	0.95 (0.01)	0.016	106,489 104,152	0.97 (0.02) 0.98 (0.04)	0.12 0.54	0.98 (0.01) 0.99 (0.01)	0.082 0.079	7303 (7146 (0.98 (0.02) 0.99 (0.05)	0.40 0.87	0.99 (0.01) 0.997 (0.02)	0.135 0.140
Colf_office of	t = fu t = baco	007 611	(10,0), 10,0	, nomi	0.05 (0.008)	9000	105,353	1.009 (0.04)	0.80		0.080	7241	10 (0.06)	<0.001 ^f	1.08 (0.02) 1.05 (0.02)	0.129
(Emotional; 1-6)	t = fu	07/1011		0000			105,675	0.99 (0.02)	0.76	0.997 (0.01)	0.080	7229	1.19 (0.03)	<0.001 ^f	1.09 (0.02)	0.131
Self-efficacy (Friends; 1-	t = base t = fu	114,078	0.91 (0.01)	<0.001 ^f	0.96 (0.007)	0.016	106,765 106.156	0.98 (0.02) 0.98 (0.03)	0.54 0.46	0.99 (0.01) 0.99 (0.01)	0.082 0.081	7313 · 7262 ·	l.11 (0.04) l.17 (0.04)	0.003 <0.001 ^f	1.05 (0.02) 1.08 (0.02)	0.136 0.131
Self-efficacy	t = base	113,900	0.90 (0.02)	<0.001 ^f	0.95 (0.01)	0.016	106,600	0.97 (0.03)	0.32	0.98 (0.02)	0.082	. 2300	1.18 (0.05)	<0.001 ^f	1.09 (0.02)	0.136
(Opportunity; 1-6) Perceived physical risks	t = tu t = base	112,428	0.995	<0.001 ^f	0.95 (0.007)	0.017	106,512 105,222	0.997 (0.03)	0.91 0.008	(10.0) 666.0 (10.0) 70.0	0.081 0.082	7206	1.17 (0.04) 1.003 (0.001)	<0.001 0.02	1.08 (0.02) 1.03 (0.01)	0.129 0.132
(0-100%)	t = fu		(0.0007)				105,979	1.0002 (0.001)	0.86	1.002 (0.01)	0.082	7285	1.002 (0.001)	0.11	1.02 (0.01)	0.134
Perceived social risks	t = base	113,404	0.997 (0.0006)	<0.001 ^f	0.97 (0.006)	0.016	106,128	0.999 (0.000a)	0.19	0.99 (0.009)	0.082	. 9727	1.004	0.001	1.04 (0.01)	0.133
	t = fu t = base	109,822		0.06	(900.0) 66.0	0.016	106,492 102,800	1.0003 (0.001) 0.998 (0.001)	0.72 0.12	1.003 (0.01) 0.98 (0.01)	0.081 0.079	7304	1.005 (0.001)	<0.001^f 0.23	1.05 (0.01) 1.02 (0.01)	0.133 0.137

Outcomes	Time- point	(1) Baseli	ine friend nomin	ations			(2) Addin	ig friends from th	ie school y	ear group		(3) Dro	pping friends fr	om the so	chool year group	
		Original s	scale		Re-scaled (0-10)	υč	Original s	cale		Re-scaled (0-10)	ICC	Origina	l scale		Re-scaled (0-10)	υ CC
		=	OR (SE) ^a	<i>p</i> -value	OR (SE) ^b		"	OR (SE) ^a	p-value	OR (SE) ^b		=	OR (SE) ^a	p-value	OR (SE) ^b	
Perceived addiction risks (0-100%)	t = fu		0.999 (0.0006)				96,488	1.00005	0.97	1.0005 (0.01)	0.080	6666	(100.0) 666.0	0.51	(10.0) 66.0	0.134
Perceived benefits (0-100%)	t = base t = fu	104,778	0.998 (0.0007)	0.02	0.98 (0.007)	0.017	98,117 101,366	(100.0) 7990 (100.0) 7990 (100.0) 9999	0.02 0.32	(10.0) 70.0 0.99 (0.01)	0.083	6661 6982	1.002 (0.002) 1.0006	0.14 0.69	1.02 (0.02) 1.006 (0.01)	0.128 0.135
PBC (easy to quit; 1–5)	t = base	113,238	0.97 (0.01)	0.003	0.99 (0.004)	0.017	105,978	0.97 (0.02)	0.10	0.99 (0.007)	0.082	7260	(0.001) 1.01 (0.02)	0.54	1.01 (0.009)	0.138
PBC (to avoid smoking;	t = tu t = base	113,998	0.98 (0.01)	0.11	0.99 (0.004)	0.017	106,687	0.99 (0.02) 1.003 (0.02)	0.87	(/00.0) 99.0	0.080	7311	1.04 (0.02) 1.04 (0.02)	0.08	1.02 (0.009) 1.02 (0.009)	0.136 0.137
1- 5) Objectively measured smoking behavior (0-	t = tu t = base t = fu	104,680	0.93 (0.01)	<0.001 ^f	0.87 (0.02)	0.015	106,084 97,935 104,927	1.01 (0.02) 0.94 (0.02) 0.97 (0.02)	0.48 0.001 0.16	1.005 (0.007) 0.90 (0.03) 0.95 (0.03)	0.080 0.080 0.083	7268 6745 7231	1.05 (0.03) 1.02 (0.02) 1.10 (0.03)	0.03 0.39 <0.001	1.02 (0.01) 1.03 (0.04) 1.19 (0.06)	0.133 0.135 0.135
30) Smoking susceptibility (binary) ^e	t = base t = fu	113,856	1.20 (0.03)	<0.001 ^f	I	0.017	106,569 106791	1.16 (0.05) 1.26 (0.06)	0.001 <0.001 ^f	1 1	0.082 0.081	7287 7311	0.93 (0.05) 0.96 (0.05)	0.17 0.46		0.138 0.138
Presults are odds ratios, star (D = no friend normination; 1 (D llow-up) C = baseline frien Odds ratios represent the mi- follow-up (t = fu). Reandon in PBC: perceived behavioral or PBC: perceived behavioral or PBC: perceived behavioral or PBC: perceived behavioral or thirdial participant level, v drigher numerical values erg drigher numerical values erg (t = fu). Odds ratios represen- individual participant level, v Retained statistical significa. Bold values show the results	dard errors, an = friend nomir d not dropped; d not dropped; utplicative cha nutrol. predictor varia predictor varia predictor varia inth cluster-rob cients (ICCs) a zresent higher zresent higher inthe tuster-rob core at the 5% meeting the s	d p-values fro ation]; (2) ad 1 = baseline fr 1 = baseline fr mge in odds of included at th included at th included at th measure ust standard (ative change in ust standard (ust standard (level after usi ignificance lev	m mixed-effects log ded a potential frier frier dropped). The inominating/adding individual participa and individual participa do different scales asses in the absolute the stron of the bet this moking outcome whether the focal p rods of nominating arrows m the Holm-Bonfer el of $p \leq 0.01$.	istic regression of from the sch predictor varial state of the sch of the sch	s. In each model, the rool year group betwo ble is the absolute diff and for a one-unit in luster-robust standal luster-robust standal etects bigsistic regress ween the focal partic as those extracted fr aniance to the total. Dijectively measured the same smoking si ping friends for matt a to correct the <i>p</i> -val	e outcome v een baselin ference (on rerease in th. reference. An end ions were r cipant and ti cipant and tipant and tipant and tipant and tipant and ti cipant and ti cip	ariable is a bi e and follow. the originals alyses are by alyses are by the individual sinal model. ister and wit ister and wit	nary variable represent up (0 = potential frit cale) between the fra- fraence between the fra- fraence between the fraence between the ased on participants; the smoking-related on the smoking-related on t	anting wheth and not adde coal participa focal participa providing net d outcome (Killip et al., (Killip et al., represent hi ommencing i-matching si all tests rep	* the focal participan d; 1 = potential frienc and and the individual sout and the individual work data at the two essures re-scaled to essures re-scaled to essures re-scaled to rescred); 2004). 2004). 2004). 2004). 2004). 2004). 2004). 2004 (1 = susception sception sception inty statuses orted in Table 4).	the that (1) no the study of the study alon the study timepoints. Trun betwee at baseline (at baseline at baseline at baseline	minated au minated au ling-related OR: odds r odds r t = base) o t = base) o t = base) o t = base) o t = base) o	individual from the d a friend from the d a friend from the ed outcome variables atto, SE: standard ei atto, SE: standard ei r follow-up (t = fu or follow-up (t = fu or follow-up (t = fu	e school yea school yea e (original s rror; ICC: init seent the mu). Random ir). Random ir). Random ir	r group as a friend at r group between bas r group between bas cales) or follow-ur cales) at baseline (t = raclass correlation cc raclass correlation cc ratercepts were includ thercepts were includ	baseline aline and (t = fu). base) or efficient; odds of ad at the ed at the

outcomes: experimentally measured injunctive norms P2S2 (friends, class, school), P2S5 (friends, class, school), P2S6 (class), P2S7 (friends, class), P2S8 (friends, class, school), P2S9 (class, school), and the experimental injunctive norms scale (average of P2S2-P2S9; friends, class, school); experimentally measured descriptive norm P3Q2 (friends, class, school), and the experimental descriptive norms scale (average of P3Q1-P3Q2; friends, class); self-report injunctive norms IN6 (friends, school), and IN7 (school); self-report descriptive norms DN1.1 (friends, school), DN1.2 (friends), DN2.2 (friends, class, school), DN2.3 (friends, class, school), and the self-report descriptive norms scale 2 (average of DN2.1-DN2.3; friends, class, school); self-report smoking behavior (school), intentions (class, school), knowledge (friends, class, school), attitudes (friends), self-efficacy emotional subscale (class, school), self-efficacy opportunity subscale (class), perceived social risks (friends, class, school), perceived addiction risks (friends, class, school), perceived behavioral control (easy to quit; friends, class, school), perceived behavioral control (to avoid smoking; class, school); and objectively measured smoking behavior (friends, class, school) [friends: $\beta s = 0.07 - 0.27$, $p \le 0.007$; class: $\beta s = 0.07 - 0.26$, $p \le 0.01$; school: $\beta s = 0.08 - 0.37$, $p \le 0.009$]. The odds of being classified as susceptible to commencing smoking at follow-up were significantly increased with a 10% increase in the number of friends classified as susceptible to commencing smoking at baseline (OR = 1.14, p < 0.001).

Peer influence effects from average follow-up responses of friends, school classes, and school year groups. There were positive influence effects from average follow-up responses for the following outcomes: experimentally measured injunctive norms P2S2 (class, school), P2S4 (class), P2S5 (friends, class, school), P2S6 (friends, class, school), P2S7 (friends, class), P2S8 (friends, class, school), P2S9 (friends, class), and the experimental injunctive norms scale (average of P2S2-P2S9; friends, class); experimentally measured descriptive norms P3Q1 (class), P3Q2 (friends, class), and the experimental descriptive norms scale (average of P3Q1-P3Q2; class); donations to ASSIST/Dead Cool (friends, class, school); self-report injunctive norms IN6 (friends, class, school), IN7 (friends), and the self-report injunctive norms scale (average of IN1-IN7; friends); self-report descriptive norms DN1.1 (friends, school), DN2.1 (friends), DN2.2 (school), DN2.3 (friends, class, school), and the self-report descriptive norms scale 2 (average of DN2.1-DN2.3; class, school); self-report smoking behavior (friends, class, school), intentions (friends, school), knowledge (friends, class, school), attitudes (friends), self-efficacy emotional subscale (friends, school), self-efficacy friends subscale (friends), perceived social risks (class, school), perceived addiction risks (friends, class, school), perceived behavioral control (easy to quit; friends, class, school), perceived behavioral control (to avoid smoking; school); and objectively measured smoking behavior (friends, class, school) [friends: $\beta s = 0.08-0.39$, $p \le 0.009$; class: $\beta s = 0.07 - 0.55$, $p \le 0.01$; school: $\beta s = 0.08 - 0.51$, $p \le 0.01$]. The odds of being classified as susceptible to commencing smoking at follow-up were significantly increased with a 10% increase in the number of friends (OR = 1.14, p < 0.001), school class members (OR = 1.17, p = 0.004), or school year group members (OR = 1.31, p < 0.001), classified as susceptible to commencing smoking at follow-up.

Sensitivity analyses. After adjusting models for 'setting', influence effects from average friends' responses became nonsignificant (p > 0.01) for several outcomes, but these models could have been affected by multi-collinearity. Sensitivity analyses using ordered logistic regressions showed minimal change to the results (Supplementary Table S6). There was also minimal change to the results when restricting the analyses investigating peer influence effects from friends to reciprocated friends. Although the p-values increased slightly for some models, this is not surprising given the reduced power from the lower number of observations (Supplementary Tables S7–S9).

Objective 3: Cross-lagged panel models. The CLPMs showed that both the paths representing peer influence from friends ("cross1" in Fig. 1) and selection homophily ("cross2" in Fig. 1) were positive and significant $(p \le 0.01)$ for the following outcomes: experimentally measured injunctive norms P2S2, P2S5, P2S7, P2S8, and the experimental injunctive norms scale (average of P2S2-P2S9); self-report injunctive norm IN6; self-report descriptive norms DN1.2, DN2.2, DN2.3, and the self-report descriptive norms scale 2 (average of DN2.1-DN2.3); self-report intentions, knowledge, perceived social risks, and perceived behavioral control (easy to quit; $\beta s = 0.06-0.17$ for peer influence, $\beta s = 0.08 - 0.14$ for selection homophily). Only the path representing peer influence from friends was positive and significant $(p \le 0.01)$ for the following outcomes: experimentally measured injunctive norm P2S6; experimentally measured descriptive norm P3Q2, and the experimental descriptive norms scale (average of P3Q1-P3Q2); self-report injunctive norm IN7; self-report descriptive norms DN1.1, and DN2.1; self-report attitudes, selfefficacy opportunity subscale, perceived addiction risks; and objectively measured smoking behavior ($\beta s = 0.07-0.30$). However, in these models, the selection homophily path approached significance for the experimental descriptive norms scale, IN7, perceived addiction risks, and objectively measured smoking behavior (p = 0.02). Only the path representing selection homophily was positive and significant $(p \le 0.01)$ for the following outcomes: self-report smoking behavior, self-efficacy friends subscale, perceived behavioral control (to avoid smoking), and smoking susceptibility ($\beta s = 0.09-0.17$). However, in these models, the peer influence path approached significance for selfreport smoking behavior, and smoking susceptibility (p = 0.02; Supplementary Table S10).

Objective 4: SIENA models. The results of the meta-analyses for the main "peer selection homophily" and "peer influence" effect parameters for each of the smoking/vaping outcomes are reported in Table 6. Results are also reported for each subgroup of schools, along with tests for differences across subgroups. Meta-analyses results are reported and discussed in full for each smoking/vaping outcome in Supplementary Tables S11-S31. The results of the main meta-analyses showed that the peer selection homophily effect was positive and significant ($p \le 0.005$) for the model with smoking susceptibility as the behavioral dependent variable (unstandardized Snijders and Baerveldt coefficient [b] = 0.17, SE = 0.06, p = 0.0017). The peer influence effect was positive and significant ($p \le 0.005$) for the models with experimental injunctive norms (b = 3.95, SE = 1.03, p < 0.0001), donations to ASSIST/Dead Cool (b = 4.13, SE = 0.43, p < 0.0001), intentions (b = 5.50, SE = 3.72, p = 0.0023), and objectively measured smoking behavior (b = 8.12, SE = 1.48, p < 0.0001) as the behavioral dependent variable. The peer selection homophily effect was positive, and approached significance for models with selfreport descriptive norms scale 2 (b = 0.38, SE = 0.16, p = 0.0176), self-report smoking behavior (b = 0.30, SE = 0.13, p = 0.0074), and self-efficacy opportunity subscale (b = 0.48, SE = 0.37,p = 0.0111) as the behavioral dependent variable. The peer influence effect was positive, and approached significance for models with experimental descriptive norms (b = 1.57, SE = 0.78, p = 0.0056), self-report descriptive norms scale 1 (b = 3.63, SE = 3.33, p = 0.0115), and knowledge (b = 2.22, SE = 0.64,

p = 0.0051) as the behavioral dependent variable. There were no significant differences across all schools included in the main meta-analyses for the peer selection homophily or peer influence effect estimates for any of the smoking/vaping outcomes ($p \ge 0.0249$).

