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The capture of small near-Earth asteroids in a bound binary pair in 
Earth’s orbit 
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A B S T R A C T   

Hill’s approximation models the motion of two small masses gravitationally interacting with each other and perturbed by a large central body. An application of the 
model is employed in this paper to manoeuvre the relative motion of two asteroids by a small impulse to capture them in bound binary motion in Earth’s orbit. The 
initial conditions prior to the capture manoeuvre are restricted in a parameter space termed the gateway region. The gateway region is produced by applying the 
constraint that the capture impulse is a real-valued function, and the zero-velocity curve closes, enveloping both asteroids. A full mission scenario is designed with 
three impulses. The first impulse transfers one asteroid from a far field region to the gateway region, where there is mutual interaction with the second asteroid, 
which is assumed to be the origin of the relative motion. The second impulse changes the trajectory of the asteroid in the gateway region to a linear drift approaching 
the second asteroid. The third impulse is calculated by means of increasing the Jacobi integral to reach the critical value required to close the zero-velocity curve. It is 
demonstrated in principle that the triple impulses enable the candidate asteroids to be captured in a bound pair in Earth’s orbit. It is also shown that the thruster on- 
time for the capture impulse as applied for the different small asteroids considered is short relative to the natural time-scale of the orbital dynamics of the problem, 
which shows the feasibility of the impulse approximation with the typical thruster forces applied. This strategy could provide a basis for parking small captured near- 
Earth asteroids in Earth’s orbit.   

1. Introduction 

In recent years, there has been increasing interest in mining and 
harvesting minerals from near-Earth asteroids (NEAs) that may be rich 
in ores and raw materials [1]. Due to their risk and proximity to Earth’s 
orbit, NEAs also pose a danger in terms of collision that should be 
avoided [2–5]. 

A suggested approach to capturing NEAs would be to trap these as-
teroids in an orbit around the Earth or at the L4/5 Lagrange equilibrium 
points of the Earth–Moon system. This approach has been previously 
studied for asteroids that can be captured at the L1/2 Lagrange equilib-
rium points [3]. However, the L1/2 points are unstable equilibrium 
points as opposed to L4/5 [6]. Hence, it is of interest to explore capturing 
NEAs at L4/5 or in high Earth orbit. In this pursuit, we need to take into 
consideration that these smaller asteroids typically do not exist on their 
own, but rather develop as a rubble pile where all the individual com-
ponents are held together gravitationally. Therefore, questions related 
to parking multiple NEAs for a prolonged period in the Earth’s orbit, 

lunar orbit, or L4/5 points in the Earth–Moon system form a topic of 
interest. 

One study that focused on NEAs in the Earth–Moon system investi-
gated a new type of lunar asteroid capture [3]. In this type of lunar 
asteroid capture, the captured asteroid would be given two impulses. 
The first impulse ensures the asteroid leaves its initial heliocentric orbit. 
The subsequent impulse inserts the asteroid into the L2 stable manifold 
in the Earth–Moon circular restricted three-body problem. Similarly, 
engineering strategies to capture NEAs have been investigated in 
Ref. [7] and could therefore be employed to fission binary asteroid pairs 
after a close encounter with a planetary body. This work allows us to 
determine capture regions for the minor body of the binary pair by 
understanding the zero velocity curves for the planar parabolic 
restricted three-body problem. 

Moreover, aerobraking manoeuvres to capture candidate asteroids 
can have low energy costs [8]. Research has defined two ways of aero-
braking and two approaches where the captured asteroid, after the 
aerobraking manoeuvre, can be injected a bound Earth orbit at the 
perigee. Furthermore, Ref. [9] studied dismantling the surface material 
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of rotating spherical asteroids using the ‘orbital siphon effect’ which was 
investigated analytically. The study is promising with regards to 
extracting materials from rotating NEAs or rubble pile asteroids, after 
which the materials can be transferred to a different orbit. Transfer 
occurs by initiating the orbital siphon effect with a net radial force on a 
chain that connects a set of surface material payloads. 

