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a b s t r a c t 

A dynamic spatiotemporal stochastic volatility (SV) model is introduced, incorporating ex- 

plicit terms accounting for spatial, temporal, and spatiotemporal spillover effects. Along- 

side these features, the model encompasses time-invariant site-specific factors, allowing 

for differentiation in volatility levels across locations. The statistical properties of an out- 

come variable within this model framework are examined, revealing the induction of spa- 

tial dependence in the outcome variable. Additionally, a Bayesian estimation procedure 

employing the Markov Chain Monte Carlo (MCMC) approach, complemented by a suit- 

able data transformation, is presented. Simulation experiments are conducted to assess 

the performance of the proposed Bayesian estimator. Subsequently, the model is applied 

in the domain of environmental risk modeling, addressing the scarcity of empirical studies 

in this field. The significance of climate variation studies is emphasized, illustrated by an 

analysis of local air quality in Northern Italy during 2021, which underscores pronounced 

spatial and temporal clusters and increased uncertainties/risks during the winter season 

compared to the summer season. 

© 2023 The Author(s). Published by Elsevier B.V. on behalf of EcoSta Econometrics and 

Statistics. 
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1. Introduction 

When analyzing geo-referenced data, statistical models have to account for instantaneous spatial correlations due to the 

geographical proximity between the observations. This is commonly known as Tobler’s first law of geography: “Everything 

is related to everything else, but near things are more related than distant things” ( Tobler, 1970 ). This observation was al-

ready noted by Ronald A. Fisher in 1935 as follows, “the widely verified fact that patches in close proximity are commonly

more alike, as judged by the yield of crops, than those which are further apart” ( Fisher, 1935 ). Even though the similarity

is typically considered to be in the (conditional) mean level at each location, there might also be spatial correlations in

the (conditional) variance or variation of the random process. In particular, for small-scale spatial units, the variance of the 

process is increased (known as Arbia’s law of geography, Arbia and Espa, 1996 ). In addition to the instantaneous spatial

correlations, we also have to account for the natural temporal correlations, which usually occur if we repeatedly observe a 
∗ Corresponding author. 

E-mail address: philipp.otto@glasgow.ac.uk (P. Otto). 

https://doi.org/10.1016/j.ecosta.2023.11.002 

2452-3062/© 2023 The Author(s). Published by Elsevier B.V. on behalf of EcoSta Econometrics and Statistics. This is an open access article under the CC 

BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

Please cite this article as: P. Otto, O. Do ̆gan and S. Ta ̧s pınar, A Dynamic Spatiotemporal Stochastic Volatility Model with an 

Application to Environmental Risks, Econometrics and Statistics, https://doi.org/10.1016/j.ecosta.2023.11.002 

https://doi.org/10.1016/j.ecosta.2023.11.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ecosta
http://creativecommons.org/licenses/by/4.0/
mailto:philipp.otto@glasgow.ac.uk
https://doi.org/10.1016/j.ecosta.2023.11.002
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ecosta.2023.11.002


P. Otto, O. Do ̆gan and S. Ta ̧s pınar Econometrics and Statistics xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: ECOSTA [m3Gsc; November 21, 2023;13:26 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

random process over time. The closer two observations are to each other in time, the more strongly they can correlate in

general. This paper introduces a new model for spatial, temporal, and spatiotemporal correlations in the log-volatilities, al- 

lowing for additional random errors in the mean and volatility equation. Furthermore, we apply this model to environmental 

data and show for the first time how it can be used to analyze environmental risk factors such as air pollution. 

There are generally two ways to account for spatial/cross-sectional correlations in spatial statistics. Firstly, it can be mod- 

eled in the covariance matrix of the process, where each entry is supposed to follow a certain (non-)parametric covariance 

function depending on the distance between their locations. This idea is typically known as the geostatistical approach 

( Cressie and Wikle, 2015; Zimmerman, 2019 ). The selection of a suitable parametric covariance function with certain prop-

erties such as stationarity, separability and full symmetry is one of the main modeling issues of this approach (e.g., Porcu

et al., 2016; Huang et al., 2011 ), but also the scalability of these approaches to handle massive geospatial data, e.g., remotely-

sensed data (e.g., Katzfuss and Cressie, 2011; Banerjee, 2020; Jurek and Katzfuss, 2021 ). See Gneiting et al. (2007) for a

review on the spatiotemporal covariance functions suggested in the literature. Secondly, the observations on an outcome 

variable can be explicitly correlated with the adjacent observations, where the adjacency is defined fairly generally by a 

spatial weights matrix. This second approach is referred to as spatial autoregression in spatial econometrics, where the spa- 

tial lags of variables are used to model spatial correlations. See LeSage and Pace (2009) ; Anselin (1988) ; Elhorst (2014) ; Lee

(2004) ; Kelejian and Prucha (2010) on the specification and estimation issues in spatial econometrics. Both approaches can 

be equivalent under certain conditions (see, e.g., Ver Hoef et al., 2018a , for simultaneous and conditionally autoregressive 

models). 

In this paper, we consider the second approach. Our model consists of an outcome and log-volatility equation with sep- 

arate independent error terms, whereby the log-volatility process introduces spatial dependence in the outcome variable. 

Specifically, the log-volatility equation allows for spatial, temporal, and spatiotemporal correlations, as well as time-invariant 

site-specific effects (unobserved heterogeneity). Also, assuming that the error terms in both equations have normal distribu- 

tions, it is possible to show that the outcome variable has a leptokurtic symmetric distribution under our suggested model. 

To introduce a Bayesian estimation approach, we use a transformation approach such that the outcome equation becomes 

linear in the log-volatility terms. We use a Gaussian mixture distribution to approximate the distribution of the transformed 

error terms in the outcome equation. This approximation turns our model into a linear state-space model, where the log- 

volatility equation becomes the state equation. Following recent developments in the precision-based algorithms ( Chan and 

Jeliazkov, 2009; Chan, 2017 ), we suggest a Gibbs sampler that consists of five steps for the estimation. We provide simulation

evidence showing that the suggested sampler can perform satisfactorily. 

Theoretically, our paper is related to the spatial econometric literature that addresses the presence of cross-sectional 

correlations in higher moments of spatial data. This strand of the literature considers the spatial extensions of generalized 

autoregressive conditional heteroskedasticity (GARCH) and stochastic volatility (SV) models to account for volatility cluster- 

ing patterns observed over space ( Otto et al., 2018; Hølleland and Karlsen, 2020b; Sato and Matsuda, 2021; Ta ̧s pınar et al.,

2021; Robinson, 2009; Yan, 2007 ). Our model can be considered as the longitudinal data (panel data) extension of the cross-

sectional spatial SV models suggested by Yan (2007) , Robinson (2009) , and Ta ̧s pınar et al. (2021) . While these studies allow

for the presence of spatial dependence in the log-volatility equations, they do not include temporal, spatiotemporal, and 

unobserved heterogeneity terms in the log-volatility equations. Our suggested process is also related to the separable and 

non-separable space-time filters considered in the spatial panel data models for modeling spatiotemporal interactions. For 

example, Parent and LeSage (2012, 2011) consider a separable space-time filter for the outcome variable, while Lee and Yu

(2015) and Wang and Lee (2018) consider non-separable space-time filters for the disturbance terms of spatial panel data 

models. In contrast to these studies, we consider a general space-time filter that also allows for unobserved heterogeneity, 

i.e., the site-specific effects, for the log-volatility of an outcome variable. 