There were significant differences across 'setting' subgroups for the peer selection homophily effect for the model with objectively measured smoking behavior as the behavioral dependent variable (p < 0.0001), which showed higher peer selection effects in Bogotá (b = 0.59) compared to NI (b = -1.10). There were significant differences across 'setting' subgroups for the peer influence effect for the models with self-report descriptive norms scale 1 (p = 0.0030), intentions (p < 0.0001), self-efficacy emotional subscale (p = 0.0001), and perceived benefits (p < 0.0001) as the behavioral dependent variable. Peer influence effects were higher for NI (b = 5.87 versus Bogotá b = 0.10), NI (b = 13.56 versus Bogotá b = 0.80), NI (b = 2.74 versus Bogotá b = -3.43), and NI (b = -0.43 versus Bogotá b = -1.57), respectively.

There were significant differences across 'intervention' subgroups for the peer selection homophily effect for the model with perceived physical risks as the behavioral dependent variable (p = 0.0089), which showed higher peer selection effects in Dead Cool schools (b = 0.38) compared to ASSIST schools (b = -0.14). There were significant differences across 'intervention' subgroups for the peer influence effect for the models with experimental descriptive norms (p < 0.0001), self-report smoking behavior (p < 0.0001), and perceived benefits (p < 0.0001) as the behavioral dependent variable. Peer influence effects were higher for ASSIST schools (b = 3.25 versus Dead Cool b = -0.08), Dead Cool schools (b = 2.77 versus ASSIST b = 1.31), and ASSIST schools (b = 0.05 versus Dead Cool b = -1.70), respectively.

For each of the smoking/vaping outcomes, the percentages of network autocorrelation attributable to peer selection, peer influence, undetermined (peer selection or peer influence), and control (or alternative explaining mechanisms) effects across all included schools are reported in Table 7. Results are also reported for each subgroup of schools. The violin plots of Moran's I distributions and stacked bar charts of Moran's I decompositions are shown in Figs. 4 and 5 for experimental injunctive norms for smoking/vaping. Violin plots and stacked bar charts for the rest of the smoking/vaping outcomes are shown in Supplementary Figs. S74-S115. The violin plots for experimental injunctive norms showed that the median Moran's I across the networks simulated from SIENA models specified including peer influence effects ("Full model" and "Excluding PS"), was approximately equal to the mean Moran's I across the observed networks in each school at follow-up (and greater than the mean Moran's I across the observed networks at baseline). For networks simulated from SIENA models specified excluding peer influence effects ("Excluding PI" and "Excluding PS and PI"), the median Moran's I lies substantially below the mean observed Moran's I at baseline and follow-up (Fig. 4). The relative contributions of peer selection, peer influence, undetermined peer selection or peer influence, and control effects to similarities between friends for experimental injunctive norms were 0.13%, 89.06%, 3.18%, and 7.63%, respectively (Fig. 5). This supports the meta-analysis results described in the previous paragraph since we found a significant peer influence effect for experimental injunctive norms, but no significant peer selection homophily effect. The Moran's I decompositions also support the other findings for significant peer selection homophily and peer influence effects from the meta-analysis, since we found the greatest proportion of the network autocorrelation was attributable to peer selection effects for smoking susceptibility (54.44%). For donations to ASSIST/Dead Cool, intentions, and objectively measured smoking behavior, the percentages of network autocorrelation

attributable to peer influence were 83.46%, 59.21%, and 90.18%, respectively (Table 7, Supplementary Figs. S74–S115).

Across the 21 smoking/vaping outcomes examined in the SIENA models, the average relative contributions of peer selection, peer influence, undetermined peer selection or peer influence, and control effects to similarities between friends were 32.84%, 39.22%, 1.08%, and 26.86%, respectively. Broken down by subgroup, the percentages were: 23.55%, 44.34%, 2.86%, and 29.25% (NI); 36.52%, 33.87%, 1.91%, and 27.71% (Bogotá); 33.93%, 38.86%, 1.77%, and 25.43% (ASSIST), and; 21.38%, 30.02%, 2.44%, and 46.16% (Dead Cool).

Discussion

The MECHANISMS study was designed to investigate the mechanisms through which social norms for adolescent smoking and vaping behaviors are diffused through school friendship networks in NI and Bogotá (Hunter et al., 2020). If we conceptualize social norms in terms of shared understandings between individuals in social networks about rules and standards that guide social behavior (Cialdini and Trost, 1998; Hunter et al., 2020; Panter-Brick et al., 2006), the Krupka-Weber method of norms elicitation has advantages over other approaches (E. L. Krupka and Weber, 2013). The structure of the game provides incentives for participants to report their beliefs about others' beliefs on the social appropriateness of various actions to assess injunctive norms, or others' approval of various behaviors to assess descriptive norms. The existence of such shared 'secondorder' beliefs (expectations about others' personal normative beliefs) is a theoretical precondition for the existence of a social norm (Bicchieri et al., 2018). Social norms and social influence are co-dependent (Cialdini and Trost, 1998). Therefore, it seems intuitive that we should observe peer influence effects on participants' responses to games designed to elicit shared perceptions about the beliefs of peers. We observed a high proportion of significant peer influence effects for these variables in our OLS regressions (objective 2), and our CLPMs showed the strongest evidence that selection homophily and peer influence from friends were operating together for the experimental norms outcomes, particularly for injunctive norms (objective 3). The SIENA models also showed positive peer influence effects that were significant for the experimental injunctive norms scale and donations to ASSIST/Dead Cool and approached significance for the experimental descriptive norms scale (objective 4). Notably, our mixed-effects logistic regressions showed that the individual experimental injunctive norms items enquiring about the social appropriateness of situations involving vaping and e-cigarettes were important sources of selection homophily (objective 1). This may reflect that tobacco usage patterns have shifted towards alternative products since the introduction of e-cigarettes into the market in the mid-2000s (National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health, 2016; Perikleous et al., 2018; Schneider and Diehl, 2016; Wang et al., 2014). Whilst many countries are adopting comprehensive tobacco-control policies in an effort to "de-normalize" and reduce smoking (including the UK and Colombia) (Action on Smoking and Health (ASH), 2017; Chapman and Freeman, 2008; Colombia Ombudsman Office, 2017; Dubray et al., 2015; Elias and Ling, 2018; Otálvaro-Ramírez et al., 2019), e-cigarettes are increasing in popularity amongst all age groups due to widescale marketing (East et al., 2019; Perikleous et al., 2018). E-cigarettes are gaining traction amongst adolescents who may perceive that they are healthier and safer than conventional cigarettes, and find the different product features attractive (e.g., flavors) (Perikleous et al., 2018). Recent research has also shown that perceived peer approval is higher for vaping compared to

ARTICLE

LUINAANUTIES AND			https://doi:sum/10.1	057 /- 41500 000 00104
HUMAINI IES AINL	SOCIAL SCIENCE	2 COMMUNICATIONS	nttps.//doi.org/10.1	JJ7/S41399-023-02124-1

Outcomes																
	Time-point	Outcom	le variable: Foca	l participant	responses to	outcomes at follo	dn-wo									
		(1) – <i>i</i> =	- Average of nor	ninated frier	nds ^a	(1) − <i>i</i> = Avera§	şe of nomina	ted friends ^b	(2) - <i>i</i> =	= Average of sch	nool class ^a		(3) –i	$m{i}=m{A}m{v}$ erage of so	chool year g	roup ^a
		u	Response_i, _t			Response_i, t			u	Response. _{i, t}			u	Response_i, t		
			b (SE) ^c	<i>p</i> -value	¢d	b (SE) ^c	<i>p</i> -value	₽ď		b (SE) ^c	<i>p</i> -value	βđ		b (SE) ^c	<i>p</i> -value	βd
Experiment Part 2: Injunc	tive norms for sr	noking∕va	thing $(-1 = "extre}$	mely socially	inappropriate"	to +1 = "extremely	socially appr	opriate").								
P2S2	t = base	1073 1018	0.34 (0.09) 0.15 (0.06)	<0.001 0.0.2	0.1396 0.0760	0.27 (0.09) 0.08 (0.06)	0.003	0.1096 0.0399	1087 1087	0.44 (0.12)	<0.001 ⁵	0.1176	1087 1087	0.78 (0.18) 0.57 (0.16)	<0.001 ^h	0.1510 0.1199
P2S3	t = base	1072	0.11 (0.07)	0.11	0.0489	0.12 (0.07)	0.09	0.0508	1086	0.17 (0.16)	0.28	0.0357	1086	0.01 (0.28)	0.96	0.0017
	t = fu	1017	0.12 (0.07)	0.09	0.0535	0.11 (0.07)	0.09	0.0534	1086	0.21 (0.14)	0.12	0.0523	1086	0.18 (0.25)	0.48	0.0213
P254	t = base t = fu	1070 1016	0.13 (0.08) 0.12 (0.07)	0.09	0.0605	0.13 (0.08) 0.09 (0.07)	0.09 0.19	0.0601 0.0424	1084 1084	0.17 (0.12) 0.29 (0.11)	0.15 0.01	0.0424 0.0780	1084 1084	0.46 (0.32) 0.44 (0.20)	0.15 0.03	0.0582 0.0748
P2S5	t = base	1073	0.19 (0.06)	0.002	0.0918	0.19 (0.06)	0.003	0.0897	1087	0.32 (0.10)	0.001	0.0981	1087	0.48 (0.15)	0.001	0.1028
	t = fu	1018	0.17 (0.06)	0.003	0.0902	0.17 (0.06)	0.005	0.0885	1087	0.45 (0.09)	<0.001 ^h	0.1629	1087	0.45 (0.14)	0.001	0.1098
P256	t = base t = fill	1015	0.16 (0.07) 0.16 (0.06)	0.02 0.007	0.0803	0.16 (0.07) 0.15 (0.06)	0.02 0.007	0.0/03 0.0797	1084 1084	0.36 (0.11) 0.45 (0.10)	0.001 <0.001	0.1025 0.1417	1084	0.40 (0.19) 0.51 (0.15)	0.03	0.07/4
P2S7	t = base	1072	0.16 (0.05)	0.003	0.0870	0.16 (0.05)	0.003	0.0861	1086	0.29 (0.09)	0.001	0.1006	1086	0.28 (0.14)	0.04	0.0622
	t = fu	1018	0.27 (0.06)	<0.001 ^h	0.1474	0.27 (0.06)	<0.001	0.1471	1086	0.41 (0.09)	<0.001 ^h	0.1358	1086	0.31 (0.17)	0.07	0.0630
P2S8	t = base	1073	0.30 (0.05)	<0.001 ^h	0.1578	0.30 (0.05)	<0.001	0.1589	1087	0.31 (0.09)	<0.001	0.1037	1087	0.45 (0.14)	0.001	0.0940
	t = tu t = baco	1018	0.23 (0.05)	<0.001	0.1235	0.23 (0.05)	<0.001	0.1228	1087	0.47 (0.08)	<0.001 100 0/	0.1703	1087	0.48 (0.13)	<0.001	0.1083
4C24	t = base t fii	1017	0.16 (0.07)	0.02	0.0711		0.02	0.009/	10.86	(71.0) IC.0 (11.0) IC.0		0.1230	1086		0.00	0.0330
Experimental injunctive	t = base	1064	0.22 (0.06)	<0.001 ^h	0.1098	0.23 (0.06)	<0.001	0.1111	1078	0.35 (0.10)	<0.001	0.1054	1078	0.41 (0.15)	0.005	0.0766
norms scale (average	t = fu	1011	0.25 (0.05)	<0.001 ^h	0.1341	0.25 (0.05)	<0.001	0.1352	1078	0.47 (0.08)	<0.001 ^h	0.1707	1078	0.30 (0.14)	0.03	0.0620
PZSZ-PZS9)	atin norme for a	in opinion	non" - 1 Jonino	moon nun jo or	-" +0 1 - "0 .	("2000 nm 30										
P301	t = hase	1073	(-1) = (-1)	ie uj iriy peer. 0.15	0.0451 = 40	0.10 (0.06)	0.11	0.0503	1087	0.24 (0.11)	0.03	0.0723	1087	0.15 (0.15)	0.33	0.0323
- /)	t = fu	1018	0.09 (0.06)	0.14	0.0466	(90.0) 60.0	0.14	0.0462	1087	0.30 (0.10)	0.004	0.0902	1087	0.20 (0.17)	0.25	0.0354
P3Q2	t = base	1073	0.19 (0.05)	<0.001	0.1017	0.20 (0.05)	<0.001	0.1033	1087	0.31 (0.08)	<0.001 ^h	0.1187	1087	0.32 (0.11)	0.003	0.0927
Eventimonated	t = fu t = baco	1018	0.18 (0.06) 0.15 (0.06)	0.001	0.0942	0.18 (0.06)	0.002	0.0926	1087	0.30 (0.08)	<0.001 ¹	0.1105	1087	0.28 (0.12)	0.02	0.0695
descriptive norms scale	t = fu	1018	0.13 (0.06)	0.03	0.0642	0.13 (0.06)	0.03	0.0646	1087	0.28 (0.09)	0.002	0.0938	1087	0.17 (0.13)	0.19	0.0383
(average P3Q1-P3Q2)																
Experiment Part 4: Willin	gness to pay to .	support ai	nti-smoking norms	s (Donations	to ASSIST/Dea	d Cool; $0 = "0$ tok	sns donated"	to $10 = "10$ to	kens donu	ated").						
Donation to ASSIST/	t = base	1071	0.14 (0.06)	0.02	0.0740	0.12 (0.06)	0.03	0.0658	1085	0.15 (0.09)	0.12	0.0505	1085	0.26 (0.20)	0.20	0.0437
Self-renort iniunctive smu	t = Iu kina norms (_2	= "think(c.34 (c.00) c) that I definitely	should smoke	o" to +2 = "thi	nk(s) that I definite	ly should not	("eyous	600	(20:0) 04:0	100.02	10010	1001	141.00 00:00		1410
IN1	t = base	1073	-0.04 (0.06)	0.51	-0.0173	-0.04 (0.07)	0.60	-0.0153	1082	0.05 (0.13)	0.72	0.0105	1082	0.36 (0.22)	0.0	0.0463
	t = fu	1070	0.07 (0.06)	0.27	0.0311	0.06 (0.06)	0.31	0.0288	1082	-0.17 (0.12)	0.16	-0.0378	1082	0.23 (0.23)	0.32	0.0326
IN2	t = base	1075	-0.02 (0.08)	0.80	-0.0061	-0.02 (0.08)	0.76	-0.0075	1084	0.20 (0.19)	0.28	0.0422	1084	0.23 (0.56)	0.68	0.0200
	t = tu + baco	10/2	0.14 (0.08)	0.0	0.0627	0.14 (0.08)	0.0/	0.0602	1084	0.12 (0.11)	0.25 0.12	0.0308	1084	0.08 (0.27)	0.//	2600.0
	t = fu	1070	0.08 (0.05)	0.13	0.0387	0.08 (0.05)	0.17	0.0358	1082	0.003 (0.10)	0.98	0.0007	1082	0.12 (0.20)	0.54	0.0184
IN4	t = base	1071	0.03 (0.06)	0.60	0.0134	0.03 (0.06)	0.55	0.0151	1081	-0.02 (0.13)	0.85	-0.0050	1081	0.69 (0.32)	0.03	0.0730
L	t = fu	1069	0.06 (0.05)	0.28	0.0277	0.04 (0.05)	0.45	0.0194	1081	0.18 (0.12)	0.13	0.0396	1081	0.41 (0.22)	0.06	0.0567
GNI	t = base t fii	1070	-0.01 (0.06) 0.03 (0.06)	0.83	2500.0- 2410.0	(90.0) 5000 (900) 500	0.93 0.59	0.0023	1082	(11.0) 60.0- (11.0) 60.0	0.74	0.0088	1082	-0.01 (0.23) 0.09 (0.20)	66.0 990	0.001/
IN6	t = base	1074	0.21 (0.06)	<0.001	0.1013	0.19 (0.06)	0.001	0.0909	1083	0.20 (0.10)	0.05	0.0570	1083	0.44 (0.16)	0.007	0.0824
	t = fu	1071	0.25 (0.06)	<0.001 ^h	0.1256	0.22 (0.06)	<0.001	0.1129	1083	0.27 (0.09)	0.003	0.0794	1083	0.41 (0.16)	0.01	0.0801