In the present paper, the research tasks reported have focused on 
engineering the dynamics of two asteroids in a circular orbit around the 
Earth to form a bound binary pair by applying a capture impulse when 
the two asteroids are within a small distance. Prior to this impulse, the 
paper presents a complete scenario, with two impulses bringing one 
asteroid from a far field region, using the linear version of Hill’s equa-
tions, transferring the asteroid to a region near the second asteroid, and 
altering the motion to be a linear drift to set up the conditions for cap-
ture. A related study has investigated whether continuous acceleration 
might be used to maneuver two asteroids into a bound pair [10]. 
However, the methodology used in the design of the impulse analysis is 
quite different from that of the continuous acceleration analysis. 

2. Methodology 

2.1. Hill’s problem 

Hill’s equations, which provide a mathematical approximation of the 
restricted three-body problem known as Hill’s problem [11], are ideal 
for describing the orbital motion of satellites of planetary bodies as they 
can provide a good approximation of the results generated by modelling 
orbits of the full three-body problem [12]. Furthermore, the equations of 
motion of Hill’s problem can describe two regions for the relative mo-
tion of two small bodies around a primary mass, but distant from each 
other, as well as the bound motion around the centre-of-mass of the two 
bodies. The former has an approximate analytical solution [13], while 
the latter can be solved numerically. Several key papers [14–16] have 
detailed the prominent periodic and non-periodic families of orbits and 
their stability regions. Other previous papers [17,18] have modelled the 
motion of binary asteroids as a version of Hill’s problem in which the 
centre-of-mass of the binary asteroid moves in a circular orbit around 
the Sun. A model describing the centre-of-mass of a binary asteroid 
system moving on an elliptic orbit has also been formulated [19]. This 
problem has also been used in spacecraft mission design [20]. 

The present paper focuses on applying Hill’s problem to the problem 
of asteroid clustering in Earth’s orbit. It will be assumed that two small 
NEAs have been captured in neighbouring circular orbits and that a 
strategy is required to form a bound binary pair for long-term parking. 
The issue to be investigated is the gravitational interaction between the 

two small asteroids, when the distance between them is small enough, in 
principle, to have their quasi-Keplerian motion neglect the force from 
the central body. A capture impulse from a spacecraft attached to one of 
the asteroids is assumed to be used to transition to such bound motion. 
The asteroids of concern in this paper are NEAs with a diameter of 40 m 
or less that could be captured in a high orbit about the Earth. 

2.1.1. Hill’s equations 
Using the equations of motion for the two small bodies, the dynamics 

of the NEAs are formulated in Hill variables by Ref. [15]. The relative 
motion of the three bodies is shown in Fig. 1, where M is the third main 
body (in this application, the Earth), and m2,m3 are the two small 
bodies. Then (X,Y) is the inertial reference frame, where the main body 
M is the centre of motion, while (ξ, η) is the rotational frame of reference 
for relative motion which is defined by the difference in the positions of 
the small masses. The centre of the relative frame is at G for the relative 
motion described in Ref. [17]. Hill’s equations can be written as: 

ξ̈= 2η̇+3ξ−
ξ
ρ3 + O

(
μ1

3

)
(1)  

Nomenclature 

D = distance of the Moon from the Earth 
d = distance of the binary asteroids from the Earth 
f = Force of the thruster 
G = centre-of-mass of the asteroids 
g = universal gravitational constant 
J = mechanical impulse for the capture 
L1/2, L4/5 = Lagrange points 
lu = length scale 
MEarth = mass of the Earth 
Mmoon = mass of the Moon 
m3,m2 = mass of two asteroids 
r = radius of asteroid 
t = time 
tu = time scale 
X,Y = components of position in inertial frame 

ρ = density 
ξ,η = components of position in relative frame 
ξ̇, η̇ = components of velocity in relative frame 
μ = mass parameter of the two asteroids 
Γ = Jacobi constant 
ρ = relative distance between the two asteroids 
Δη̇ = capture impulse 
⍵ = angular velocity 

Subscripts 
e = event where the capture impulse is applied 
equ = equilibrium points (L1/2) 
cr = critical value of Jacobi integral used for capture 

manoeuver 
o = state at gateway region 
p = initial state for the scenario 
impulse = time for the capture manoeuver  

