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Non-Contact Monitoring of Dehydration using
RF Data Collected off the Chest and the Hand
Hasan Mujtaba Buttar∗, Kawish Pervez∗, Muhammad Mahboob Ur Rahman, Adnan Noor Mian, Kashif

Riaz, Qammer H. Abbasi

Abstract— We report a novel non-contact method for dehydration
monitoring. We utilize a transmit software defined radio (SDR) that
impinges a wideband radio frequency (RF) signal (of frequency 5.23
GHz) onto either the chest or the hand of a subject who sits nearby.
Further, another SDR in the closed vicinity collects the reflected
RF signals. The two SDRs exchange orthogonal frequency division
multiplexing (OFDM) signal, whose individual subcarriers get mod-
ulated once it reflects off (passes through) the chest (the hand)
of the subject. This way, the signal collected by the receive SDR
consists of channel frequency response (CFR) that captures the
variation in the blood osmolality due to dehydration. The received
raw CFR data is then passed through a handful of machine learning (ML) classifiers which classify each subject as either
hydrated or dehydrated. To train our ML classifiers, we have constructed our custom dataset by collecting data from
5 Muslim subjects who were fasting during the month of Ramadan. Specifically, we have implemented and tested the
following ML classifiers: k-nearest neighbour, support vector machine, decision tree, ensemble classifier, and a neural
network classifier. Among all the classifiers, the neural network classifier achieved the best classification accuracy, i.e.,
an accuracy of 93.8% (96.15%) for the proposed chest-based (hand-based) method. Compared to prior contact-based
method where the reported accuracy is 97.83%, our proposed non-contact method provides slightly less accuracy than
that of reported in the literature for contact-based method; nevertheless, the advantages of our non-contact dehydration
method speak for themselves.

Index Terms— dehydration, non-contact methods, RF-based methods, software-defined radio, covid19, machine learning.

I. INTRODUCTION

A good sixty percent of the human body is composed of
water, which is essential to many of the body’s activities,
including maintaining the body’s temperature, transporting nu-
trients and oxygen to cells, lubricating joints, and eliminating
waste products. Consuming sufficient water on a daily basis
is necessary for preserving one’s health and warding off a
variety of diseases and adverse conditions [1]. Dehydration
occurs when the body does not obtain enough water or when
the body loses water through sweating and evaporation. When
dehydration occurs, it throws off the natural equilibrium of
the minerals and electrolytes found in the body. This could
result in a variety of different health issues, ranging from quite
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harmless to life-threatening, depending on how much fluid is
lost and what’s causing it in the first place. Symptoms of mild
dehydration include headache, dry mouth, thirst, dizziness,
exhaustion, and dry and wrinkled skin [2], [3], [4]. In more
extreme circumstances, dehydration can result in consequences
such as kidney failure, convulsions, and even death. When
the outside weather is hot and humid, then the dehydration
could lead to heat exhaustion which could induce symptoms
such as heavy perspiration, nausea, headache, and weakness.
Heat exhaustion if not addressed quickly, could escalate to
heatstroke, which is a life-threatening medical emergency that
can cause damage to the brain, organ failure, and even death.
Last but not the least, dehydration could also have some long-
term adverse effects on the body, e.g., constipation, damage
to the kidneys, and infections of the urinary tract, etc. [1].

In short, dehydration could have fatal implications if left
untreated, thus, timely diagnosis of dehydration followed by
imminent medical intervention is of utmost importance. For
the elderly, and for the diabetic and diarrhea patients, it is
especially important to track their hydration levels frequently
[5]. But when it comes to the existing dehydration detection
methods, they have their limitations as they are either invasive
(e.g., blood sample based), or contact-based (e.g., pulse oxime-
ter, smart watch based). Further, the existing methods are
expensive, inconvenient and inconsistent, as discussed below.
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Existing dehydration measures and the dilemma: Some
of the most common methods for measuring hydration lev-
els are: body mass change, total body water, serum and
urine osmolality, plasma osmolality, urine specific gravity, and
urine volume [6]–[10]. Another method that is sometimes
considered as the ”gold standard” consists of a procedure
whereby a subject ingests a known quantity of an isotope,
which allows one to calculate its concentration in a bodily
fluid in order to determine the body’s total water content.
Now, the dilemma. Though such ”gold standards” of hydration
assessment are considered useful for sports science, medicine,
or for creating reference standards, but since they necessitate
extensive methodological control, they are not useful for
tracking one’s hydration status on daily basis during a training
or competition [11]. In other words, none of aforementioned
hydration measures has been demonstrated to be valid in all
dehydration scenarios (i.e., lab and field) [12]. Last but not the
least, many of the aforementioned hydration measures could be
expensive, cumbersome, erroneous, and inconvenient (either
invasive or contact-based). This calls for the innovative and
preferably non-contact methods for dehydration monitoring,
which is precisely the agenda of this work.

Contributions. This paper proposes an RF-based dehydra-
tion monitoring method that is non-invasive and contact-less,
has high accuracy, allows continuous and seamless monitoring,
is easy to use, and provides rapid results. Specifically, the key
contributions of this work are as follows:

1) We propose a novel non-contact method called chest-
based dehydration monitoring (CBDM) method. Under this
method, the subject sits nearby an RF transceiver that impinges
an OFDM signal onto the chest of the subject, while the
receiver collects the signal reflected off the chest of the subject.