			less Teldeber													
		(1) - <i>i</i> =	= Average of non	ninated frien	ids ^a	(1) -i = Avera	ge of nomin	ated friends ^b	(2) - <i>i</i> =	= Average of sch	hool class ^a		(3) <i>_i</i>	= Average of sc	chool year g	roup ^a
		=	Response_i, t			Response_i, t			=	Response _{-i, t}			2	Response_i, t		
			b (SE) ^c	p-value	₽ď	b (SE) ^c	p-value	þď		b (SE) ^с	p-value	þď		b (SE) ^c	<i>p</i> -value	βd
IN7	t = base t = fu	1075 1072	0.11 (0.06) 0.19 (0.06)	0.06 0.003	0.0537 0.0944	0.09 (0.06) 0.17 (0.06)	0.14 0.007	0.0431 0.0866	1084 1084	0.21 (0.12) 0.21 (0.11)	0.07 0.06	0.0556 0.0572	1084 1084	0.57 (0.18) 0.34 (0.18)	0.002 0.06	0.0996 0.0644
Self-report injunctive norms scale (average IN1-IN7)	t = base t = fu	1068 1066	0.07 (0.06) 0.19 (0.05)	0.23 <0.001	0.0310 0.0936	0.07 (0.06) 0.19 (0.05)	0.25 <0.001	0.0288 0.0923	1078 1078	0.06 (0.12) 0.20 (0.09)	0.63 0.03	0.0145 0.0534	1078 1078	0.38 (0.18) 0.24 (0.16)	0.04 0.13	0.0634 0.0426
Self-report descriptive smok	ing norms (DN	11: 1 = "si 1075	moke(s) very often	" to $5 =$ "nev.	er smoke(s)"/'	"don't know"; DN2:	1 = "almost	all of them smc	ske" to 5	= "almost none (of them smo	ke"/"don't kno	.(‴₩0 1001	106 0 301	500.0	2021 0
	t = pase $t = $ fu	1072	(0.0) 02.0 0.33 (0.09)	<0.001 100.0>	0.1702	(01.0) 02.0 0.31 (0.09)	<0.001 <0.001	0.1632	1084 1084	0.24 (0.13)	0.06	0.0703	1084 1084	0.62 (0.18)	0.001	0.1384
DN1.2	t = base t = fu	1076 1073	0.13 (0.05) -0.005 (0.04)	0.007 0.91	0.0665 -0.0028	0.12 (0.05) -0.02 (0.05)	0.01	0.0636 0.0092	1085 1085	0.08 (0.07) 0.02 (0.08)	0.24 0.76	0.0279 0.0073	1085 1085	0.16 (0.09) 0.11 (0.09)	0.06 0.23	0.0434 0.0266
DN1.3	t = base	1075	0.08 (0.04)	0.06	0.0399	0.08 (0.04)	0.07	0.0386	1084	0.06 (0.08)	0.45	0.0172	1084	0.13 (0.13)	0.30	0.0273
DN1.4	t = base	1075	0.01 (0.04)	0.81	0.0047	0.01 (0.04)	0.79	0.0053	1084	0.07 (0.13)	0.59	0.0165	1084	0.11 (0.14)	0.43	0.0173
DN1 5	t = fu t hace	1072 1075	-0.09 (0.04)	0.03	-0.0417 0.0300	-0.09 (0.04)	0.04	-0.0414 0.0294	1084 1084	0.10 (0.15)	0.50	0.0253	1084 1084	-0.10 (0.17) 0.29 (0.19)	0.56	-0.0134 0.0291
	t = base t = fu	1072	-0.01 (0.05)	0.81	-0.0048	-0.01 (0.05)	0.81	-0.0049	1084	0.18 (0.11)	0.10	0.0453	1084	0.09 (0.16)	0.58	0.0116
Self-report descriptive	t = base t fu	1073	0.09 (0.05)	0.06	0.0460	0.09 (0.05)	0.07	0.0438	1082	0.05 (0.07)	0.47	0.0181	1082	0.18 (0.10)	0.09	0.0474
DN1.1-DN1.5)	2			Ē.	1070.0		t.	0000	400	10.07 10.0	0	70000	1001		2	0000
DN2.1	t = base	1076	0.17 (0.07)	0.02	0.0774	0.16 (0.07)	0.03	0.0729	1085	0.17 (0.11)	0.11	0.0515	1085	0.21 (0.15)	0.14	0.0464
	t = tu t — hace	1073	0.19 (0.07)	0.005	0.1012	0.18 (0.07) 0.14 (0.06)	0.007	0.0961	1085 1085	0.19 (0.11)	0.10	0.0584 0.0955	1085 1085	0.12 (0.16) 0 48 (0 16)	0.46	0.0246
7.7710	t = base t = fu	1073	0.11 (0.06)	0.07	0.0556	0.08 (0.06)	0.17	0.0431	1085	0.17 (0.09)	0.07	0.0526	1085	0.38 (0.15)	0.01	0.0827
DN2.3	t = base	1076	0.26 (0.07)	<0.001	0.1278	0.25 (0.08)	0.001	0.1189	10.85	0.57 (0.10)	<0.001	0.1910	1085	0.65 (0.13)	<0.001	0.1703
Colf-ronort docoriotivo	t = fu t = baso	1073	0.18 (0.06)	0.002	0.1076	0.16 (0.06)	0.01	0.0930	1085 1085	0.39 (0.09)	<0.001 0.001	0.1525	1085	0.53 (0.11) 0.45 (0.13)	<0.001 ⁿ	0.1633
norms scale 2 (average DN2.1-DN2.3)	t = fu	1073	0.11 (0.06)	0.06	0.0624	0.08 (0.06)	0.18	0.0455	1085	0.25 (0.08)	0.003	0.0936	1085	0.36 (0.12)	0.003	0.1014
Survey questions about smu	oking behavior,	intention	ıs, knowledge, attit	udes, and psy	'cho-social ante	ecedents, and objec	stively measur	'ed smoking bei	havior ^e							
Self-report smoking	t = base	1083	0.16 (0.07)	0.03	0.0726	0.16 (0.07)	0.03	0.0719	1093	0.22 (0.11)	0.04	0.0557	1093	0.55 (0.16)	0.001	0.0920
behavior (1-4)	t = fu	1081	0.24 (0.06)	<0.001 0.001	0.1342	0.24 (0.07)	<0.001 20.01	0.1344	1093	0.22 (0.08)	0.01	0.0691	1093	0.38 (0.10)	40.001 400.001	0.0885
	t = base $t = f_{11}$	1075	0.21 (0.08)	0.005	0.00000 0.1160	(0,00) CI.U	0.0	0.1095	10.87	0.11 (0.11)	0.32	0.0310	1087	0.38 (0.14)	0.007	0.0811
Knowledge (0-6)	t = base	1080	0.20 (0.05)	<0.001	0.1001	0.12 (0.06)	0.04	0.0621	1089	0.41 (0.08)	<0.001	0.1616	1089	0.45 (0.10)	<0.001 ^h	0.1366
	t = fu	1077	0.29 (0.06)	<0.001 ^h	0.1568	0.24 (0.06)	<0.001	0.1329	1089	0.41 (0.08)	<0.001 ⁿ	0.1773	1089	0.42 (0.11)	<0.001 ⁵	0.1362
	t = dase $t = fu$	1064	0.17 (0.06)	0.000	0.0844	0.17 (0.07)	00.0	0.0847	1076	-0.10 (0.12)	0.41	-0.0246	1076	0.23 (0.17)	0.17	0.0417
Self-efficacy	t = base	1072	0.11 (0.07)	0.13	0.0484	0.10 (0.07)	0.19	0.0414	1081	0.30 (0.12)	0.01	0.0735	1081	0.46 (0.17)	0.005	0.0797
(Emotional; 1-6)	t = fu	1068	0.29 (0.07)	<0.001 ^h	0.1505	0.26 (0.07)	<0.001	0.1355	1081	0.22 (0.09)	0.02	0.0629	1081	0.42 (0.13)	0.001	0.0913
Self-efficacy (Friends;	t = base	1078 1076	0.06 (0.06)	0.33	0.0272	0.06 (0.06)	0.35	0.0256	1087	0.20 (0.11)	0.08	0.0495	1087	0.18 (0.17)	0.29	0.0294
1-0) Self-efficacy	t = hase	c/01	0.13 (0.07)	2000	0.0506	0.11 (0.07)	0.10	0.0441	10.88	0.38 (0.14)	0.006	0.0847	1088	0.27 (0.16) 0.42 (0.20)	51.0 40.0	0.0646
(Opportunity; 1-6)	t = fu	1076	0.17 (0.07)	0.02	0.0846	0.14 (0.07)	0.04	0.0738	1088	0.21 (0.10)	0.04	0.0588	1088	0.29 (0.17)	0.08	0.0539
Perceived physical risks	t = base	1074	0.07 (0.05)	0.18	0.0387	0.07 (0.05)	0.21	0.0361	1082	0.15 (0.09)	0.09	0.0470	1082	0.07 (0.14)	0.61	0.0141
(U-IUU%) Perreived social risks	t = Tu t hace	1076	0.12 (0.05)	0.03	0.0865	(50.0) II.0	0.04	1/50.0	10.85	0.11 (0.11) 0 27 (0 07)	0.32 40.001 h	0.0312	1085		0.48	-0.0238
(0-100%)	t = fu	1073	0.13 (0.06)	0.02	0.0711	0.06 (0.06)	0.36	0.0318	1085	0.24 (0.08)	0.005	0.0831	1085	0.40 (0.12)	0.001	0.1113
Perceived addiction	t = base	1016	0.23 (0.06)	<0.001 ^h	0.1188	0.05 (0.07)	0.45	0.0260	1025	0.51 (0.09)	<0.001 ^h	0.1870	1025	0.71 (0.10)	<0.001 ^h	0.2253
risks (0-100%)	t = fu	1009	0.14 (0.05)	0.004	0.0833	-0.06 (0.06)	0.33	-0.0328	1025	0.39 (0.08)	<0.001□	0.1594	1025	0.58 (0.09)	<0.001 ⁿ	0.2073

Outcomes	Time-point	Outcon	ne variable: Focal	participant	responses to c	outcomes at follo	dn-w									
		: i – (i)	= Average of non	ninated frien	lds ^a	(1) $-i = Average$	e of nomina	ited friends ^b	(2) -i =	- Average of sch	ool class ^a		(3) <i>_i</i>	= Average of so	chool year g	roup ^a
		=	Response_i, _t			Response_ _{i, t}			=	Response. _{i, t}			=	Response_ <i>i</i> , _t		
			b (SE) ^c	<i>p</i> -value	рđ	b (SE) ^c	p-value	₽ď		b (SE) ^c	<i>p</i> -value	₽d		b (SE) ^c	<i>p</i> -value	βd
Perceived benefits	t = base	1029	-0.04 (0.06)	0.46	-0.0208	-0.04 (0.06)	0.47	-0.0207	1038	0.08 (0.12)	0.48	0.0198	1038	0.34 (0.20)	0.10	0.0474
(0-100%)	t = fu	1025	0.03 (0.06)	0.62	0.0137	0.03 (0.06)	0.62	0.0137	1038	-0.08 (0.12)	0.50	-0.0192	1038	-0.15 (0.25)	0.55	-0.0175
PBC (easy to quit; 1-5)	t = base	1076	0.27 (0.06)	<0.001 ^h	0.1457	0.03 (0.07)	0.63	0.0185	1085	0.50 (0.08)	<0.001 ^h	0.1987	1085	0.68 (0.09)	<0.001 ^h	0.2347
	t = fu	1073	0.17 (0.06)	0.003	0.0970	-0.10 (0.07)	0.14	-0.0580	1085	0.50 (0.08)	<0.001 ^h	0.2046	1085	0.60 (0.09)	<0.001 ^h	0.2177
PBC (to avoid smoking;	t = base	1080	0.06 (0.07)	0.37	0.0283	0.01 (0.07)	0.92	0.0034	1089	0.36 (0.13)	0.008	0.0875	1089	0.77 (0.22)	<0.001	0.1259
1-5)	t = fu	1077	0.09 (0.07)	0.20	0.0426	0.01 (0.07)	0.84	0.0071	1089	0.12 (0.13)	0.39	0.0304	1089	0.53 (0.18)	0.003	0.1036
Objectively measured	t = base	1041	0.37 (0.05)	<0.001 ^h	0.2707	0.07 (0.07) ^f	0.32	0.0484	1048	0.38 (0.05)	<0.001 ^h	0.2634	1048	0.59 (0.06)	<0.001 ^h	0.3702
smoking behavior	t = fu	1022	0.48 (0.09)	<0.001 ^h	0.3852	0.39 (0.09)	<0.001	0.3103	1048	0.84 (0.06)	<0.001 ^h	0.5470	1048	0.87 (0.06)	<0.001 ^h	0.5078
(0-30)																
Smoking susceptibility		c	OR (SE)	p-value	OR (SE)	p-value	Ę	OR (SE)		p-value		۲	OR (SE	~	p-value	
(binary) ^g	t = base	1078	1.14 (0.04)	<0.001 ^h	1.12 (0.04)	<0.001	1087	1.10 (0.07)		0.12		1087	1.21 (0.	12)	0.05	
	t = fu	1075	1.14 (0.03)	<0.001 ^h	1.11 (0.03)	0.001	1087	1.17 (0.06)		0.004		1087	1.31 (0	.10)	<0.001	
-				-	-		-	-			•			=	-	
^a In each model the outcome participant's nominated frienc	/ariable is the foc 's; (2) focal partic	al particip Sipant's sch	hool class; (3) focal p	the relevant ite varticipant's sch	em at tollow-up. II hool year group. A	ne predictor variable Il models include rol	is the average oust (Huber-V	e of the relevant Vhite) standard e	peer grou errors spe	p's (- <i>i</i>) responses to cified using Stata's '	<pre>the equivale vce(robust)' </pre>	nt item at base option. The foll	line ($t = b_i$) wing base	ase) or tollow-up (<i>t</i> iline variables are in	 = tu), where - ncluded as cov 	i = (1) tocal ariates in all
models: Gender (0 = boy; 1=	girl/prefer not t	o say), A£	ge (1=12 years or le	ss; 2 = 13 year	s; 3 = 14 years or	more), Intervention	(1 = ASSIST;	2 = Dead Cool),	Ethnicity	(0 = no ethnic min	ority; 1= eth	nic minority), S	ocio-econ	omic status (NI: 1=	= NIMDM2017	≤ 296.6;
b = 290.0 × 101.0 ×	or Setting $(0 = N)$	lorthern In	eland; 1 = Bogotá). B.	aseline variable	es included as cov	= inituale-Low/ initial ariates in all models	are: Gender, .	e-migit/ migit/, at Age, Intervention	n, Ethnicit	y, Socio-economic s	tatus, baselin	e values of the	outcome	variable, and Settin	g. Results are	reported for
-i = (1) focal participant's no.	minated friends.															
^c Unstandardized regression c	oefficients repres	senting the	e average change in ,	's response ca	tegory to the rele	ant question at follo	ow-up for a or	ne-unit increase	in the ave	rage of -i's respons	ies to the equ	iivalent item at	baseline (t = base) or follow	r-up (t = fu), h	olding other

ARTICLE

^eHigher numerical values represent higher self-report anti-smoking outcomes, apart from objectively measured smoking behavior (higher numerical values represent higher levels of smoking behavior). ^FFor the model including focal participants' carbon monoxide readings at follow-up as the outcome variable, and average carbon monoxide readings for nominated friends at baseline as the predictor variable, variance inflation factors were 3.00 for Setting and 3.02 for the predictor variable when the model was adjusted for Setting. ^{8L}Logistic regressions were run for models including focal participants smoking susceptibility as the outcome variable, with robust (Huber White) standard errors specified using Stata's vce(robust)' option. Results are odds ratios, standard errors, and p-values. Odds ratios represent the multiplicative change in odds of being susceptible to commencing smoking for a 10% increase in the number of nominated friends/pupils in the same school class/pupils in the same school year group classified as being susceptible to commencing smoking (1 out

variables constant. ^dStandardized regression coefficients representing the standard deviation change in the outcome variable, for a one standard deviation increase in the predictor variable.

of 10 mominated friends/pupils in the same school year group). hetained statistical significance at the 5% level after using the Holm-Bonferroni procedure to correct the *p*-values for multiple testing ($p \le 0.05$; based on all tests reported in Table 5, excluding results of models which were repeated to adjust for Setting). hetained statistical significance at the 5% level after using the Holm-Bonferroni procedure to correct the *p*-values for multiple testing ($p \le 0.05$; based on all tests reported in Table 5, excluding results of models which were repeated to adjust for Setting). Indicates where the *p*-value in models examining peer influence effects from the average responses of nominated friends still met the Holm-Bonferroni threshold when the model was additionally adjusted for Setting ($p \le 0.05$). Bold values show the results meeting the significance level of $p \le 0.01$.

