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Abstract: Recent advances in treating cutaneous melanoma have resulted in impressive patient sur-
vival gains. Refinement of disease staging and accurate patient risk classification have significantly
improved our prognostic knowledge and ability to accurately stratify treatment. Undoubtedly, the
most important step towards optimizing patient outcomes has been the advent of cancer immunother-
apy, in the form of immune checkpoint inhibition (ICI). Immunotherapy has established its cardinal
role in the management of both early and late-stage melanoma. Through leveraging outcomes in
melanoma, immunotherapy has also extended its benefit to other types of skin cancers. In this review,
we endeavor to summarize the current role of immunotherapy in melanoma and non-melanoma skin
cancers, highlight the most pertinent immunotherapy-related molecular biomarkers, and lastly, shed
light on future research directions.
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1. Introduction

The unprecedented survival gains observed with immunotherapy in cutaneous melanoma,
over the course of just one decade, are demonstrated by the improvement of 1-year survival
rate of 25% to more than 50% for patients with metastatic disease [1,2]. Immunotherapy aims
at circumventing the immune evasion mechanisms employed by cancer cells [3], which exploit
immune checkpoint receptor pathways to decrease immune activation [4–7]. Cytotoxic T
lymphocyte antigen-4 (CTLA-4) and programmed cell death protein 1 (PD-1) are two critical
receptors expressed on T lymphocytes that, upon ligand binding, trigger a signaling cascade
that inhibits T-cell activation and limits immune stimulation [8,9]. Antibodies against these
receptors (such as ipilimumab, nivolumab, pembrolizumab) prevent receptor-ligand interaction,
“releasing the brake” on the immune response [10,11]. Immune checkpoint inhibitors (ICIs)
that abrogate CTLA-4 and PD-1 are now the standards of care for advanced melanoma. The
observed efficacy in the metastatic/advanced setting has naturally led the way to exploring
the efficacy of immunotherapy in earlier stages of melanoma.

In this review, we summarize the current state of play of immunotherapy treatments in
melanoma and non-melanoma skin cancers. We also present evidence underpinning the thera-
peutic inhibition of novel immune markers. Lastly, we also touch upon preclinical and clinical
molecular signatures that can guide decision making during immunotherapy treatment.

2. State of Play of Immunotherapy in Melanoma and Non-Melanoma Skin
Cancers (NMSC)
2.1. Melanoma

Current standards in adjuvant/metastatic setting. In advanced/metastatic melanoma,
which mainly encompasses unresectable stage III and stage IV disease (excluding patients
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with brain metastases), the most recently mature data show that treatment with a combina-
tion of anti-CTLA-4/anti-PD-1 (ipilimumab/nivolumab) confers a median overall survival
of 72 months, which is almost double that of nivolumab monotherapy (36.9 months) and
certainly incomparably superior to that of ipilimumab monotherapy (19.9 months) [12]. Im-
portantly, most patients treated with ipilimumab/nivolumab (77%) or nivolumab monother-
apy (69%) remain treatment-free at 6.5 years of follow-up after treatment, demonstrating
significant durability of disease response. Moreover, the benefits of combined anti-CTLA-
4/anti-PD-1 inhibition were similar for patients, irrespective of their BRAFV600 mutational
and PD-L1 expression status. The success of ICI treatment in advanced melanoma, has
raised the unavoidable question of treatment duration of maintenance anti-PD-1 inhibi-
tion [13], especially for those patients who experience complete and/or partial radiological
response. There is certainly compelling data that in patients with complete responses
to anti-PD-1, radiological disease response persists even after treatment discontinuation,
especially in those who received at least 6 months of treatment [14,15]. However, the rate of
disease relapses and subsequent responses to treatment re-challenge for those who decide
to discontinue treatment varies between published reports [13,15,16]; Therefore there is still
controversy on the subject of elective discontinuation after achievement of radiological “no
evidence of disease” and studies examining the question of continuous versus intermittent
anti-PD-1 treatment are on-going [17].

Despite the practice-changing outcomes of the pivotal CheckMate 067 study, the
question on ICI-activity in patients with brain metastases [stage IVd by American Joint
Committee on Cancer (AJCC) 8th edition] remained; these patients were excluded from
study participation at the time of protocol inception [18]. Since then, a series of studies have
attempted to answer this question. Collective results suggest that treatment with anti-CTLA-
4, anti-PD-1, or the combination thereof, is active in patients with intracranial metastases,
offering the greatest benefit to those who are asymptomatic of the malignant infiltration at
the time of presentation [19–23]. Intracranial responses to ipilimumab/nivolumab were
found to be as high as 53.5% by Tawbi et al. in patients whose metastases has not been
previously treated with brain radiotherapy [19]. Two randomized studies in patients with
brain metastases treated with immunotherapy have been reported so far. Long et al. found
that ipilimumab/nivolumab was significantly superior to nivolumab with a 5-year survival
rate of 51% compared to 34%, in patients with asymptomatic disease [20], whereas in a
study by Di Giacomo et al., ipilimumab/nivolumab conferred better survival at 4 years,
compared to chemoimmunotherapy (41% vs. 10%, p = 0.015) [21]. Outcomes appear to be
inferior for patients with established neurological symptoms secondary to their metastases
and hence, these patients frequently require upfront stereotactic radiosurgery, which can
be safely combined with immunotherapy [24,25].

Lastly, another critical question surrounding the combination of anti-CTLA-4/anti-
PD-1 treatment continues to be the optimal ipilimumab dosing. The pivotal CheckMate-
067 study that led to the approval of ipilimumab/nivolumab as first line treatment in
advanced/metastatic melanoma employed the dosing of 3 mg/kg of ipilimumab and 1
mg/kg for nivolumab (IPI3 + NIVO1), during the first 4 cycles of co-administration [26].
CheckMate-511 study was the first, large-scale randomized study exploring a lower dose
of ipilimumab (1 mg/kg), alongside a higher dose of nivolumab (3 mg/kg), IPI1 + NIVO3,
in an attempt to compare this combination to the approved IPI3 + NIVO1 dosing [27].
Although not powered enough to prove efficacy, the study demonstrated that, descriptively,
efficacy measures such as overall response rate (ORR) response, progression-free survival
(PFS), and overall survival (OS) were similar between groups, but importantly, toxicity
was significantly lower with the IPI1 + NIVO3 regimen [27,28]. Longer follow-up data
may be required to prove the non-inferiority of the lower ipilimumab dose regimen and
potentially a change in clinical practice, to spare patients from the high rate of immune-
related adverse events.

Attempts to augment ICI efficacy in advanced/metastatic melanoma have been made
with the addition of targeted treatment in patients who have actionable mutations [29–32].
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Approximately 50% of patients with metastatic melanoma harbor somatic mutations in
the B-Raf proto-oncogene (BRAF) [33], which leads to constitutive activation of the BRAF
oncoprotein [34,35]. Currently, targeted treatment with combined BRAF/MEK inhibition
can be used in clinical practice for those patients with aberrantly activated signaling
pathways downstream of the BRAF protein [36,37]. Concomitant treatment of BRAF/MEK
inhibitors (vemurafenib/cobimetinib) with the anti-PD-L1 antibody, atezolizumab, gained
approval by the US Food and Drug Administration (FDA) agency in 2020, based on the
results of IMspire150 study [31]. In this study, the addition of atezolizumab to targeted
therapy led to a significantly increased progression-free survival (PFS) in patients with
somatic BRAFV600 mutation-positive advanced melanoma, when compared to treatment
with targeted treatment alone. Further maturing of the data from IMspire150 showed
a continuous PFS benefit, however, median survival gains have not reached statistical
significance and hence, the combination of targeted and ICI treatment has not been met
with excitement, so far.

Additional studies combining targeted treatment with anti-PD-1 based immunother-
apy (either pembrolizumab or spartalizumab), only yielded modest benefits from the
combination, at the expense of heightened toxicity [29,30]. Overall, given the limited num-
ber of available systemic treatments for metastatic melanoma, the hypothesis of combining
all active treatments into one line has now been replaced with questions on the optimal
sequencing of these available therapies [38–40]. Indeed, recently published data suggest
that for patients with actionable BRAF mutations, prioritizing treatment with ICI as first
line of treatment, followed by targeting BRAF/MEK only upon disease progression leads
to survival gains for this subset of melanoma patients [38,39].

With the rapid pace of developments in the therapeutic field of melanoma, prior
immunostimulatory treatments such as inteleukin-2 (IL-2) were superseded by immune
checkpoint inhibitors. Although overall response rates with systemic IL-2 are modest
(<20%), patients achieving complete response with IL-2 tend to experience remarkably
durable benefits and high rates of long-term survival, sometimes exceeding the 10-year
mark [41–44]. Interestingly, a retrospective comparative study found that response rates
to high-dose IL-2 are greater among patients treated with prior ipilimumab compared to
patients with no prior exposure to ICI therapy (ORR 21% vs. 12%) [45].