In an empirical application, we use our suggested model to assess environmental risk stemming from the variations in 

the log-volatility of air quality predictions. Spatial and spatiotemporal interactions in the local climate and environmental 

risks were addressed in comparably few studies in previous empirical research, even though it has been shown that an 

increased variation in environmental processes can be harmful ( Tewksbury et al., 2008; Paaijmans et al., 2013; Vasseur et al.,

2014; Iaco et al., 2012 ). Most previous studies focused on correlations in the (conditional) mean levels of ecological processes

( Ver Hoef et al., 2018b; Wilby et al., 2009 , e.g.). In our case, we model the log-volatility of fine dust concentrations of

particles having a diameter less than 10μ m in Lombardy, Northern Italy. Following the literature on the ecological processes 

( Ver Hoef et al., 2018b; Wilby et al., 2009 , e.g.), we first model the variation in the conditional mean of our outcome

variable through a conventional spatial panel data model that allows for the unobserved site and time heterogeneity. Our 

results from this initial model indicate that there is a strong and moderate spatial correlation in the outcome variable in the

model with only site-fixed effects and the model with both site and time-fixed effects, respectively. In the next step, we use

the errors from this initial model as an outcome variable in our suggested specification and aim to model the variations in

its log-volatility terms. The estimation results from our suggested Bayesian approach indicate that the spatial and temporal 

effects in the log-volatilities are moderate, while the spatiotemporal effects appear to be of minor importance. We were 

also able to detect a noticeable variation in air pollution risk across the year and identify measurement stations that are

associated with higher risks. These are mostly located in valleys in the Alpine regions. 

The rest of this paper proceeds in the following way. In Section 2 , we introduce our suggested model specification,

including conditions ensuring the stability of the model and prior specifications. In Section 3 , we investigate the statistical

properties of the suggested model. In Section 4 , we provide the details on the posterior analysis of our model and state
2 
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an algorithm for the estimation. Section 5 provides a simulation study on the performance of the suggested Gibbs sampler. 

Then, in Section 6 , the stochastic volatility model is applied to environmental risks for the first time. More precisely, our

focus is on local air quality modeling. Finally, in Section 7 , we provide our concluding remarks. 

2. Model Specification 

Suppose that we observe the spatiotemporal process across a constant set of n locations in a geographical domain at T 

equidistant time points. These locations can be measurement stations (i.e., marked point data), atmospheric and remotely- 

sensed data, or sets of municipalities, counties, and states (i.e., areal data). Moreover, these locations do not have to be seen

in a strictly geographical sense but can also be vertices in a network. Let Y t = (y 1 t , y 2 t , . . . , y nt ) 
′ 

be the n × 1 vector of the

outcome variable at time t for t = 1 , 2 , . . . , T . We assume the following data-generating process (DGP) for Y t : 

Y t = H 

1 / 2 
t V t , (1) 

for t = 1 , 2 , . . . T , where H 

1 / 2 
t = Diag (e 

1 
2 

h 1 t , . . . , e 
1 
2 

h nt ) is the n × n diagonal matrix containing the log-volatility terms h it ’s,

which are specified subsequently, and V t = (v 1 t , . . . , v nt ) 
′ 

is the n × 1 vector of disturbance terms. We assume that v it ’s
are i.i.d standard normal random variables. Let h t = (h 1 t , . . . , h nt ) 

′ 
be the n × 1 vector of stochastic volatility at time t . We

assume the following process for h t : 

h t − μ = ρ1 W (h t − μ) + ρ2 (h t−1 − μ) + ρ3 W (h t−1 − μ) + U t , (2) 

for t = 1 , 2 , . . . T , where μ = (μ1 , . . . , μn ) 
′ 

is the n × 1 vector of constant means, i.e., the time-invariant site-specific effects,

and U t = (u 1 t , . . . , u nt ) 
′ 

is the n × 1 vector of i.i.d. disturbance terms such that u it ∼ N(0 , σ 2 ) for all i and t . In (2) , W is the

n × n spatial weights matrix with zero diagonal elements. This matrix specifies how volatility terms are related over space. 

This matrix is equivalently specified as an adjacency matrix in a network setting. In practice, a suitable weights matrix 

can be chosen from a set of candidates based on the model’s goodness-of-fit, e.g., assessed by the root-mean-square error 

(RMSE) or information criteria. Standard definitions can be included in the set of the candidate schemes, such as contiguity 

matrices, k -nearest-neighbors matrices, inverse-distance weights, or weights based on secondary covariates. Moreover, if the 

underlying physical processes causing the spatial dependence are known, they could be included in the definition of the 

weights matrix. The scalar parameter ρ1 captures contemporaneous spatial correlation, ρ2 measures the temporal effect, 

i.e., the time dynamic effect, and ρ3 represents the spatiotemporal effect, i.e., the spatial diffusion effect. 

Let I n be the n × n identity matrix and L be the matrix of the time-lag operator such that Lh t = h t−1 . Then, (2) can be

written as (
(I n − ρ1 W ) − (ρ2 L + ρ3 WL ) 

)
(h t − μ) = U t , (3) 

where 
(
(I n − ρ1 W ) − (ρ2 L + ρ3 WL ) 

)
is called the g eneral space-time filter ( Par ent and LeSag e, 2011; 2012; Lee and Yu, 

2015 ). Under the assumption that ρ3 = −ρ1 ρ2 , this general filter is separable and decomposes into a product of the space

filter (I n − ρ1 W ) and the time filter (I n − ρ2 L ) . In our analysis, we do not impose this restrictive assumption. 

Let S (ρ1 ) = (I n − ρ1 W ) . Then, under the assumption that S (ρ1 ) is invertible, the reduced form of volatility equation is 

h t − μ = S −1 (ρ1 ) A (ρ2 , ρ3 )(h t−1 − μ) + S −1 (ρ1 ) U t , (4) 

where A (ρ2 , ρ3 ) = (ρ2 I n + ρ3 W ) . When the cross-sectional dimension is fixed, the process for the log-volatility is stable if all

eigenvalues of S −1 (ρ1 ) A (ρ2 , ρ3 ) lie inside the unit ball ( Hamilton, 1994 , Proposition 10.1). Let ϑ i (W ) be the i th eigenvalue

of W for i = 1 , . . . , n . In the spatial econometric literature, there are alternative ways to specify the parameter spaces for

spatial autoregressive parameters (see Anselin, 1988; LeSage and Pace, 20 09; Lee, 20 04; Kelejian and Prucha, 2010; Elhorst, 

2014 , among others). We assume that the parameter space of ρ1 , ρ2 and ρ3 are chosen such that the following conditions

hold: 

(i ) max 
1 ≤i ≤n 

∣∣ϑ i (ρ1 W ) 
∣∣ < 1 , and (ii ) max 

1 ≤i ≤n 

∣∣ϑ i 

(
S −1 (ρ1 ) A (ρ2 , ρ3 ) 

)∣∣ < 1 . (5) 

The first condition is the sufficient condition for the invertibility of S (ρ1 ) ( Kelejian and Prucha, 2010 , Lemma 1). By the

spectral radius theorem ( Horn and Johnson, 2012 , Theorem 5.6.9), we can use any matrix norm to define relatively restrictive

conditions that ensure the conditions in (5) . Let ‖ · ‖ be any matrix norm. Then, the sufficient conditions for (5) are (i)

‖ ρ1 W ‖ < 1 and (ii) ‖ S −1 (ρ1 ) A (ρ2 , ρ3 ) ‖ < 1 . Note that ∥∥S −1 (ρ1 ) A (ρ2 , ρ3 ) 
∥∥ ≤

∥∥S −1 (ρ1 ) 
∥∥ × ‖ 

ρ2 I n + ρ3 W ‖ 

= ‖ I n + ρ1 W + ρ2 
1 W 

2 + ρ3 
1 W 

3 + . . . ‖ × ‖ ρ2 I n + ρ3 W ‖ 

≤
(‖ I n ‖ + ‖ ρ1 W ‖ + ‖ ρ1 W ‖ 

2 + . . . 
)

×
(| ρ2 | + | ρ3 | · ‖ W ‖ 

)
= 

1 

1 − ‖ ρ1 W ‖ 

×
(| ρ2 | + | ρ3 | · ‖ W ‖ 

)
, (6) 

where the last equality follows since we assume that ‖ ρ1 W ‖ < 1 . If we choose the matrix row sum norm ‖ · ‖ ∞ 

and assume

that W is row normalized, then (6) reduces to (| ρ | + | ρ | ) / (1 − | ρ | ) . Thus, a further restrictive sufficient condition for the
2 3 1 

3 
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stability of (4) is | ρ1 | + | ρ2 | + | ρ3 | < 1 . We will impose these restrictions during the sampling steps for ρ1 , ρ2 , and ρ3 in

our suggested Gibbs sampler. 