Outcome ^a	Effect ^b	All school	ls (N = 1;	2)a			Subgrou	ıp analysis: S	etting (N	ll: N = 6; Bogo	otá: N =	6) ^a	Subgro	up analy:	sis: Interven	tion (ASSIST	: N = 6;	DC: N = 6) ^a	
		Snijders a Baerveldt, (2003) ^c	pu .	Fisher's combinatio tests one- sided ^d		Heterogeneity (across schools) ^e	Subgroi	ıp Snijders Baerveld (2003)¢	and t,	Fisher's combination tests one- sided ^d	Ϋ́,	sterogeneity (ac bgroups) ^f	oss Subgro	up Snij Bae (20	ders and rveldt, <mark>03</mark>)¢	Fisher's combinati tests one sided ^d	δ.	Heterogeneit; subgroups) ^f	r (across
		<u>م</u>	×	p-value	- -	Q-statistic p-valı	te	P	SE	p-value	ở ቴ	statistic p-val	e	ه	SE	p-value	"	Q-statistic	p-value
Experimental injunctive norms	PS	-0.20	0.15	0.2882	24	7.38 0.767	2 NI	-0.40	0.23	0.0883	12 1.7	7 0.182	8 ASSIST	0	25 0.20	0.3214	12	D.11	0.7348
	ā	10.0					Bogotá	-0.005	0.19	0.7576	2 9		DC	00	13 0.26	0.3221	2		
	<u>T</u>	3.95	1.03	<0.0001	24	14.07 0.22	12 NI Bogotá	4.41 3.93	2.28 1.21	0.00028	2 E	0.83	DC DC	0 m	22:1 0 1.42	0.0019 0.0019	2 12	0/.0	0.4023
Experimental descriptive norms	PS	0.10	0.22	0.2327	20	11.84 0.222	3 NI	0.09	0.37	0.2907	.∞ !	.01 0.96	9 ASSIST	0.17	0.27	0.1360	12	0.24	0.6255
	Ы	1.57	0.78	0.0056	24 1	17.88 0.084	Bogotá 14 NI	0.09	0.31	0.2654	1 12	4 0.26	DC ASSIST	0 E	08 0.43	0.3183 0.0012 8	∞ £	42.79	4 0.0001 h
	:	<u>}</u>	5	0000	t N	000	Bogotá	1.60	1.46	0.0267	1 Cl	t	DC	0	08 1.32	0.4090	1 12		00000
Experimental donation to ASSIST/Dead Cool	PS	0.18	0.14	0.2494	24	9.33 0.591	3 NI Bogotá	0.22 0.11	0.24 0.17	0.1670 0.4703	0. 10 10	18 0.66	99 ASSIST DC	0.0	7 0.19 04 0.18	0.0589 0.3784	2 2	2.60	0.1068
	Ы	4.13	0.43	<0.00018	24	4.69 0.94	NI NI	4.41	0.33	<0.00018	0.	93 0.335	5 ASSIST	4.0	0.69	<0.00018	2 2	0.07	0.7953
Self-report injunctive norms	PS	-0.002	0.13	0.4608	24	7.04 0.795	7 NI	0.15	0.21	0.3924	15 15	3 0.142	2 ASSIST	0.0	0.18	0.6340	12	06.0	0.3437
	Ы	2.30	1.51	0.0757	20	9.21 0.417	Bogotá 9 NI	-0.21 3.16	0.17 0.82	0.2454 0.1306	8 11	4 0.28	DC BSIST		18 0.22	0.3896 0.0345	12 0	0.87	0.3508
	:		2		0	5	Bogotá	1.60	2.83	0.1438	12	-	DC	0.7	1 2.31	0.4267	2 0		
Self-report descriptive norms 1	PS	0.25	0.21	0.0261	24	16.85 0.112.	8 NI Boootá	0.32 0.19	0.10	0.0901 0.0626	1 12 0	47 0.49.	t3 ASSIST	0.0	0.23	0.1040	2 2	0.12	0.7240
	Ы	3.63	3.33	0.0115	12	11.65 0.035	IN 60	5.87	6.7	0.0019	و ہ 8	82 0.00	30 ASSIST	2.00 	6.90	0.0023	2 0	5.05	0.0247
Calf-round description norms 2	DC	86 C	210	0.0176	5 7 0	3 E O O 6 6 7	Bogotá 10 NI	0.10	1.20	0.5646	- 20	20 0	DC ASSIST	0 C	9 1.41	0.5072	÷ 6	10 (10150
	2	00.0	2	0/10/0	44		Bogotá	0.40	0.22	0.1102	힌	70.0	DC	0.0	0.22	0.0968	2 12	1.0	10400
	Ы	3.83	0.74	0.0294	22	2.72 0.98;	3 NI	4.48	1.25	0.0323	0 0	58 0.44	52 ASSIST	3.77	1.34	0.0756	2	0.01	0.9126
Calf source concline hoberias	DC	000	c1 0	12000		524 O C2 C	Bogotá	3.27	0.99	0.1720	0 22 0	762 U	DC Acciet		0.79	0.0848	₽ ;	000	0 5041
	-	0	<u>2</u> 5	1	2		Bogotá	0.37	0.23	0.0121	5 5 (2)	=	DC	0.20	0.32	0.1859	⁴ 00	040	-
	Ы	2.07	0.91	0.3684	12	1.12 0.952	NI LI	2.18	2.18	0.3108	4 c 0	01 0.94	01 ASSIST	1.31	1.64	0.5369	∞ •	24.31	<0.0001 ^h
Intentions	PS	0.06	0.18	0.3878	4	4.77 0.573	9 NI	2.00 0.17	0.20	0.3698	0 0 0	32 0.568	1)UL 13 ASSIST	0.0	0.14 0.20	0.5441	4 ∞	3.17	0.0748
	i						Bogotá	-0.02	0.34	0.5418	00		Б	0.7	t 0.38	0.2434	9		
	Ч	5.50	3.72	0.0023	2	12.84 0.02	19 NI Romotá	13.56	4.92	0.0002%	9 4 7	.75 <0.0	DOT" ASSIST	2.6 7	4 9.33 1 30	0.0066	4α	12.0	0.6452
Knowledge	PS	-0.03	0.12	0.4398	24 (6.20 0.855	14 NI	-0.01	0.24	0.3261	12 0.	09 0.76	7 ASSIST	0.17	0.13	0.5077	5	2.72	0.0991
	ā		190	0.0051	5 7 0	2 21	Bogotá 5 NI	-0.06	0.09	0.5486	5 5	c. 0.100	7 DC		21 0.18	0.1751	2 2	800	2077.0
	Ξ	77.7	5	0000	4	1000	Bogotá	1.25	119	0.1524	2 2 2	0.00	DC	200	0.65	0.0496	12	00.0	00//0
Attitudes	PS	0.14	0.26	0.3080	14	6.07 0.414	IZ 6	0.08	0.44	0.4659	9	02 0.88	6 ASSIST	0.2	0.46	0.2926	4 5	0.07	0.7960
	Ы	1.49	0.93	0.0532	24 1	12.39 0.335	4 NI	1.51 1.51	1.68	0.0974 0.0974	0. 13 0.	36 0.54	2 ASSIST	1.83	cc. U	0.0507	2 ₽	0.05	0.8233
:	;				:		Bogotá	2.13	1.07	0.1319	12		D	1.50	1.34	0.2324	12	:	
Self-efficacy (Emotional)	£	05.0	/1.0	0.0945	77	9.83 0.45	54 NI Bogotá	0.01	0.40	0.5766 0.0319	o ⊇ ⊆	51 0.43.	B ASSISI	0 1 7 0	<pre>d:0 0.37 0.37</pre>	0.0254	2 0	2.40	0121.0
	Ы	-2.64	0.89	0.1714	16	2.17 0.945	96 NI	2.74	1.63	0.3242	1	.93 0.00	01 ^h ASSIST	- 10	46 0.99	0.2380	00 0	0.05	0.8151
Self-efficacy (Friends)	PS	0.22	0.21	0.1493	24 1	13.25 0.277	5 NI	-3.43 0.15	0.22	0.0/45 0.6242	0. 13 I	16 0.68	DC 86 ASSIST	0.4	91 1.84 9 0.23	0.2140	3 2	2.28	0.1307
	d	-0 F 2	144	9998 O	ά	5 79 O 550	Bogotá 9 NI	0.31 3.28	0.39	0.0468 0.2524	0 9 J J	29E U	DC ASSIST	0 0	10 0.33	0.2806	α 13	133	0 5667
	=	400	<u>F</u>	2	2		Bogotá	-1.05	1.49	0.2292	5	0000	DC	1- 22	54 2.43	0.3014	2 C	2	0000
Self-efficacy (Opportunity)	PS	0.48	0.37	0.0111	16	12.36 0.08.	93 NI Rocotá	0.24	0.53	0.1477 0.0154	4 6	27 0.60	13 ASSIST	7.0 7.0	0.37	0.0055	00 00	7 <i>7.</i> 0	0.3802
	Ы	1.96	2.01	0.1275	14	6.76 0.345	NI (1)	5.57	4.40	0.0302	5 90	0.156	0 ASSIST	1.33	0.75	0.4310	000 4	0.72	0.3978
							DUBULA	2	200	1700.0	0		ç	ţ	1710	10000	D		

Outcome ^a	Effect ^b	All sch	ools (N =	12) ^a				Subgroup	analysis: S	etting (N	ll: N = 6; Bo	gotá: N	= 6) ^a		Subgroup	analysis: I	nterventi	ion (ASSIS1	T: N = 6	: DC: N = 6)	æ
		Snijde Baerve (2003)	s and ldt,	Fisher's combinat tests one sided ^d	in i	Heterogen (across sch	eity nools) ^e	Subgroup	Snijders Baerveld (2003) ^c	and t	Fisher's combinatio tests one- sided ^d	E S	Heterogeneit, subgroups) ^f	y (across	Subgroup	Snijders Baervel (2003)	and #t,	Fisher's combinat tests one sided ^d	. <u>.</u>	Heterogen subgroups)	eity (across
		9	ĸ	p-value	đf	Q-statistic	p-value		9	SE	p-value	#	Q-statistic	p-value		q	SE	p-value	₽	Q-statistic	p-value
Perceived physical risks	PS	0.13	0.13	0.2701	24	9.27	0.5969	z	-0.03	0.12	0.6400	12	2.12	0.1457	ASSIST	-0.14	0.21	0.3412	12	6.84	0.0089
	ē		L C	0010 0	Č	215		Bogotá	0.24	0.25	0.0828	64 ¢	- C 0	20070	DC	0.38	0.11	0.1083	2 2	000	
	Ξ	-	0.04	0617:0	74	0.0	0000.0	Bogotá	0.92	0.68	0.2776	2 <u>1</u>	17.0	1 500.0	DC	0.89	0.94	0.3345	2 12	60.0	2011.0
Perceived social risks	PS	-0.11	0.11	0.3890	24	5.36	0.9126	Z	-0.42	0.21	0.2104	12	2.60	0.1069	ASSIST	-0.17	0.21	0.4411	12	0.18	0.6679
	Ы	-0.12	0.55	0.3805	24	8.17	0.6980	Bogotá NI	-0.04 -1,04	0.13 1.32	0.6410 0.2356	22	0.56	0.4561	DC ASSIST	-0.06 -0.25	1.11	0.3508 0.2415	22	0.01	0.9129
	:)			j		Bogotá	0.05	0.62	0.5397	12			Ŋ	-0.12	0.80	0.5745	12		
Perceived addiction risks	PS	0.08	0.15	0.2726	24	8.96	0.6260	NI Bogotá	0.34 -0.05	0.13 0.26	0.2040 0.4298	6 6	4.13	0.0422	ASSIST	0.17 0.002	0.23	0.1319 0.6427	2 2	0.34	0.5582
	Ы	0.70	0.80	0.5471	24	10.68	0.4707	ĪZ	1.12	0.87	0.3315	12	0.87	0.3502	ASSIST	0.36	0.87	0.6009	12	0.35	0.5569
Perceived henefits	ß	0.46	0.25	0.0356	00	10.33	03248	Bogotá NI	-0.80 0 34	1.88 0.33	0.1642 0.1850	6 6	0.23	0 6332	DC ASSIST	-0.16 0.12	1.95	0.2575 0.4457	2 00	133	0.2496
	- -	b b	67.0	0000	2	2	0140.0	Bogotá	09.0	0.44	0.0340	4 00	17.0	40000	DC	0.65	0.36	0.0153	2	2	0/1/0
	Ы	-0.78	0.69	0.3437	12	1.60	0.9010	IZ	-0.43	1.03	0.3797	00 4	83.05	<0.0001 ^h	ASSIST	0.05	1.33	0.7014	9 1	47.20	<0.0001 ^h
PBC (easy to quit)	PS	0.23	0.14	0.1722	24	10.11	0.5204	bogota NI		0.20	0.1210	4 년	0.95	0.3292	ASSIST	0.24	0.13 0.13	0.2072	o (2	0.16	0.6861
-								Bogotá	0.06	0.23	0.4017	12			DC	0.09	0.35	0.2567	12		
	Ы	0.32	0.40	0.6762	24	5.93	0.8780	NI Rogotá	0.38	0.69	0.5914	5 5	0.02	0.8825	ASSIST	0.65	0.56	0.4226	2 2	0.72	0.3950
PBC (to avoid smoking)	PS	0.12	0.29	0.2729	20	9.20	0.4192	NI	-0.20	0.31	0.5539	4 00	1.20	0.2732	ASSIST	0.19	0.42	0.2516	12	0.14	0.7132
								Bogotá	0.27	0.40	0.1147	12			Ы	-0.02	0.43	0.6734	00		
	Ы	0.68	0.58	0.4756	22	6.17	0.8004	NI	1.71	0.74	0.1760	₽ ¢	3.24	0.0718	ASSIST	1.01	0.67	0.4064	2 2	0.48	0.4863
Ohiartivaly measured smoking hehavior	Ы	030	036	0 4672	14	3.63	0 7260	DUGULA	-110	0.36	C01450	⊻ ⊲	17.14		ASSIST	ci.0 ALO_	0.23	0405.0	⊇ v	5 57	0.0183
ODECRIVELY ILLEGASHI EN SILIONILLE DELLANO	- -	2	0000	1010	t	000	0.1400	Bogotá	0.59	0.35	0.2521	t 9		00000	DC	0.51	0.61	0.2537	000	10.0	2000
	Ы	8.12	1.48	<0.001	20	15.79	0.0713	z	10.83	2.68	<0.0001	9	2.99	0.0839	ASSIST	8.98	2.57	<0.0018	12	0.25	0.6175
	2	ļ			0	L	000000	Bogotá	6.34 0.10	1.27	<0.00018	6 (L		DC	7.58	1.46 0.00	<0.0001	∞ ;		0.000
Smoking susceptibility	ደ	11.0	0.06	100.0	77	ر ک.۱۱	0.3308	NI Bogotá	0.19 0.16	0.0 0.10	0.0101	2 0	c0.0	0.828	DC	0.32	80.0	0.0062	2 0	3.58	9860.0
	Ы	0.77	0.49	0.2351	22	5.66	0.8433	NI Boontá	0.57	0.61	0.4990	24 E	0.14	0.7083	ASSIST	0.85	0.74	0.1615	21 5	0.05	0.8179
SIENA simulation investigation for empirica	l network an	ialysis, NI	Northern	Ireland, ASS	IST A St	op Smoking	in Schools T	rial, DC de	in <i>q</i> (loop bi	nstandarc	lized coeffici	ent, SE :	standard erro	; df degrees	s of freedon	n, PS peer s	election,	PI peer influ	nence, P	3C perceived	behavioral
Point of the meta-analyses, individual s arouting the mode of the meta-analyses, individual s	schools are e	e models	lue to non-	-convergenc	e of the :	SIENA mode	ls. Various p	arameters ;	are also con:	strained f	or some SIE	VA mod	els due to non	-convergen	ce or multi-	collinearity	issues. So	core tests fo	or fixed p	arameters w	ere all non- 1 for detaile
of excluded schools and constrained pararr	it of the second s	ie models ch of the homochil	was not d smoking/	vaping outc	omes.	s of the meta	-analyses rc	r eacn or tr.	e smoking/	vaping ou	finitions are l	feported	and discusse		uppiementa	ry I ables S	11-231.36	se the rooth	otes or I	ables solids	I TOT DETAILS
effects for the meta-analysis for each outco	ser selection ome. The res	sults of th	iy) errect. I ie meta-ar	rulyses for e	vaping c sach of t _i	he smoking/	vaping outc	uence <i>)</i> ente omes are re	ct. see Tabl sported and	e z tor ac discusse	d in full in S	upplem	ciuded in all S entary Tables	IENA model S11-S31.	s. Lable o r	sports the r	esults of	peer selecti		pnily and pe	er intiuence
^c Unstandardized coefficients according to i ^d p-values are calculated using Fisher's comb	he meta-ana vination of or	alytic mei ne-sided t	ests proce	ijders and B dure (Fisher	aerveldt , <mark>1925</mark> ; H	(2003). ledges and O	lkin, 1985).	The test sta	tistic follows	s a chi-sq	uared distrib	ution wi	th (2N) degre	es of freedo	m (N = nur	ther of con	bined est	timates for e	each par	ameter). Onl	y one-sided
<i>p</i> -values in the direction of the sign of the ^e Heterogeneity (across schools): Tests the r	Snijders and Jull hypothes	I Baervelc sis that th	It coefficie s effect pai	nts are repurameters are	erted. Or constar	ne-sided p-va	lues in the , ools using th	other direct e methods	ion were all of Cochran	l non-sigr (1954), ac	ifficant. Bold dapted for sc	values i ocial netv	indicate signit vork analysis	icant results by Snijders a	s (<i>p</i> ≤ 0.00) and Baervel	5). dt (Cochrar	, 1954; Si	nijders and I	Baerveld	, 2003). Th	e Q-statistic
follows a chi-squared distribution with (N- fHeterogeneity (across subgroups): Tests th	 -1) degrees c he null hypot 	of freedor thesis tha	m ($N = nut$ t the effec	mber of cor .t parameter	nbined e. 's are co.	stimates for instant across	each param s subgroups	eter). Bold (NI versus	values indic Bogotá for	ate signit 'Setting',	icant differe ASSIST vers	nces acr us Dead	oss schools (Cool for 'Intu	p≤0.01). ervention′) :	using metho	ods for test	ing differ	ences acros	is subgro	ups from th	e Cochrane
Handbook (Higgins and Thomas, 2022). TI ^g Indicates where the <i>p</i> -value from the Fishe.	ne Q-statistic r's combinat	c follows ion of one	a chi-squa :-sided tes	ared distribu. ts procedum	tion with e retaine	h (N-1) degre d statistical s	es of freedc	t the 5% l€	mber of sut wel after usi	agroups, i ing the Hc	.e., N = 2). E olm-Bonferr	sold valu	ies indicate si edure to corre	gnificant dif ct the <i>p</i> -val	ferences ac ues for mul	ross subgr iple testing	≥ (<i>p</i> ≤ 0.0	≤ 0.01). 25; each <i>p</i> -\	/alue is a	djusted for 2	11 tests, i.e.,
the number of smoking/vaping outcomes). $h_{IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	ogeneitv test	t (across :	schools or	across sube	u (sanoı.	etained statis	itical signific	ance at the	5% level aft	ter using	the Holm-Bo	nferron	i procedure to	correct the	<i>p</i> -values fo	r multiple t	esting (<i>p</i>	< 0.05: each	h p-value	: is adiusted	for 21 tests.
i.e., the number of smoking/vaping outcon	ies).	-	10000	, - i		-) -		-) . :		-	-				.)				
Bold Values show the results meeting the :	ignificance i	evel of p	I cnnin ⊻	or risner s	complitie.	tion tests (ui	le-sided), ai	. ∪ .∪ ≤ d br	tor neterus	geneity te	sts (across :	schools	or subgroups,								