Fig. 1. Definition of the inertial frame (X, Y), where the origin is on the main 
body, and the rotational frame (ξ, η), where the centre-of-mass is the point G 
between the two small asteroids. 
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η̈= − 2ξ̇ −
η
ρ3 + O

(
μ1

3

)
(2)  

where μ = m3
m3+m2 

is the mass ratio of the problem, and ρ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ξ2 + η2
√

is the 
separation of the two small masses. When ρ is large enough, the gravi-
tational interaction of the two small bodies can be neglected, and Eqs. 
(1) and (2) will reduce to the linear form: 

ξ̈= 2η̇+3ξ (3)  

η̈= − 2ξ̇ (4) 

Equations (3) and (4) are known as the Hill-Clohessy-Wiltshire 
equations. They were initially employed to study the relative motion 
of satellites orbiting the Earth [21], and subsequently for the purpose of 
rendezvous and proximity operations. In this instance, they will be used 
to determine the first impulse applied to the asteroid in the far field 
region and the second impulse to rendezvous with the second asteroid 
via the gateway region, defined later. Assuming the initial position and 
velocity components for the Hill-Clohessy-Wiltshire equations are 

(
ξo,ηo,

0, − 3ξo
2

)
, Section III will show that use of these initial conditions will 

ensure ξ remains constant while η will exhibit a uniform drift. Due to 
these equations being linear, they can be solved analytically, again as 
will be shown later where this behaviour can be verified. 

2.2. Jacobi integral 

The Jacobi integral is the effective energy constant of motion of the 
circular restricted three-body problem. For Hill’s non-dimensional 
equations, the Jacobi integral is given by Ref. [15] as: 

Γ= 3ξ2 +
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ξ2 + η2

√ − ξ̇
2
− η̇2 (5) 

The Jacobi integral allows us to model strategies to capture NEAs 
[22] by determining the zero-velocity curve (ZVC). The ZVC separates 
the volume of space where motion is and is not allowed. The strategy has 
been applied in the Sun–Earth circular restricted three body-problem in 
Ref. [23] aimed at trapping the candidate asteroid inside a ZVC around 
the Earth by adjusting Γ with an impulsive manoeuvre. This strategy has 
also been extended to capture asteroids at the L1 and L2 points of the 
Earth–Moon system [3,4]. Using an implementation of the Jacobi inte-
gral permits the analysis of constraints for the change in velocity needed 
for capture. However, in the present paper, the Jacobi integral will be 

implemented for a different dynamical model using Hill’s equations and, 
importantly, to serve the objective of clustering of two asteroids in 
bound motion by an impulse manoeuvre and so capture the two small 
bodies in the ZVC. 

3. Forming an artificial binary pair 

In the relative coordinates, it can be considered that one asteroid is 
located at the origin while the other moves relative to it. As a simple 
capture strategy, and for potential ease of operational implementation, a 
capture impulse will now be applied at the crossing of the ξ-axis. Fig. 2 
illustrates the required manoeuvres for the full scenario of three 
impulses. 

In Fig. 2, consider applying the third impulse when the motion in-
tersects the ξ-axis defined by η= 0, in the near field area at location Ce(ξe,

0, ξ̇e, η̇e). This is the capture event definition chosen in this paper. This 
creates a constraint in the dynamics of the problem to ensure that the 
relative motion of the two bodies will therefore allow them to become 
bound. The small impulse applied at this event forms a closed zero- 
velocity curve defining the bound motion. Prior to the capture im-
pulse in the scenario, as shown in Fig. 2, there is a requirement that the 
relative motion between the two asteroids should comprise a linear drift. 
Therefore, to ensure that the motion has linear drift, a point Co

(
ξo,

ηo, 0, − 3
2ξo

)
is defined in the gateway region. The second impulse will 

transfer the trajectory to a linear drift from the first impulse designed in 
far field region Cp(ξp,ηp, ξ̇p, η̇p). 