Adjuvant/neo-adjuvant setting. For high-risk, early-stage melanoma, the benefit of
adjuvant immunotherapy was underpinned by a seminal study by Eggermont et al. in
which the CTLA-4 inhibitor ipilimumab was found to increase the 3-year recurrence free
rate by more than 10% ((46·5% (95% CI 41.5–51.3) vs. 34.8% (30.1–39.5)) compared to
placebo [46]. This study included stage IIIa/b/c without in-transit metastases, based
on the former AJCC staging version (7th edition), whereby the IIIa subgroup included
patients with thicker melanoma and of higher risk prognosis compared to the newer AJCC
8th edition. Importantly, this study also highlighted the need to further define the risk-
benefit ratio of adjuvant immunotherapy in the face of unacceptably high toxicity rate
with adjuvant anti-CTLA-4 treatment, which was administered at 10 mg/kg, a higher
than usual dose. Drug-related deaths due to colitis and myocarditis were observed at this
dose of ipilimumab and since then, subsequent studies focused on examining single-agent
immunotherapy with anti-PD-1 inhibitors following definitive surgery. Instead of adopting
anti-CTLA-4 as adjuvant treatment, anti-PD-1 treatment with nivolumab [47] and later on
with pembrolizumab [48], were established as effective strategies against disease recurrence,
with improved toxicity profiles compared to ipilimumab. It is worth noting that on the one
hand, nivolumab was tested against high dose ipilimumab in stage IIIb/IIIc/IV (AJCC 7th
edition) population of patients who underwent complete tumor resection. On the other
hand, pembrolizumab was tested against a placebo and in the stage III patient population
that also included stage IIIa melanoma (with a lymph node metastasis of more than 1 mm
in dimension), a sub-cohort of patients not included in the study of adjuvant nivolumab
versus ipilimumab [47].
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An exciting new step forward for early-stage melanoma was the recent FDA approval
of pembrolizumab as adjuvant therapy for resected stage IIb and IIc melanoma (in accor-
dance with 8th AJCC edition).This is melanoma without lymphatic dissemination which is
either between 2–4 mm thick and ulcerated, or thicker than 4 mm irrespective of ulceration.
The approval was based on an improvement in recurrence-free survival in KEYNOTE-716
study with a 35% reduction in risk of recurrence with pembrolizumab, compared to placebo
(hazard ratio (HR) 0.65 [95% CI 0.46–0.92]; p = 0.0066) [49].

Aside from the adjuvant/metastatic settings, current research in the sphere of neo-
adjuvant immunotherapy is expected to soon change the treatment paradigm for early-
stage high-risk melanoma. Based on the hypothesis that the presence of tumor (and its
antigenicity), as well as the presence of peritumoral lymphocytes, will support neoadjuvant
ICI mediate a robust anti-tumor response before tumor resection, neo-adjuvant ICI is being
examined in a series of studies [50–52]. From a clinical standpoint, ICI administration
before surgery can (a) reduce tumor burden and hence surgical morbidity, (b) determine
therapy efficacy in an individual patient basis for possible additional adjuvant therapy, and
(c) use the pathological response as a surrogate biomarker of ICI efficacy and event-free
survival. Initial reports from the OpACIN study showed that only two cycles of neo-
adjuvant ICI (with a combination of ipilimumab/nivolumab) can augment the expansion
of T cell clones and upregulate favorable immune gene signatures that lead to pathological
complete responses in the tumor microenvironment [50]. At the ICI doses used in this
study; however, the toxicity rate was considerably high and superiority over adjuvant
approach was not established. Subsequently, in the OpACIN-neo study which examined a
lower dose of ipilimumab and a higher dose of nivolumab, pathological responses were
found to translate into durable clinical benefit with 97% of patients with complete responses
being recurrence-free at 2 years following diagnosis [52]. In the most recently reported
SWOG S1801 randomized study of neo-adjuvant anti-PD-1 blockade, followed by surgery
and further adjuvant anti-PD-1, versus adjuvant anti-PD-1 alone in stage III melanoma,
recurrence-free survival was 72% at 2 years with the neo-adjuvant approach compared to
49% with adjuvant only treatment [53]. This recent data is thought compelling enough
to change the treatment paradigm of early-stage melanoma and crystalize the role of
immunotherapy in the neo-adjuvant space.

Another interesting approach into maximizing the anti-cancer immune response in
the neo-adjuvant setting, by capitalizing on the presence of the tumor and its antigenicity,
is the addition of intralesional administration of oncolytic virus directly into the immune
microenvironment. Talimogene laherparepvec (T-VEC) is a genetically modified herpes
simplex type 1 virus that selectively infects and replicates tumor cells, whilst expressing
granulocyte macrophage colony-stimulating factor (GM-CSF) which, in turn, stimulates
antigen-presenting cells to initiate and propagate lymphocyte activation. T-VEC is currently
used as monotherapy in Europe, US, and Australia for the treatment of unresectable IIIb,
IIIc, and IV M1a stage melanoma (no visceral metastases), based on the results of the
OPTiM study, which showed a 19% durable response rate (≥6 months) and a median OS
of 23.3 months, at its final analysis [54]. Despite the fact that the addition of T-VEC to
standard of care ICI with Pembrolizumab was not found to elicit a synergistic effect in
ICI-naïve patients with stage IIIb-IVM1c melanoma [55], there still remains the hypothesis
that T-VEC can synergize with systemic ICI in the neo-adjuvant setting to achieve local
clearance and increase recurrence-free survival following surgical resection. The results of
the recently registered NIVEC [56] trial, whereby nivolumab will be combined with T-VEC
pre-operatively, will be greatly anticipated.

New promising treatments/future standards. Unsurprisingly, given the success of immune
checkpoint inhibitors in melanoma, current research directions are focusing on the dis-
covery of novel immune checkpoint molecules that could augment the efficacy of ICI in
melanoma even further, or reverse the emergence of resistance to the available immune
checkpoint blockers.
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Lymphocyte-activation gene 3 (LAG-3, also known as CD223), is a cell membrane
protein that is upregulated in activated T cells and binds major histocompatibility com-
plex (MHC) class II molecules with high affinity [57,58]. LAG-3 is overexpressed on the
membrane of tumor infiltrating lymphocytes and inhibition of LAG-3 results in a more
efficient immune-mediated tumor clearance [59–61]. The randomized RELATIVITY-047
study which compared the co-formulation of anti-PD-1/anti-LAG-3 antibody, opdualag,
versus anti-PD-1 treatment only in patients with untreated advanced melanoma, confirmed
that abrogation of these two immune checkpoints is superior to nivolumab alone, with a
PFS that is comparable to the combination treatment of anti-CTLA-4/anti-PD-1; although
these two combinations have not been directly compared as yet in the same study [62].
Given that the toxicity profile of anti-PD-1/anti-LAG-3 dual inhibition appears more fa-
vorable than that of anti-CTLA-4/anti-PD-1, there is a high expectation for this new ICI
combination to be soon compared with the standard-of-care anti-CTLA-4/anti-PD-1, in a
randomized fashion in advanced melanoma. Anti-LAG-3 inhibition is also being examined
in the neo-adjuvant space, almost in parallel with its development in advanced disease,
and has already demonstrated exciting results. In a multi-arm study examining different
neo-adjuvant regimens (NCT02519322), in patients with resectable clinical stage III or
oligometastatic stage IV melanoma, neoadjuvant relatlimab with nivolumab resulted in
high pathological complete response (pCR) rate (57%; 95% CI, 37–75%) and improvement
in the 2-year recurrence-free survival (RFS) rate in patients who achieved any degree of
pathologic response compared to those without a pathologic response (p = 0.005). Neoadju-
vant anti-LAG-3/anti-PD-1 treatment mediated tumor infiltration by memory CD4+ and
effector CD8+ T cells in the post-treatment tumor specimens of patients with favorable
treatment response. Overall, these findings indicate that LAG-3 is now established as the
third targetable immune checkpoint in melanoma.

Other immune checkpoint molecules exhibiting signals of activity in melanoma are
(i) the T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) and (ii) the
glucocorticoid-induced TNF receptor (GITR). TIGIT down-regulate T cell and NK cell
functions upon binding to its two ligands, CD155 and CD112, which are expressed by
both tumor cells and antigen presenting cells [63]. When TIGIT inhibition was combined
with anti-PD-1 inhibition in vitro, it was found to enhance tumor antigen specific CD8+

T cell expansion and activity, as compared with anti-PD-1 inhibition alone [64]. Double
inhibition also increases proliferation and function of tumor infiltrating lymphocytes (TILs)
isolated from patients with melanoma. Studies currently investigating TIGIT inhibition in
patients with advanced melanoma are depicted in Table 1. Another target of interest is the
glucocorticoid-induced TNF receptor (GITR), a member of the tumor necrosis factor (TNF)
receptor superfamily. GITR mediates immunosuppression through constitutive expression
on T regulatory cells (Tregs), whereas its expression is upregulated on CD4+, CD8+ T cells,
and natural killer (NK) cells, only upon T-cell activation [65–67]. Hence, targeting the
GITR pathway promotes antitumor activity of T cells through T cell proliferation and
enhanced effector function, abrogation of Treg function, as well as by upregulating IL-2
and IFNγ pathways [68–70]. There are several GITR inhibitors in clinical development
and MK-4166, a humanized IgG1 antibody against GITR showed promising response rates
when combined with anti-PD-1 in ICI naïve patients; it did not however exhibit activity in
patients with prior exposure to ICI [71].

The critical question needing urgent answer in the field of immune-oncology (IO) in
advanced melanoma is undoubtedly that of reversing the emergence of ICI-resistance and
discovering novel therapeutic options for patients harboring ICI-resistant disease. Ample
pre-clinical research is currently focusing on answering this question and we endeavor
to address some of it later in this review. From a clinical standpoint, promising results
were recently reported by the LEAP-004 study [72]. In this single-arm phase 2 study,
patients who were exposed and whose disease had progressed on anti-PD-1/PD-L1-based
immunotherapy, were treated with the combination of pembrolizumab plus lenvatinib.
Lenvatinib, a tyrosine kinase inhibitor that selectively inhibits VEGFRs 1–3, FGFRs 1–4,
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platelet-derived growth factor receptor α, RET, and KIT [73,74], was found to enhance the
anti-tumor response of anti-PD-1 blockade in preclinical models [75,76]. In LEAP-004 study,
up to 21% of patients experienced disease response, amongst them complete and partial
responses [72], supporting the hypothesis that abrogation of pivotal intracellular pathways
can reverse tumor resistance to anti-PD-1/PD-L1-based treatments. This hypothesis has
generated several combinatorial clinical studies in patients with ICI-resistant melanoma
(Table 1).

Table 1. Ongoing clinical trials with immunotherapy in advanced cutaneous melanoma (as as-
sessed on 13 November 2022). * Denotes studies that also include patients with tumor types other
than melanoma.