smoking amongst adolescents (East et al., 2019), and that the number of adolescents who have never smoked but have tried vaping is increasing (McNeill et al., 2019).

By contrast, many of the self-report injunctive and descriptive smoking norms outcomes showed no significant peer influence effects in our OLS regressions (objective 2). However, most of these items inquire about perceived approval for smoking or engagement in smoking behaviors of specific groups (e.g., mothers, fathers, siblings). Peer influence effects were observed for self-report norms items enquiring about approval for smoking or engagement in smoking behavior from more generic groups (e.g., "most of the people who are important to me", "friends", "best friends", "other family members", or "classmates"). Our CLPM results complemented these findings by generally showing that peer influence and selection homophily operated simultaneously for these individual items (objective 3). In the SIENA models, the peer influence effect approached significance for selfreport descriptive norms scale 1 (enquiring about how often important others engage in smoking), whilst the peer selection homophily effect approached significance for self-report descriptive norms scale 2 (enquiring about the proportion of groups of important others who are smokers; objective 4). Our mixed-effects logistic regressions suggested that the self-report norms were more important for selection homophily processes, particularly for friend nominations at baseline (objective 1). Since the self-report norm measures are more subject to social desirability biases, our participants could have been exhibiting a desire to conform to behaviors and attitudes of friends when responding to the self-report norm items (Murray et al., 2020).

Self-report smoking behavior, intentions, other self-report smoking-related outcomes, and objectively measured smoking behavior were subject to both selection homophily and peer influence. The largest effect sizes in the regression analyses were observed for objectively measured smoking behavior for selection homophily processes (objective 1) and peer influence (objective 2). Similar to Hoffman et al., our CLPM results showed some evidence that peer influence and selection homophily were simultaneously operating between baseline and follow-up for selfreport smoking behavior (the selection homophily path was statistically significant, the peer influence path approached statistical significance) (Hoffman et al., 2007). Our CLPMs also showed similar results for smoking intentions, susceptibility, and objectively measured smoking behavior (objective 3). In the SIENA models, the peer selection homophily effect was significant for smoking susceptibility and approached significance for self-report smoking behavior. The peer influence effect was significant for intentions and objectively measured smoking behavior and approached significance for knowledge of smoking (objective 4). Previous studies have also found evidence of selection homophily and/or peer influence effects for adolescent smoking behavior and susceptibility (Go et al., 2012; Hoffman et al., 2007; Mercken et al., 2012; Robalino and Macy, 2018).

While there may be a temporal lag between when peer influence occurs and when it exerts its effects on outcomes (E. Krupka et al., 2016), an individual's current social context may also enhance or diminish that influence. In our OLS regressions, we examined lagged peer influence effects (from nominated friends, school classes, and school year groups at baseline), and contemporaneous peer influence effects (from nominated friends, school classes, and school year groups at follow-up; objective 2) for smoking/vaping outcomes at follow-up. Of the observed significant peer influence effects, 48.4% were from baseline and 51.6% were from follow-up. For most outcomes, the significant peer influence effects were dispersed fairly evenly between baseline and follow-up. For the experimental outcome capturing participants' willingness to pay to support anti-smoking norms (donations to ASSIST/Dead Cool), the contemporaneous social context at follow-up was more important (e.g., peer influence effects were observed from follow-up scores of friends, school classes, and school year groups, but no peer influence effects were observed from baseline scores). By contrast, Krupka et al., found evidence of peer influence for an incentivized measure of patience that pertained to both lagged and contemporaneous behavior in the network (E. Krupka et al., 2016). However, peer influence effects for donations to ASSIST/Dead Cool were positive and significant in the SIENA models (objective 4), and approached significance in the CLPMs (objective 3). The SIENA models and CLPMs both account for changes in smoking/vaping outcomes between baseline and follow-up (for both the focal participants and their nominated friends). Selection homophily processes were also examined in terms of the association between adding or dropping friends, with absolute differences between focal participants' and potential friends' outcomes at both baseline and follow-up (objective 1). Again, the social context at baseline and the contemporaneous social context at follow-up were both important in determining network movements between baseline and follow-up.

In our OLS regressions, similar proportions of significant influence effects were observed from friends, school classes, and school year groups, and the magnitude of the standardized regression coefficients was similar for peer influence effects from the three groups (objective 2). Previous research has also investigated the roles of proximal (close friends in the immediate social circle) versus distal (e.g., the peer group one interacts with as part of a larger community within their school year group) peers in developing adolescents' health-related attitudes and behavior (Paek and Gunther, 2007; Salvy et al., 2014). Peer proximity has been shown to moderate the indirect effect of media messages on adolescent smoking intentions and attitudes via changes in perceived peer norms, with changes in perceived norms of more proximal peers having a greater impact (Paek and Gunther, 2007). Theoretically, peer influence may operate at both the proximal and distal levels, however, the influence mechanisms may be different (Paek and Gunther, 2007). Whilst peer pressure may explain proximal peer influence, distal peer influence may operate more subtly by diffusion of a normative climate of standards and values (Bearman et al., 1999; Paek and Gunther, 2007). The influence of perceived norms from distal peers on behavior may be more removed from everyday experiences. Perceived norms may form due to direct observations of individuals' behavior, which are perpetuated and inflated through social conversations (Salvy et al., 2014). Proximal peer influence (e.g., having close friends who smoke) is more likely to have a direct impact on behavior since young people in close relationships spend more time together, observe each other's behavior, and share environments and opportunities where behaviors are engaged in (Salvy et al., 2014). Our results suggest both mechanisms may be important sources of peer influence on adolescent smoking.

Our approach of comparing estimates of selection homophily and peer influence effects from conventional regression methods with SIENA models is advantageous in this respect. Whilst it has been argued that results from regression methods may overestimate selection homophily and peer influence effects, compared to SIENA models which explicitly control for network dynamics and structures (Ragan et al., 2019), the SIENA models do not allow us to unearth peer influence effects from distal peers throughout the whole school year group (i.e., the social network in MECHANISMS schools) as well as proximal peers (i.e., nominated friends). There are also slight differences in how peer influence is defined between the regression-based (objectives 1–3) and SIENA (objective 4) methods. Whilst the regressions use

of	
Ч,	
r ea	
s fo	
pu	
frie	
en	
twe	
be	
ties	
lari	
Ī	
to s	
ns t	
nisr	
chai	
me	
- Se	
ini	
ž	
e	
ativ	
ern	
alt	
l o	
tro	
con	
p	
s, a	
fect	
eff	
nce	
flue	
Ĩ	
ee	
s, p	
fect	
efi	
tion	
lect	
r se	
beel	
۰	
Suc	
utic	les.
trib	con
tion	out
ve	ng
ati	•==
_	ap
e rel	g/vap
The rel	king/vap
e 7 The rel	smoking/vap

Outcome	All school:	s (N = 12) ^a			Subgroup ana	lysis: Setting (N	VI: N = 6; Bogot;	á: N = 6) ^a		Subgroup anal	ysis: Interventi	on (ASSIST: N =	= 6; DC: N = 6) ^a	
	% networ block ^b	k autocorrelati	on attributed to each p	arameter	Subgroup	% network	autocorrelation	attributed to each par	ameter block ^b	Subgroup	% network ;	autocorrelation a	attributed to each pa	rameter block ^b
	2	∎	Undetermined	Control		PS	∎	Undetermined	Control		24	∎	Undetermined	Control
Experimental injunctive	0.13	89.06	3.18	7.63	NI Bogotá	0.00 15.15	86.84 74.80	0.00 6.49	13.16 3.57	ASSIST DC	5.50 0.00	79.70 100.00	1.16 0.00	13.64 0.00
norms Experimental descriptive	0.00	81.59	0.00	18.41	NI Bogotá	0.00 31.30	83.26 53.64	0.00 1.76	16.74 13.30	ASSIST DC	26.08 0.00	64.01 35.23	1.05 0.00	8.87 64.77
norms Donation	3.90	83.46	0.59	12.05	NI Boantá	4.78 1.66	78.19 91.05	1.48 0.84	15.55 6.45	ASSIST	18.10	66.90 89 73	3.31	11.69
Self-report injunctive	0.00	100.00	0.00	0.00	NI Bogotá	20.50	52.84 100.00	26.66 0.00	00:0	ASSIST DC	0.00	0.00	0.00	0.00
norms Self-report descriptive	38.48	45.24	2.07	14.22	NI Bogotá	34.67 42.38	45.17 44.34	0.76 5.71	19.40 7.57	ASSIST DC	35.73 42.61	59.91 23.15	3.35 0.15	1.01 34.09
Self-report descriptive	50.30	42.85	3.83	3.02	NI Bogotá	46.83 48.83	45.24 35.51	7.93 4.66	0.00	ASSIST DC	51.17 49.23	42.77 42.96	1.94 6.14	4.13 1.67
norms ∠ Self-report smoking	50.13	15.37	5.44	29.06	NI Bogotá	37.22 57.88	27.19 8.27	7.85 3.99	27.73 29.86	ASSIST DC	55.16 38.08	8.04 31.52	8.07 0.59	28.73 29.81
benavior Intentions	11.70	59.21	2.44	26.65	NI	9.72	59.51	1.78	28.99	ASSIST	2.51	60.04 E1 62	7.29	30.16
Knowledge	0.00	88.99	0.00	11.01	NI	0000	91.31 91.31	0000	8.69	ASSIST	0.00	93.40 93.40	4.000 0000	6.60 6.60
Attitudes	0.00	71.46	0.00	28.54	Dogota NI Docotá	0000	80.99 80.99	0000	19.01 19.01	ASSIST	0.00	82.01 0.1 00	0.00	04:41 17.99 77
Self-efficacy	38.85	0.00	0.00	61.15	DUGULA NI Boroti	0.00	0.00	0000	100.00	ASSIST	51.70	0.00	00.0	48.30
Self-efficacy	27.21	0.00	0.00	72.79	NI Borotá	0.00	0.00	0000	100.00	ASSIST	39.14	0.00		60.86
Self-efficacy	75.81	0.00	2.39	21.79	DUGULA NI Docotá	40.34 40.34	56.06	9.00 9.00 00 00	0.00	ASSIST	87.86	0.00	0.00	12.14
Perceived	28.03	0.81	0.13	41.03	NI	0.00	29.85	0000	70.15	ASSIST	0.00	33.76 34.70	2.52	63.72 63.72
pnysical risks Perceived social	0.00	0.00	0.00	100.00	bogota NI Bocoté	0.00 0.00	0.00	0.00 00.00	700.00	DC ASSIST DC	45.35	0.00	4/.7 0.00	54.65
Perceived	92.57	0.00	0.00	7.43	Duguta NI Bocotić	99.14	0.00	00.0	0.86 0.86	ASSIST	78.73	0.00		21.27
euarcion risks- Perceived	47.16	0.00	0.00	52.84	DUGULA NI Docotá	00:00 19:09 73 01	0.00	0000	39.39	ASSIST	0.00	0.00		100.00
PBC (easy to	63.09	0.00	0.00	36.91	Dogota NI Docotá	77.57	0.00	0000	22.43	ASSIST	66.11 66.11	0.00		33.89
PBC (to avoid	99.35	0.00	0.00	0.65	Dogota NI	00.00	92.02	0000	7.98	ASSIST	100.00	00.00	0000	0.00
smoking/ Objectively measured	8.41	90.18	1.41	0.00	bogota NI Bogotá	1.31 8.34	89.00 82.70	0.00 9.69 8.96	0.00	DC DC	3.06 8.47	0.00 89.39 82.43	0.00 7.55% 9.10%	0.00%
smoking behavior Smoking susceptibility	54.44	25.45	1.18	18.92	NI Bogotá	61.85 48.49	13.65 34.93	0.26 1.92	24.23 14.66	ASSIST DC	46.44 65.86	36.06 10.31	1.04% 1.39%	16.46% 22.44%
N/ Northern Ireland, acc. como of tho mot	ASSIST A Stop	Smoking in Sc	chools Trial, DC Dead Co	ool, PS peer select	tion, PI peer influenc	e, PBC perceive	d behavioral con	itrol. At-ambreis In addition	for source addi	ction victor of tobac	Cohoole	for one 2 proc 2	and due to not comp	of the
SIENA models when bCalculations are bas	excluding pee	ir selection effe	etts. See details alongsid. he mean Moran's / statis	e Supplementary	Figs. S74-S115.	fferent model sc	Decifications (1. in	ncluding both peer sele	it for perceived add	ience effects: 2. ex	coluding peer sel	ection effects: 3.	excluding peer influe	nce effects: 4.
excluding peer select	tion and peer i	influence effect	ts). For each model spec	ification, 500 net	works were simulate	ed from the SIEN	NA model result:	s on the observed netv	vorks in each schoo	ol (24,000 simulat	ted networks in	total for outcom	es with all 12 schools	included).
uecuripusitions ונשו schools).	culated by cont	nparirig une mec	an Morari e i acrosa	Imulated fietwork.	s under each mouer	specification in t	each scriool) are	presented for all scrive	ols, ariu oy suogroup	ט וטאו) צוטטוא 20 5	Jern Ireiariu suik	סטוג, בטצטנו גרווט	, sinuids i cieced , 2005	

Fig. 4 Violin plot showing the distribution of Moran's / statistic for experimental injunctive norms for smoking/vaping across networks simulated under different model specifications. The distribution of the Moran's / statistic is shown for networks simulated under the following model specifications: (1) including both peer selection and peer influence effects ("Full"); (2) excluding peer selection effects ("Excluding PS"); (3) excluding peer influence effects ("Excluding PI"); and (4) excluding peer selection and peer influence effects ("Excluding PS"); (3) excluding peer influence effects ("Excluding PI"); and (4) excluding peer selection and peer influence effects ("Excluding PS").

peer-group averages on the outcome variables, the SIENA models use the average of centered similarity scores describing each participant's similarity to his/her nominated friends on the outcome variables (Ripley et al., 2022). This may have affected our assessment of peer influence for the following smoking/vaping outcomes, which showed significant peer influence effects from both proximal peers (nominated friends) and distal peers (school classes and school year groups) in the OLS regressions and CLPMs (objectives 2 and 3) but non-significant peer influence effects in the SIENA models (objective 4): self-report descriptive norms scale 2, self-report smoking behavior, perceived social and addiction risks, perceived behavioral control (easy to quit smoking), and smoking susceptibility.