Based on the Jacobi constant, to study the constraints noted above, 
the change in the total effective energy of the system can be found from 
the event Jacobi constant Γe, at the event where the capture impulse is 
applied, and the critical Jacobi constant required to capture Γcr and to 
close the ZVC. At the event coordinates the asteroid position and ve-
locity are defined by (ξe,0, ξ̇e, η̇e). Thus, Γe is defined as: 

Γe= 3ξ2
e +

2
ρe

− ξ̇2
e − η̇2

e (6)  

Γe =A − ξ̇2
e − η̇2

e (7)  

where A= 3ξ2
e +

2
ρe 

and ρe = |ξe|. 
After applying an impulse Δη̇e along the η-axis at the capture event, 

the critical Jacobi constant is defined as: 

Fig. 2. Triple-manoeuvres scenario to form the binary pair in bound motion. Two impulses transfer the asteroid from the far-field region into the gateway field. The 
third impulse, at η = 0, traps the two bodies in their ZVC. 
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Γcr =A − ξ̇e
2
− (η̇e + Δ η̇)2 (8) 

According to this requirement, the impulse Δη̇ is then given by: 

Δη̇=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− Γcr + A − ξ̇e
2

√

− η̇e (9)  

in this paper, Γcr= 4.3269 is the required critical Jacobi constant to 
ensure that the ZVC is closed around the captured binary pair of aster-
oids. It is found by substituting the location of the collinear Lagrange 
points in Eq. (5) which yields the critical Jacobi integral. The Lagrange 
points are the equilibrium points where the total force, comprised of the 
tidal force from the main body and the gravitational force between the 
asteroids, is equal to zero. These points are calculated by using Eqs. (1) 
and (2), where ξ̇ = η̇ = ξ̈ = η̈= 0 and L1 and L2 are therefore located at 

ηequ = 0, ξequ = ±
( 1

3
)1

3. Then, to ensure that the interaction between the 
two bodies continues after capture, they should be trapped within the 
ZVC where the Jacobi constant is not less than Γcr. 

It is important to remark that the stability of planar orbits in Hill’s 
equations is valid when considering low inclinations, due to the oscil-
latory type of out-of-plane motion explained in Ref. [17]. Thus, as we 
introduce only small changes in transverse velocity within the capture 
area, between the equilibrium points L1 and L2, such planar stability 
should not be affected, and Eq. (8) should be valid for the planar sce-
nario here. Now that the capture impulse required to close the ZVC and 
ensure bound motion of the binary asteroid pair has been determined, 
the constraints on such a manoeuvre will be considered. 

3.1. Constraints on the capture manoeuvre 

Equation (9) will now be used to calculate the real-valued impulse Δη̇ 
required to close the ZVC. However, Eq. (9) must have a constraint on 
the expression under the root to avoid a complex value. Therefore, it can 
be noted that: 

3ξ2
e +

2
ρe

− ξ̇2
e − Γcr> 0 (10) 

This inequality provides the maximum value for ξ̇e to ensure that the 
calculation for Δη̇ produces a real value, and hence, the capture 
manoeuvre is possible. 

Prior to describing the capture manoeuvre in detail, Eq. (10) is 
solved for ξe by using Cardano’s formula for a cubic equation [24]. The 
solution indicates the area of the inequality and shows all possible 

values for ξe, ξ̇e at the event which have a real value for Δη̇, as shown in 
Fig. 3. The solution’s critical values can be found by setting ξ̇= 0, cor-
responding to the L1 and L2 points. 

3.1.1. Solving the inequality for ξ 
In Fig. 3, the event at η= 0 can be used for a capture manoeuvre if 

(ξe, ξ̇e) is within the shaded diamond-shape region (inner area). Thus, 
the manoeuvre at the event occurs between L1 and L2, so the outer 
shaded area cannot be used for capture. This result aligns with Ref. [14] 
in relation to escape trajectories when (ξe, ξ̇e) is located in the outer 
areas. From Eq. (9), Δη̇ defines the capture manoeuvre and is dependent 
on the two terms of the velocity components at the capture event. The 
first constraint where ηe= 0 is retrieved from Eq. (10) for ξ̇e, and stated 
in Eq. (11). The second constraint for η̇e will be considered later: 

A − Γcr > ξ̇2
e (11)  

where again A= 3ξ2
e +

2
|ξe |

, and A can be considered as the effective po-

tential energy at the event. Thus, Eq. (11) depicts the constraints on ξ̇e. 
Next, we will consider the constraints on η̇e. 