Type of
Intervention Targets Agents Number of

Patients Phase NCT Number

Novel Immune
Pathways

Anti-PD-1 plus anti-TIGIT (IV) or anti-PD-1 +
Coxsackievirus (IT) or anti-PD-1 + ILT-4 or

anti-PD-1/anti-LAG-3 or anti-PD-1 + retinoid

Pembrolizumab +
vibostolimab or

pembrolizumab +
gebasaxturev or

pembrolizumab + MK-4830
or favezelimab or

pembrolizumab + all-trans
retinoic acid (ATRA)

90 1/2 NCT04303169

Anti-CTLA-4/anti-PD-1 +/− anti-interleukin
8 antibody

Ipilimumab/Nivolumab
+/− BMS-986253

(HuMax-IL8)
372 1/2 NCT03400332

IL-2Rβ/γ-selective IL-2 variant +/− anti-PD-1
+/− TLR7/8 agonist

Pembrolizumab +/−
TransCon IL-2 β/γ +/−

TransCon TLR7/8 agonist
317 * 1/2 NCT05081609

IL-2 superkine +/− ICI MDNA11 +/− ICI 100 * 1/2 NCT05086692

T cell engager +/− anti-PD-1 +/−
anti-CTLA-4

Tebentafusp +/−
durvalumab +/−

tremelimumab
312 1/2 NCT02535078

IL-12 Fc-fusion protein +/− anti-PD-1 BMS-986415 +/−
Nivolumab 473 * 1/2 NCT04423029

CD40 agonist +/− anti-PD-1 APX005M +
pembrolizumab 41 1/2 NCT02706353

CXCR1/2 inhibitor + anti-PD-1 SX-682 + pembrolizumab 77 1 NCT03161431

STING agonist + anti-PD-L1 SB 11285 + atezolizumab 110 * 1 NCT04096638

Anti-TIGIT + anti-PD-1 AB154 + AB122 26 2 NCT05130177

Interleukin (IL-)15 and IL-15 receptor alpha +
anti-PD-1 NIZ985 +/− spartalizumab 110 * 1 NCT04261439

mAb Specific to B-and T-Lymphocyte
Attenuator (BTLA) JS004 156 * 1 NCT04773951

PD-L1/IDO peptide vaccine + anti-PD-1 PD-L1/IDO peptide
vaccine + nivolumab 50 1/2 NCT03047928

Anti-CCR8 +/− anti-PD-1 BAY3375968 270 * 1 NCT05537740

TGFβ1 inhibitor +/− anti-PD-L1 SRK-181 +/− anti-PD-L1 200 * 1 NCT04291079

Anti-PD-1 inhibitor/OX40 agonist SL-279252 (PD1-Fc-OX40L) 87 * 1 NCT03894618

Granulocyte Macrophage-colony stimulating
factor + anti-PD-1

Sargramostim +
pembrolizumab 30 2 NCT04703426

Adoptive cell
therapy

PD-1 knock out TILs IOV-4001 53 * 1/2 NCT05361174
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Table 1. Cont.

Type of
Intervention Targets Agents Number of

Patients Phase NCT Number

Adoptive autologous cellular therapy +
HDAC + DNMT inhibitors

MAGE-C2/HLA-A2 TCR T
cells + azacytidine +

valproic acid
20 1/2 NCT04729543

CD20 CAR transduced T cells MB-CART20.1 15 1 NCT03893019

Autologous alpha-type-1 polarized dendritic
cells (alphaDC1)/TBVA vaccine + cytokine

modulating regimen

TBVA vaccine intatolimod +
IFN-alpha2b + celecoxib 24 2 NCT04093323

Autologous neoantigen-specific T-cell product NEO-PTC-01 52 1 NCT04625205

Oncolytic viral
therapy

Rhinovirus targeting poliovirus receptor
CD155 (IT) +/− anti-PD-1

Lerapolturev (IT) +/−
anti-PD-1 56 2 NCT04577807

Oncolytic vesicular stomatitis virus expressing
human IFNβ (IT or IV) +/− anti-PD-1 +/−

anti-CTLA-4

Voyager V1 +/−
cemiplimab +/−

ipilimumab
152 * 2 NCT04291105

Anti-PD-1 + oncolytic HSV type virus
expressing anti-PD-1 antibody and IL-12 (IT)

MVR-T3011 (IT) +/−
pembrolizumab 10 1/2 NCT04370587

Herpes simplex virus type 2 strain HG52 +/−
anti-PD-1 OH2 +/− nivolumab 30 * 1/2 NCT04386967

Adenovirus with TMA-CD40L and 4-1BBL
transgenes + anti-PD-L1 LOAd703 + atezolizumab 35 1/2 NCT04123470

Great ape Adenoviral (GAd)/Modified
Vaccinia Ankara (MVA) boosts with

personalised patient neoantigens + anti-PD-1

NOUS-PEV +
pembrolizumab 34 * 1 NCT04990479

Anti-PD-1 + oncolytic HSV type 1 virus (IT) Pembrolizumab + RP1 300 * 2 NCT03767348

Anti-PD-1 plus vaccinia virus encoding
transgenes for Flt3 ligand, anti-CTLA-4
antibody and IL-12 cytokine, (IT or IV)

Pembrolizumab +
TBio-6517 (IV or IT) 138 * 1/2 NCT04301011

Targeted
treatment plus

immunotherapy

PI3K inhibitor + anti-PD-1 Duvelisib + nivolumab 42 1/2 NCT04688658

ETBR inhibitor +/− anti-PD-1 ENB003 +/−
pembrolizumab 130 1/2 NCT04205227

Anti-VEGF + anti-PD-L1 Bevacizumab +
atezolizumab 30 2 NCT04356729

Integrin alpha-V/beta-8 Antagonist PF-06940434 122 1 NCT04152018

p38 inhibitor + anti-PD-1 or
anti-CTLA-4/anti-PD-1

ARRY-614 + nivolumab or
nivolumab/ipilimumab 144 * 1/2 NCT04074967

Hedgehog pathway inhibitor + anti-PD-1 Sonidegib +
Pembrolizumab 45 * 1 NCT04007744

Wnt/β-catenin inhibitor +/− anti-PD-1 E7386 +/− pembrolizumab 108 * 1/2 NCT05091346

PARP inhibition + anti-PD-1 Olaparib + pembrolizumab 41 2 NCT04633902

“Velcrin” that triggers the formation of a
complex of two proteins called SLFN12

and PDE3A
BAY2666605 89 1 NCT04809805

Heparanase inhibitor (TAMs inhibitor) +
anti-PD-1 + metronomic chemotherapy

Pixatimod (PG545) +
Nivolumab +

cyclophosphamide
61 2 NCT05061017

Anti-CTLA-4/anti-PD-1 +/−
glutamate modulator

Ipilimumab/Nivolumab
+/− troriluzole 108 2 NCT04899921

MDM2 inhibitor + anti-PD-1 APG-115 + pembrolizumab 224 1/2 NCT03611868
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Table 1. Cont.

Type of
Intervention Targets Agents Number of

Patients Phase NCT Number

Multi-tyrosine kinase inhibitor + anti-PD-1 Cabozantinib +
pembrolizumab 39 1/2 NCT03957551

BTK inhibitor + anti-PD-1 Ibrutinib + pembrolizumab 23 1 NCT03021460

ATR inhibitor +/− anti-PD-L1 Ceralasertib +/−
durvalumab 195 2 NCT05061134

Anti-PD-1 plus NLRP3 inhibitor Pembrolizumab +
Dapansutrile 26 1/2 NCT04971499

Vaccine-based
treatment

Melanoma HLA-restricted peptides vaccine
+/− anti-CD27 6MHP +/− CDX-1127 30 1/2 NCT03617328

DNA vaccine encoding Tyrosinase-Related
Protein 2 (TRP2) and gp100 SCIB1 DNA vaccine 87 2 NCT04079166

mRNA-encoded with tumor-associated
antigens vaccine + anti-PD-1 BNT111 + cemiplimab 180 2 NCT04526899

Antibody drug
conjugates

ADC against CD228 SGN-CD228A 275 * 1 NCT05571839

ROR2-targeted antibody drug conjugate
(CAB-ROR2-ADC) +/− anti-PD-1

BA3021 +/−
pembrolizumab 420 * 2 NCT03504488

Immense excitement in the sphere of ICI-resistant melanoma has also been sparked
by the efficacy of adoptive cell therapy, in the form of treatment of surgically harvested
tumor-infiltrating leucocytes (TILs). Lifileucel (LN-144) is an autologous TIL product
that utilizes harvested tumor-tissue T cells, using a centralized manufacturing process.
Given that melanoma is a disease characterized by high mutational burden, a unique
cellular product that harbors polyclonal cells with diverse antigen specificity is capable
of offering a tailored immune response for each patient. In a study reported by Sarnaik
et al., lifileucel was administered to patients with unresectable or metastatic melanoma,
previously progressed through anti-PD-1 blockade (and targeted treatment if they had
BRAF V600 mutation-positive disease) [77]. With an overall response rate of 36% and
disease control rate of 80%, these results indicate that once the practices of administering
cellular therapies can be streamlined, adoptive cellular therapy will undoubtedly become a
standard of care for melanoma and a robust option, at least for patients with ICI-resistant
disease and available resectable tumor present.