On the other hand, our results may indeed reflect a tendency for regression methods to produce larger estimates of selection homophily and peer influence effects compared to SIENA models. Whilst our CLPMs showed selection homophily and peer influence generally operated simultaneously between baseline and follow-up for our smoking/vaping outcomes (objective 3), we did not find evidence for both effects operating together in any of the SIENA models (objective 4). However, when Ragan et al., previously investigated this issue empirically they found no evidence that regression methods were biased towards overestimating peer influence compared to SIENA (Ragan et al., 2019). On the contrary, the authors found that their SIENA models produced larger estimates of peer influence compared to the regressions. They concluded that regression methods with adequate statistical controls may even have the potential to produce more conservative peer influence estimates, although they assume independence among actors and generally do not account for endogenous network processes (Ragan et al., 2019). Furthermore, our decomposition of the mean Moran's I across networks simulated under different model specifications, indicated that comparable percentages of network autocorrelation (i.e., the similarity between friends across the 21 smoking/vaping outcomes examined in the SIENA models) were attributable to selection homophily (32.8%) and peer influence (39.2%; objective 4). These proportions are also similar to (or even greater than) those reported in previous studies finding evidence for the importance of selection homophily and/or peer influence processes in determining adolescents' smoking outcomes (Mercken et al., 2009, 2012).

When we broke these proportions down by intervention group, we found that a higher proportion of similarity between friends on the smoking/vaping outcomes was attributable to selection homophily and/or peer influence for ASSIST schools (74.6%) compared to Dead Cool schools (53.8%; objective 4). This finding accords with the theoretical underpinnings of the programs, and our study hypotheses (Hunter et al., 2020). Specifically, we expect to observe more network-mediated change in outcomes in ASSIST schools compared to Dead Cool, since the ASSIST program is specifically designed to leverage peer influences whilst the Dead Cool program is based on more conventional classroom pedagogy (Campbell et al., 2008; Thurston et al., 2019). Previous evaluations of social network processes for smoking outcomes in the original ASSIST and Dead Cool trials support this finding. For example, whilst Mercken et al., found evidence for peer influence and selection homophily in the original ASSIST trial (although selection homophily was the more salient predictor of smoking behavior) (Mercken et al., 2012), Badham et al., found no evidence for the diffusion of smoking-related attitudes through school friendship networks in Dead Cool (Badham et al., 2019).

Fig. 5 Bar plot showing the decomposition of Moran's I statistic into parameter blocks for experimental injunctive norms for smoking/vaping. The bars show the relative contribution of peer selection effects, peer influence effects, and control/alternative explaining mechanisms to similarities between friends for experimental injunctive norms for smoking/vaping. Calculations are based on the decomposition of the mean Moran's *I* statistic from networks simulated under different model specifications (1. including both peer selection and peer influence effects; 2. excluding peer selection effects; 3. excluding peer influence effects; 4. excluding peer selection and peer influence effects). For each model specification, 500 networks were simulated from the SIENA model results on the observed networks in each school (N = 12; 24,000 simulated networks in total). Decompositions (calculated by comparing the mean Moran's I across the simulated networks under each model specification in each school) are displayed for all schools, and by subgroups of schools (Northern Ireland schools, Bogotá schools, ASSIST schools, and Dead Cool schools).

Our subgroup analyses also showed that peer selection homophily effects were stronger in Bogotá compared to NI (for objectively measured smoking behavior), whilst peer influence effects were stronger in NI compared to Bogotá (for self-report descriptive norms scale 1, intentions, the self-efficacy emotional subscale, and perceived benefits). Furthermore, the percentage of similarity between friends across the 21 smoking/vaping outcomes examined in the SIENA models that were due to peer selection homophily was >10% higher in Bogotá compared to NI (the percentage of similarity between friends due to peer influence was >10% higher in NI compared to Bogotá). Thus, whilst we did not find evidence that similarity between friends on the smoking/ vaping outcomes differed between the settings overall, we did find evidence that for at least some smoking/vaping outcomes, the mechanisms producing smoking/vaping-based homogeneity in the networks (selection homophily versus peer influence) differed between the settings.

Strengths and limitations. Strengths of this paper include the large sample size, and inclusion of data collected in two settings with varying norms, cultural traits, regulatory contexts, and health behavior patterns. Prior to implementation in Bogotá, all study materials were culturally adapted (Sánchez-Franco et al., 2021). We have investigated selection homophily and peer influence effects for self-report and objective measures of

smoking behavior and for smoking norms assessed by self-report and experimental methods. This is the first study to apply experimental methods to elicit norms for adolescent smoking and vaping behaviors (Hunter et al., 2020). Experimental methods of eliciting social norms mitigate social desirability bias and provide richer insights to better explain behavioral heterogeneity and potentially deepen our understanding of the mechanisms of norms-based public health interventions (Murray et al., 2020). Since temporal precedence is one of the necessary conditions for making causal inferences (i.e., a cause should temporally precede an effect) (Kenny, 1979), our longitudinal study design directly lends itself to inferring which mechanism (selection homophily or peer influence) is pre-dominant in the regression models examining lagged effects under objectives 1 and 2, and in the CLPMs examining reciprocal relationships between focal participant and friends' variables under objective 3. Since an individual's current social context may be the most prominent influence, these models were repeated to examine contemporaneous selection homophily and peer influence effects at follow-up (objectives 1 and 2). The lack of temporality in this latter set of models is a potential limitation. That is, the outcome variable (focal participants' smoking/vaping outcomes), and the predictor variable (average peer group responses to the smoking/vaping outcomes) were both measured at follow-up and so the predictor variable does not temporally precede the outcome variable.

Disentangling selection homophily and peer influence have been recognized as challenging (Ragan et al., 2019; Shalizi and Thomas, 2010), and we believe that our comparison of results from different statistical approaches (regressions, CLPMs, and SIENA) is a strength of this paper. It has been argued that results from regression methods may overestimate selection homophily and peer influence effects, compared to SIENA models which explicitly control for network dynamics and structures (Ragan et al., 2019). However, a previous study conducted by Ragan et al. investigated this issue empirically and found no evidence that regression methods were biased towards overestimating peer influence compared to SIENA (Ragan et al., 2019). Furthermore, distal peer influence is not accounted for in the SIENA models. By contrast, our regression analyses specifically examine peer influence from both proximal (i.e., nominated friends) and distal peers (i.e., school classes and school year groups; objective 2). This is particularly important for the experimental norms outcomes, which ask participants to infer norms in the entire school year group (friends and non-friends). Since selection homophily is a process that involves selecting your friends based on observable or known characteristics, the experimental norms cannot really be susceptible to selection homophily in the same way, because they are unobserved. We believe that the absence of material differences between the ORs for experimental and selfreport variables in our regression-based assessment of selection homophily (objective 1) strengthens our conclusions about peer influence. Our regression-based analyses (objectives 1 and 2) also offered the opportunity to take a closer look at the temporality of the peer selection and peer influence processes.

This paper has several other limitations. The MECHANISMS study included a relatively small sample of schools. We endeavored to recruit schools with a range of deprivation levels and mixed gender. Our results should be interpreted with caution due to multiple testing. We accounted for multiple testing by discussing our results with reference to a more stringent significance criterion ($p \le 0.01$). The issue of adjusting for multiple testing within a study is widely debated. There are no established rules or guidance, and several prominent academics have made a strong case for why it is not always desirable, or even correct, to adjust for multiple testing (Feise, 2002; Perneger, 1998; Rothman, 1990). Whilst adjusting *p*-values for multiple testing reduces type one error rates (the rate of falsely declaring a significant result), they also increase type two error rates (declaring a null result in error), meaning that important findings can be missed. Our paper also set out to test theoretically justifiable hypotheses (i.e., that, for peer influence, we would observe correlated smoking-related outcomes for pupils and their friends, and that pupils would be more likely to nominate friends who are similar to themselves on smoking-related outcomes, for selection homophily). Therefore, we adopted the approach of discussing all results meeting the $p \le 0.01$ criterion. Throughout our results tables, we have also highlighted which results would have attained significance at the $p \le 0.05$ level after using the Holm-Bonferroni procedure to adjust the p-values for multiple testing (Holm, 1979). Our results are based on complete case analyses, so nominated friends with missing attribute data were excluded. However, we had a high participation rate across the schools (93.1%), and rates of completion for the experiments (93.1-94.6%) and survey (90.0-94.8%) were high at both timepoints.

Implications for future research. Peer influence is an important determinant of adolescent smoking and vaping norms, smoking behavior, and other smoking-related outcomes. This is true for influence from proximal and distal peers and for lagged and

contemporaneous peer influence effects. Thus, our findings support using the social norms approach as an intervention strategy to change health behaviors (altering perceived peer norms in such a way as to convince individuals that their peers approve of, or engage in, the desired behavior) (Dempsev et al., 2018). In line with one of our study's main hypotheses, our results provide some evidence that there was more network-mediated change in smoking/vaping outcomes in ASSIST schools compared to Dead Cool schools (with a higher percentage of similarity between friends attributable to selection homophily and/or peer influence for ASSIST schools compared to Dead Cool). This is expected since the ASSIST program is specifically designed to leverage peer influences (Campbell et al., 2008). We also found some indication that whilst smoking/vaping-based similarity between friends was similar across the settings, the mechanisms producing smoking/ vaping-based homogeneity within the networks (i.e., selection homophily versus peer influence mechanisms) differed in NI compared to Bogotá, for at least some of the outcomes. In future research, we intend to use moderator analysis to investigate whether the peer influence effects examined in our OLS regressions (objective 2) differ according to setting (NI versus Bogotá), intervention (ASSIST versus Dead Cool), personality characteristics, or social network positions. For example, previous research suggests that social influences may have a stronger impact on the behavior of individuals with characteristics (e.g., personality, cultural, and environmental traits) that make them susceptible to social influences (Stacy et al., 1992). Our results suggest that peer influence on adolescent smoking and vaping outcomes operates from both proximal and distal peers within schools. However, there may be heterogeneity in school-level influence across different schools (e.g., the SIENA model results showed evidence for school-level heterogeneity for some of the social network structural effects; Supplementary Tables S11-S31). Therefore, investigating moderation of the peer influence effects according to different social network characteristics and parameters is an important area for our future research.

It is also interesting to note recent novel conceptualizations of attitude formation which take account of network theories that are being invoked to reconcile the "connectedness" of related psychological substrates at the individual level and the connectedness of individuals sharing similar attitudes. For example, Dalege et al., have conceived of attitudes as "systems of causally interacting evaluative psychological reactions that strive for a coherent representation of the attitude object" (Dalege et al., 2016). Based on this basic idea, they have developed the "Causal Attitude Network" (CAN) model that links research on attitudes to network theory. Important tenets of the model are that: (1) networks of variables affecting attitudes (elicited for example in large population surveys) show a high degree of clustering, with similar evaluative reactions exerting stronger influence on each other than dissimilar evaluative reactions, and; (2) that strong attitudes correspond to highly connected attitude networks. It is claimed that CAN models may to some degree reflect biological substrates (with respect to the interconnections between brain regions) (Telzer et al., 2021). Telzer et al., claim that some measures of network connectivity may better predict behavior than the raw psychological constructs themselves when incorporated into traditional regression-based models (Telzer et al., 2021). In a recent Nature paper, Galesic et al., (including Dalege) called for a number of enhancements of existing CAN models, including the need to account for the dependency of people's beliefs (what they refer to as social sensing, a notion resonating closely with the action of social norms), and a drive to improve their informational value through machine learning approaches (Galesic et al., 2021). We aim to incorporate a CAN perspective in future sensitivity analyses of our examination of selection

homophily and peer influence for our MECHANISMS school friendship networks.

Another avenue for future research revolves around the elaboration of alternative functional forms of the norms' susceptibility concept (e.g., the Kimbrough–Vostroknutov model used in the MECHANISMS study), and their incorporation in studies of selection homophily and social influence and their behavioral determinants (Kimbrough and Vostroknutov, 2016, 2018; Krupka and Weber, 2013). One possible choice was illustrated in the CASCADE study on alcohol consumption, and the authors claim that the use of a machine learning approach in a generative social science endeavor may lead to more efficient representations of this mechanism in the future (Probst et al., 2020).

Future research should also investigate whether these results apply in different settings. Our results support the recommendation that adolescent smoking prevention research should consider both selection homophily and social influence processes, as comparable proportions of similarity between friends on the smoking/vaping outcomes were due to selection homophily and peer influence across all schools (Mercken et al., 2009, 2012).

Conclusions

This paper investigates selection homophily and peer influence effects for adolescent smoking and vaping-related outcomes collected as part of the MECHANISMS study using regression-based methods, structural equation modeling (CLPMs), and SIENA models. Lagged and contemporaneous peer influence effects were shown to be an important determinant of adolescent smoking and vaping norms, and other smoking-related outcomes, from both proximal peers in friendship networks and distal peers throughout whole school year groups. Selection homophily in peer selection was determined, at least partly, by similarities and dissimilarities with potential friends on smoking and vaping outcomes. Overall, we found comparable proportions of similarity between friends on the smoking/vaping outcomes were due to selection homophily and peer influence. We also found evidence that a higher percentage of similarity between friends was attributable to selection homophily and/or peer influence for ASSIST schools compared to Dead Cool. Whilst smoking/vapingbased similarity between friends was similar across the settings, the mechanisms producing smoking/vaping-based homogeneity within the networks seem to differ in NI compared to Bogotá, for at least some of the outcomes (selection homophily was more important in Bogotá whilst peer influence was more important in NI). These findings support using social norms strategies in adolescent smoking prevention interventions. Future adolescent smoking prevention research should investigate both selection homophily and social influence processes, examine potential moderators of these peer influence effects, and investigate whether these findings translate to other settings with varying cultural and normative traits.

