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A B S T R A C T   

Meeting the goal of zero emissions in the energy sector by 2050 requires accurate prediction of energy con
sumption, which is increasingly important. However, conventional bottom-up model-based heat demand fore
casting methods are not suitable for large-scale, high-resolution, and fast forecasting due to their complexity and 
the difficulty in obtaining model parameters. This paper presents an artificial neural network (ANN) model to 
predict hourly heat demand on a national level, which replaces the traditional bottom-up model based on 
extensive building simulations and computation. The ANN model significantly reduces prediction time and 
complexity by reducing the number of model input types through feature selection, making the model more 
realistic by removing non-essential inputs. The improved model can be trained using fewer meteorological data 
types and insufficient data, while accurately forecasting the hourly heat demand throughout the year within an 
acceptable error range. The model provides a framework to obtain accurate heat demand predictions for large- 
scale areas, which can be used as a reference for stakeholders, especially policymakers, to make informed 
decisions.   

1. Introduction 

Space heating for buildings accounts for approximately 25 % of the 

UK’s energy demand while this proportion is higher in high-latitude 
regions, such as Scotland [1]. In 2016, heating accounted for 37 % of 
the total greenhouse gas emissions in the UK, making heat a critical 
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energy sector for decarbonisation [2]. A number of technologies (e.g. 
low carbon heat networks, hydrogen and heat pumps) have been pro
posed to support the decarbonisation of heat to ‘net zero’ by 2050. The 
most promising low-carbon heating technologies are all electrical based, 
which can place significant strain on local electricity infrastructure. As 
the Boiler Upgrade Scheme (BUS) project moves forward, more heat 
pumps will be installed in domestic buildings [3]. However, there is 
currently very little understanding of how the electrification of heat will 
affect the resilience of the electrical grid in the lead to 2050. This makes 
the predictions of heat demand an important milestone on the path to 
the net-zero emission targets. In particular, a high-resolution and rapid 
response model for heating demand prediction is necessary to give 
policymakers the essential data support. Many research methods for 
heating demand estimation for different purposes or scenarios have been 
proposed. 

Monitoring heating demand is not as simple as electricity meters and 
the meter for heat is not widely used today. As mentioned in many pieces 
of research, the real demand data for heat is not easily accessible. It can 
be found that not all buildings have advanced building automation 
systems. Also, the heating is always provided by different technologies 
and multiple sources, which increases the difficulty of measurement. As 
real data on the heating demand of district heating systems are more 
accessible than in a national area, forecasts of heating demand are 
mostly concentrated on district heating systems. The availability of 
high-resolution data at the district level is a contributing factor to this 
phenomenon. Also, construction data of buildings, such as wall and 
window insulation, is comparatively easier to collect at the district level. 
Nonetheless, it should be noted that not all district-level heating systems 
have monitoring systems installed, leading some studies to rely on the 
construction of physical models to obtain high-resolution data. In many 
investigations, therefore, training data is derived from building simu
lations, especially for the early design of a building. Singaravel et al. 
designed a data-driven model for the design stage of buildings, in which 
specific data from similar circumstances can be reused [4]. Singh et al. 
proposed that enrichment is more effective than increment to decrease 
the generalization for early-stage building energy prediction and 
develop an efficient data collection approach [5]. However, 
high-resolution models are often used for small areas, such as a campus. 
There is not sufficient data for long-term forecasts for large areas such as 
a city or country. Large-scale heat demand estimations, such as national 
demand, are always based on economic data which can only calculate 
the annual demand. However, as decarbonisation is being implemented 
and the interaction of different energy sectors deepens, it becomes 
apparent that long-term forecasts based on economic models are not 
sufficient. 

In energy demand estimation methods, machine learning (ML) based 
models can make fast and accurate predictions after being trained using 
large amounts of data. ML can make more reliable predictions than other 
statistical or physical methods, which can significantly reduce labour 
costs and time consumption [6]. Therefore, the application of ML in the 
energy sector has grown exponentially over the past decade, especially 
in forecasting electricity demand and renewable power generation [7], 
such as solar and wind power [8]. ML energy prediction has also been 
increasingly applied to building energy consumption [9]. Kurek et al. 
analysed heat demand forecasting for district heating (DH) systems 
using various ML methods [10]. Deng et al. compared the statistical and 
ML prediction model with publicly available building energy data from 
US commercial buildings [11]. Co-author Si used the University of 
Glasgow campus as a case study, using ML in place of physical models to 
predict the heat demand of the campus quickly and accurately [12]. The 
Extra-Trees Regressor and Extreme Learning Machines algorithm were 
used individually and coupled in a heat prediction model for District 
Heating Systems [13]. Olu-Ajayi et al. developed an annual prediction 
model for residential buildings in the design stage with ANN, Gradient 
Boosting (GB), Deep Neural Network (DNN), Random Forest (RF), 
Stacking, K Nearest Neighbour (KNN), SVM, Decision tree (DT) and 