2) We propose a novel non-contact method called hand-
based dehydration monitoring (HBDM) method. Under this
method, the subject places his/her hand on a table and between
two antennas such that the transmitted OFDM signal passes
through the hand of the subject, and is subsequently collected
by the receiver.

The raw data collected by the receiver due to both (CBDM
and HBDM) methods consists of channel frequency response
(CFR) that is fed to multiple machine learning (ML) and deep
learning (DL) classifiers which eventually determine whether a
person is hydrated or dehydrated. To the best of our knowledge,
this is the first work that reports a non-contact method for
dehydration monitoring.

Rationale. The proposed CBDM and HBDM methods rely
upon the following to infer dehydration related information
from the data collected off the chest and the hand of the
subject: i) Dehydration results in reduced blood volume and
increased blood viscosity which in turn increases the heart
rate and lessens the force of the blood against the walls of
the arteries. ii) OFDM signal, being a wideband signal, helps
in sensing for dehydration. That is, each OFDM subcarrier
captures unique signatures of dehydration due to frequency,
phase and amplitude modulation of the subcarrier reflected off
the human body. Thus, the reflected signal which is eventually
translated to channel frequency response (CFR) captures the
variation in the blood osmolality (water content in the blood)

due to dehydration, across the OFDM subcarriers. iii) Human
body, particularly the tissues containing water, absorbs the
microwave frequencies (i.e., Wi-Fi, 4G/5G signals). Thus,
a hydrated person tends to absorb more RF energy and
reflect lesser energy compared to a dehydrated person who
will absorb lesser energy and reflect more energy. All three
factors assist our ML and DL classifiers in achieving high
classification accuracy.

Outline. The rest of this paper is organized as follows.
Section II discusses the related work. Section III provides a
compact discussion of the apparatus/equipment that provides
the scaffolding for our proposed non-contact dehydration
monitoring method. Section IV provides further details about
the software and hardware setup used for data collection,
specifics of each of the two proposed experiments (chest-
based, and hand-based), as well as the data acquisition protocol
implemented in order to construct our custom HCDDM-RF-
5 dataset. Section V talks about the training and testing of
various ML classifiers on our custom dataset, and provides a
detailed performance analysis. Section VI concludes.

II. RELATED WORK

The literature on dehydration monitoring is scarce, but
could be broadly classified into three categories: i) invasive
methods, ii) non-invasive but contact-based methods, iii) non-
contact methods. First kind of methods (i.e., invasive methods)
which examine blood or urine samples in order to determine
the plasma and urine osmolality (and are considered as gold
standard) have already been discussed in section I. Further,
to the best of our knowledge, there exists no work for third
kind of methods (i.e., non-contact methods) for dehydration
monitoring in the open literature. Therefore, we summarize
the related work on second kind of methods (i.e., non-invasive
methods) only.

A. Non-invasive methods for dehydration monitoring
The non-invasive methods for dehydration monitoring typ-

ically employ wearable sensors (e.g., oximeters, smart watch,
smart wrist-bands, etc.) that capture the photoplethysmography
(PPG) and electrodermal activity (EDA) signals and pass
them through various ML algorithms in order to infer the
dehydration status of a subject.

For example, [13] collects both the EDA and the PPG data
from 17 subjects and feeds it to a range of ML algorithms in
order to detect mild dehydration by exploiting the autonomic
response to cognitive stress (induced by means of Stroop test).
In [14], authors collect EDA data from 16 subjects for three
different body postures (sitting, standing, and walking), and
pass it to a hybrid Bi-LSTM neural network in order to classify
the hydration level of a subject into one of the three different
states (hydrated, moderate dehydration, extreme dehydration).
Authors of [15] utilize a miniature pulse oximeter to collect
PPG data from 17 dehydrated patients admitted in emergency
of a tertiary care hospital. They then extract multiple features
from the acquired PPG data using the variable frequency
complex demodulation algorithm, feed them to a support
vector machine classifier, and report an accuracy of 67.91%.
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[16] collects the EDA data, skin temperature, heart rate and
body mass index from 16 participants while they undergo a
workout/physical activity known as circuit training. It then
feeds this data to an empirically derived formula in order to
quantify fluid loss (dehydration) caused by physical activity. In
[17], authors developed a real-time Android-based tool called
”monitoring my dehydration” that utilizes the EDA data to
learn the dehydration level of a person using machine learning
techniques. They did experimental evaluation of their tool
by feeding it real-world data from five users, obtaining an
accuracy of 84.5%. In [18], authors collect EDA data using
BITalino kit from 5 subjects for three different activities by
the subjects (sitting, standing, laying down), feed their data
to various ML classifiers to solve the binary classification
problem of dehydration detection, and report best classification
accuracy of 91.3% using the random forests ML classifer. In
[19] authors collect EDA data from several subjects under
different conditions (sitting, standing), feed it to several ML
classifiers to solve the binary classification problem of dehy-
dration detection, and report a maximum accuracy of 87.78%
using the simple KNN classifier. Finally, [20] takes a rather
different approach, and utilizes a leg skin microbiome data
from 63 female subjects in order to accurately predict their
skin hydration levels and several other important bio-markers.

Before we conclude this section, it is imperative to have
a quick discussion about the rise of non-contact methods for
remote health sensing in the post-covid19 era.