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available as participants were informed that no-one outside of the research team would have access to the research data when they signed their consent forms. Detailed break-downs of the syntax used to generate the results for the study have been provided in the Supplementary Methods. For further information about the study datasets, please contact the corresponding authors (Emails: Jennifer.Murray@qub.ac.uk; ruth.hunter@qub.ac.uk). Received: 18 November 2022; Accepted: 12 September 2023; Published online: 26 September 2023

References

- Action on Smoking and Health (ASH) (2017) Key dates in the history of antitobacco campaigning. https://ash.org.uk/information-and-resources/ briefings/key-dates-in-the-history-of-anti-tobacco-campaigning/
- Action on Smoking and Health (ASH) (2019) Use of e-cigarettes among young people in Great Britain. http://ash.org.uk/category/information-and-resources/
- Allen LN, Feigl AB (2017) Reframing non-communicable diseases as socially transmitted conditions. The Lancet 5(7):E644–E646. PIIS2214-109X(17) 30200-0/fulltext
- Allen M (2017) Cross-lagged panel analysis. In: The SAGE Encyclopedia of Communication Research Methods. SAGE Publications, Inc
- Aryal UR, Petzold M, Krettek A (2013) Perceived risks and benefits of cigarette smoking among Nepalese adolescents: a population-based cross-sectional study. BMC Public Health 13:187. https://doi.org/10.1186/1471-2458-13-187
- Badham J, McAneney H, Dunne L, Kee F, Thurston A, Hunter RF (2019) The importance of social environment in preventing smoking: an analysis of the Dead Cool intervention. BMC Public Health 19(1):1182. https://doi.org/10. 1186/s12889-019-7485-7
- Bearman PS, Bruckner H, Brown BB, Theobald W, Philliber S (1999) Peer potential: making the most of how teens influence each other. National Campaign to Prevent Teen Pregnancy: Washington, DC
- Bedfont Scientific Ltd. (2018) Smokerlyzer range: user manual. Bedfont Scientific Ltd
- Bicchieri C, Muldoon R, Sontuoso A (2018) "Social norms." In: Zalta EN (ed) The Stanford encyclopedia of philosophy (Winter). Metaphysics Research Lab, Stanford University: Standford, California. Available from: https://plato. stanford.edu/archives/win2018/entries/social-norms/
- Block P (2018) Network evolution and social situations. Sociol Sci 45:402-431. https://doi.org/10.15195/v5.a18
- Bronfenbrenner U (1977) Toward an experimental ecology of human development. Am Psychol 32(7):513–531. https://doi.org/10.1037/0003-066X.32.7.513
- Burks SV, Krupka EL (2012) A multimethod approach to identifying norms and normative expectations within a corporate hierarchy: evidence from the financial services industry. Manag Sci 58(1):203–217. https://doi.org/10.1287/ mnsc.1110.1478
- Campbell R, Starkey F, Holliday J, Audrey S, Bloor M, Parry-Langdon N, Hughes R, Moore L (2008) An informal school-based peer-led intervention for smoking prevention in adolescence (ASSIST): a cluster randomised trial. Lancet (London, England) 371(9624):1595–1602. https://doi.org/10.1016/ S0140-6736(08)60692-3
- Chan GCK, Stjepanović D, Lim C, Sun T, Shanmuga Anandan A, Connor JP, Gartner C, Hall WD, Leung J (2021) A systematic review of randomized controlled trials and network meta-analysis of e-cigarettes for smoking cessation. Addict Behav 119:106912. https://doi.org/10.1016/j.addbeh.2021. 106912
- Chapman S, Freeman B (2008) Markers of the denormalisation of smoking and the tobacco industry. Tobacco Control 17(1):25–31. https://doi.org/10.1136/TC. 2007.021386
- Chu KH, Shensa A, Colditz JB, Sidani JE, Hoffman BL, Sinclair D, Krauland MG, Primack BA (2020) Integrating social dynamics into modeling cigarette and e-cigarette use. Health Educ Behav 47(2):191–201. https://doi.org/10.1177/ 1090198119876242
- Cialdini R, Trost M (1998) Social influence: Social norms, conformity and compliance. In: Gilbert DT, Fiske ST, Lindzey G (eds) The handbook of social psychology. McGraw-Hill, New York, pp. 151–192
- Cliff AD, Ord JK (1981) Spatial processes: models and applications. Pion
- Cochran WG (1954) The combination of estimates from different experiments. Biometrics 10(1):101. https://doi.org/10.2307/3001666
- Colombia Ombudsman Office (2017) Follow-up report on compliance with the WHO framework convention on tobacco control in Colombia. https://www.defensoria.gov.co/public/pdf/Informe_tabaco.pdf
- Condiotte MM, Lichtenstein E (1981) Self-efficacy and relapse in smoking cessation programs. J Consult Clin Psychol 49(5):648–658. https://doi.org/10. 1037/0022-006X.49.5.648
- Cremers H-P, Mercken L, Oenema A, de Vries H (2012) A web-based computertailored smoking prevention programme for primary school children: intervention design and study protocol. BMC Public Health 12(1):277. https://doi. org/10.1186/1471-2458-12-277
- Dalege J, Borsboom D, van Harreveld F, van den Berg H, Conner M, van der Maas HLJ (2016) Toward a formalized account of attitudes: the Causal Attitude Network (CAN) Model. Psychol Rev 123(1):2–22. https://doi.org/10.1037/ A0039802

- Dempsey RC, McAlaney J, Bewick BM (2018) A critical appraisal of the Social Norms Approach as an interventional strategy for health-related behavior and attitude change. Front Psychol 9:2180. https://doi.org/10.3389/fpsyg. 2018.02180
- Difranza JR, Richmond JB (2008) Let the children be heard: lessons from studies of the early onset of tobacco addiction. Pediatrics 121(3):623. https://doi.org/10. 1542/peds.2007-3696
- Dubray J, Schwartz R, Chaiton M, O'Connor S, Cohen JE (2015) The effect of MPOWER on smoking prevalence. Tobacco Control 24(6):540–542. https:// doi.org/10.1136/TOBACCOCONTROL-2014-051834
- Dunne L, Thurston A, Gildea A, Kee F, Lazenbatt A (2016) Protocol: a randomised controlled trial evaluation of Cancer Focus NI's 'Dead Cool' smoking prevention programme in post-primary schools. Int J Educ Res 75:24–30. https:// doi.org/10.1016/j.ijer.2015.06.009
- East KA, Hitchman SC, McNeill A, Thrasher JF, Hammond D (2019) Social norms towards smoking and vaping and associations with product use among youth in England, Canada, and the US. Drug Alcohol Depend 205:107635. https:// doi.org/10.1016/j.drugalcdep.2019.107635
- Elias J, Ling PM (2018) Origins of tobacco harm reduction in the UK: the "Product Modification Programme" (1972–1991). Tobacco Control 27(E1):e12. https:// doi.org/10.1136/tobaccocontrol-2017-054021
- Feise RJ (2002) Do multiple outcome measures require p-value adjustment. BMC Med Res Methodol 2(1):8. https://doi.org/10.1186/1471-2288-2-8
- Ferguson KD, McCann M, Katikireddi SV, Thomson H, Green MJ, Smith DJ, Lewsey JD (2020) Evidence synthesis for constructing directed acyclic graphs (ESC-DAGs): a novel and systematic method for building directed acyclic graphs. Int J Epidemiol 49(1):322–329. https://doi.org/10.1093/ije/dyz150
- Fisher RA (1925) Statistical methods for research workers, 14th edn. Oliver and Boyd Flashman J, Gambetta D (2014) Thick as thieves: homophily and trust among
- deviants. Ration Soc 26(1):3-45. https://doi.org/10.1177/1043463113512996
 Foster C, Scarlett M, Stewart B (2017) Young persons' behaviour and attitude survey 2016 Health Modules. Belfast: Department of Health, UK Government. Available from: https://www.health-ni.gov.uk/articles/young-personsbehaviour-attitudes-survey
- Fowler JH, Christakis NA (2008) Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the Framingham Heart Study. BMJ 337:a2338. https://doi.org/10.1136/BMJ.A2338
- Fuller E, Hawkins V (2012) Smoking, drinking and drug use among young people in England in 2011. Health and Social Care Information Centre, London
- Galesic M, Bruine de Bruin W, Dalege J, Feld SL, Kreuter F, Olsson H, Prelec D, Stein DL, van der Does T (2021) Human social sensing is an untapped resource for computational social science. Nature 595(7866):214–222. https:// doi.org/10.1038/s41586-021-03649-2
- Ganley BJ, Rosario DI (2013) The smoking attitudes, knowledge, intent, and behaviors of adolescents and young adults: implications for nursing practice. J Nurs Educ Pract 3(1):40. https://doi.org/10.5430/jnep.v3n1p40
- Go MH, Tucker JS, Green HD, Pollard M, Kennedy D (2012) Social distance and homophily in adolescent smoking initiation. Drug Alcohol Depend 124(3):347–354. https://doi.org/10.1016/j.drugalcdep.2012.02.007
- Halpern-Felsher BL, Biehl M, Kropp RY, Rubinstein ML (2004) Perceived risks and benefits of smoking: differences among adolescents with different smoking experiences and intentions. Prev Med 39(3):559–567. https://doi.org/10.1016/ j.ypmed.2004.02.017
- Hayashi K, Bentler PM, Yuan KH (2011) Structural equation modeling. In: Rao CR, Miller JP, Rao DC (eds) Essential Statistical Methods For Medical Statistics, vol. 27. Elsevier Inc, pp. 202–234
- Hedges LV, Olkin I (1985) Statistical methods for meta-analysis. Academic Press Higgins J, Thomas J (2022) Cochrane handbook for systematic reviews of interventions, version 6.3. https://training.cochrane.org/handbook/current
- Hoffman BR, Monge PR, Chou CP, Valente TW (2007) Perceived peer influence and peer selection on adolescent smoking. Addict Behav 32(8):1546–1554. https://doi.org/10.1016/j.addbeh.2006.11.016
- Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(6):65-70
- Hooijsma M, Huitsing G, Kisfalusi D, Dijkstra JK, Flache A, Veenstra R (2020) Multidimensional similarity in multiplex networks: friendships between same- and cross-gender bullies and same- and cross-gender victims. Netw Sci 8(1):79–96. https://doi.org/10.1017/NWS.2020.1
- Hooper D, Coughlan J, Mullen M (2008) Structural equation modelling: guidelines for determining model fit. Electron J Bus Res Methods 6(1):53–60. https:// doi.org/10.21427/D7CF7R
- Hu L, Bentler PM (1999) Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Model 6(1):1–55. https://doi.org/10.1080/10705519909540118
- Huber PJ (1967) The behavior of maximum likelihood estimates under nonstandard conditions. In: Le Cam LM, Neyman J (eds) Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, University of California Press, Berkeley, California, pp. 221–33

- Hunter RF, de la Haye K, Murray JM, Badham J, Valente TW, Clarke M, Kee F (2019) Social network interventions for health behaviours and outcomes: a systematic review and meta-analysis. PLOS Med 16(9):e1002890. https://doi. org/10.1371/journal.pmed.1002890
- Hunter RF, Montes F, Murray JM, Sanchez-Franco SC, Montgomery SC, Jaramillo J, Tate C, Kumar R, Dunne L, Ramalingam A, Kimbrough EO, Krupka E, Zhou H, Moore L, Bauld L, Llorente B, Sarmiento OL, Kee F (2020) MECHANISMS Study: using Game Theory to assess the effects of social norms and social networks on adolescent smoking in schools—study protocol. Front Public Health 8:377. https://doi.org/10.3389/fpubh.2020.00377
- Huriah T, Dwi Lestari V (2020) School-based smoking prevention in adolescents in developing countries: a literature review. Open Access Maced J Med Sci 8(F):84–89. https://doi.org/10.3889/oamjms.2020.4336
- Johnston R, Jones K, Manley D (2018) Confounding and collinearity in regression analysis: a cautionary tale and an alternative procedure, illustrated by studies of British voting behaviour. Qual Quant 52(4):1957–1976. https://doi.org/10. 1007/s11135-017-0584-6
- Kenny D (1979) Correlation and causation. John Wiley, New York
- Killip S, Mahfoud Z, Pearce K (2004) What is an intracluster correlation coefficient? Crucial concepts for primary care researchers. Ann Fam Med 2(3):204–208. https://doi.org/10.1370/AFM.141
- Kimbrough EO, Vostroknutov A (2016) Norms make preferences social. J Eur Econ Assoc 14(3):608–638. https://doi.org/10.1111/jeea.12152
- Kimbrough EO, Vostroknutov A (2018) A portable method of eliciting respect for social norms. Econ Lett 168:147–150. https://doi.org/10.1016/j.econlet.2018. 04.030
- Krupka EL, Weber RA (2013) Identifying social norms using coordination games: why does dictator game sharing vary? J Eur Econ Assoc 11(3):495–524. https://doi.org/10.1111/jeea.12006
- Krupka E, Leider S, Xu C (2016) Laboratory on the social network: homophily and peer influence for economic preferences. University of Michigan, Ann Arbor, Michigan
- la Roi C, Dijkstra JK, Kretschmer T, Savickaité R, Veenstra R (2020) Peers and homophobic attitudes in adolescence: examining selection and influence processes in friendships and antipathies. J Youth Adolesc 49(11):2229–2245. https://doi.org/10.1007/S10964-020-01298-8/TABLES/5
- Lawrance L (1989) Validation of a self-efficacy scale to predict adolescent smoking. Health Educ Res Theory Pract 4(3):351–360. https://doi.org/10.1093/her/4.3.351
- Leszczensky L, Pink S (2020) Are birds of a feather praying together? Assessing friends' influence on Muslim youths' religiosity in Germany. Soc Psychol Q 83(3):251–271. https://doi.org/10.1177/0190272520936633
- Littlecott HJ, Hawkins J, Mann M, Melendez-Torres GJ, Dobbie F, Moore G (2019) Associations between school-based peer networks and smoking according to socioeconomic status and tobacco control context: protocol for a mixed method systematic review. Syst Rev 8(1):313. https://doi.org/10.1186/s13643-019-1225-z
- Liu J, Zhao S, Chen X, Falk E, Albarracín D (2017) The influence of peer behavior as a function of social and cultural closeness: a meta-analysis of normative influence on adolescent smoking initiation and continuation. Psychol Bull 143(10):1082–1115. https://doi.org/10.1037/bul0000113
- Mackie G, Moneti F, Shakya H, Denny E (2015) What are social norms—how are they measured? United Nations International Children's Emergency Fund (UNICEF) and the University of California, San Diego, Center on Global Justice
- Mazanov J, Byrne DG (2007) "Do you intend to smoke?": a test of the assumed psychological equivalence in adolescent smoker and nonsmoker intention to change smoking behaviour. Aust J Psychol 59(1):34–42. https://doi.org/10. 1080/00049530600944366
- McNeill A, Brose LS, Calder R, Bauld L, Robson D (2019) Vaping in England: evidence update summary February 2019. A report commissioned by Public Health England. https://www.gov.uk/government/publications/vaping-inengland-an-evidence-update-february-2019/vaping-in-england-evidenceupdate-summary-february-2019
- Mercken L, Snijders TAB, Steglich C, de Vries H (2009) Dynamics of adolescent friendship networks and smoking behavior: social network analyses in six European countries. Soc Sci Med 69(10):1506–1514. https://doi.org/10.1016/j. socscimed.2009.08.003
- Mercken L, Steglich C, Sinclair P, Holliday J, Moore L (2012) A longitudinal social network analysis of peer influence, peer selection, and smoking behavior among adolescents in British schools. Health Psychol 31(4):450–459. https:// doi.org/10.1037/a0026876
- Miething A, Rostila M, Edling C, Rydgren J (2016) The influence of social network characteristics on peer clustering in smoking: a two-wave panel study of 19and 23-year-old Swedes. PLoS ONE 11(10):e0164611. https://doi.org/10. 1371/journal.pone.0164611
- Ministry of Health and Social Protection (2020) National Youth Tobacco Survey Colombia 2017. Bogotá, Colombia. https://www.minsalud.gov.co/salud/ publica/epidemiologia/Paginas/Estudios-y-encuestas.aspx