Initially, we start with the value of Γe at the capture manoeuvre 
event: 

Γe= 3ξ2
e +

2
|ξe|

− ξ̇2
e − η̇2

e (12)  

ξ̇2
e =A − Γe − η̇2

e (13) 

By using Eq. (11), it can be observed that: 

A − Γe − η̇2
e < A − Γcr (14)  

which then implies: 

η̇2
e > Γcr − Γe (15) 

Equation (15) gives the minimum value required for η̇e that is related 
to the Jacobi integral Γcr to design the capture manoeuvre. For a more 
practical use of Eq. (15), we can use the conservation of the Jacobi in-
tegral over the approach trajectory, then Γe = Γ0, where Γ0 is the Jacobi 
integral at the initial starting point of the capture manoeuvre Co at the 
edge of the gateway region, as shown in Fig. 2, so that: 

Fig. 3. The analytical solution for inequality in Eq. (10). Inner area is between 
equilibrium points L1/2. 

Fig. 4. Grid of initial values (ξo, ηo, 0, − 3ξo /2) produced by analysing con-
straints Eqs. (10) and (15). Region 1 successful capture manoeuvre; region 2 
velocity constraints valid, but two asteroids not in their Hill sphere; region 3 
non-capture manoeuvre. 
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η̇2
e > Γcr − Γ0 (16) 

Equations (11) and (16) are constraints on the value of the velocity 
components at the event where the impulse is applied to change the 
asteroid’s energy. It can be noted that ξ̇2

e has a maximum value, whereas 
η̇2

e has a minimum value. Both are related to the Jacobi integral Γcr 

required to close the ZVC and ensure the motion is bounded. It is 

assumed that the initial relative motion at Co between the two asteroids 
will comprise a linear drift, as noted in Fig. 2, so that at the point Co, the 
asteroid position and velocity components are given by 

(
ξo,ηo,0, − 3

2ξo
)
. 

The full scenario in subsection IIIb will provide more detail about 
maneuvering the asteroids to be in a linear drift state. 

These two constraints are now shown in Fig. 4. The blue area defined 
by region 1 in Fig. 4 is produced by the constraints in Eq. (16) and Eq. 

Fig. 5. Two examples of the trajectories after the final capture manoeuvre: (a) captured for initial condition chosen from region 1. (b) non-captured for initial 
condition from region 2. L1 and L2 points denoted by black and green dots. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 

Fig. 6. Full scenario of three impulses. The two dots represent L1/2, difference in colour of the trajectory represents the impulses. (a) no impulse applied. (b) first 
impulse directing the trajectory to initial position in gateway region. (c) second impulse fixing velocity components to be (0, − 3ξo /2). (d) third capture impulse 
applied at (ξo, 0). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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(11). It thus represents the possible initial values that lead to capture of 
the two asteroids in a closed ZVC and as noted, is named here the 
gateway region. In region 2, the initial values satisfy the constraints in 
Eq. (16) and Eq. (11) but not the constraints on the event location noted 
in Fig. 3 (the capture event location should be between L1 and L2). For 
region 3, which is represented with grey dots, the constraints in Eq. (16) 
and Eq. (11) are not valid, which means the initial velocity components 
for the asteroid are not capable of reaching the capture event to apply an 
impulse. 

Fig. 5 shows examples of capture manoeuvre and non-capture 
manoeuvre from different regions of Fig. 4. For these examples, the 
initial parameters for the capture manoeuvre are ξo= − 1.22 and ηo = −

8, whereas in relation to the non-capture manoeuvre, the initial pa-
rameters are ξo= − 1.5 and ηo= − 6. The figures demonstrate a grey re-
gion denoting the ZVC, which is closed after adding the impulse to reach 
Γcr. In addition, the white contour lines show the Jacobi integral before 
adding the impulse, so the ZVC is open before the impulse. 