Finally, to complete the model in (1) , we assume the following prior distributions for the posterior analysis: 

ρ1 ∼ Uniform (−1 , 1) , ρ2 ∼ Uniform (−1 , 1) , ρ3 ∼ Uniform (−1 , 1) , 

μ| b μ, B μ ∼ N(b μ, B μ) , σ 2 | a, b ∼ IG (a, b) , (7) 

where Uniform (c 1 , c 2 ) denotes the uniform distribution over the interval (c 1 , c 2 ) and IG (a, b) denotes the inverse gamma

distribution with the shape parameter a and the scale parameter b. The priors for ρ1 , ρ2 and ρ3 are subject to the stability

conditions stated in (5) . Our model specification can be extended by considering a mean process for the outcome variable.

Such extensions pose no difficulty to the estimation process and can be easily integrated into our estimation algorithm 

provided in Section 4 by following Ta ̧s pınar et al. (2021 , Section 5). 

3. Statistical Properties 

The outcome equation of our model can be written as 

y it = e 
1 
2 h it v it for all i = 1 , . . . , n , and t = 1 , . . . , T . (8) 

Thus, the conditional variance of y it given h it is Var (y it | h it ) = e h it , indicating that the conditional variance is both time

and space varying. Following the time series literature, we refer to h it as the log-volatility since h it = log 
(
Var (y it | h it ) 

)
. In

order to determine the unconditional moments of y it , we need to determine the distribution of h = (h 

′ 
1 
, . . . , h 

′ 
T 
) 
′ 
. Let ρ =

(ρ1 , ρ2 , ρ3 ) 
′ 
, and define the nT × nT matrix J ( ρ) as 

J ( ρ) = 

⎛ 

⎜ ⎜ ⎝ 

S (ρ1 ) 0 . . . 0 0 

−A (ρ2 , ρ3 ) S (ρ1 ) . . . 0 0 

. . . 
. . . 

. . . 
. . . 

. . . 
0 0 . . . −A (ρ2 , ρ3 ) S (ρ1 ) 

⎞ 

⎟ ⎟ ⎠ 

. (9) 

Then, we can express the log-volatility equation as 

J ( ρ)(h − l T � μ) = 

⎛ 

⎜ ⎜ ⎝ 

S (ρ1 )(h 1 − μ) 
U 2 

. . . 
U T 

⎞ 

⎟ ⎟ ⎠ 

, (10) 

where l T is the T × 1 vector of ones. Using (4) , we can express S (ρ1 )(h 1 − μ) as S (ρ1 ) 
(
h 1 − μ

)
= A (ρ2 , ρ3 )(h 0 −

μ) + U 1 . We substitute S −1 (ρ1 ) 
(
h t − μ

)
= A (ρ2 , ρ3 )(h t−1 − μ) + U t for t = 0 , −1 , −2 , . . . , recursively into S (ρ1 ) 

(
h 1 − μ

)
=

A (ρ2 , ρ3 )(h 0 − μ) + U 1 to get the following expression: 

S (ρ1 )(h 1 − μ) = 

∞ ∑ 

j=0 

(
A (ρ2 , ρ3 ) S 

−1 (ρ1 ) 
) j 

U 1 − j , (11) 

This expression is based on the assumption that the spatial dynamic process for h t has been operating for a long time under

the stability conditions stated in (5) . This result suggests that 

Var (S (ρ1 )(h 1 − μ)) = σ 2 
∞ ∑ 

j=0 

(
A (ρ2 , ρ3 ) S 

−1 (ρ1 ) 
) j (

A (ρ2 , ρ3 ) S 
−1 (ρ1 ) 

)′ j = σ 2 K ( ρ) , 

where K ( ρ) = 

∑ ∞ 

j=0 

(
A (ρ2 , ρ3 ) S 

−1 (ρ1 ) 
) j (

A (ρ2 , ρ3 ) S 
−1 (ρ1 ) 

)′ j 
. Then, from (10) , we obtain 

Var 
(
(h − l T � μ) 

)
= σ 2 J −1 ( ρ) P ( ρ) J 

′ −1 ( ρ) , (12) 

where 

P ( ρ) = 

⎛ 

⎜ ⎜ ⎝ 

K ( ρ) 0 . . . 0 0 

0 I n . . . 0 0 

. . . 
. . . 

. . . 
. . . 

. . . 
0 0 . . . 0 I n 

⎞ 

⎟ ⎟ ⎠ 

. (13) 

Let � = σ 2 J −1 ( ρ) P ( ρ) J 
′ −1 ( ρ) . Then, the distribution of h is 

h | ρ, μ, σ 2 ∼ N 

(
l T � μ, �

)
. (14) 
4 
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Note that when ρ = 0 , � reduces to σ 2 I nT , and thus the result in (14) becomes h | μ, σ 2 ∼ N( l T � μ, σ 2 I nT ) . Consider the

following partition of �: 

� = 

⎛ 

⎜ ⎜ ⎝ 

�11 �12 . . . �1 ,T −1 �1 T 

�21 �22 . . . �2 ,T −1 �2 T 

. . . 
. . . 

. . . 
. . . 

. . . 
�T 1 �T 2 . . . �T,T −1 �T T 

⎞ 

⎟ ⎟ ⎠ 

, (15) 

where each �st for s, t = 1 , 2 . . . , T is an n × n sub-matrix of �. Let �i j,st be the (i, j) th element of �st for i, j = 1 , 2 , . . . , n .

Let r ∈ N be a natural even number. Then, the even moments of y it can be expressed as 

E 

(
y r it 

)
= E 

(
e 

r 
2 h it 

)
E (v r it ) = exp 

(
μi r 

2 

+ 

r 2 

8 

�ii,tt 

)
γ (r) (16) 

where γ (r) = 

r! 
2 r/ 2 (r/ 2)! 