ARTICLE

- Ministry of Justice and Law, Ministry of National Education, & Ministry of Health and Social Protection (2016) National Study of psychoactive substance use in school population Colombia. Ministry of Justice and Law, Ministry of National Education, & Ministry of Health and Social Protection
- Montes F, Blanco M, Useche AF, Sanchez-Franco S, Caro C, Tong L, Li J, Zhou H, Murray JM, Sarmiento OL, Kee F, Hunter RF (2023) Exploring the mechanistic pathways of how social network influences social norms in adolescent smoking prevention interventions. Sci Rep 13(1):3017. https://doi. org/10.1038/s41598-023-28161-7
- Montgomery SC, Donnelly M, Bhatnagar P, Carlin A, Kee F, Hunter RF (2020) Peer social network processes and adolescent health behaviors: a systematic review. Prev Med 130:105900. https://doi.org/10.1016/j.ypmed.2019.105900
- Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37(1):17-23. https://doi.org/10.2307/2332142
- Munabi-Babigumira S, Fretheim A, Øverland S (2012) Interventions for tobacco control in low- and middle-income countries: evidence from Randomised and Quasi-randomised Studies. Report from the Norwegian Knowledge Centre for the Health Services, no. 03-2012. Norwegian Knowledge Centre for the Health Services, Oslo. Available from: https://www.fhi.no/globalassets/ dokumenterfiler/rapporter/2012/rapport_2012_03_tobacco_lmic.pdf
- Murray JM, Kimbrough EO, Krupka EL, Ramalingam A, Kumar R, Power JM, Sanchez-Franco S, Sarmiento OL, Kee F, Hunter RF (2020) Confirmatory factor analysis comparing incentivized experiments with self-report methods to elicit adolescent smoking and vaping social norms. Sci Rep 10(1):15818. https://doi.org/10.1038/s41598-020-72784-z
- National Administrative Department of Statistics (2019) How many are we? Colombia National Census 2018. https://sitios.dane.gov.co/cnpv/#!/donde_ estamos
- National Administrative Department of Statistics (2021) Socioeconomic stratification. Socioeconomic Stratification for Home Public Services. https://www. dane.gov.co/index.php/servicios-al-ciudadano/servicios-informacion/ estratificacion-socioeconomica
- National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health (2016) E-cigarette use among youth and young adults: a report of the Surgeon General. Centers for Disease Control and Prevention, USA
- Northern Ireland Statistics and Research Agency (2017) Northern Ireland Multiple Deprivation Measure 2017 (NIMDM2017). Northern Ireland Statistics and Research Agency
- Northern Ireland Statistics and Research Agency (2019) 2018 Mid-year Population Estimates for Northern Ireland. https://www.nisra.gov.uk/news/2018-midyear-population-estimates-northern-ireland
- Otálvaro-Ramírez S, Rodríguez-Lesmes P, Gallego JM (2019) Tobacco Control Protocol And Household Smoking Behavior: The case of Bogotá, Colombia. https://pdfs.semanticscholar.org/b0b3/ 924001d2a8b994dcab25a6e14270c7c731e8.pdf
- Paek H-J, Gunther AC (2007) How peer proximity moderates indirect media influence on adolescent smoking. Commun Res 34(4):407–432. https://doi. org/10.1177/0093650207302785
- Panter-Brick C, Clarke SE, Lomas H, Pinder M, Lindsay SW (2006) Culturally compelling strategies for behaviour change: a social ecology model and case study in malaria prevention. Soc Sci Med (1982) 62(11):2810–2825
- Parkinson C, Kleinbaum AM, Wheatley T (2018) Similar neural responses predict friendship. Nat Commun 9(1):332. https://doi.org/10.1038/s41467-017-02722-7
- Peng K, Paletz SBF (2011) Cross-cultural psychology in applied settings. In: Martin PR, Cheung FM, Knowles MC, Kyrios M, Overmier JB, Prieto JM (eds) IAAP handbook of applied psychology, Wiley-Blackwell, Oxford, pp. 525–542
- Perikleous EP, Steiropoulos P, Paraskakis E, Constantinidis TC, Nena E (2018) E-cigarette use among adolescents: an overview of the literature and future perspectives. Front Public Health 6(86):1. https://doi.org/10.3389/fpubh.2018. 00086
- Perneger TV (1998) What's wrong with Bonferroni adjustments. BMJ 316(7139):1236–1238. https://doi.org/10.1136/bmj.316.7139.1236
- Pierce JP, Choi WS, Gilpin EA, Farkas AJ, Berry CC (1998) Tobacco industry promotion of cigarettes and adolescent smoking. JAMA 279(7):511–515. https://doi.org/10.1001/jama.279.7.511
- Preacher KJ (2015) Advances in mediation analysis: a survey and synthesis of new developments. Annu Rev Psychol 66:825–852. https://doi.org/10.1146/ annurev-psych-010814-015258
- Probst C, Vu TM, Epstein JM, Nielsen AE, Buckley C, Brennan A, Rehm J, Purshouse RC (2020) The normative underpinnings of population-level alcohol use: an individual-level simulation model. Health Educ Behav 47(2):224. https://doi.org/10.1177/1090198119880545
- R Core Team (2022) R: a language and environment for statistical computing (4.2.1). R Foundation for Statistical Computing, Vienna, Austria
- Ragan DT, Osgood DW, Ramirez NG, Moody J, Gest SD (2019) A comparison of peer influence estimates from SIENA stochastic actor-based models and from

conventional regression approaches. Sociol Methods Res 1-39. https://doi. org/10.1177/0049124119852369

- Ripley RM, Snijders TAB, Boda Z, Voros A, Preciado P (2022) Manual for RSiena. University of Oxford; University of Groningen, Oxford, Groningen. Available from: https://www.stats.ox.ac.uk/~snijders/siena/RSiena_Manual.pdf
- Robalino JD, Macy M (2018) Peer effects on adolescent smoking: are popular teens more influential? PLoS ONE 13(7):e0189360. https://doi.org/10.1371/journal. pone.0189360
- Rohrer JM, Keller T, Elwert F (2021) Proximity can induce diverse friendships: a large randomized classroom experiment. PLoS ONE 16(8):e0255097. https:// doi.org/10.1371/JOURNAL.PONE.0255097
- Rosseel Y (2012) lavaan: an R package for structural equation modeling. J Stat Softw 48(2):1–36. https://doi.org/10.18637/jss.v048.i02
- Rothman KJ (1990) No adjustments are needed for multiple comparisons. Epidemiology 1(1):43-46
- Salvy SJ, Pedersen ER, Miles JNV, Tucker JS, D'Amico EJ (2014) Proximal and distal social influence on alcohol consumption and marijuana use among middle school adolescents. Drug Alcohol Depend 144:93–101. https://doi.org/ 10.1016/j.drugalcdep.2014.08.012
- Sánchez-Franco S, Arias LF, Jaramillo J, Murray JM, Hunter RF, Llorente B, Bauld L, Good S, West J, Kee F, Sarmiento OL (2021) Cultural adaptation of two school-based smoking prevention programs in Bogotá, Colombia. Transl Behav Med. https://doi.org/10.1093/tbm/ibab019
- Schneider S, Diehl K (2016) Vaping as a catalyst for smoking? An initial model on the initiation of electronic cigarette use and the transition to tobacco smoking among adolescents. Nicotine Tobacco Res 18(5). https://doi.org/10.1093/ NTR/NTV193
- Schweinberger M (2012) Statistical modelling of network panel data: goodness of fit. Br J Math Stat Psychol 65(2):263–281. https://doi.org/10.1111/J.2044-8317.2011.02022.X
- Schweinberger M, Snijders TAB (2007) Markov models for digraph panel data: Monte Carlo-based derivative estimation. Computat Stat Data Anal 51(9):4465–4483. https://doi.org/10.1016/J.CSDA.2006.07.014
- Shalizi CR, Thomas AC (2010) Homophily and contagion are generically confounded in observational social network studies. Sociol Methods Res 40(2):211–239. https://doi.org/10.1177/0049124111404820
- Smith BN, Bean MK, Mitchell KS, Speizer IS, Fries EA (2006) Psychosocial factors associated with non-smoking adolescents' intentions to smoke. Health Educ Res 22(2):238–247. https://doi.org/10.1093/her/cyl072
- Snijders TAB, Baerveldt C (2003) A multilevel network study of the effects of delinquent behavior on friendship evolution. J Math Sociol 27(2–3):123–151. https://doi.org/10.1080/00222500305892
- Snijders TAB, Steglich CEG, Schweinberger M (2007) Modeling the co-evolution of networks and behavior. In: van Montfort K, Oud H, Satorra A (eds) Longitudinal models in the behavioral and related sciences. Lawrence Erlbaum, pp. 41–71
- Soneji S, Barrington-Trimis JL, Wills TA, Leventhal AM, Unger JB, Gibson LA, Yang JW, Primack BA, Andrews JA, Miech RA, Spindle TR, Dick DM, Eissenberg T, Hornik RC, Dang R, Sargent JD (2017) Association between initial use of e-cigarettes and subsequent cigarette smoking among adolescents and young adults a systematic review and meta-analysis. JAMA Pediatr 171(8):788–797. https://doi.org/10.1001/jamapediatrics.2017.1488
- Song AV, Morrell HER, Cornell JL, Ramos ME, Biehl M, Kropp RY, Halpern-Felsher BL (2009) Perceptions of smoking-related risks and benefits as predictors of adolescent smoking initiation. Am J Public Health 99(3):487–492. https://doi.org/10.2105/AJPH.2008.137679
- Stacy AW, Suassman S, Dent CW, Burton D, Flay BR (1992) Moderators of peer social influence in adolescent smoking. Personal Soc Psychol Bull 18(2):163–172. https://doi.org/10.1177/0146167292182007
- StataCorp (2013) Stata statistical software: release 13. StataCorp LP, College Station, TX
- Steglich C, Sinclair P, Holliday J, Moore L(2012) Actor-based analysis of peer influence in A Stop Smoking In Schools Trial (ASSIST) Soc Netw 34(3):359–369. https://doi.org/10.1016/j.socnet.2010.07.001
- Steglich C, Snijders TAB, Pearson M (2010) Dynamic networks and behavior: separating selection from influence. Social Methodol 40(1):329–393. https:// doi.org/10.1111/J.1467-9531.2010.01225.X
- Telzer EH, Jorgensen NA, Prinstein MJ, Lindquist KA (2021) Neurobiological sensitivity to social rewards and punishments moderates link between peer norms and adolescent risk taking. Child Dev 92(2):731–745. https://doi.org/ 10.1111/CDEV.13466
- The World Bank (2020a) Data, Colombia. The World Bank. a. https://data. worldbank.org/country/colombia
- The World Bank (2020b) Data, United Kingdom. The World Bank https://data. worldbank.org/country/united-kingdom?view=chart
- Thomas RE, McLellan J, Perera R (2015) Effectiveness of school-based smoking prevention curricula: systematic review and meta-analysis. BMJ Open 5(3):e006976. https://doi.org/10.1136/bmjopen-2014-006976

Thurston A, Dunne L, Kee F, Gildea A, Craig N, Stark P, Lazenbatt A (2019) A randomized controlled efficacy trial of a smoking prevention programme with Grade 8 students in high schools. Int J Educ Res 93:23–32. https://doi.org/10.1016/j.ijer.2018.10.003

- VanderWeele TJ (2019) Principles of confounder selection. European Journal of Epidemiology 34(3):211–219. https://doi.org/10.1007/s10654-019-00494-6
- Wang B, King BA, Corey CG, Arrazola RA, Johnson SE (2014) Awareness and use of non-conventional tobacco products among U.S. students, 2012. Am J Previve Med 47(2 Suppl 1):S36. https://doi.org/10.1016/j.amepre.2014.05.003
- Weiss B, Nguyen T, Trung L, Ngo V, Lau A (2019) Tobacco smoking and antisocial deviance among Vietnamese, Vietnamese-American, and European-American adolescents. J Abnormal Child Psychol 47:59–69. https://doi.org/ 10.1007/s10802-018-0416-8
- White H (1980) A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48(4):817. https://doi.org/10. 2307/1912934
- Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83. https://doi.org/10.2307/3001968
- Windzio M (2021) Causal inference in collaboration networks using propensity score methods. Qual Quant 55(1):295–313. https://doi.org/10.1007/S11135-020-01005-6/TABLES/8
- World Health Organization (2020) Tobacco fact sheet. https://www.who.int/newsroom/fact-sheets/detail/tobacco
- Zhang M, Liu H, Zhang Y (2020) Adolescent social networks and physical, verbal, and indirect aggression in China: the moderating role of gender. Front Psychol 11:658. https://doi.org/10.3389/FPSYG.2020.00658/BIBTEX

Acknowledgements

The authors wish to thank the teachers and pupils in participating schools in each country. We also wish to acknowledge the support from our partners Cancer Focus Northern Ireland and Evidence to Impact. The MECHANISMS study was funded by the Medical Research Council (award number MR/R011176/1). The authors would also like to acknowledge funding received from the Health and Social Care Research and Development Office in Northern Ireland (HSC RDO; award number N/A).

Author contributions

JMM was a Research Fellow working on the study in NI, led the statistical analysis and drafted the manuscript. SCS was a Research Fellow working on the study in Bogotá, led the cultural adaptation, and assisted with the interpretation of the results in Bogotá OLS, FK, and RFH were study Principal Investigators and helped draft the manuscript. EOK, RK, AR, and ELK were study co-Investigators and designed the experiments. CT was a PhD student working on the study, and helped with data collection and delivery of the intervention programs in NI. SCM was a post-doctoral researcher working on the study, and helped with data collection and delivery of the intervention programs in NI. LD was a study co-Investigators, and led the school recruitment in NI. FM and HZ were study co-Investigators with expertise in tobacco research who helped design the study and contributed to the manuscript. BL is a tobacco control expert who contributed to the cultural adaptation in Bogotá. All authors reviewed and approved the final manuscript, and contributed to the study design.

Competing interests

The authors declare no competing interests.

Ethical approval

The study was approved by the School of Medicine, Dentistry and Biomedical Sciences Ethics Committee at Queen's University Belfast on September 21, 2018 (ref. 18:43) and by the Research Ethics Committee at the University of Los Andes on July 30, 2018 (ref. 937/2018). This study complies with all relevant ethical regulations. All study procedures were carried out in accordance with institutional guidelines for research involving human participants and with the Declaration of Helsinki.

Informed consent

Written, informed consent was obtained for all participants. Prior to the baseline assessment, each school was provided with Teacher information sheets, Pupil information sheets, Parent/guardian information sheets, Pupil consent forms, and Parent/guardian opt-out forms. All pupils were required to complete written consent forms indicating whether they agreed or declined to participate. Parents/guardians who did not wish their child to take part were asked to return completed opt-out forms. The experimental protocol, and all data collection procedures, were carried out in accordance with institutional guidelines for research involving human participants and with the Declaration of Helsinki.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1057/s41599-023-02124-9.

Correspondence and requests for materials should be addressed to Jennifer M. Murray or Ruth F. Hunter.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/.

© Crown 2023

Jennifer M. Murray ^{1™}, Sharon C. Sánchez-Franco ², Olga L. Sarmiento², Erik O. Kimbrough³, Christopher Tate¹, Shannon C. Montgomery⁴, Rajnish Kumar⁵, Laura Dunne⁶, Abhijit Ramalingam⁷, Erin L. Krupka⁸, Felipe Montes ⁹, Huiyu Zhou¹⁰, Laurence Moore¹¹, Linda Bauld¹², Blanca Llorente¹³, Frank Kee^{1,14} & Ruth F. Hunter^{1,14™}

¹Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Antrim, UK. ²School of Medicine, Universidad de los Andes, Bogotá, Colombia. ³Smith Institute for Political Economy and Philosophy, Chapman University, Orange, CA, USA. ⁴College of Health and Human Sciences, Florida State University, Tallahassee, FL, USA. ⁵Queen's Business School, Queen's University Belfast, Belfast, Antrim, UK. ⁶Centre for Evidence and Social Innovation, School of Social Sciences, Education and Social Work, Queen's University Belfast, Antrim, UK. ⁷Department of Economics, Appalachian State University, Boone, NC, USA. ⁸School of Information, University of Michigan, Ann Arbor, MI, USA. ⁹Department of Industrial Engineering, Universidad de los Andes, Bogotá, Colombia. ¹⁰School of Informatics, University of Leicester, Leicesters, Leicestershire, UK. ¹¹MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, Glasgow, UK. ¹²Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK. ¹³Fundación Anáas, Bogotá, Colombia. ¹⁴These authors contributed equally: Frank Kee, Ruth F. Hunter. ^{KM}email: Jennifer.Murray@qub.ac.uk; ruth.hunter@qub.ac.uk