3.2. Full capture scenario 

As noted earlier, prior to the capture manoeuvre, two further ma-
noeuvres can be considered to transfer the asteroid to the gateway re-
gion. These manoeuvres bring the asteroid into this region with relative 
initial conditions that ensure the uniform drift of the asteroid towards 
the origin as required for capture. The initial values of the velocity 
components are then again in the form (ξ0,η0, ξ̇0, η̇0) =

(
ξ0,η0,0, − 3

2ξ0
)
. 

We assume that prior to reaching the gateway region the initial condi-
tions are (ξp, ηp, ξ̇p, η̇p) at point Cp, as shown in Fig. 2. Then, using the 
solution of Eq. (3) and Eq. (4) that was found in a state vector δs where 
δsT = [δrTδvT ] = [ξ ηξ̇η̇], the 4 × 4 state transition matrix can be defined 
as in Ref. [25]: 

δs=Q(t)δS(0) (17)  

where Q(t) is assembled from the coefficients of the solution, which can 
be written as: 

Q(t)=
[

M(t) N(t)
S(t) T(t)

]

(18)  

and where the matrices are defined by: 

M(t) =
[

4 − 3cos t 0
6(sin t − t) 1

]

(19)  

N(t)=
[

sin t − 2(1 − cos t)
− 2(1 − cos t) 4 sin t− 3t

]

(20)  

S(t)=
[

3 sin t 0
− 6(1 − cos t) 0

]

(21)  

T(t)=
[

cos t 2 sin t
− 2sin t 4 cos t− 3

]

(22) 

The position and relative velocity can then be written as: 

δr(t)=M(t)δr(0) + N(t)δv(0) (23)  

δv(t)= S(t)δr(0) + T(t)δv(0) (24) 

To perform the first manoeuvre, it will be assumed that in the far 
field region the asteroid has initial conditions (δr(0),δv(0)) = (ξp,ηp, ξ̇p,

η̇p), as noted in Fig. 3. Then, Eqs. (23) and (24) can be used to determine 
the first impulse required for the asteroid to reach the desired position 
and velocity components (δr(t), δv(t)) = (ξo, ηo, ξ̇o, η̇o) at the gateway 
region. A second impulse then ensures that the motion will have linear 
drift with 

(
ξ0,η0,0, − 3

2ξ0
)
, as shown in Fig. 6. 

Fig. 6 illustrates the scenario of three impulsive manoeuvres. The 

initial parameters (ξp, ηp, ξ̇p, η̇p) for linear drift trajectories can be seen in 
Fig. 6a. With no impulse applied, the trajectory remains linear until the 
asteroid reaches the near field region. Hence, the gravitational interac-
tion with these initial values in the far field region is negligible. Fig. 6b 
shows that, at the transfer to the gateway region within a transfer time of 
half an orbit, the position of this point is selected as (ξo, ηo) =

(− 1.3, − 10) to be targeted by the first impulse. Then, the second impulse 
achieves the relative velocities for linear drift within the gateway region 
such that 

(
ξ̇o, η̇o) = (0, − 3

2ξ0
)
. Finally in Fig. 6d at η= 0, at the event 

location (ξe0, ξ̇e, η̇e), the manoeuvre defined by Eq. (9) is applied to 
change the Jacobi constant to that required for bound relative motion 
within a closed ZVC. 

4. Operational analysis: Case study 

4.1. Assumptions and input parameters 

By retaining physical dimensions to the system, Eqs. (1) and (9) can 

be modified by using the length scale lu =
( μ

⍵

)1
3 and time scale tu =

( 1
⍵

)
, 

where the mass ratio μ = m3
m3+m2

, and ⍵2 = g MEarth
d3 , where d (1.125027 ×

108 m) is the distance of the binary pair of asteroids from the Earth, g 
(6.67430 × 10− 11 m3 kg− 1 s− 2) is the universal gravitational constant, 
and MEarth (5.9742 × 1024 kg) is the mass of the Earth. 