. Then, it follows that E (y 4 
it 
) / 

(
E (y 2 

it 
) 
)2 − 3 = 3 

(
exp (�ii,tt ) − 1 

)
> 0 . Thus, our specification suggests

that y it has a leptokurtic symmetric distribution. Next, we consider the covariance between y r 
it 

and y r 
js 

: 

Cov 
(
y r it , y 

r 
js 

)
= E 

(
e 

r 
2 (h it + h js ) v r it v 

r 
js 

)
− E 

(
e 

r 
2 h it v r it 

)
E 

(
e 

r 
2 h js v r js 

)
= γ 2 (r ) exp 

(
r (μi + μ j ) 

2 

+ 

r 2 

8 

(
�ii,tt + � j j,ss + 2�i j,ts 

))

−γ 2 (r) exp 

(
μi r 

2 

+ 

r 2 

8 

�ii,tt 

)
exp 

(
μ j r 

2 

+ 

r 2 

8 

� j j,ss 

)

= γ 2 (r ) exp 

(
r (μi + μ j ) 

2 

+ 

r 2 

8 

(
�ii,tt + � j j,ss 

))(
exp 

(
r 2 

4 

�i j,ts 

)
− 1 

)
. (17) 

This result indicates that our specification introduces spatial dependence in the outcome variable since Cov (y r 
it 
, y r 

js 
) 	 = 0 in

general. Note that Cov (y r 
it 
, y r 

js 
) = 0 when ρ = 0 holds, because ( exp ( r 

2 

4 �i j,ts ) − 1) = 0 . 

4. Posterior Analysis 

To introduce a Bayesian MCMC estimation approach, we first transform our model such that the resulting outcome equa- 

tion is linear in h t . We then determine the conditional likelihood function of the transformed model by approximating the

distribution of the transformed disturbance term with a Gaussian mixture distribution ( Kim et al., 1998; Chib et al., 2002;

Omori et al., 2007 ). The conditional likelihood function of the transformed model facilitates the sampling steps for h t and

the auxiliary mixture component indicator defined subsequently. We also provide the conditional likelihood function of the 

original model, which we use to determine the sampling steps of other parameters in our model. 

We square both sides of (8) and then take the logarithm to obtain 

y ∗it = h it + v ∗it , (18) 

where y ∗
it 

= log y 2 
it 

and v ∗
it 

= log v 2 
it 

. Let p(·) be a density function and p(·|·) be a conditional density function. Then, the

density of v ∗
it 

can be derived as 

p(v ∗it ) = 

1 √ 

2 π
exp 

(
−1 

2 

(e v 
∗
it − v ∗it ) 

)
, −∞ < v ∗it < ∞ , i = 1 , 2 , . . . , n, t = 1 , . . . , T . (19) 

This density is highly left skewed with E (v ∗
it 
) ≈ −1 . 2704 and Var (v ∗

it 
) = π2 / 2 ≈ 4 . 9348 . Define Y 

∗
t = (y ∗

1 t 
, y ∗

2 t 
, . . . , y ∗nt ) 

′ 
and

V 

∗
t = (v ∗1 t , v 

∗
2 t , . . . , v 

∗
nt ) 

′ 
. Then, in vector form, we have 

Y 

∗
t = h t + V 

∗
t . (20) 

In order to convert (20) into a linear Gaussian state-space model, we approximate p(v ∗
it 
) with an m -component Gaussian

mixture distribution: 

p(v ∗it ) ≈
m ∑ 

j=1 

p j × φ
(
v ∗it | μ j , σ

2 
j 

)
, (21) 

where φ(v ∗
it 
| μ j , σ

2 
j 
) denotes the Gaussian density function with mean μ j and variance σ 2 

j 
, p j is the probability of jth mix-

ture component and m is the number of components. In particular, we use the ten-component Gaussian mixture distribution 

suggested by Omori et al. (2007) to approximate p(v ∗
it 
) . We provide the parameter values of the ten-component Gaussian
5 
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Table 1 

The ten-component Gaussian mixture for p(v ∗
it 
) . 

Components p j μ j σ 2 
j 

1 0 .00609 1 .92677 0.11265 

2 0 .04775 1 .34744 0.17788 

3 0 .13057 0 .73504 0.26768 

4 0 .20674 0 .02266 0.40611 

5 0 .22715 -0 .85173 0.62699 

6 0 .18842 -1 .97278 0.98583 

7 0 .12047 -3 .46788 1.57469 

8 0 .05591 -5 .55246 2.54498 

9 0 .01575 -8 .68384 4.16591 

10 0 .00115 -14 .65000 7.33342 

 

 

 

 

 

 

 

 

 

 

mixture distribution in Table 1 . The parameters in this table are chosen by matching the first four moments of the ten-

component Gaussian mixture distribution with that of p(v ∗
it 
) . This approach has two advantages. First, the Gaussian mixture 

distribution with the pre-determined parameter values in Table 1 provides a good enough approximation to p(v ∗
it 
) ( Omori

et al., 2007 ). Second, this approach does not pose any estimation difficulties since the mixture parameters in Table 1 are

pre-determined. 

We can equivalently write (21) in terms of an auxiliary discrete random variable z it ∈ { 1 , 2 , . . . , m } that serves as the

mixture component indicator: 

v ∗it | (z it = j) ∼ N 

(
μ j , σ

2 
j 

)
, and P (z it = j) = p j , j = 1 , 2 , . . . , m, (22) 

where P (z it = j) = p j is the probability that z it takes the jth value. Let Z t = (z 1 t , . . . , z nt ) 
′ 
, d t = (μz 1 t , . . . , μz nt ) 

′ 
and �t =

Diag (σ 2 
z 1 t 

, . . . , σ 2 
z nt 

) . Then, from (22) , we have V 

∗
t | Z t ∼ N(d t , �t ) , which indicates that our model in (20) is now conditionally

linear Gaussian given the component indicator variable. Thus, from (20) , we have 

Y 

∗
t | Z t , h t ∼ N 

(
h t + d t , �t 

)
, (23) 

which facilitates the sampling steps for h t and Z t in our suggested Gibbs sampler given in Algorithm 1 . The sampling steps

for the remaining parameters require the following distribution: 

h | ρ, μ, σ 2 ∼ N 

(
l T � μ, �

)
. (24) 

The conditional distribution of Y t given h t is 

Y t | h t ∼ N ( 0 , H t ) , (25) 

where H t = Diag (e h 1 t , . . . , e h nt ) is the n × n diagonal matrix with the (i, i ) th diagonal element e h it . 

We are now in a position to design a Gibbs sampler by using our results on (i) the mixture component indicators in

(22) , (ii) the conditional likelihood function of transformed model in (23) , (iii) the conditional likelihood function of Y t 

in (25) , and (iv) the distribution of h in (14) . Let Y = (Y 

′ 
1 
, . . . , Y 

′ 
T 
) 
′ 

and Z = (Z 

′ 
1 
, . . . , Z 

′ 
T 
) 
′ 
. The joint posterior distribution

p(h , Z , μ, ρ, σ 2 | Y ) can be expressed as 

p(h , Z , μ, ρ, σ 2 | Y ) ∝ p(Y 

∗| Z , h ) × p(h | ρ, μ, σ 2 ) × p(Z ) × p( μ) × p( ρ) × p(σ 2 ) , (26) 

where p(a ) is the prior density function of a for a ∈ { Z , μ, ρ, σ 2 } . Then, our suggested Gibbs sampler for generating draws

from p(h , Z , μ, ρ, σ 2 | Y ) consists of the steps given in Algorithm 1 . 
6 
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Algorithm 1 (Estimation Algorithm) . 

1. Sampling step for Z : Note that Z t is a discrete random variable, and its conditional posterior probability mass function

is 

p 
(
Z t | Y t , h t , μ, ρ, σ 2 

)
∝ p(Z t ) p 

(
Y 

∗
t | Z t , h t 

)
= 

n ∏ 

i =1 

p 
(
y ∗it | z it , h it 

)
p(z it ) , (27) 

for t = 1 , . . . , T . Thus, 

P 

(
z it = j| y ∗it 

)
= 

p j φ
(

y ∗
it 
| h it + μ j , σ

2 
j 

)
∑ 10 

k =1 p k φ
(
y ∗

it 
| h it + μk , σ

2 
k 

) , j = 1 , . . . , 10 , i = 1 , . . . , n, (28) 

for t = 1 , . . . , T , where the denominator is the normalization constant. 