B. Non-contact methods for health sensing
A vast majority of the literature on non-contact monitoring

methods aims solely at monitoring of body vitals and respi-
ratory system performance, in the post-covid19 era [21]–[24].
Non-contact health sensing methods for estimation of body
vitals could be categorized into following four categories [25]:
1) Camera-based sensing (that uses the periodic change in skin
colour of the face) [26], [27]. 2) Radar-based sensing (that
utilizes the traditional radar principles of range and Doppler)
[28], [29]. 3) Wi-Fi-based sensing (that uses the data collected
off the reflections from the human subjects) [30], [29]. 4)
Software-defined radio (SDR)-based sensing: (that utilizes the
signals reflected off the human body) [31], [32].

Note that the proposed non-contact CBDM method and
HBDM method both do SDR-based sensing for dehydration
monitoring. To the best of authors’ knowledge, non-contact
monitoring of dehydration has not been reported in the open
literature, to date.

III. THE APPARATUS FOR NON-CONTACT DEHYDRATION
MONITORING

The proposed non-contact system for dehydration monitor-
ing is basically an RF transceiver that consists of two worksta-
tions, each connected with a software-defined radio (SDR) by
means of a USB 3.0 port (see Fig. 1). Specifically, the SDR
devices used for experiments are Universal Software Radio
Peripheral (USRP) model B2101. Each SDR communicates

1The USRP B210 from National Instruments covers a wide frequency range
(70 MHz to 6 GHz). It can process a wideband spectrum of up to 56 MHz
in real time and sample at a high rate of up to 61.44 MS/s.
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Fig. 1: The proposed non-contact method for dehydration
monitoring: The apparatus consists of an SDR-based RF
transceiver to collect radio data off the chest and the hand
of the subject. The collected data is subsequently passed to
various machine learning methods, which ultimately classify
a subject either as hydrated or dehydrated.

with other by means of a directional horn antenna. We use
MATLAB R2021a to program both the transmit and receive
USRP SDRs. Specifically, the transmit SDR sends an or-
thogonal frequency division multiplexing (OFDM) signal with
quadrature phase shift keying (QPSK) modulation on each sub-
carrier, while the receive SDR receives it and processes it.

Next, with the aim of non-contact dehydration monitoring,
we design two distinct experiments. During the first exper-
iment, the subject’s chest is exposed to the OFDM signals,
and thus, the receive SDR collects the signal reflected off
the chest of the subject. We name this method as chest-
based dehydration monitoring (CBDM) method. During the
second experiment, the subject’s hand is exposed to the OFDM
signals, and thus, the receive SDR collects the signal that
passes through the hand of the subject. We name this method
as hand-based dehydration monitoring (HBDM) method2.

IV. ACQUISITION OF THE HCDDM-RF-5 DATASET

This section provides sufficient details about the hardware
and software setup used to construct the custom HCDDM-
RF-5 dataset3, our thoughtful data collection methodology
(that helped us capture dehydration related data in a very
controlled manner), as well as the intricate details of the two
experiments performed in order to collect data for the two
proposed (CBDM and HBDM) methods.

A. USRP SDRs based OFDM transceiver
OFDM Transmitter: For each OFDM frame, the random bits

generator block creates pseudo-random data bits with a chunk
size of 128 bits. The QPSK modulator block maps these bits

2This study was approved by the ethical institutional review board (EIRB)
of Information Technology University, Lahore, Pakistan.

3The acronym HCDDM-RF-5 stands for Hand and Chest Data for
Dehydration Monitoring via Radio Frequency data collected from 5 subjects.
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Parameter Type/Value
Bits per OFDM frame 128

Bits per symbol 2
Coding scheme Gray coding

Modulation scheme QPSK
No. of OFDM subcarriers (N) 64

Data subcarriers 52
Pilot subcarriers 12

Size of FFT/IFFT 64 points
Size of cyclic prefix 16

Sampling rate 1000 samples/sec
Antenna type directional horn

USRP B210 frequency range 70 MHz - 6 GHz
Centre frequency 5.23 GHz

Clock source & PPS source Internal
Internal clock rate 200 MHz

Interpolation factor (at Tx) 250
Decimation factor (at Rx) 250

Transmitter gain (at Tx and Rx) 40 dB

TABLE I: Some parameters for the USRP-SDR-based OFDM
transceiver used for non-contact monitoring of dehydration.

to (frequency domain) symbols which are then transformed
into a time-domain signal by means of an inverse fast Fourier
transform (IFFT) of size N = 64 points. Further, a cyclic
prefix (CP) of size 16 samples is appended to each OFDM
frame, making each OFDM frame 80 samples long. Gain of
the transmit horn antenna is set to 40 dBi. Fig. 2(a) shows the
Simulink flowgraph of USRP SDR based OFDM transmitter.

OFDM Receiver: After removing the CP from each OFDM
frame, fast Fourier transform (FFT) is then used to transform
the received time-domain OFDM samples into the equivalent
frequency-domain OFDM symbol. Then, keeping in mind that
the transmitted QPSK symbols on each sub-carrier are known
to the OFDM receiver, the channel coefficient hi for i-th
sub-carrier could simply be computed as: hi = yi

xi
, where

xi,yi are the transmitted and received QPSK symbol on i-th
sub-carrier, respectively. This way, the raw channel frequency
response (CFR) data h = [h1, · · · , hN ]T is collected by the
OFDM transmitter, which is to be utilized later by the ML
algorithms in order to classify the status of each subject as
either hydrated or dehydrated. Fig. 2(b) shows the Simulink
flowgraph of USRP SDR based OFDM transmitter.

Table I provides a quick summary of setting of various
relevant parameters of transmit and receive USRP SDRs.