Linear Regression (LR) [14]. 
The ANN-based method is one of the most popular forecasting 

methods for energy planning models, and it has been used for the pre
diction of energy consumption at both the district level and national 
levels [15]. ANNs have extensive applications at the district level and 
are renowned for their high accuracy. Conversely, national-level pre
dictions typically concentrate on forecasting annual demand which is 
based on economic data. Geem et al. developed an ANN model based on 
population, GDP and energy consumption data to predict the annual 
energy demand for South Korea [16]. Liu et al. proposed an annual 
energy prediction model for different sectors in Spain with ANN and 
grey neural network according to three different GDP growth scenarios 
(optimistic, baseline and pessimistic) [17]. Luo et al. designed a pre
diction framework for multiple building energy loads with different 
machine-learning methods and the ANN-based model is the best accu
racy and average time-consuming [18]. Elbeltagi et al. designed a 
user-friendly interface based on the ANN algorithm to calculate the 
heating and cooling consumption of any building with the need for 
building physical chrematistics and building location [19]. Li et al. 
proposed an ANN-based model with the method of characterization 
decomposition (MCD) and the method of spatial homogenization 
decomposition (MSHD), which can be used to predict buildings with 
complex architectural forms [20]. Kannari et al. developed prediction 
models based on ANN for different types of buildings [21]. Bünning et al. 
enhanced the accuracy of a daytime ANN model with online corrections 
[22]. Parfenenko et al. forecasted the daily heat demand of 
district-heated public sector buildings based on an ANN model [23]. Li 
et al. designed an ANN-based building energy model with transfer 
learning for one hour ahead energy prediction based on the data from 
the Building Genome Project, which have a better performance for 
information-poor buildings by taking advantage of rich data from other 
buildings [24]. Seyedzadeh et al. proposed that choosing the right 
method for building energy prediction is important by analysing 
methods of ANN, SVM, Gaussian-based regressions and clustering [25]. 
Singaravel et al. proposed a faster and more accurate model for pre
dicting heating demand based on model data from Energy Plus by using 
a component-based ML (CBML) algorithm [26]. Nutkiewicz et al. pro
posed a Data-driven Urban Energy Simulation (DUE-S) framework that 
combines ML with building simulation [27]. The algorithm application 
or development of ML is the most attractive topic in building load pre
diction, but it is still a challenge to realise automation in the industry. In 
the meantime, more research on the effects of climate change on 
buildings’ energy performance by using ML approaches is necessary for 
the future [28]. 

However, the lack of data exists not only in the case of heat demand 
data or building data but also in the case of meteorological data. It is also 
the reason why ML is used less for heating demand forecasting in the 
reality. The meteorological data of recent years is more complete and 
has more data types. However, there are fewer data types in the his
torical meteorological database. This gap would result in ML methods 
built on current meteorological data types not being able to train with 
historical meteorological data that misses some data types. Therefore, 
feature selection methods are used to extract more sensitive meteoro
logical data from the database to train ML models. In this way, the 
trained ML model can use fewer types of meteorological data, incorpo
rating historical data into the training dataset. The complexity of pre
dicting future meteorological conditions and heat demand can also be 
reduced, thus making heat demand forecasting more reliable and 
achievable. Especially when applied to ML models, some inputs can 
bring perturbation to the system. Seyedzadeh et al. made some specific 
tunings to several popular ML algorithms and compared the perfor
mance of the tuned model with the original model through sensitivity 
analysis [29]. Potočnik et al. combined feature extraction and various 
ML methods to develop a multi-step short-term heat demand forecasting 
model in district heating (DH) systems [30]. Zhang et al. proposed a new 
approach for feature selection by combining three global sensitivity 
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analyses, Pearson, Sobol’ and PAWN, with RF. The GSA-based feature 
selection method is significantly better than the feature extraction 
method principle component analysis (PCA) in predicting settlement in 
tunnel applications [31]. Shen et al. proposed a feature selection method 
based on sensitivity analysis and applicable to SVM. The method as
sesses the importance of a selected feature by calculating the total value 
of the absolute difference between the probability output of an SVM on 
the feature space with or without the feature [31,32]. Hana et al. 
developed a wrapper feature selection method for supervised learning 
based on Sobol’ global sensitivity analysis. Random Forest and a set of 
published data are used to validate this feature selection method and the 
proposed feature selection significantly improves the accuracy of the 
predictions [33]. Becker et al. applied global sensitivity analysis to select 
variables in Regression Models and a competitive novel model selection 
method based on the ‘Pantula-principle’ was obtained [34]. Guo et al. 
combined correlation analysis with the LASSO method to select opti
mised feature sets for a building energy prediction model which includes 
four different ML methods: MLR, SVR, BPNN and ELM. [35]. Eseye et al. 
also combined ML with feature selection to develop a model for pre
dicting the heating demand of a specific building [36]. Li et al. devel
oped a prediction model with support vector regression (SVR), linear 
model stepwise regression (LMSR), distance-weighted K-nearest neigh
bours (KNN) and naive Bayes (NB) for electricity and heating demand on 
campus and select the optimised feature set to improve the model by 
using Particle Swarm Optimization and Genetic Algorithms (GA) [37]. 
Salcedo-Sanz et al. improved the accuracy of wind energy predictions 
with a new packaging method for feature selection [38]. Ahmad et al. 
designed a prediction model for district energy consumption by 
comparing several different feature selection methods [39]. 