2. Sampling step for h : Let � = Diag 
(
�1 , . . . , �T 

)
and d = (d 

′ 
1 , . . . , d 

′ 
T ) 

′ 
. Using standard regression results on

p(h | Y , Z , μ, ρ, σ 2 ) ∝ 

∏ T 
t=1 p(Y 

∗
t | Z , h t ) p(h | ρ, μ, σ 2 ) , we obtain 

h | Y , Z , μ, ρ, σ 2 ∼ N 

(
ˆ b h , ̂  B h 

)
, (29) 

where 

ˆ B h = 

(
�−1 + �−1 

)−1 

, ˆ b h = 

ˆ B h 

(
�−1 

( l T � μ) + �−1 (Y 

∗ − d ) 
)
. 

3. Sampling step for μ: Using (9) and (13) , we can find that 

�−1 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

�∗
11 �∗

12 0 . . . 0 0 

�∗
21 �∗

22 �∗
23 . . . 0 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

0 0 0 . . . �∗
T −1 ,T −1 �∗

T −1 ,T 

0 0 0 . . . �∗
T,T −1 �∗

T T 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, 

where 

�∗
11 = σ−2 S 

′ 
(ρ1 ) K 

−1 ( ρ) S (ρ1 ) + σ−2 A 

′ 
(ρ2 , ρ3 ) A (ρ2 , ρ3 ) , �∗

T T = σ−2 S 
′ 
(ρ1 ) S (ρ1 ) , 

�∗
ii = σ−2 S 

′ 
(ρ1 ) S (ρ1 ) + σ−2 A 

′ 
(ρ2 , ρ3 ) A (ρ2 , ρ3 ) , i = 2 , . . . , T − 1 , and 

�∗
i,i +1 = �∗′ 

i +1 ,i = −σ−2 A 

′ 
(ρ2 , ρ3 ) S (ρ1 ) , i = 1 , . . . , T − 1 . 

Then, from p( μ| Y , h , Z , μ, ρ, σ 2 ) ∝ p(h | ρ, μ, σ 2 ) p( μ) , we obtain 

μ| Y , h , Z , μ, ρ, σ 2 ∼ N 

(
ˆ b μ, ̂  B μ

)
, (30) 

where 

ˆ B μ = 

( 

B 

−1 
μ + 

T ∑ 

j=1 

T ∑ 

i =1 

�∗
i j 

) −1 

, ˆ b μ = 

ˆ B μ

( 

B 

−1 
μ b μ + 

T ∑ 

j=1 

T ∑ 

i =1 

�∗
i j h i 

) 

. 

4. Sampling step for σ 2 : Using p(σ 2 | Y , h , μ, ρ) ∝ p(h | ρ, μ, σ 2 ) p(σ 2 ) , where p(σ 2 ) is the prior density function of σ 2 

given in (7) , we obtain 

σ 2 | Y , h , Z , μ, ρ ∼ IG ( ̂  a , ˆ b ) , 

where 

ˆ a = a + nT / 2 , ˆ b = b + 

1 

2 

(
h − ( l T � μ) 

)′ (
J 
′ 
( ρ) P 

−1 ( ρ, λ) J( ρ) 
)(

h − ( l T � μ) 
)
. 

5. Sampling step for ρ: The conditional posterior density of ρ does not take any known form in our model. We use the

adaptive Metropolis (AM) algorithm suggested in Haario et al. (2001) and Roberts and Rosenthal (2009) to generate 

draws from p( ρ| Y , h , Z , σ 2 ) . Let a (g) be the gth draw generated at the gth iteration for a ∈ { ρ, μ, σ 2 } . Then, at the

iteration g, we use the following proposal distribution to generate the candidate value ˜ ρ: 

f g 
(
ρ| ρ(0) , . . . , ρ(g−1) 

)
= 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

N 

(
ρ(g−1) , 

(0 . 1) 2 

3 
× I 3 

)
, for g ≤ g 0 , 

0 . 95 × N 

(
ρ(g−1) , 

c(2 . 38) 2 

3 
× Cov 

(
ρ(0) , . . . , ρ(g−1) 

))
+0 . 05 × N 

(
ρ(g−1) , 

(0 . 1) 2 

3 
× I 3 

)
, for g > g 0 , 
7 
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where g 0 is the length of the initial sampling period, Cov 
(
ρ(0) , . . . , ρ(g−1) 

)
is the empirical covariance matrix of histor- 

ical draws given by Cov 
(
ρ(0) , . . . , ρ(g−1) 

)
= 

1 
g 

∑ g−1 
j=0 

ρ( j) ρ( j) ′ − ρ̄(g−1) ρ̄(g−1) ′ with ρ̄(g−1) = 

1 
g 

∑ g−1 
j=0 

ρ( j) , and c is a scalar 

tuning parameter used to achieve a reasonable acceptance rate. For our application, we set g 0 = 6 . We then check

whether ˜ ρ satisfies the stability conditions in Section 2 . If not, we regenerate ˜ ρ until it meets the stability conditions.

We compute the following acceptance probability: 

P ( ρ(g−1) , ̃  ρ) = min 

( 

p 
(
h | ̃  ρ, μ(g) , σ 2(g) 

)
p 
(
h | ρ(g−1) , μ(g) , σ 2(g) 

) , 1 

) 

, 

where p(h | ρ, μ, σ 2 ) is given in (14) . Finally, we return 

˜ ρ with probability P ( ρ(g−1) , ̃  ρ) ; otherwise return ρ(g−1) . 

Remark 1. In Step 1, the result in (28) indicates that the mixture components are conditionally independent given y ∗
it 

.

Thus, each component is a discrete random variable taking integer values in the interval [1,10] with the conditional 

posterior probability P (z it = j| y ∗
it 
) . The conditional posterior results in Steps 2, 3, and 4 are obtained from a standard

Bayesian analysis as in a linear regression model. In the AM algorithm described in Step 5, the proposal distribution 

f g ( ρ| ρ(0) , . . . , ρ(g−1) ) has two parts. The first part is N( ρ(g−1) , 
(0 . 1) 2 

3 × I 3 ) , and is used when the number of iterations

is less than or equal to g 0 . The second part consists of two normal distributions. The first component is specified as

N( ρ(g−1) , 
c(2 . 38) 2 

3 × Cov ( ρ(0) , . . . , ρ(g−1) )) , where the covariance matrix is determined from the historical MCMC draws of 

ρ. The second component is N( ρ(g−1) , 
(0 . 1) 2 

3 × I 3 ) . The candidate values generated from f g ( ρ| ρ(0) , . . . , ρ(g−1) ) are subject to

the stability conditions given in (5) . Finally, we adjust the tuning parameter c during the estimation to achieve an acceptance

rate that falls between 40 percent and 60 percent. Han and Lee (2016) and Yang et al. (2023) use this algorithm to generate

draws for spatial parameters in spatial panel data models. Their results show that this algorithm can perform satisfactorily. 