B. Data Acquisition for the HCDDM-RF-5 dataset
The custom HCDDM-RF-5 dataset was constructed by col-

lecting data from five volunteers during the month of Ramadan
(between March 23rd, 2023 and April 21st, 2023). Ramadan is
an Islamic holy month during which devout Muslims observe
a strict fast from sunrise till sunset. That is, while they are
fasting, Muslims refrain from eating and drinking from sunrise
till sunset. We took advantage of this unique opportunity in
order to collect dehydration related data from five devout
Muslims who had been fasting during this month. Among
five subjects, two were males (aged 28, 62 years), and three
were females (aged 21, 26, 61 years). For each fasting subject,
we collected data twice, once for each class label (hydrated
and dehydrated) in order to construct a balanced dataset.
Specifically, first episode of data collection took place about

30 minutes before the sunset when the subject was deemed
to be maximally dehydrated (thus, this data belongs to the
first/dehydrated class). Subsequently, the second episode of
the data collection took place an hour after the sunset, after
the subject had finished eating and drinking after breaking the
fast (thus, this data belongs to the second/hydrated class). For
each subject, we conducted two kinds of experiments where
we exposed the subject’s chest and hand to the RF signals,
respectively. Some more pertinent details about data collection
for our proposed CBDM and HBDM methods are given below.

Data collection for the proposed CBDM method: During
data acquisition for the proposed CBDM method, each par-
ticipant sat on a chair that was about 80 cm away from the
pair of directional horn antennas that pointed towards the chest
of the subject (see Fig. 3). As described before, the transmit
horn antenna impinged an OFDM signal onto the chest of
the subject, while the receive horn antenna gathered the
signal reflected off the subject’s chest. During each experiment
session, the subject sat still in order to avoid motion-induced
artefacts in the data being gathered. Each single experiment
session lasted for 30 seconds. For each subject, we conducted
five experiment sessions before the sunset (to capture the raw
CFR data for dehydrated class) and five experiment sessions
after the sunset (to capture the raw CFR data for the hydrated
class). This way, we were able to collect 30×5 = 150 seconds
worth of data for each class (for a given subject), and thus,
150× 2 = 300 seconds worth of data per subject. Ultimately,
for 5 subjects, this led to a total dataset size of 300×5 = 1500
seconds (or, 25 minutes) of raw CFR data (that corresponds
to a total of 5× 5× 2 = 50 experiment sessions).

Data collection for the proposed HBDM method: During
data acquisition for the proposed HBDM method, each par-
ticipant sat on a chair that was about 60 cm away from the
pair of directional horn antennas facing each other, and placed
his/her hand on the table between the two antennas (see Fig. 4).
Again, the transmit horn antenna impinged an OFDM signal
onto the hand of the subject, while the receive horn antenna
gathered the signal passed through the subject’s hand. During
each experiment session, the subject sat still in order to avoid
motion-induced artefacts in the data being gathered. The rest of
the details of data acquisition for the proposed HBDM method
are the same as before. That is, for each subject, we conducted
five experiment sessions before the sunset (to capture the raw
CFR data for dehydrated class) and five experiment sessions
after the sunset (to capture the raw CFR data for the hydrated
class). This way, for 5 subjects, we acquired a dataset that
consisted of 300× 5 = 1500 seconds (or, 25 minutes) of raw
CFR data (that corresponds to a total of 5 × 5 × 2 = 50
experiment sessions).

In short, combining the two smaller datasets due to CBDM
method and HBDM method together, the custom HCDDM-
RF-5 dataset consists of a total of 50 minutes of raw CFR
data that corresponds to a total of 100 experiment sessions.

V. TRAINING AND TESTING OF MACHINE & DEEP
LEARNING CLASSIFIERS

For the binary classification problem (hydrated/dehydrated)
under consideration, we train and test the following ML
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(a) The transmitter flowgraph

(b) The receiver flowgraph

Fig. 2: The Simulink flowcharts of the USRP-SDR based OFDM transmitter and receiver.
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Fig. 3: Experimental setup of the proposed CBDM method.

classifiers and their variants: k-nearest neighbours (KNN),
support vector machine (SVM), decision tree (DT), ensemble
classifier. In addition, we also implement a neural network and
its variants. Specifically, the neural network (NN) that we have
implemented is a feedforward neural network (FFNN). The
narrow, medium and wide NN variants are all FFNN with a
single hidden layer, but with 10, 25, 100 neurons, respectively.
Further, the bi-layered NN (tri-layered NN) has two (three)
hidden layers with 10 neurons in each hidden layer.

Subsequently, we provide detailed performance analysis and
comparison of all the ML and DL classifiers implemented.
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CFR
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Directional
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Fig. 4: Experimental setup of the proposed HBDM method.

A. Data Pre-processing & Training of Machine Learning
Classifiers

Data Pre-processing: We utilised a low-pass filter and a
Savitzky-Golay filter to denoise the CFR extracted from the re-
ceived OFDM signal, for all the experiment sessions (for both
CBDM and HBDM methods). We inspected the whole data
manually and removed artifacts where found. Further, recall
that we gathered data from five subjects, and for each subject,
we conducted five experiment sessions each of duration 30
seconds. Thus, for each class (hydrated/dehydrated), we accu-
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Fig. 5: Confusion matrix of each of KNN, SVM, DT, Ensemble classifiers, and NN for the proposed CBDM method.

mulated raw CFR data which consists of 750,000 samples, i.e.,
5 subjects * 5 experiments/subjects * 30 second/experiment *
1000 samples/sec. We partitioned this data into segments, with
each segment consisting of 3000 samples. Thus, through this
meticulous approach, we successfully compiled 250 examples
for each of the ”hydrated” and ”dehydrated” classes.