The grid in Fig. 7 is produced considering two asteroids, assumed to 
be uniform spheres, which are now assumed to have a radius of r( 15 m), 
density ρ (2 × 103 kgm− 3), and at a distance of 0.3 of the Earth–Moon 
distance. In addition, one asteroid is again assumed to be at the origin of 
the relative coordinates of the problem. The dimensional grid in Fig. 7 
now exhibits different features to the gateway initial values. During the 
numerical integration of Hill’s equation, a collision detection algorithm 
is implemented, such that the simulation stops when a collision is 
detected. Implementation of this algorithm forces consideration of the 
lifespan of the binary asteroid before collision. Given the slow relative 
velocities, a largely inelastic collision is likely to result in the pair of 
asteroids remaining in contact to form abound cluster. 

4.2. Results and discussion 

The dimensional gateway region is now separated into two regions. 
The first region is the collision region, the region of initial values in the 
gateway that results in the two asteroids colliding prior to the capture 
event chosen in Section III. The second region consists of non-colliding 

Fig. 7. Dimensional gateway region to manoeuvre two asteroids with 15 
m radius. 
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trajectories. In this region, after the third capture impulse, they do not 
collide for a finite time. 

Fig. 7 shows changes in the initial value region that resulted in 
capturing the asteroid within the ZVC, depicted as region 1 in Fig. 4. The 
changes are due to retaining physical units in the numerical integration 
and considering the finite size of the NEAs. Fig. 7 shows a collision re-
gion in the white area which has initial values developing trajectories 
that collide before reaching the capture event at η= 0 (ξ-axis). In addi-
tion, the grid in Fig. 7 shows the same result for non-triggered events, 
depicted in grey, from the initial values. This result aligns with the re-
sults in Fig. 4. Initial values from the non-triggered event region produce 
trajectories which are not capable of reaching the capture event at η= 0. 
The blue areas also depict initial values of trajectories where the velocity 
components at the event do not satisfy the constraints in Eq. (11) and Eq. 
(16). In addition, there is a narrow region of initial conditions between 
the non-triggered and collision area, represented in three marker col-
ours. This area defines non-collision trajectories that reach the event and 
have a real-valued capture impulse that closes the ZVC around the bi-
nary asteroid pair. It should be pointed out that even if the capture 
impulse is added only to one asteroid, Hill’s equations allow for the 
coupling of their dynamics. It can be established that despite the aster-
oid’s center-of-mass dynamics being perturbed by the impulses, Hill’s 
equations still adequately represent their relative motion. 

Furthermore, the coloured markers for the non-collision area in 
Fig. 7 differ for each of the three lifespans of the binary asteroids 
considered here. Orange denotes the initial values for developing a 
captured binary pair with a lifetime of one day before collision. Light 
blue denotes the initial values for an asteroid pair with a lifespan greater 
than one day and less than two days. Green denotes the initial values for 

the longest binary pair, a pair that lasts more than two days before 
collision. The representation shows that the difference in lifespan is 
determined by the location of initial conditions. This lifespan calculation 
is obtained by stopping the simulation at a relative distance between the 
asteroids of 30 m of the sum of the radius of both asteroids. The lifespan 
versus the required capture impulse Δη̇capture, as shown in Fig. 8, is for 
the initial values in the non-collision region shown in Fig. 7. Fig. 8 
demonstrates that the captured asteroids have a longer lifespan before 
collision, more than two days, when the impulse Δη̇capture is smaller. 
Likewise, the minimum lifespan for binary asteroid dynamics, within the 
closed ZVC, is less than one day when the impulse Δη̇capture value is 
larger. The capture impulse is seen to be small, as expected for small 
NEAs. 

Furthermore, Fig. 8 indicates the magnitude of Δη̇capture for all initial 
conditions in the non-collision area which is of order 10− 3 ms− 1. We can 
assume now that a small thruster provides a force of f = 1000N, and 
consider the density for stony and metallic asteroids and the radius of 
the small spherical uniform asteroids. Then, the mechanical impulse J 
required for capture is the product of the asteroid mass and Δη̇capture. For 
a typical case considered the impulse could reach 3 × 104 Ns, and so the 
time for the manoeuver can be estimated as Δtimpulse = J

f ≈ 30s. This 
suggests the capture impulse is short compared to the time scale of the 
dynamics of the problem, again given by tu =