Remark 2. In the sampling step for ρ, P ( ρ(g−1) , ̃  ρ) is calculated at each pass of the sampler, and there-

fore, p(h | ρ, μ, σ 2 ) is evaluated twice at each pass of the sampler. In other words, p(h | ρ, μ, σ 2 ) =
(2 π) −nT / 2 | �| −1 / 2 exp 

(
− 1 

2 (h − l T � μ) 
′ 
�−1 (h − l T � μ) 

)
must be calculated twice. Since � = σ 2 J −1 ( ρ) P ( ρ) J 

′ −1 ( ρ) , we

have | �| −1 / 2 = (σ 2 ) −nT / 2 | J ( ρ) || P ( ρ) | −1 / 2 . From (9) , since J ( ρ) is a triangular matrix, we have | J ( ρ) | = 

∏ T 
t=1 | S (ρ1 ) | =

| S (ρ1 ) | T . Also, from (13) , since | P ( ρ) | is a block-diagonal matrix, we have | P ( ρ) | = | K ( ρ) | . These results can be used to

improve the computational efficiency of the sampler. 

5. Simulations 

In this section, we provide simulation evidence to assess the sampling properties of the suggested Bayesian algorithm. 

The data generating process follows (1) and (2) . More specifically, the elements of V t and U t are drawn independently

from the standard normal distribution for t = 1 , 2 , . . . , T . Therefore, the value of σ 2 is set to 0.25 in all experiments. The

elements of μ are drawn independently from the normal distribution with mean 3.3 and standard deviation 0.35. To ini- 

tialize the process, we use (14) , and the series expression for K ( ρ) is truncated at 15. We consider two sets of values for

ρ, { (0 . 6 , 0 . 35 , −0 . 025) , (0 . 3 , 0 . 65 , −0 . 025) } . These parameter values are chosen to ensure that the data-generating process

mimics the findings from our empirical application in the next section. The number of spatial units n is set to 98, and the

number of time periods T is fixed at 50. 

For the spatial weights matrix W , we consider a row-standardized queen contiguity weights matrix. To this end, we 

first generate a vector containing a random permutation of the integers from 1 to n without repeating elements. Then, we

reshape this vector into a k × c rectangular lattice, where c = n/k . We use this lattice to determine the spatial locations

and adjacency relations of the n locations. We set w i j = 1 if the jth observation is adjacent to or shares a border with the

i th observation; otherwise, we set w i j = 0 . We set k = 7 , and row-normalize the resulting weights matrices. For the prior

distributions, we consider two cases: (i) σ 2 ∼ IG (3 , 2) and μ ∼ N(0 , 10 I n ) , and (ii) σ 2 ∼ IG (0 . 01 , 0 . 01) and μ ∼ N(0 , 100 I n ) .

The length of the Markov chain is 220 0 0 draws, and the first 20 0 0 draws are discarded to dissipate the effects of the initial

values. 

Figures 1–4 show the simulation results when σ 2 ∼ IG (3 , 2) and μ ∼ N(0 , 10 I n ) . To determine the adequacy of the

length of the chains and their mixing properties, we provide the trace plots in Figures 1 and 3 . Figure 1 displays the trace

plots when ρ = (0 . 6 , 0 . 35 , −0 . 025) , while Figure 3 presents the plots when ρ = (0 . 30 , 0 . 65 , −0 . 025) . In these plots, the red

solid lines correspond to the estimated posterior means. We observe that our suggested sampler performs satisfactorily and 

provides chains that mix well in all cases. Also note that for both ρ and σ 2 , the 95% credible intervals contain the true

values chosen in the experiments. 

For the n × 1 vector μ and the nT × 1 vector h , we provide evidence on the performance of our Bayesian estimator in

Figures 2 and 4 . In these plots, the true values are represented by solid lines, and the estimates are presented by dashed

lines. In the first panel, we observe that the estimated posterior means for the components of μ are generally close to

the true values. Here, the shaded region refers to the 95% credible interval. For h , we calculate the average of true values

over i and over t , respectively, and plot them against the average posterior means over space and time, respectively. The

second panel presents the case where the average is taken over the spatial locations i , and the last panel is the case where
8 
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Fig. 1. Trace plots for ρ = (0 . 6 , 0 . 35 , −0 . 025) and W is a queen contiguity matrix. 

 

 

 

 

 

 

 

 

 

 

 

the average is taken over t . We observe that the Bayesian estimator performs satisfactorily in terms of capturing the log

volatility over cross-sections as well as over time. 

Next, we consider relatively more uninformative priors for σ 2 and μ by setting σ 2 ∼ IG (0 . 01 , 0 . 01) and μ ∼ N(0 , 100 I n ) .

The simulation results for this case are presented in Appendix. The trace plots in Figures 11 and 13 display a pattern resem-

bling a “fat hairy caterpillar,” indicating no convergence issues in our sampler. Figures 12 and 14 show the estimates of μ
and h along with their true values. These figures suggest that the estimated posterior mean values closely align with the

corresponding true values and track them. Overall, these results indicate that the proposed sampler is not sensitive to the 

values of the hyperparameters. 

Finally, to display the spatiotemporal dynamics, we present volatility estimates for selected locations and time periods 

under the following prior distributions: σ 2 ∼ IG (0 . 01 , 0 . 01) and μ ∼ N(0 , 100 I n ) . These results are presented in the Ap-

pendix. Figure 15 shows the line plots of { ̂ h 13 ,t } 50 
t=1 

, { ̂ h 34 ,t } 50 
t=1 

, { ̂ h 73 ,t } 50 
t=1 

, { ̂ h 91 ,t } 50 
t=1 

against their true corresponding values,

while Figure 16 presents the line plots of { ̂ h i, 11 } 98 
i =1 

, { ̂ h i, 23 } 98 
i =1 

, { ̂ h i, 35 } 98 
i =1 

, { ̂ h i, 43 } 98 
i =1 

against their true corresponding values.

Overall, we observe that our sampler produces estimates that align with their corresponding true values. 

6. Air Quality Modeling and Environmental Risks 

In this section, we demonstrate the usage of the dynamic stochastic volatility model using an empirical example from 

environmental science. As for applications in financial economics, the volatility of the process can be interpreted as risks 

(i.e., environmental risks in our case). Previous ecological studies mostly focused on changes in the mean behavior (cf. Wilby

et al., 2009 ), but also an increased variation might be harmful, e.g., Vasseur et al. (2014) showed that an increased temper-

ature variation (i.e., changes in the variance) poses a greater risk than global warming (i.e., changes in the mean). Similar

results on this topic were found by Paaijmans et al. (2013) ; Screen (2014) and Tewksbury et al. (2008) . These varying risk

levels are mostly observed locally. Huntingford et al. (2013) found no evidence for time-varying standard deviations on a 

global scale. There is also a connection between climate changes and the financial market, such that climate variations 
9 
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Fig. 2. Estimates of μ and h (dashed lines) and their corresponding true data-generating values (solid lines) for ρ = (0 . 6 , 0 . 35 , −0 . 025) and W is a queen 

contiguity matrix. 

 

 

 

 

 

 

 

 

 

might have an impact on the risk of financial markets (see also Giglio et al. 2021; Hong et al. 2020 ). In addition, tem-

poral volatility models have been applied to describe varying model uncertainties in temperature series. More specifically, 

Hølleland and Karlsen (2020a) used generalized autoregressive conditional heteroscedasticity (GARCH) models for the resid- 

uals of an autoregressive model with exogenous regressors for the temperature over 44 years. They showed time-varying 

model uncertainties throughout the year, which are the highest during the winter seasons. 