Training & validation of ML classifiers: The Matlab’s
classification learner app was used to train the following
ML classifiers: k-nearest neighbour (KNN), support vector
machine (SVM), decision tree (DT), ensemble classifier, and
neural network. All the classifiers were trained on both labelled
datasets (corresponding to the CBDM method and the HBDM
method). The K-fold cross-validation strategy was used for
validation in order to prevent the over-fitting issue, keeping in
mind the small size of our dataset.

B. Performance metrics

Each classifier’s performance is quantified in terms of
accuracy, given as:

Accuracy =
Correct prediction

Total observations
× 100 (1)

Accuracy =
Tn + Tp

Tn + Tp + Fn + Fp
× 100 (2)

where Tn represents a true negative, Tp represents a true pos-
itive, Fn represents a false negative, and Fp represents a false
positive. In addition, we also do a performance comparison of
the various ML algorithms by means of a confusion matrix.

C. Performance of proposed CBDM method

We begin with performance analysis of the KNN classifier
for three distinct values of k, i.e., k=1, k=10, and k=100 (where
k is the number of neighbours used to calculate the distance
to the new data point). We learn that the fine KNN (k=1)
achieves an accuracy of 79.1%, medium KNN (k=10) achieves
an accuracy of 69.2%, while the coarse KNN (k=100) achieves

a very low accuracy of 55.3% (see Fig. 5 that displays the
detailed confusion matrix).

Next, we do a performance comparison of the SVM clas-
sifier (with linear, quadratic, and cubic kernels), we note
that the linear SVM achieves an overall accuracy of 86.5%,
quadratic SVM achieves an overall accuracy of 89.6%, while
the cubic SVM achieves an overall accuracy of 90.9%. Next,
we focus on the decision tree classifier, and note that it has
the lowest accuracy of all. That is, the fine tree (despite its
many leaves and despite its ability to differentiate between
classes precisely) achieved an accuracy of 68.8% only, while
the coarse tree achieved a very low accuracy of 58.0% only.
Next in line is the ensemble classifier (a mixture of many
classifiers) that is typically implemented with the aim to
boost classification accuracy. We observe the following: the
ensemble Boosted tree has an overall accuracy of 70.3%,
the ensemble Bagged tree has an accuracy of 77.9%, the
ensemble subspace KNN has an accuracy of 82.9%, while the
ensemble subspace discriminant has an accuracy of 89.6%.
Finally, the neural network (NN) classifier. Each variant of
the NN classifier is a fully-connected feedforward network.
After each fully connected layer, the Relu activation function is
applied, except the last year where softmax activation function
is used. We observe that all the different variants of the NN
classifier outperform the other ML classifiers. Specifically, the
narrow variant of the NN achieves an accuracy of 93.8%, the
medium NN achieves an accuracy of 92.5%, the wide NN
achieves an accuracy of 92.9%, the bi-layered variant of NN
achieves an accuracy of 93%, while the tri-layered variant of
the NN achieves an accuracy of 93.1%.

Fig. 6 provides an alternate way of comparing the overall
accuracy of all the five ML classifiers and their variants. We
note that, for the proposed CBDM method, the neural network
classifier (with the narrow neural network) achieves the highest
accuracy, which is 93.8%.

Last but not the least, we also implemented an unsuper-
vised learning method, namely, k-means clustering method,
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Fig. 6: Accuracy (in percentage) of all the classifiers for the
proposed CBDM method.

by stripping-off the labels from both classes. We achieved an
accuracy of 88.88% for CBDM, which is quite satisfying and
attests to the fact that non-contact monitoring of dehydration is
indeed feasible, and that, the two classes are indeed separable.

D. Performance of proposed HBDM method
Fig. 7 shows the confusion matrix of each of the five ML

classifiers and their variants. Beginning with the performance
analysis of the KNN classifier, we learn that the fine KNN
achieves an accuracy of 82.3%, medium KNN achieves an
accuracy of 71.3%, while the coarse KNN achieves a very low
accuracy of 56.1%. Next SVM classifier with linear, quadratic,
and cubic kernels, we note that the linear SVM achieves
an overall accuracy of 71.1%, quadratic SVM achieves an
overall accuracy of 89.2%, while the cubic SVM achieves an
overall accuracy of 88.2%. Next, the decision tree classifier.
We observe that once again it has the lowest accuracy of
all. That is, the fine tree achieved an accuracy of 72.2%
only, while the coarse tree achieved a very low accuracy of
61.4% only. Next, the ensemble classifier. We observe the
following: the ensemble Boosted tree has an overall accuracy
of 74.8%, while the ensemble Bagged tree has an accuracy
of 79.7%. Finally, the neural network classifier. Once again,
all the different variants of the NN classifier outperform the
other ML classifiers. Specifically, the narrow variant of the
NN achieves an accuracy of 94.7%, the medium NN achieves
an accuracy of 96.15%, the wide NN achieves an accuracy of
95.15%, the bi-layered variant of NN achieves an accuracy of
92.35%, while the tri-layered variant of the NN achieves an
accuracy of 94.2%.