Non-cutaneous melanoma, current, and future therapeutic pathways. Non-cutaneous
melanoma including uveal and mucosal melanoma are rare tumors, characterized by spe-
cific epidemiology, biological behavior, and molecular profile. Uveal melanoma represents
only 5% of all cases of melanoma; however, it is the most common primary intra-ocular
cancer [78]. While cutaneous melanoma is often characterized by BRAF, NRAS and KIT
mutations, uveal melanoma typically harbors GNAQ/GNA11, EIF1AX, SF3B1, BAP1 muta-
tions and chromosomal abnormalities [79]. In more than 90% of the cases uveal melanoma
is diagnosed at an early stage, when still amenable to local treatment [80]. Unfortunately,
the proportion of patients who develop metastatic disease ranges from 20% for stage I to
70% for stage III [81,82]. The liver is the most frequent site of metastasis and when feasi-
ble, liver-directed treatments including surgery, radio-ablation and chemoembolization
represent the treatment of choice for metastatic disease [83]. For patients with metastatic
disease that is not amenable to local treatment, immunotherapy currently represent the
mainstay of therapeutic options. Immune checkpoint inhibitors targeting CTLA-4 and the
PD-1/PDL-1 axis have demonstrated antitumor activity in uveal melanoma. However,
when compared to cutaneous melanoma, these agents have limited efficacy, resulting in
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an ORR between 10 and 20% when used in combination [84–87] and even lower when
used as single agents [88–90]. Anatomical, genomic, and immunological factors are known
to contribute to ICI resistance in uveal melanoma. The eye is an immune privileged or-
gan characterized by multiple local and systemic mechanisms limiting and preventing
inflammation to protect visual function. The immunotolerant microenvironment of the eye,
enriched on Tregs, may impair the efficacy of ICI on the primary tumor [91]. As compared
with its cutaneous counterpart uveal melanoma is characterized by lower molecular burden,
with a mutation rate of respectively 0.5 mutations per megabase (Mb) for uveal melanoma,
as opposed to 49.2 mutations per Mb for cutaneous melanoma [92–94]. Another molecular
feature responsible for the lack of responsiveness to immunotherapy is the low PD-L1
expression [95–97]. Epigenetic changes downregulating PD-L1 and other key immune
checkpoints, including LAG-3 and CTLA-4, have been observed in uveal melanoma with
BAP1 disruption [98]. These observations supported the development of novel agents
exploiting alternative targets and the investigation of combinatorial strategies to overcome
the resistance to anti-PD-1 and anti-CTLA-4 agents.

Tebentafusp, a bispecific gp100 peptide-HLA-directed CD3+ T lymphocyte engager
has been recently approved by FDA for the treatment of patients with metastatic uveal
melanoma, who harbor the HLA-A*02:01 allele. This approval followed the results of a ran-
domized phase III trial in which tebentafusp resulted in prolonged overall and progression-
free survival in comparison to investigators’ therapeutic choice (including dacarbazine,
anti-CTLA-4, or anti-PD-1 treatment) [99]. At 1 year, the overall survival of patients receiv-
ing tebentafusp was 73% vs. 59% in the control group (HR for death 0.51; p < 0.001), while
progression-free survival at 6 months was 31% vs. 19% (HR for disease progression 0.73;
p = 0.01).

Different therapeutic strategies are under investigation to enhance the effect of immune
checkpoint inhibitors. The histone deacetylase inhibitor entinostat was used in combination
with pembrolizumab in twenty-nine uveal melanoma patients resulting in an ORR of
14%, PFS of 2.1 months, and OS of 13.4 months [100]. The clinical benefit correlated with
BAP1 status with a higher chance of response and prolonged survival in patients with
BAP1 wild type. Clinical trials are ongoing testing the efficacy of other combinatorial
regimens, such as with anti-angiogenic agents (NCT05282901, NCT05308901), anti-LAG-
3 (NCT04552223), TLR9 agonists (NCT04935229), PARP inhibitors (NCT05524935), and
liver-directed radio-embolization (NCT02913417) (Table 2).

Table 2. Ongoing clinical trial testing immunotherapy strategies in patients with uveal and mucosal
melanoma (as assessed on 13 November 2022).

Target Population Type of Treatment Intervention Number of
Patients Phase NCT Number

Uveal Melanoma

Local treatment +
anti-PD-1 and
anti CTLA-4

Yttrium 90 + Ipilimumab +
Nivolumab 26 1/2 NCT02913417

Melphalan percutaneous hepatic
perfusion + Ipilimumab + Nivolumab 83 1/2 NCT04283890

Immunoembolization +IPI/NIVO 14 2 NCT03472586

Ipilimumab + Nivolumab + Tumor
Treating Fields 10 1 NCT05004025

Stereotactic RT + Ipilimumab +
Nivolumab 40 2 NCT05077280

Anti-PD-1 +
Anti-LAG-3 Nivolumab + Relatlimab 27 2 NCT04552223

Anti-PD-1 and anti
CTLA-4 + TLR9

agonists

Nivolumab + Ipilimumab +
intrahepatic SD-101 80 1 NCT04935229
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Table 2. Cont.

Target Population Type of Treatment Intervention Number of
Patients Phase NCT Number

Anti-PD-1 and anti
CTLA-4 +

anti-arginine

ADI-PEG20 + Ipilimumab +
Nivolumab 9 1 NCT03922880

Anti-CTLA-4 +
cell therapy

CD8+ SLC45A2-Specific T
Lymphocytes + Cyclophosphamide,

Aldesleukin, and Ipilimumab
30 1 NCT03068624

Cell therapy
Tumor Infiltrating Lymphocytes

47 2 NCT03467516

10 1 NCT05607095

Dendritic cells + tumor RNA 200 3 NCT01983748

Anti-PD-1 +
epigenetic

modulators
Pembrolizimab + Etinostat 29 2 NCT02697630

Anti-PD-1 +
Anti-VEGF Pembrolizumab + Lenvatinib

54 2 NCT05282901

30 2 NCT05308901

Anti-PD-1 +
Anti-DDR Pembrolizumab + Olaparib 37 2 NCT 05524935

Mucosal
Melanoma

Anti-PD-1 + local treatment Adjuvant Pembrolizumab +
hypofractionated RT 16 2 NCT04318717

Anti-PD-1 + chemotherapy +
local treatment

Adjuvant Toripalimab +
chemotherapy or RT 45 2 NCT04879654

Anti-PD-1 + Anti-VEGF

Neoadjuvant Pembrolizumab +
Lenvatinib

44 2 NCT05545969

26 2 NCT04622566

SHR-1210 + Apatinib 40 2 NCT03986515

Adjuvant Nivolumab +/−
Cabozantinib 99 2 NCT05111574

Nivolumab + Axitinib 20 2 NCT05384496

Toripalib + Axitinib
30 2 NCT04180995

99 2 NCT03941795

Anti-PD-1 + anti-TGFβ Pembrolizumab + Vactosertib 30 2 NCT05436990

Anti-PD-1 + anti CD40 +
chemotherapy YH003 + Pembrolizumab + Paclitaxel 43 2 NCT05420324

Anti-PD-1 + chemotherapy Nivolumab +
Decitabine/Cedazuridine 30 1/2 NCT05089370

IL-2 agonists ALKS 4230 110 2 NCT04830124

Mucosal melanoma, another rare subset of melanoma, accounts for 1 to 3% of all
melanoma diagnoses. It can originate from the gastrointestinal, genitourinary, and respira-
tory tracts; however, 80% of mucosal melanomas primaries arise from the head and neck
area [101,102]. Mucosal melanoma has a peculiar genomic profile characterized by higher
rate of SF3B1 and KIT and lower incidence of BRAF and NRAS mutations [103]. Similarly,
to uveal melanoma, mucosal melanoma is characterized by low PD-L1 expression and
tumor mutational burden that blunt the efficacy of ICIs [104,105]. Anti-PD-1 antibodies
alone or in combination with anti-CTLA-4 represents the main treatment option; however,
clinical data indicate that these agents’ efficacy is modest when compared to cutaneous
melanoma [106,107]. Similarly to the other melanoma subtypes, the combination of anti-PD-
1 and anti-CTLA-4 seems to improve patients’ outcomes over monotherapy. Seventy-nine
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patients with mucosal melanoma were included in the CheckMate-067 study and random-
ized to the combination of ipilimumab/nivolumab, nivolumab or ipilimumab monother-
apies. In this population the combination resulted in a superior ORR (43% vs. 30% with
nivolumab and 7% with ipilimumab monotherapy) and improved 5-year PFS and OS rates
(5-year PFS rate: 29% vs. 14% vs. 0% and 5-year OS rate 36% vs. 17% vs. 7%) [108]. Vascular
endothelial growth factor (VEGF) upregulation is a known biomarker of poor prognosis in
mucosal melanoma [109] and clinical data support the combination of antiangiogenic and
immunotherapeutic agents in this population. A phase 1 study testing anti-PD-1 blockade
in combination with the VEGF inhibitor axitinib in 33 mucosal melanoma patients resulted
in an ORR of 48% and a median PFS and OS of 7.5 and 20.7 months, respectively [110,111].
Interestingly, the biomarker analysis revealed no correlation between PD-L1 expression
or tumor mutational burden and survival outcomes while an association was observed
between improved PFS and a gene-expression profile signature including angiogenesis and
immune-related genes [111]. The potential role of anti-VEGF inhibition and ICI in mucosa
melanoma is supported also by the results of a phase II study testing atezolizumab and
bevacizumab [112]. Forty-three mucosal melanoma patients were treated with this combina-
tion, achieving an ORR of 43%, with a median PFS of 8.2 months. Further agents currently
under evaluation in clinical trials testing combination strategies with ICIs (Table 2).

2.2. Non-Melanoma Skin Cancers Overview

Non-melanoma skin cancers (NMSCs) consist of a heterogeneous group of tumors. It
was not until recently that immunotherapy treatment was incorporated into the therapeutic
landscape of NMSCs. In this review, we mostly discuss the most common types such as
cutaneous squamous cell carcinoma (cSCC), Merkel cell carcinoma (MCC), and basal cell
carcinoma (BCC). High curability with surgery and/or radiation results in a proportionally
low death rate, however, due to very high incidence, accounting for 30% of all diagnosed
cancer types, the absolute mortality in advanced stages is comparable to melanoma [113].
NMSCs harbor features predictive of response to immunotherapy, including high tumor
mutational burden (TMB) associated with chronic ultraviolet radiation exposure, and other
common risk factors like immunosuppression, as well as viral etiology (Merkel cell poly-
omavirus in MCC) and advanced patients age [114–116]. In the past decade, multiple
clinical trials confirmed the efficacy of ICIs in NMSCs, mainly in SCC and MCC [117–121].
Moreover, more recently, immunotherapy exhibited clinically meaningful antitumor ac-
tivity in advanced BCC following progression on first-line hedgehog inhibitor therapy
(HHI) [122].