In this article, we analyze the variation of fine dust concentrations of particles having a diameter less than 10 μm , P M 10 ,

in Lombardy, Northern Italy. Bounded by the Alps to the west, the region experiences reduced wind circulation, contributing 

to Lombardy being among the European regions with the lowest air quality, as discussed in (see Fassò et al., 2022 ). In the

following empirical analysis, we use the daily P M 10 concentrations from 1.1.2021 to 31.12.2021 from the official monitoring 

stations of the regional environmental authority, ARPA Lombardia ( Maranzano, 2022 ). The data are open-source provided by 

the Agrimonia project ( Fassò et al. 2023a ). We used version 3.0 of the dataset for this analysis. We refer the interested reader

to Fassò et al. (2023b) for a detailed description of the dataset. In total, there are n = 103 measurement stations and T = 365

daily observations. Missing values were imputed by the overall mean. To provide a first overview of the dataset, we depicted

the median concentrations in μg/m 

3 across space and time as a time-series plot ( Figure 5 , left) and displayed on the map

( Figure 5 , right), respectively. The code to reproduce the results can be found on GitHub philot789.github.io/SVM _ EnvRisk/ . 

For our analysis, we first estimated a spatial panel model to describe the mean variations. The spatial correlations have 

been modeled in an autoregressive manner. To be precise, the mean model is given by 

C t = ψWC t + X t β + WX t γ + s + a t 1 n + E t . (31) 

The outcome variable C t is the n -dimensional vector of P M 10 concentrations at time point t , W is spatial weights matrix

which we specify below in more detail, X t is an n × p matrix of exogenous regressors, and E t denotes the model error terms.

Spatial interactions are included via the spatial autoregressive term ψWC t with an unknown autoregressive parameter ψ . 

Moreover, spatial fixed effects s are present for each station (even if non-significant) because there are different types of 
10 
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Fig. 3. Trace plots for ρ = (0 . 30 , 0 . 65 , −0 . 025) and W is a queen contiguity matrix. 

 

 

 

 

 

 

 

 

 

 

stations included in the data set, e.g., urban traffic stations located at major roads in the cities or rural background stations

located in the Alps. The spatial fixed effects describe the station-specific P M 10 concentrations and thereby serve as the 

model intercept. The temporal fixed effects a t 1 n will remove any additional (station invariant) seasonal variation across 

time, which is not explained by the exogenous regressors. More precisely, we included p = 4 covariates that are known

to influence PM concentrations, namely the maximum height of the planetary boundary layer (PBL), the relative humidity, 

the air temperature, and the pressure level. All covariates are available as daily observations for each measurement station. 

Additionally, they were standardized to compare the size of the effects. 

The spatial weights matrix has been chosen as a row-standardized inverse-distance matrix with a cut-off distance of 32 

miles. This weighting scheme shows the best goodness-of-fit across several alternative weight matrices based on binary and 

inverse-distance weights (see Figure 6 ). On average, each station has 21.05 neighbors within the cut-off distance, leading to a 

sparsity level of W of 79.56% (i.e., percentage of zero values in W ). Our estimation algorithm in Section 4 can be extended to

include sampling steps for the parameters { s , a , β, γ , ψ, σ 2 
E } , where a = (a 1 , . . . , a T ) 

′ . By assigning suitable prior distributions

to these parameters, we can use (23) to determine the conditional posterior distributions of these parameters, which will be 

conditional on the high-dimensional parameter h . However, since our main focus is not the conditional mean equation of the

outcome variable, we estimated all parameters { s , β, γ , ψ, σ 2 
E } using the maximum likelihood approach readily implemented

in the spatial econometrics MATLAB toolbox (cf. Bivand and Piras 2015; LeSage 1999 ). The resulting estimates, including their 

asymptotic 95% confidence intervals and the direct/indirect/total effects, are summarized in Table 2 . In addition, we report 

the estimated fixed effects in Figure 7 . 

The estimated parameters align with our expectations, and we see a good general fit of the model with R 2 = 0 . 8161 . The

pivotal variable with the most substantial total effect on PM concentrations is air pressure. It is noteworthy that air pressure

exerts a positive influence on PM concentrations, implying that as air pressure increases, PM concentrations also rise. In 

addition, both temperature and relative humidity have a statistically significant and positive impact on PM concentrations. 

On the contrary, the maximum height of the planetary boundary layer has a negative effect, although this effect is not

statistically significant. These findings align with a recent study by Otto et al. (2023) that compared various mean models
11 
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Fig. 4. Estimates of μ and h (dashed lines) and their corresponding true data-generating values (solid lines) for ρ = (0 . 30 , 0 . 65 , −0 . 025) and W is a queen 

contiguity matrix. 

Fig. 5. Median PM 10 concentrations ( μg/m 

3 ) and the 5% and 95% quantiles across space displayed as time series (left) and median concentrations across 

time shown on a map (right). 

12 
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Fig. 6. Selection of the optimal cut-off distance for the mean model. 

Table 2 

Estimated parameters of the mean model. 

Estimate Standard error 95% confidence Direct effect Indirect effect Total effect 

interval (asymptotic) 

Regressors 

β1 (max PBL height) -0 .2101 0.3530 (-0.9021, 0.4818) -0 .2819 0 .2203 -0 .0616 

β2 (temperature) -6 .5128 1.2081 (-8.8807, -4.1449) -6 .2988 6 .6933 0 .3944 

β3 (relative humidity) 1 .9376 0.2863 (1.3764, 2.4987) 1 .7419 -1 .2028 0 .5391 

β4 (air pressure) 35 .2495 4.1764 (27.0640, 43.4350) 34 .0280 -20 .1166 13 .9114 

Spatially lagged regressors 

γ1 (max PBL height) 0 .1736 0.4283 (-0.6658, 1.0131) 

γ2 (temperature) 6 .6011 1.4465 (3.7660, 9.4363) 

γ3 (relative humidity) -1 .7913 0.3471 (-2.4715, -1.1110) 

γ4 (air pressure) -30 .1394 5.0513 (-40.0397, -20.2392) 

Spatial dependence 

ψ 0 .6470 0.0049 (0.6374, 0.6565) 

Error Variance 

σ 2 
E 53 .2667 

Coefficient of 

determination R 2 0 .8161 

Fig. 7. Spatial (left) and temporal (right) fixed effects. 
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Fig. 8. Standard deviation of residuals E t across space (left) and across time (right). 

Fig. 9. Median posterior draws of h t and the 5% and 95% quantiles across space displayed as time series (left) and median posterior draws of h t across 

time shown on a map (right). 

Table 3 

Estimated parameters of the dynamic stochastic volatility model, 

medians and 95% posterior credible intervals. 

Median 95% credible interval 

Intercept μ
Average constant term 3 .1679 (2.8751, 3.4505) 

Space-time interactions 

ρ1 (spatial) 0 .6274 (0.6169, 0.6302) 

ρ2 (temporal) 0 .3576 (0.3546, 0.3619) 

ρ3 (spatiotemporal) -0 .0113 (-0.0148, -0.0043) 

Stochastic volatilities h t 
Average log-volatility 3 .1475 (3.1307, 3.1647) 

Error variance σ 2 

σ 2 (variance of U t ) 0 .3398 (0.3213, 0.3594) 

 

 

 

 

on the same dataset. However, for this paper, our focus is not on the mean variations but on the model errors E t , i.e., the

model uncertainties. Hence, we do not go into further detail on interpreting the mean models. The errors of the mean model

represent the unexplained variations and, therefore, the environmental risks. When considering the standard deviation of E t 

at each time point and/or for each measurement station, we see that the error variance varies across space and time (see

Figure 8 ). There are time periods of increased variations, so-called volatility clusters, e.g., at the end of the year. Moreover,

we observe a similar clustering across space. Measurement stations with higher volatility are located in close proximity, e.g., 
14 
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northeast of Milan or around Brescia. This provides motivation for estimating a dynamic stochastic volatility model for E t in

the second step, that is, 

E t = H 

1 / 2 
t V t (32) 

as defined in (1) and (2) . 