Fig. 8 provides an alternate way of comparing the overall
accuracy of all the five ML classifiers and their variants. We
note that, for the proposed HBDM method, the neural network
classifier (with the medium neural network) achieves the high-
est accuracy, which is 96.15%. Finally, we have implemented
the k-means unsupervised learning method, reporting an ac-
curacy of 94.44%, which demonstrates a highly satisfactory
performance among unsupervised learning methods.

E. Performance comparison with the state-of-the-art
Finally, Table II compares the accuracy of the proposed

non-contact CBDM and HBDM methods with the state-of-

the-art methods which are all contact-based methods for de-
hydration monitoring. Compared to the state-of-the-art where
the maximum reported accuracy is 97.83%, our proposed non-
contact method provides slightly less accuracy (as we report a
maximum accuracy of 96.15%); nevertheless, the advantages
of our non-contact dehydration method speak for themselves.
That is, our proposed method is non-invasive and contact-less,
allows continuous and seamless monitoring, is easy to use, and
provides rapid results with quite a higher accuracy.

F. Computational complexity & latency analysis
To train and test our ML and DL models, we used a laptop

with the following specs: Intel core i7 3.6 GHz processor with
16 GB RAM. We now do the computational complexity and
latency analysis of our ML and DL classifiers in terms of the
following: computational complexity (in big-O notation), train-
ing time (seconds), and prediction speed (observations/sec).

• The complexity of KNN is O(N ), and training time
remains fixed (to 2467.1 seconds), regardless of the value
of k. Here, N represents the size of the dataset (i.e.,
number of examples in the dataset). The prediction speeds
for KNN with k values of 1, 10, and 100 are 38, 38, and
34 observations/sec, respectively.

• The complexity of SVM is O(N ×Dp) where p = 1, 2, 3
for linear, quadratic, and cubic SVM, respectively. Here,
D represents the dimension of segmented data. The
training time increases from linear to quadratic and to
cubic, as follows: 6723.2 seconds for the linear, 9977.6
seconds for the quadratic, and 14077 seconds for the
cubic. The prediction speed for all SVM variants are 55
observations/sec for the linear, 110 observations/sec for
the quadratic, and 130 observations/sec for the cubic.

• The complexity of DT is O(log(N)×D×T ) where T rep-
resents the number of splits. The training time decreases
from the fine variant, which takes 164.29 seconds to the
coarse variant, it only requires 62.5 seconds. While the
training time varies, the prediction speed remains constant
at 9600 observations/sec.

The computational complexity and latency of the four
variants of the ensemble method are as follows:

• The complexity of Boosted tree is O(N ×D × C ×M )
where, M represents the number of boosting iterations,
and C represents complexity of training a single DT. The
Boosted tree exhibits a longer training time, specifically
8457.5 seconds, owing to its inherently sequential and
iterative optimization process. The prediction speed for
Boosted tree is 9100 observations/sec.

• The complexity of Bagged tree is O(N×log(N)×D×K)
where K represents the number of trees. Bagged tree
requires a lot less time to train than Boosted tree, only
391.4 seconds, mainly because it uses parallel processing.
The prediction speed is 7400 observations/sec.

• The complexity of Subspace KNN is O(N × S × Di)
where, S represents the number of subspaces, and Di

is the dimensionality of a subspace. The training time
of subspace KNN is 1438.9 seconds, which is shorter
than KNN due to the dimensionality reduction of the
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Fig. 7: Confusion matrix of each of KNN, SVM, DT, Ensemble classifiers, and NN for the proposed HBDM method.

Fig. 8: Accuracy (in percentage) of all the ML classifiers for
the proposed HBDM method.

subspace. The prediction speed for this classifier is 270
observations/sec.

• The complexity of Subspace discriminant is
O(S×training complexity). The training time for
this classifier is 370061 seconds, which is considerably
higher due to the presence of multiple subspaces where
the classifier computes discriminant for each subspace.
The prediction speed is 3.5 observations/sec.

Among the four variants, the training time is minimum for
Bagged tree and maximum for the subspace discriminant.

For the neural network, the computational complexity de-
pends upon the number of hidden layers L, number of weights
W ′ (neurons) in each layer, and number of data points N .
For example, for backward propagation, the complexity of the
different variants of the neural networks is as follows. The
complexity of the narrow NN is: O(N ×W ′). The complexity
of the medium NN is: O(N × W ′). the complexity of the
wide NN is: O(N × W ′). The complexity of the bi-layered
NN is: O(N × W ′ × L). The complexity of the tri-layered
NN is: O(N × W ′ × L). Let W ′ × L = W . Then, we

Work Method Accuracy
Liaqat et al. [14] Contact-based 97.83%

Kulkarni et al. [17] Contact-based 75.96%
Liaqat et al. [18] Contact-based 91.53%
Rizwan et al [19] Contact-based 85.63%
Carrieri et al. [20] Contact-based 73.91 %

Our proposed CBDM method Non-contact based 93.8%
Our proposed HBDM method Non-contact based 96.15%

TABLE II: Accuracy comparison of our proposed CBDM and
HBDM methods with the state-of-the-art.

can write the computational complexity of all the neural
network variants (for backward propagation) in the compact
form as follows: O(N × W ). The training time for neural
networks increases with an increase in the number of learnable
parameters, specifically the number of hidden neurons. The
training time and prediction speed for NN are as follows: the
narrow NN takes 1767 seconds and a prediction speed is 8400
observations/sec, the medium NN takes 4316 seconds and a
prediction speed is 7400 observations/sec, the wide NN takes
8630.3 seconds and prediction speed is 6400 observations/sec,
the bi-layered NN takes 1685.8 seconds and a prediction speed
is 8700 observations/sec, and the tri-layered NN takes 1694.1
seconds and prediction speed is 8300 observations/sec.