( 1
⍵

)
= 5.98×104s. Table 1 

seeks to examine a range of realistic mean values for Δη̇capture, J and 
Δtimpulse. The mean of Δη̇capture in Table 1 is the sum of all Δη̇capture for 
captured initial values in the gateway region divided by the number of 
initial values propagated for different mass values at Table 1. The mass 
of the spherical asteroids is computed by approximate values of the 
density for stony (2×103kg /m3) and metallic (6×103kg /m3) asteroids 
and the assumed asteroid radii in Table 1. Subsequently, J and Δtimpulse 

are found based on mean of Δη̇capture. Table 1 illustrates that the capture 
impulse approximation is appropriate as the values of Δtimpulse are small 
in comparison of the time scale of the dynamics of the problem. 

As previously noted, the location of the capture orbit is between the 
Earth and the Moon, however the Hill radius RH, is defined as: 

RH =D
̅̅̅̅̅̅̅̅̅̅̅̅
Mmoon

3ME

3

√

(25)  

where D represents the distance between Earth and the Moon, and it is 
equal to 3.75009 × 108 m. The ratio of the mass of Moon to the mass of 
the Earth is approximately 1/81 from Ref. [26], so that RH = 0.16D. As it 
was specified in subsection IVa, the distance of the captured asteroids 
from the centre of the Earth is assumed to be d= 0.3D. It is clear 
therefore that the asteroids are far from the influence of lunar gravita-
tional perturbations. 

5. Conclusion 

The proposed strategy uses Hill’s equations to capture two NEAs far 
from each other in a bound binary pair by applying a three-impulse- 

Fig. 8. Comparing Δη̇capture versus timespan for the captured asteroid pairs. 
Dots represent initial values from the gateway region in Fig. 7. 

Table 1 
Different asteroid masses for different radii and density, and approximation for Δη̇capture, J, Δtimpulse.  

Asteroid radius (m) Density (kgm− 3) Mass (kg) Mean of Δη̇capture(ms− 1) J(Ns) Δtimpulse(s) Δtimpulse

tu  

20 2×103 6.70 × 107 ∼ 10− 3 6.70 × 104 67 1.12×10− 3 

6×103 2.01×108 ∼ 10− 3 2.01×105 201 3.36×10− 3 

15 2×103 2.83×107 ∼ 10− 3 2.83×104 28 4.69×10− 4 

6×103 8.48×107 ∼ 10− 3 8.48×104 84 1.41×10− 3 

10 2×103 8.48×106 ∼ 10− 4 8.48×102 0.85 1.42×10− 5 

6×103 2.51×107 ∼ 10− 3 2.51×104 25 4.18×10− 4 

5 2×103 1.05×106 ∼ 10− 4 1.05×102 0. 1 1.67×10− 5 

6×103 3.14×106 ∼ 10− 4 3.14×103 3 5.02×10− 5  
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manoeuvre sequence. Bringing the first asteroid to a gateway region to 
undertake gravitational interaction with the second asteroid is accom-
plished by using the linearized form of Hill’s equations. A second im-
pulse alters the relative velocity components to induce the asteroid 
being maneuvered into a linear drift. A third impulse is subsequently 
employed to increase the Jacobi integral of Hill’s equations to close the 
ZVC. The results indicate that the strategy leads to the capture of two 
asteroids in bound orbits around the Earth. The results further indicate 
the importance of defining the gateway region using constraints on the 
asteroid velocity prior to capture. These constraints are then analysed 
later in dimensional units, where the asteroids are assumed to have a 
spherical form with a radius of 15 m. This analysis produces a narrower 
gateway region that prevents a collision prior to the final capture im-
pulse. The classification for the lifespan of the resulting binary pair of 
asteroids is presented in terms of the initial conditions at the gateway 
region. The paper has shown that initiating the motion in the gateway 
region offers a longer lifespan and lower impulse for the captured bound 
binary pair. Furthermore, the short thruster on-time for the capture 
impulse for various small asteroid radii and densities shows that such an 
impulse approximation is appropriate under typical thruster forces. 
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