Table 3 reports the median of the posterior draws for each parameter, including the corresponding 95% credible inter- 

vals (4,0 0 0 posterior draws and 2,0 0 0 burn-in draws). The space-time interaction parameters ρ1 , ρ2 , and ρ3 represent the

degree of uncertainty/risk clusters and spillovers. In general, we observe moderate instantaneous spatial interactions with 

ˆ ρ1 = 0 . 6274 and temporal autoregressive interactions ˆ ρ2 = 0 . 3576 , while spatiotemporal effects appear to be of minor im-

portance (i.e., ˆ ρ3 = −0 . 0113 ). The posterior mean estimates for both the spatial and temporal autoregressive parameters are

positive. That is, if the environmental risk (log-volatility h it ) is high, it is likely to influence neighboring regions and future

time points. For this reason, spatial and temporal volatility clusters are formed. The negative signs of the posterior mean 

estimate for the spatiotemporal lag (i.e., the spillover or diffusion effect) oppose this behavior, but it is close to zero. More-

over, we observe that the spatial volatility clusters dominate the temporal ones. All space-time interaction parameters are 

significantly different from zero, indicating a space-time dependence in the local uncertainties of the environmental process 

(here: the particulate matter concentrations). 
Fig. 10. Median posterior draws of h t for two selected stations, Lugano in Switzerland (station 65) and Moggio (station 52), across time (top) and two 

selected time points 26 June 2021 (bottom left) and 6 December 2021 (bottom right). The log-volatility values highlighted with the red/magenta empty 

circle or square correspond to each other. 
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The overall volatility level represented by the average h t of 3.1475 provides insights about the estimated overall uncer- 

tainty level across all stations and time points. If the individual log-volatilities h it exceed the average volatility level, this 

specific location i has an increased environmental risk at time point t . Thus, we additionally analyzed the conditional volatil- 

ities for each station across the time horizon. The results are displayed in Figure 9 as a time-series plot (left) and on a map

(right). More precisely, we computed the posterior medians of h it for all locations and time points, leading to an estimate

of the n × T matrix of the logarithmic conditional volatilities. Then, for visualization, we computed the median and the 5%

and 95% quantiles of these estimates across all spatial locations (see time series plot) and across all time points (see map).

From the time series plot, we see that there is a clear annual pattern – the model uncertainties are lower in summer and

highest in winter. These varying conditional volatility levels, which are the highest in the winter season, can be interpreted 

as environmental risks. Similarly, measurement stations with greater uncertainty/risk can be identified from the map. They 

are mostly located in the south and the valleys in the mountain areas. These uncertainty/risk profiles can be obtained for

each station, as we visualize for two selected locations in Figure 10 . Station 52 near Moggio, Lombardy Italy, was one of

the stations with the highest log volatilities, while Station 65, Lugano Switzerland, showed significantly lower volatilities. 

Moggio station is located in the mountains with unique climatic conditions that differ markedly from all other stations. 

This explains the larger log-volatilities for this station. In addition to the temporal variation (top plot in Figure 10 ), we also

displayed the estimated risks for all other locations at two selected time points in the summer and winter (bottom plots in

Figure 10 ). 

7. Conclusion 

We have introduced a novel spatiotemporal statistical model for stochastic volatilities, which are spatially, temporally, 

and spatiotemporally correlated and have different levels for each location, reflecting the heterogeneity of the process across 

space. The model includes two different error terms for the mean and the log-volatility equations. To estimate the parame- 

ters, we suggested a Bayesian MCMC approach. To this end, we applied a log-square transformation to transform our non- 

linear state-space model into a linear one. Further, we used a Gaussian mixture distribution to approximate the distribution 

of the transformed error terms in the space equation, transforming our model into a linear Gaussian state-space model. 

We analyzed the estimation performance for different parameter settings and spatial interactions in a simulation study and 

showed that the suggested Bayesian sampler performs satisfactorily. 

Moreover, we applied the dynamic spatiotemporal stochastic volatility model in a completely new empirical framework, 

namely, in the field of modeling environmental and climate risks. First, statistical modeling of the volatility process of cli- 

mate variables has not been done extensively yet, even though there is a large scientific consensus that an increased vari-

ability of environmental processes, e.g., temperature variability, is harmful to the environment. Second, stochastic volatility 

models were predominantly applied to financial data because of the straightforward interpretation of the log conditional 

volatilities as the (return) risk of financial assets. We have transferred this idea to environmental risks and showed how the

volatility of P M 10 predictions are correlated across space and time. Accurate estimation of local model uncertainties is par- 

ticularly relevant when making predictions of the fine dust concentration or assessing policy interventions, such as traffic or 

agricultural restrictions, in scenario analyses. In particular, measurement stations with an increased model uncertainty could 

be identified in this way. In addition, we showed in our application that there are significant temporal and spatial volatil-

ity clusters in these environmental risks. Also, the temporally lagged spatial spillovers, i.e., the spatiotemporal correlations, 

appear to play a minor role. 

Both from a theoretical and applied perspective, spatiotemporal stochastic volatility models and environmental risk mod- 

eling are important topics for future research. The current model does not allow for temporally varying constant terms in the

conditional volatilities, which are constant across space. Regarding the latter case, other environmental processes, like tem- 

perature variations, soil droughts, or atmospheric ozone concentration and optical depths, are important processes where a 

deep understanding of the spatiotemporal interactions in the variabilities is essential, both for obtaining accurate prediction 

intervals and the planning of interventions (and their impact on the environment). 
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Appendix 

In this section, we provide additional simulation results under the following prior distributions: σ 2 ∼ IG (0 . 01 , 0 . 01) and

μ ∼ N(0 , 100 I n ) . Figures 11 and 13 show the trace plots for ρ and σ 2 , while Figures 12 and 14 show the estimates of μ
and h along with their true values. Figure 15 shows estimated volatility terms at certain locations. It shows the line plots

of { ̂ h 13 ,t } 50 
t=1 

, { ̂ h 34 ,t } 50 
t=1 

, { ̂ h 73 ,t } 50 
t=1 

, { ̂ h 91 ,t } 50 
t=1 

against their true corresponding values. Finally, Figure 15 shows the line plots of

{ ̂ h i, 11 } 98 
i =1 

, { ̂ h i, 23 } 98 
i =1 

, { ̂ h i, 35 } 98 
i =1 

, { ̂ h i, 43 } 98 
i =1 

against their true corresponding values. 
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Fig. 11. Trace plots for ρ = (0 . 6 , 0 . 35 , −0 . 025) and W is a queen contiguity matrix. 

Fig. 12. Estimates of μ and h (dashed lines) and their corresponding true data-generating values (solid lines) for ρ = (0 . 6 , 0 . 35 , −0 . 025) and W is a queen 

contiguity matrix. 
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Fig. 13. Trace plots for ρ = (0 . 30 , 0 . 65 , −0 . 025) and W is a queen contiguity matrix. 

Fig. 14. Estimates of μ and h (dashed lines) and their corresponding true data-generating values (solid lines) for ρ = (0 . 30 , 0 . 65 , −0 . 025) and W is a queen 

contiguity matrix. 
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Fig. 15. Estimates of h t (dashed lines) for four arbitrarily chosen entities and their corresponding true data-generating values (solid lines) for ρ = 

(0 . 6 , 0 . 35 , −0 . 025) and W is a queen contiguity matrix. 

Fig. 16. Estimates of h i (dashed lines) for four arbitrarily chosen periods and their corresponding true data-generating values (solid lines) for ρ = 

(0 . 6 , 0 . 35 , −0 . 025) and W is a queen contiguity matrix. 
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