Cutaneous SCC (cSCC): Use of single-agent anti-PD-1 inhibition with either pem-
brolizumab or cemiplimab as an upfront first-line therapy for advanced or metastatic
cSCC, that is not amenable to surgery or radiation, showed ORR of 42% and 52% in recur-
rent/metastatic disease and locally advanced disease, respectively [117,118]. Both drugs
demonstrated durable responses [median duration of response (DOR) not reached] and
extended OS (median not reached), along with tolerable toxicity profile. Favorable toxicity
profile is very pertinent to this patient population, given the advanced age and high comor-
bidity prevalence associated with it. These practice-changing results led to the introduction
of immunotherapy as a new 1st line standard of care treatment in patients with advanced
SCC [123]. Following encouraging results in advanced disease, multiple studies are cur-
rently investigating the role of ICI in adjuvant and neoadjuvant/perioperative settings
(Table 3). Indeed, Gross et al. recently reported results of neoadjuvant cemiplimab in stage
II to IV cSCC. The study demonstrated a 68% objective response rate, as well as a 51%
pathological complete response rate, and a 13% pathological major response rate [124].
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Table 3. Ongoing clinical trials with different types of ICI in NMSC (as assessed on 13 November 2022).

Study Title Tumor Type Intervention Phase NCT Number

Neo-adjuvant Nivolumab or Nivolumab With
Ipilimumab in Advanced Cutaneous Squamous Cell

Carcinoma Prior to Surgery
cSCC Ipilimumab

Nivolumab 2 NCT04620200

Neoadjuvant Plus Adjuvant Treatment With Cemiplimab
in Cutaneous Squamous Cell Carcinoma cSCC Cemiplimab 2 NCT04632433

Neoadjuvant Pembrolizumab in Cutaneous Squamous
Cell Carcinoma cSCC Pembrolizumab 2 NCT05025813

Atezolizumab Before Surgery for the Treatment of
Regionally Metastatic Head and Neck Squamous Cell

Cancer With an Unknown or Historic Primary Site
cSCC Atezolizumab 2 NCT05110781

Avelumab With or Without Cetuximab in Treating
Patients With Advanced Skin Squamous Cell Cancer cSCC Avelumab

Cetuximab 2 NCT03944941

Phase II Study of Peptide Receptor Radionuclide
Therapy in Combination With Immunotherapy for

Patients With Merkel Cell Cancer
MCC

Pembrolizumab,
Lutetium Lu
177 dotatate

2 NCT05583708

Neoadjuvant Lenvatinib Plus Pembrolizumab in Merkel
Cell Carcinoma MCC Pembrolizumab,

Lenvatinib 2 NCT04869137

Navtemadlin (KRT-232) With or Without
Anti-PD-1/Anti-PD-L1 for the Treatment of Patients

With Merkel Cell Carcinoma
MCC KRT-232,

Avelumab 2 NCT03787602

Adjuvant Avelumab in Merkel Cell Cancer MCC Avelumab,
placebo 2 NCT03271372

Testing Pembrolizumab Versus Observation in Patients
With Merkel Cell Carcinoma After Surgery,

STAMP Study
MCC Pembrolizumab,

placebo 3 NCT03712605

Intralesional Cemiplimab for Patients With Cutaneous
Squamous Cell Carcinoma or Basal Cell Carcinoma cSCC, BCC Cemiplimab

intralesional 1 NCT03889912

Nivolumab Alone or Plus Relatlimab or Ipilimumab for
Patients With Locally-Advanced Unresectable or

Metastatic Basal Cell Carcinoma
BCC Nivolumab,

Relatlimab 2 NCT03521830

Neoadjuvant-Adjuvant Pembrolizumab in Resectable
Advanced Basal Cell Carcinoma of H&N BCC Pembrolizumab 1 NCT04323202

Anti-PD1-antibody and Pulsed HHI for Advanced BCC BCC Cemiplimab,
Sonidegib 2 NCT04679480

Merkle Cell Carcinoma (MCC): MCC is a rare and aggressive malignancy with histor-
ical 5-year OS rate of 14% for metastatic disease and 27% for clinically detected locally
advanced disease (nodal involvement) [125]. Similarly to cSCC, MCC is a highly immuno-
genic disease [114,116], representing a very good target for ICI-based immunotherapy.
JAVELIN Merkel 200 trial demonstrated ORR of 33.0% and a median duration of response
of 40.5 months with avelumab for pre-treated patients with advanced MCC. Reported
median OS was 12.6 months [126]. Subsequently, pembrolizumab and avelumab were
separately investigated in first line treatment settings, with ORR of 56–62% and complete
response rate of up to 24% [120,121]. Median duration of response and median OS are not
reported yet, whilst the Kaplan Meier estimate of median OS for 1st line pembrolizumab
at 3 years was 59.4% for all patients, and 89.5% for responders [127]. Multiple trials are
currently on-going to investigate efficacy of ICI as monotherapy or in combination with
targeted agents in neoadjuvant and adjuvant settings, along with an attempt to overcome
primary and acquired resistance to ICI in advanced MCC (Table 3).
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Basal cell carcinoma (BCC): BCCs are at least twice more common than cSCC. Compared
to cSCC or MCC, BCCs are much less likely to metastasize, with a reported metastatic rate of
less than 0.1% [128]. Locally advanced disease is more common, usually causing significant
destruction and deformation of the underlying tissues, including soft tissue, bone, and
cartilage [129]. Patients with recurrent and destructive infiltration of the surrounding
tissues most commonly require systemic treatment. Among published studies, Stratigos
et al. recently reported that cemiplimab can induce a significant antitumor response in
patients with locally advanced BCC, after progression on HHI therapy. The study reports
31% ORR with the survival data still being immature. Surprisingly, the rate of grade
3–4 adverse events was quite significant, reaching 48%, which might become a serious
challenge in this vulnerable patient population [122]. Similarly to MCC and cSCC, multiple
trials are ongoing for the evaluation of the ICI role in other treatment settings (Table 3).

The approval of immunotherapy-based treatment for both melanoma and NMSCs in
a timeline fashion is depicted in Figure 1.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 14 of 35 
 

 

of grade 3–4 adverse events was quite significant, reaching 48%, which might become a 
serious challenge in this vulnerable patient population [122]. Similarly to MCC and cSCC, 
multiple trials are ongoing for the evaluation of the ICI role in other treatment settings 
(Table 3). 

The approval of immunotherapy-based treatment for both melanoma and NMSCs in 
a timeline fashion is depicted in Figure 1. 

 

 
Figure 1. Timeline of immunotherapy agents’ approval for melanoma and non-melanoma skin can-
cer treatment. NMSC—non-melanoma skin cancer, cSCC—cutaneous squamous cell carcinoma, 
BCC—basal cell carcinoma, MCC—Merkel cell carcinoma, T-VEC—Talimogene laherparepvec; 
IFN-γ—interferon gamma; TCR—T cell receptor; CCR5—chemokine receptor 5; CXCL13—chemo-
kine ligand 13; TLS—tertiary lymphoid structures; TAM—tumor-associated macrophages; MDSC—
myeloid-derived suppressor cells; T regs—regulatory T cells; HGF—hepatocyte growth factor; 
IL6—interleukin 6; TGF-β—Transforming growth factor beta; purple colour for biomarkers: bi-
omarkers of response; blue colour for biomarkers: biomarkers of resistance.  

3. Biomarkers of Immunotherapy Response/Resistance in Melanoma 
Melanoma has immensely contributed to our understanding of the mechanisms of 

response or resistance to ICI. However, unlike other tumor types such as lung or head & 
neck cancer, where PD-L1 expression by immunohistochemistry (IHC) is used to guide 
patient stratification to ICI treatment, PD-L1 expression by IHC has not been proven to be 
a reliable predictive biomarker in melanoma, as evidenced by exploratory analyses of 
large scale studies [130–132]. Tumor mutational burden (TMB), on the other hand, is a 
universally accepted surrogate marker of ICI response in a tumor-agnostic fashion. Mela-
noma has inherently a high level of TMB, showing superior responses to ICI depending 
on the magnitude of the TMB [133,134] but notwithstanding this, it is not routinely uti-
lized in the clinic as a predictor of ICI response. Given the extremely favorable response 
of melanoma to ICI, a biomarker of ICI-resistance is perhaps more critical in the clinical 
management of melanoma, rather than a biomarker of response. As we gain more insight 
into multi-dimensional data on intratumoral, immunological, and systemic factors 

1998 -- 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

1998 -- 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Ipilimumab in advanced 
pretreated melanoma

Nivolumab in 
advanced 
pretreated 
melanoma

Nivolumab as first line in 
advanced melanoma

Adjuvant 
Pembrolizum
ab in stage 
3 resected 
melanoma

Adjuvant 
Pembrolizum
ab in stage 
2B–2C 
resected 
melanoma

Pembrolizumab as first line in 
advanced melanoma

T-VEC in 
advanced 
melanoma

Ipilimumab and Nivolumab in 
advanced melanoma

Adjuvant 
Nivolumab in stage 
3–4 resected 
melanoma

Atezolizumab 
with 
vemurafenib 
and cobimetinib 
in advanced 
BRAF mutated 
melanoma