In short, among all the ML and DL models implemented,
decision tree (coarse) and Bagged tree (as ensemble method)
have the lowest training times of 62.5 seconds and 391.4
seconds, decision tree has the highest prediction speed (of
9600 predictions/sec), while KNN has the least computational
complexity.

VI. CONCLUSION

This work reported a novel non-contact method to monitor
the dehydration status of a subject from a distance. Specifi-
cally, we utilized a pair of USRP SDRs whereby the transmit
SDR impinged OFDM signals onto the chest or the hand of
the subject, while the receive SDR collected the modulated
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signal reflected off the body of the subject. For the purpose of
training our ML classifiers, we collected data from 5 Muslim
subjects (before and after sunset) who were fasting during the
month of Ramadan. We achieved a classification accuracy of
93.8% for the proposed CBDM method, and an accuracy of
96.15% for the proposed HBDM method.

Our proposed method is non-invasive and contact-less, has
high accuracy, allows continuous and seamless monitoring,
is easy to use, and provides rapid results. The anticipated
beneficiaries of the proposed method include: sportsmen,
athletes, elderly, diabetic and diarrhea patients, and labor
working outdoors. Additionally, the proposed method may
help realize smart mobile health (m-health) solutions that
could be deployed in remote areas far away from the mega
cities, in order to provide comprehensive health monitoring of
the people living there.

This work opens up many exciting directions for the future
work. For example, one could construct/acquire a more chal-
lenging dataset (unlike the current dataset that was obtained in
a very controlled setting), and re-evaluate as well as fine-tune
the performance of our ML and DL models further, in order
to make them robust and amicable to the unseen data with
potentially different distribution.

REFERENCES

[1] B. M. Popkin, K. E. D’Anci, and I. H. Rosenberg, “Water, hydration,
and health,” Nutrition reviews, vol. 68, no. 8, pp. 439–458, 2010.

[2] A. M. El-Sharkawy, O. Sahota, and D. N. Lobo, “Acute and chronic
effects of hydration status on health,” Nutrition reviews, vol. 73, no.
suppl 2, pp. 97–109, 2015.

[3] S. Liaqat, K. Dashtipour, A. Zahid, K. Arshad, S. Ullah Jan, K. Assaleh,
and N. Ramzan, “A review and comparison of the state-of-the-art
techniques for atrial fibrillation detection and skin hydration,” Frontiers
in Communications and Networks, vol. 2, p. 679502, 2021.

[4] D. Black, R. McCance, and W. Young, “A study of dehydration by means
of balance experiments,” The Journal of physiology, vol. 102, no. 4, p.
406, 1944.

[5] A. M. El-Sharkawy, P. Watson, K. R. Neal, O. Ljungqvist, R. J.
Maughan, O. Sahota, and D. N. Lobo, “Hydration and outcome in older
patients admitted to hospital (the hoop prospective cohort study),” Age
and ageing, vol. 44, no. 6, pp. 943–947, 2015.

[6] L. E. Armstrong, “Assessing hydration status: the elusive gold standard,”
Journal of the American College of Nutrition, vol. 26, no. sup5, pp.
575S–584S, 2007.

[7] L. E. Armstrong, C. M. Maresh, J. W. Castellani, M. F. Bergeron,
R. W. Kenefick, K. E. LaGasse, and D. Riebe, “Urinary indices of
hydration status,” International Journal of Sport Nutrition and Exercise
Metabolism, vol. 4, no. 3, pp. 265–279, 1994.

[8] S. N. Cheuvront, B. R. Ely, R. W. Kenefick, and M. N. Sawka,
“Biological variation and diagnostic accuracy of dehydration assessment
markers,” The American journal of clinical nutrition, vol. 92, no. 3, pp.
565–573, 2010.

[9] R. A. Oppliger, S. A. Magnes, L. A. Popowski, and C. V. Gisolfi,
“Accuracy of urine specific gravity and osmolality as indicators of
hydration status,” International journal of sport nutrition and exercise
metabolism, vol. 15, no. 3, pp. 236–251, 2005.

[10] L. A. Popowski, R. A. Oppliger, P. Lambert, R. F. Johnson, C. Gisolf
et al., “Blood and urinary measures of hydration status during progres-
sive acute dehydration.” Medicine and science in sports and exercise,
vol. 33, no. 5, pp. 747–753, 2001.

[11] S. N. Cheuvront and M. N. Sawka, “Hydration assessment of athletes,”
CHINESE JOURNAL OF SPORTS MEDICINE, vol. 25, no. 2, p. 238,
2006.

[12] N. Kulkarni, C. Compton, J. Luna, and M. A. U. Alam, “Monitoring
my dehydration: A non-invasive dehydration alert system using electro-
dermal activity,” arXiv preprint arXiv:2009.13626, 2020.

[13] H. F. Posada-Quintero, N. Reljin, A. Moutran, D. Georgopalis, E. C.-H.
Lee, G. E. Giersch, D. J. Casa, and K. H. Chon, “Mild dehydration
identification using machine learning to assess autonomic responses to
cognitive stress,” Nutrients, vol. 12, no. 1, p. 42, 2019.

[14] S. Liaqat, K. Dashtipour, A. Rizwan, M. Usman, S. A. Shah, K. Arshad,
K. Assaleh, and N. Ramzan, “Personalized wearable electrodermal
sensing-based human skin hydration level detection for sports, health
and wellbeing,” Scientific Reports, vol. 12, no. 1, p. 3715, 2022.

[15] N. Reljin, Y. Malyuta, G. Zimmer, Y. Mendelson, D. J. Blehar, C. E.
Darling, and K. H. Chon, “Automatic detection of dehydration using
support vector machines,” in 2018 14th Symposium on Neural Networks
and Applications (NEUREL). IEEE, 2018, pp. 1–6.

[16] N. K. Suryadevara, S. C. Mukhopadhyay, and L. Barrack, “Towards a
smart non-invasive fluid loss measurement system,” Journal of medical
systems, vol. 39, pp. 1–10, 2015.

[17] N. Kulkarni, C. Compton, J. Luna, and M. A. U. Alam, “A non-invasive
context-aware dehydration alert system,” in Proceedings of the 22nd
International Workshop on Mobile Computing Systems and Applications,
2021, pp. 157–159.

[18] S. Liaqat, K. Dashtipour, K. Arshad, and N. Ramzan, “Non invasive skin
hydration level detection using machine learning,” Electronics, vol. 9,
no. 7, p. 1086, 2020.

[19] A. Rizwan, N. A. Ali, A. Zoha, M. Ozturk, A. Alomainy, M. A. Imran,
and Q. H. Abbasi, “Non-invasive hydration level estimation in human
body using galvanic skin response,” IEEE Sensors Journal, vol. 20, no. 9,
pp. 4891–4900, 2020.

[20] A. P. Carrieri, N. Haiminen, S. Maudsley-Barton, L.-J. Gardiner, B. Mur-
phy, A. Mayes, S. Paterson, S. Grimshaw, M. Winn, C. Shand et al.,
“Explainable ai reveals key changes in skin microbiome associated with
menopause, smoking, aging and skin hydration,” bioRxiv, pp. 2020–07,
2020.

[21] A. Hafeez, S. Ahmad, S. A. Siddqui, M. Ahmad, and S. Mishra, “A
review of covid-19 (coronavirus disease-2019) diagnosis, treatments and
prevention,” Ejmo, vol. 4, no. 2, pp. 116–125, 2020.

[22] K. Yatani and K. N. Truong, “Bodyscope: a wearable acoustic sensor
for activity recognition,” in Proceedings of the 2012 ACM Conference
on Ubiquitous Computing, 2012, pp. 341–350.

[23] E. Ertin, N. Stohs, S. Kumar, A. Raij, M. Al’Absi, and S. Shah,
“Autosense: unobtrusively wearable sensor suite for inferring the onset,
causality, and consequences of stress in the field,” in Proceedings of the
9th ACM conference on embedded networked sensor systems, 2011, pp.
274–287.

[24] U. Saeed, S. Y. Shah, A. Zahid, J. Ahmad, M. A. Imran, Q. H. Abbasi,
and S. A. Shah, “Wireless channel modelling for identifying six types
of respiratory patterns with sdr sensing and deep multilayer perceptron,”
IEEE Sensors Journal, vol. 21, no. 18, pp. 20 833–20 840, 2021.

[25] M. Rehman, R. A. Shah, M. B. Khan, S. A. Shah, N. A. AbuAli,
X. Yang, A. Alomainy, M. A. Imran, and Q. H. Abbasi, “Improving
machine learning classification accuracy for breathing abnormalities by
enhancing dataset,” Sensors, vol. 21, no. 20, p. 6750, 2021.

[26] I. Sato and M. Nakajima, “Non-contact breath motion monitor ing
system in full automation,” in 2005 IEEE Engineering in Medicine and
Biology 27th Annual Conference. IEEE, 2006, pp. 3448–3451.

[27] A. Al-Naji, K. Gibson, S.-H. Lee, and J. Chahl, “Monitoring of
cardiorespiratory signal: Principles of remote measurements and review
of methods,” Ieee Access, vol. 5, pp. 15 776–15 790, 2017.

[28] K. Van Loon, M. Breteler, L. Van Wolfwinkel, A. Rheineck Leyssius,
S. Kossen, C. Kalkman, B. Van Zaane, and L. Peelen, “Wireless non-
invasive continuous respiratory monitoring with fmcw radar: a clinical
validation study,” Journal of clinical monitoring and computing, vol. 30,
pp. 797–805, 2016.

[29] C. Massaroni, A. Nicolo, M. Sacchetti, and E. Schena, “Contactless
methods for measuring respiratory rate: A review,” IEEE Sensors Jour-
nal, vol. 21, no. 11, pp. 12 821–12 839, 2020.

[30] K. Ali, M. Alloulah, F. Kawsar, and A. X. Liu, “On goodness of
wifi based monitoring of vital signs in the wild,” arXiv preprint
arXiv:2003.09386, 2020.

[31] M. Rehman, R. A. Shah, M. B. Khan, N. A. AbuAli, S. A. Shah,
X. Yang, A. Alomainy, M. A. Imran, and Q. H. Abbasi, “Rf sensing
based breathing patterns detection leveraging usrp devices,” Sensors,
vol. 21, no. 11, p. 3855, 2021.

[32] K. Pervez, W. Aman, M. M. U. Rahman, M. W. Nawaz, and Q. H. Ab-
basi, “Hand-breathe: Non-contact monitoring of breathing abnormalities
from hand palm,” IEEE Sensors Journal, 2023.


	Enlighten Accepted coversheet
	309083