Tebentafusp in pts with advanced uveal 
melanoma carrying HLA-A*02:01 allele

Relatlimab
and 
Nivolumab 
in 
advanced
melanoma 

Avelumab in metastatic 
MCC

Cemiplimab in 
advanced cSCC

Pembrolizumab in 
advanced or unresectable 
MCC

Pembrolizumab in 
locally advanced 
cSCC

Cemiplimab in advanced 
BCC

MELANOMA

NMSC

Pembrolizumab 
in advanced pretr
eated
melanoma

Biomarkers

Interleukin 2 (IL2) in 
advanced melanoma

IFN-γ TCR
diversity

CCR5/
CXCL13

CD8+
T cell

B cells

TLSBifidoba
cterium

Ruminoco
ccaceae

Bacteroid
es/Clostri
dium

PD-L1 
exosomes

MDSC
/TAM

Jak1/Jak2,
ß-catenin IL6/TGF-βHGF

CD25+ T regs

PTEN loss

Figure 1. Timeline of immunotherapy agents’ approval for melanoma and non-melanoma skin
cancer treatment. NMSC—non-melanoma skin cancer, cSCC—cutaneous squamous cell carcinoma,
BCC—basal cell carcinoma, MCC—Merkel cell carcinoma, T-VEC—Talimogene laherparepvec; IFN-
γ—interferon gamma; TCR—T cell receptor; CCR5—chemokine receptor 5; CXCL13—chemokine lig-
and 13; TLS—tertiary lymphoid structures; TAM—tumor-associated macrophages; MDSC—myeloid-
derived suppressor cells; T regs—regulatory T cells; HGF—hepatocyte growth factor; IL6—interleukin
6; TGF-β—Transforming growth factor beta; purple colour for biomarkers: biomarkers of response;
blue colour for biomarkers: biomarkers of resistance.

3. Biomarkers of Immunotherapy Response/Resistance in Melanoma

Melanoma has immensely contributed to our understanding of the mechanisms of
response or resistance to ICI. However, unlike other tumor types such as lung or head &
neck cancer, where PD-L1 expression by immunohistochemistry (IHC) is used to guide
patient stratification to ICI treatment, PD-L1 expression by IHC has not been proven to be a
reliable predictive biomarker in melanoma, as evidenced by exploratory analyses of large
scale studies [130–132]. Tumor mutational burden (TMB), on the other hand, is a universally
accepted surrogate marker of ICI response in a tumor-agnostic fashion. Melanoma has
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inherently a high level of TMB, showing superior responses to ICI depending on the
magnitude of the TMB [133,134] but notwithstanding this, it is not routinely utilized in the
clinic as a predictor of ICI response. Given the extremely favorable response of melanoma
to ICI, a biomarker of ICI-resistance is perhaps more critical in the clinical management
of melanoma, rather than a biomarker of response. As we gain more insight into multi-
dimensional data on intratumoral, immunological, and systemic factors modulating the
anti-cancer immune response, more and more host intrinsic as well as extrinsic players are
starting to emerge (Figure 2).
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Genomic markers. Loss of PTEN function has been found to have a negative correlation
with response to immunotherapy. Both in preclinical work but also in patient samples
interrogated through the Cancer Genome Atlas Program (TCGA), PTEN loss correlates with
decreased T-cell infiltration at tumor sites and increased expression of immunosuppressive
cytokines [135–137]. Whole exome analysis of the resistant tumor clones identified loss-
of-function mutations in the genes encoding interferon-receptor-associated Janus kinase 1
(JAK1) or Janus kinase 2 (JAK2), which leads to insensitivity to INFα, β and γ [138,139].
Activating mutations in the Wnt/b-catenin pathway can also induce resistance to ICI
through altering the expression of PD-L1 and PD-L2 in a broad group of tumors [140,141]
and mechanistic studies specifically in melanoma have revealed that Wnt-induced decrease
in the expression of the chemokine CCL4 hindered the recruitment of CD103+ DCs and T
cells to the tumor microenvironment [142].

DNA mismatch repair deficiencies (dMMR) and consequently microsatellite instability
(MSI) predispose tumor cells to the accumulation of somatic mutations and increased
TMB [143]. The connection between novel somatic mutations and the generation of neo-
antigens is extremely intriguing and nuanced, at the same time. In melanoma specifically,
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it has been demonstrated that the generation and landscape of clonal neoantigens can
determine T cell infiltration and durable clinical benefit for patient [144]. Moreover, large
genomic aberrations, such as somatic copy number alterations (SCNAs), have also been
found to mediate immune evasion [145]. Loss of 9p21.3 locus in a pan-cancer cohort,
including patients with melanoma is linked to reduced ICI responsiveness and poorer
clinical outcomes [146,147]. Specifically in melanoma, high dosage of arm- or chromosome-
level SCNAs were associated with poorer response to anti-CTLA-4 in a retrospective
analysis [148], one such example being gains in chromosome 7 that are accompanied by
poor lymphocyte infiltrate and aberrant neutrophil activation [149].

Transcriptomic markers. Transcriptomic readouts have also been used in an attempt
to predict responsiveness to immunotherapeutic modification with ICI treatment. These
mainly pertain to immune gene signatures and characterize the immune tumor microenvi-
ronment more accurately. Melanoma can be therefore stratified into two different groups: a
T-cell specific, antigen presentation-related, and IFNγ signaling–related signature helps
identify the immune “hot” tumors [150–152]. On the contrary, signatures encompass-
ing markers related to higher prevalence of myeloid-derived suppressive cells (MDSC),
tumor-associated macrophages (TAMs), or cancer-associated fibroblasts (CAFs) associated
genes are more specific to immune “cold” tumors, and correlate with reduced cytotoxic
lymphocyte activity [139,153,154].

Circulating markers of inflammation have also been interrogated to discover links
between biomarkers and response to ICI in melanoma. Recently, Rossi et al. demonstrated
that the levels of interleukin-6 (IL-6), hepatocyte growth factor (HGF), and monocyte
chemotactic protein 2 (MCP-2), found in the serum of patients with melanoma whose
disease did not respond to ICI, are higher compared to ICI-responders [155]. The three
chemokines could be clustered in a signature with an overall negative effect on ICI response.
Transforming growth factor-β (TGFβ) is a cytokine that plays important roles in angiogene-
sis and immunosuppression by stimulating Tregs, promoting tumor immune escape and
immunotherapy resistance [156]. High expression of TGFβ1 in tumor frequently correlates
with inferior survival, even when cytotoxic T lymphocyte infiltration is rich [153,154].

Recent studies also shed light on the role of extracellular vesicles, such as exosomes
and microvesicles, in their ability to carry molecules that can modulate the immune re-
sponse systemically [157–159]. Chen et al. showed that metastatic melanomas release
exosomes, that carry PD-L1 on their surface and suppress CD8+ T cell effector function
and consequently facilitate tumor growth [160]. In patients with metastatic melanoma,
treated with pembrolizumab, the pre-treatment level of circulating exosomal PD-L1 by
enzyme-linked immunosorbent assay (ELISA) was significantly higher in patients whose
disease failed to respond to treatment.

Immunological biomarkers in melanoma. The tumor microenvironment plays a critical role
in the anti-cancer immune response following IO treatment [161]. In metastatic melanoma,
the co-occurrence of tumor-associated CD8+ T lymphocytes and CD20+ B cells has pre-
dictive value in the treatment outcome of patients receiving ICIs [162–164]. On the other
hand, tumor infiltration by Tregs, TAMs, and MDSCs, as well as accumulation of cancer-
associated fibroblasts is commonly associated with immune “cold” tumors and adoptive
resistance to CPI [165–167]. Organized aggregates of T, B, and dendritic cells form tertiary
lymphoid structures (TLS) that participate in the adaptive antitumor immune response. B
cell infiltrate and the presence of TLS in tumor samples in melanoma patients were found
to be predictive of response to treatment and associated with improved survival [168–172].

During interrogation of immune gene signatures in RNA sequencing (RNA-seq)
data of baseline and on-treatment tumor samples, enrichment of a B cell signature in
responders vs. non-responders at baseline and early on-treatment was observed [168].
Furthermore, tumors with low infiltration of B cells had a significantly increased risk of
death in comparison to the B-cell-high signature cohort of patients [169]. The density of
CD20+ B cells and TLSs and the ratio of TLSs to tumor area were higher in responders
than in non-responders, in early on-treatment samples of patients with melanoma treated



Int. J. Mol. Sci. 2023, 24, 1294 16 of 34

with neoadjuvant ICI [169]. These findings were also supported by recent analyses of a
TCGA cohort that demonstrate an association between a plasmablast-like B cell signature
and improved survival, as well as with an increased expression of CD8a and infiltration of
CD8+ T cells [170].

Recently reported meta-analysis on whole-exome and transcriptomic data of ICI-
sensitive tumors, identified CCR5 and CXCL13 as T-cell-intrinsic markers of ICI sensitivity.
CXC chemokine ligand 13 (CXCL13) exclusively binds CXC chemokine receptor type
5 (CXCR5), which plays a critical role in immune cell recruitment and activation and
regulation of the adaptive immune response. CXCL13 is a key molecular determinant of
the formation of TLSs [173]. Selective expression of CCR5 and CXCL13 in neoantigen-
specific T lymphocytes suggests that a key feature of ICI-responsiveness is the ability to
sustain ongoing priming and recruitment of tumor reactive T cells supported by CXCR5+

lymphocytes, including both T and B cells, and form TLSs [169].
With regards to genomic biomarkers, signatures encompassing T cell-specific gene

expression profiles (GEP) have attracted a lot of interest. A 28-gene set including genes en-
riched for cytolytic activity (e.g., granzyme A/B/K, PRF1), cytokines/chemokines secretion
(CXCR6, CXCL9, CCL5, and CCR5), T cell markers (CD3D, CD3E, CD2, IL2RG [encoding
IL-2Rγ]), NK cell activity (NKG7, HLA-E), antigen presentation (CIITA, HLA-DRA), and
additional immunomodulatory factors (LAG-3, IDO1, SLAMF6). A signature including all
the above was shown to predict response to anti–PD-1–directed therapy in melanoma pa-
tients, and it appears to be a promising multi-dimensional biomarker, currently undergoing
validation in larger clinical trials [152].

Dysfunction of antigen-presenting system was confirmed as one of the mechanisms
of resistance to CPI, mostly related to HLA class I loss [174]. B-microglobulin 2 gene
(B2M) plays an important role in an assembly of all HLA class I complexes, as well as
antigen transport [175]. Mutations in B2M are commonly associated with complete or
partial loss of HLA class I function. Alterations in this gene are commonly identified
in non-responders, and much less are seen in responders [176]. Accordingly, normal
expression of B2M correlates with better overall survival of melanoma patients, treated
with immunotherapy [177].

Clonality and diversity of intratumoral and peripheral TCR repertoire have also re-
cently emerged as potential markers of responsiveness to immune checkpoint inhibitors
in multiple cancer settings including melanoma [178–185]. Overall, these studies suggest
that patients who exhibit a higher diversity of TCR repertoire before treatment and early
evolution of the T cell populations after treatment start have a greater chance to benefit from
immunotherapy. An association between high pre-treatment clonality of the T cell popula-
tion and the probability of response to anti-PD-1 antibodies has also been observed [178].
Interestingly the same parameter showed an association with a lower chance of response to
anti-CTLA-4 agents in melanoma [178]. This suggests that in the presence of an already
expanded and ineffective clone of tumor-specific T cells, the use of anti-CTLA-4 antibodies
will not be able to overcome cancer immune escape.

Asides from the intrinsic immune pathways directly connected to shaping the immune
response, accumulating evidence underlines the presence of extrinsic factors also playing
a pivotal role. Extracellular matrix (ECM) is emerging as another key element that can
influence response to anticancer drugs, including immunotherapeutic agents [186]. ECM
has indeed been demonstrated to regulate immune cell trafficking and activation, as well
as cancer-associated antigen release and presentation [186]. High collagen levels have
been associated with CD8+ suppression and exhaustion and with a lower probability of
deriving benefit from anti-PD-1/PD-L1 blockade in melanoma and lung cancer [179,187].
Collagen is known to exert an inhibitory effect on T cells through the SHP1 pathway
activation, via the leukocyte-specific collagen receptor LAIR1 [188]. These observations
indicate ECM remodeling as a potential strategy to overcome resistance to immunotherapy.
As an example, Peng et al. demonstrated the possibility to restore sensitivity to anti-PD-1
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antibodies by inhibiting intratumoral collagen deposition or blocking the LAIR1-SHP1
pathway [187].

The gut microbiome as a biomarker in melanoma. The gut microbiota influence metabolism,
antitumor activity, and toxicity profile of a broad variety of anticancer treatments, including
immunotherapy [189–193]. An association between higher microbiota biodiversity and
a greater probability to benefit from anti-PD-1/PD-L1 antibodies has been reported for
a variety of cancer types, including melanoma [194]. The abundance of specific bacteria
populations such as Bifidobacterium and Ruminococcaceae has been described in the gut
microbiota of patients benefitting from immunotherapy [194,195]. On the other hand,
the microbiota of non-responders appears to be enriched with different strains such as
Bacteroidaes and Clostridium species [194,196]. Several studies indicate a correlation between
antibiotic-induced gut microbiota dysbiosis and poor clinical outcomes in cancer patients
receiving immunotherapy [196–200].

The mechanisms underlying the relationship between microbiota composition and
response to immune checkpoint inhibitors are not fully understood. Preclinical evidence
indicates that microbiota can induce and activate multiple immune effectors, including NK,
dendritic, CD4+, and CD8+ T cells, as well as Tregs and monocytes, through the production
of different metabolites such as short-chain fatty acids, inosine, and bile-acid [201–208].
Interestingly, gut microbiota not only can influence the immune cell population but may
also have a role in the remodeling of the extracellular matrix [209]. For example, adhesin
A secreted by Fusobacterium species, Bacteroides fragilis toxin, and gelatinase E produced
by E faecalis can modulate cell-to-cell interaction and mediate tumor progression and
metastatic spread [210]. On the other hand, cross-reactivity between cancer cells and
microbiota antigens can augment cancer cell immunogenicity and hence, promote ICI
efficacy [211,212].

Following these findings, significant efforts have been made to develop effective strate-
gies to correct gut dysbiosis with an aim to prevent or revert resistance to immunotherapy,
with the strongest evidence supporting for fecal microbiota transplantation (FMT) so
far [202]. The potential role of FMT in overcoming immunotherapy resistance is supported
by preclinical and early clinical data. FMT from patients with cancer who responded to im-
munotherapy demonstrated an increased probability of benefit from anti-PD-1 blockade in
xenograft mice [213]. In these models A. muciniphila and E. hirae shown the ability to induce
secretion of IL-12 from dendritic cells, supporting immune-surveillance. Oral administra-
tion of A. muciniphila demonstrated the capability to revert resistance to immune checkpoint
inhibitors in xenografts receiving FMT from non-responders [213]. Two proof-of-concept
studies tested the efficacy of FMT administered by colonoscopy as a potential strategy
to revert anti-PD-1 resistance in melanoma patients with disease progression following
anti-PD-1 treatment [214,215]. FMT resulted in prolonged modification of the microbiota
of the recipients and an objective response or prolonged disease stability lasting for more
than 12 months was observed in 36% of the patients enrolled in the two studies. In patients
who responded to ICI, FMT induced changes in the cytokine profile, with down-regulation
of CCL2, IL-8, IL-18, IL12p70, and IFNγ and upregulation of IL-21, CXCL13, IL-5, IL-13,
IL-10, TNF, and TRAIL [215]. Unsupervised single cell analysis of blood samples collected
at baseline ad at serial time points during treatment was performed in one of the two
studies [215]. This analysis demonstrated a higher prevalence of activated CD8+ cells in
post-treatment samples from responding patients, characterized by overexpression of TIGIT,
Tbet, and LAG-3 and suppression of CD27, on their cell surface. Moreover, responders had
a higher percentage of peripheral T memory cells. Single-cell RNA sequencing of tissue
samples collected before and after treatment was also extremely informative. This evalu-
ation showed a higher prevalence of myeloid cells and Tregs in post-treatment biopsies
from non-responders, whilst an increased expression of MHC class II genes was observed
in samples obtained by patients who responded to treatment. Notwithstanding these
encouraging results, FMT is an invasive procedure and therefore alternative approaches
to modulate microbiome in cancer patients are currently under investigation including
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the use of probiotics, dietary intervention, and engineered microbiome (NCT04753359,
NCT03637803, NCT03686202) [202].

4. Biomarkers of Disease Activity/Treatment Monitoring in Melanoma

ctDNA as a tool. Circulating tumor DNA (ctDNA) is the component of fragmented
cell-free DNA (cfDNA) derived from tumor cells. Genomic profiles based on ctDNA are
highly concordant with those of primary tumors, and ctDNA levels correlate directly with
tumor burden. The detection of ctDNA following radical surgery may identify patients at
the highest risk of clinical relapse and provide a “real-time” disease status at the molecular
level. Therefore, the role of ctDNA as a non-invasive biomarker of molecular residual
disease is widely evaluated in multiple tumor types. Liquid biopsy techniques measuring
ctDNA can identify cancer DNA traces at the microscopic level [216,217]. This approach
offers the possibility to monitor disease longitudinally and enables timely detection of
disease progression or relapse [218].

Quantitative and digital polymerase chain reactions (like digital droplet PCR, ddPCR)
were the first ctDNA detection approaches for selective gene targets [219,220]. Although
highly validated, ddPCR is limited in its breadth to cover a large number of mutations in
a tumor-specific and personalized way for each patient. Application of next-generation
sequencing-based techniques is increasingly growing and allows for the detection of multi-
ple mutations per patient and high sensitivity ctDNA tracking [221,222]. Next-generation
sequencing (NGS) methods applied in a “tumor-informed” manner (i.e., tissue analysis
is conducted to verify tumor specificity of aberrations observed in plasma) have the ad-
vantage of providing a signature of putative cancer-derived aberrations through analysis
of concordant mutations [223,224]. Highly sensitive assays have permitted novel tracking
of dynamic changes during therapy in a more sensitive way compared to ddPCR. For
example, in early lung, colorectal, and breast cancers, postoperative detection of ctDNA
prognosticates disease recurrence with high accuracy [225–230].

ctDNA as disease predictor in melanoma. Independently of standard AJCC staging,
pre-operative detection of ctDNA in patients with stage III melanoma is associated with
a 3-fold increased likelihood of disease relapse and half the time-to-distant metastatic
relapse (6.2 months vs. 13.9 months (HR 1.59; 95% CI 1.0–2.52; p = 0.027)) [231,232]. This
translates into a significantly shorter median melanoma-specific survival of 17.6 months
compared with 49.4 months in patients with undetectable ctDNA levels (HR 2.11; 95% CI
1.20–3.71, p < 0.01), confirming the validity of ctDNA as a prognostic biomarker in early-
stage melanoma. With serial assessments of ctDNA, a retrospective study of patients with
stage III melanoma and no radiological evidence of disease, demonstrated that detection of
BRAF/NRAS mutant ctDNA (by digital droplet PCR, ddPCR) at a single timepoint within
12 weeks of surgery was associated with worse disease-free interval and OS [233].

The detectability of ctDNA after surgical resection in melanoma patients is low, with
detection rates below 25% even when using highly sensitive NGS-based assays [218,233–236].
Significant correlation has been observed between the presence of detectable ctDNA after
surgery and shorter survival outcomes [232–234,237]. Despite the limited amount of data
some studies seem to indicate that the administration of adjuvant immunotherapy might
prolong the progression free survival of patients with positive ctDNA after surgery, nullifying
the difference with the ctDNA negative population [232,234].

Perhaps the most robust research on the predictive value of ctDNA in melanoma, both
in terms of patient sample size and use of most advanced ctDNA sequencing methodology
so far, was conducted and reported as part of the CheckMate 915 study translational
analysis. Long et al. confirmed in a cohort of 1127 patients with either resected stage
IIIB-D and IV melanoma, that ctDNA detection at baseline can be an efficient predictor of
recurrence-free survival for patients undergoing ICI treatment [237]. The predictive value
was even more robust when ctDNA detection was combined with tumor TMB level and a
tumor-derived IFNγ signature including HLA-DRA, CXCL9, GZMA, PRF1, CCR5, IFNG,
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CXCL10, IDO1, STAT1, and CXCL11 [152]. Overall, current evidence supports the use of
postoperative ctDNA measurement to enable risk stratification of disease recurrence.

ctDNA and immunotherapy response in melanoma. Several studies have also investi-
gated the potential use of ctDNA to predict anticancer therapy efficacy in melanoma
patients [238,239]. These studies might be heterogeneous in terms of patient population
and methodology used for ctDNA detection; however, they offer some important insights.
Baseline levels and dynamic changes of ctDNA quantified with digital droplet PCR or
with NGS-based assays were demonstrated to predict survival outcomes and response
to immunotherapy in patients with metastatic disease [134,240–242]. Interestingly Lee
et al. observed that ctDNA quantification might also be a valuable tool to distinguish
patients who are having pseudo-progression on ICI from those whose disease is truly
progressing [243].

Aside from the quantification of tumor burden and minimal residual disease, ctDNA
evaluation can provide important information regarding the molecular features of cancer
cells. The use of blood-based assays to evaluate known predictors of immunotherapy
sensitivity, such as tumor mutational burden and microsatellite instability is rapidly ex-
panding [244–249]. This approach not only overtakes the need for tissue samples but
might also overcome the issue of tumor heterogeneity. Furthermore, ctDNA analysis is a
promising methodology to study clonal evolution and the mechanisms underlying drug
resistance [218,250,251]. Li et al. performed ctDNA analysis in 12 patients with NSCLC
treated with pembrolizumab [252]. Serial samples were collected before and during treat-
ment and sequenced against a 329 pan-cancer gene panel. Increasing levels of a PTCH1
mutation were observed in a patient who was developing a new metastatic lesion more
than 3 months before disease progression in CT scans. The authors also observed the
sequential emergence of two different acquired mutations of B2M in another patient whose
disease progressed after achieving an initial response to pembrolizumab. Similarly, Jin
et al. used a 425-genes next-generation sequencing panel to profile tumor tissue and blood
samples collected before and after treatment in 46 gastric cancer patients treated with
anti-PD-1 antibodies [253]. Baseline TGFBR2, RHOA, and PREX2 mutations were identified
as predictors of shorter PFS. To investigate potential markers of acquired resistance, blood
samples obtained at the time of ICI-resistance emergence from 16 patients were analyzed.
FOXL2 gene mutations and copy number variations of FGFR2 were identified as new
alterations in two patients and a new RHOA mutation was observed in another patient
suggesting possible implication of these genes in driving the newly acquired immune
treatment resistance.

Evidence supporting the use of ctDNA to study clonal dynamics exists in melanoma
too. Takai et al. reported the results of whole exome sequencing of sequential ctDNA
samples collected from 14 patients with metastatic melanoma receiving ICI [254]. Newly
emerged ctDNA mutations—such as in ARID1B—were observed at the timepoint of disease
progression. Overall, this data showcase ctDNA as a powerful tool to guide treatment
decision and inform the design of clinical trials testing novel therapeutic strategies to
overcome drug resistance. In a disease like melanoma, where ICI-resistance therapeutic
strategies are critically needed, ctDNA can be proven immensely instrumental.

5. Molecular Biomarkers in Non-Melanoma Skin Cancers

Cutaneous squamous cell carcinoma (cSCC) is affecting more than 1 million people
in the United States, every year. Incidence is rising due to increasing sun exposure and
an aging population. Approximately 2–5% of the patients present with locoregionally
advanced cSCC [255]. Ultraviolet exposure, with subsequent DNA damage that leads
to a high tumor mutational burden (TMB), as well as a state of immunosuppression,
is the main risk factors for cSCC development and interestingly, both factors correlate
with superior response to immunotherapy [116,256]. In the recent decade, multiple trials
confirmed the efficacy of ICI in various stages of the disease [117,118,124,257–259]. In
most published studies, tumor response and survival subgroup analyses were mainly
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based on clinical characteristics, along with well-established biomarkers, such as TMB
and PD-L1 status. PD-L1 positivity (>1%) is reported to correlate with better response to
treatment, although up to 20% response rate was observed in PD-L1 negative (less than 1%)
tumors [124,260,261]. Tumor mutations burden is considered to be generally high in cSCC,
but nevertheless, this can vary significantly. In a recently published study with neo-adjuvant
cemiplimab [124], patients’ median tumor mutational burden of 61.1 mut/Mb was found
to correlate with the achievement of major or complete pathologic response [124]. From an
immune microenvironment perspective, as expected, infiltration of T cells, including CD8+

T cells and CD4+ Th1 cells was associated with superior treatment response. This was
accompanied by a significantly higher expression of IFNγ-related immune genes. On the
other hand, abundant Tregs and CD68+ myeloid cells expressing the inhibitory checkpoint
V-domain immunoglobulin suppressor of T cell activation (VISTA), were reported as
biomarkers of resistance [261].

Merkel cell carcinoma (MCC) remains a very rare cancer type, usually affecting elderly
patients, with 5-year overall survival ranging from 63% in stage I, to 13% in stage IV [125].
Two main factors are implicated in MCC tumorigenesis: Merkel cell polyomavirus (MCPyV)
or chronic UV exposure. MCC is highly immunogenic due to the presence of either
MCPyV-derived viral antigens or UV exposure-associated neoantigens, thus representing
a disease amenable to ICI treatment [262–265]. Mutational profile varies between these
two subgroups. For MCPyV-negative patients, next-generation sequencing (NGS) and
whole exome sequencing (WES) have revealed a high tumor mutational burden (TMB),
with recurrent mutations in TP53 and RB1. On the other hand, MCPyV-positive patients
demonstrated 100-fold lower TMB than MCPyV-negative tumors, without a pattern of
recurrent mutations [263,264]. Notwithstanding these differences, both subtypes remain
highly immunogenic and responsive to ICI, independent of MCPyV or TMB status. As
a result, to this point, TMB cannot be utilized as a predictive biomarker for response to
ICI [114,266,267]. In the same vein, PD-L1 does not represent a robust biomarker either for
this type of malignancy [266,267].

On the other hand, several studies have reported clinical biomarkers as surrogates
of improved response to ICI. These include prior lines of treatment, where the use of ICI
as a first-line therapy was associated with two-fold response rates as compared to admin-
istering it in the second-line setting [120,121,126,266]. Moreover, other clinical features
associated with prolonged survival are less advanced disease at diagnosis, significant
tumor shrinkage after exposure to ICI, limited number of tumor-affected organs, shorter
disease-free interval between completion of initial treatment and recurrence and lack of
immunosuppression [114,127,268]. Evaluation of peripheral blood indices showed longitu-
dinal correlation of lower neutrophil to leukocyte ratio with improved patient outcomes.
However, the correlation was not confirmed when the neutrophil/leucocyte ratio was
assessed at baseline or individual timepoints only during treatment with ICI [127]. From
immunological and molecular biomarker perspective, predominance of CD8+ T cells among
tumor infiltrating lymphocytes (TIL) at baseline and presence of ARID2 and NTRK1 muta-
tions were associated with a favorable response to PD-1/PD-L1 ICI therapy in advanced
MCC [114,120,268].

Lastly, basal cell carcinoma (BCC) is the most common type of malignancy, although
it rarely evolves into advanced disease, due to very latent behavior [255]. Along with
cSCC, BCC has one of the highest mutational burdens among cancer types [269]. Due to
the high efficacy of hedgehog inhibitors (HHI) in advanced BCC, immunotherapy was
not evaluated in this disease only until recently [270]. After initial positive results of ICI
following progression on HHI [122], multiple trials were opened to evaluate the role of ICI
in the BCC treatment algorithm (Table 3). From a biomarker perspective, very limited data
is currently available, although exploratory biomarker analysis from a recently reported
trial [122] showed no clinically meaningful associations between objective response and
any of the biomarkers, established as predictive in other tumor types, including PD-L1
expression, TMB or MHC-I expression.
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6. Conclusions

The unparalleled survival improvement brought about by immune checkpoint treat-
ment in patients with melanoma has undoubtedly changed the therapeutic landscape of
the entire field of oncology, as well as the current focus of cancer research. One could
draw similarities to the discovery of intracellular pathways and the advent of targeted
treatments which was yet another important milestone for cancer clinical practice at the
end of the previous century. In contrast to intracellular pathway blockade though, immune
checkpoint inhibition offers longevity of disease response and the so-elusive prospect of a
cure in the metastatic setting.

Notwithstanding the success of immunotherapy, there is still a significant number
of patients with melanoma who have either primary or acquired resistance to immune
checkpoint blockade. This particular cohort of patients is severely disadvantaged by the
paucity of clinically validated biomarkers of immunotherapy resistance and in the worst-
case scenario, they also have to endure the immune-related adverse events that come
with treatment. There is an imperative need to discover the biological mechanisms under-
pinning this resistance and to determine high-sensitivity molecular markers to describe
these mechanisms.

The focus now is turning to unraveling immune pathways that work synergistically
with the known immune targets, with an aim to push the boundaries of treatment resistance
even further. These discoveries will not be fruitful though unless accompanied by biomark-
ers of response and resistance that will guide target selection and treatment sequencing.
The moment when “personalized immunotherapy” becomes a reality in clinical practice
will hopefully come in the not-too-distant future.
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