Based on the literature review presented, the following key issues are 
summarised for ML applications in heat demand prediction.  

• For heating demand prediction, ML is mainly applied to individual 
buildings or small-scale building complexes.  

• Most research has focused on improving ML algorithms and applying 
different ML algorithms, but there is a lack of assessments of future 
scenarios like 2050. 

• The lack of architectural and meteorological data is also an impor
tant reason for the low application of ML for large-scale, high-pre
cision heat demand forecasting. 

This research paper aims to introduce a novel framework for the 
efficient acquisition of high-resolution national-level data. The proposed 
approach replaces the traditional physical model with an Artificial 
Neural Network (ANN)-based model, which is a first in the field of high- 
resolution modelling at a national level. In this framework, information 
pertaining to buildings is omitted, while weather and timing data are 
retained as the main inputs. The lack of high-resolution heating demand 
data in the UK is a prominent issue, as it is challenging to directly 

monitor and is typically recorded on a yearly or monthly basis, as stated 
at the beginning of the paper. To address this limitation, this study relies 
on a validated simulation model to provide data. The simulation model 
acts as a source of data, while the ANN model simplifies the construction 
of the simulation model. Furthermore, this paper suggests a combination 
of sensitivity analysis and correlation analysis for selecting relevant 
features, thereby reducing the required types of meteorological data. 
This feature selection technique enhances the efficiency of the model. To 
validate the practical application of this framework, the model will be 
employed to predict the domestic heating demand in Scotland in the 
year 2050. The key innovations of this model are as follows:  

1 The proposed model provides a fast response compared to the 
physical model, while maintaining the same high resolution at a 
national level.  

2 It offers a prediction model solely based on weather data for building 
space heating, thereby eliminating the need for building-specific 
information.  

3 The improved model successfully reduces the number of inputs 
required, while still ensuring accuracy. This enhancement greatly 
enhances the practical applicability of the model. 

The remainder of the paper is organised as follows. Section 2 de
scribes the methodology of the model. Section 3 provides the application 
of the model to Scotland. Section 4 presents the results and discussion. 
Section 5 is the conclusion of the study. 

2. Methodology 

Fig. 1 describes the overall process of modelling. A physical model is 
mainly composed of the building simulation and the building stock, 
which is not the task of this paper. The meteorological data and the heat 
demand obtained from the physical model are used as training data to 
train the ANN network. At the same time, sensitivity analysis and cor
relation analysis are applied to select features for the models. ANN 
networks and feature selection have constituted the model in this paper 
and are described further in this section. 

2.1. ANN 

ANN is proposed based on the structure of the human brain. It is a 
simplified model of the biological neural network, which has the ability 
to store empirical knowledge and process-related problems [40]. The 
basic elements of an ANN are neurons, which are connected in parallel to 
form each layer of the ANN. The simplest ANN is called perceptron, 
which has only one layer with one neuron. Each input of the perceptron 
has a corresponding weight, while the neuron can be considered as a 
mapping function. A single neuron is connected to thousands of other 
neurons. The information from the environment or other neurons is 

Fig. 1. Block diagram of the prediction model.  
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transmitted through numerous dendritic links. It is mentionable that a 
neural network is considered as a black box due to the unviewable in
ternal working. It is difficult to investigate the relevance between the 
addressed problem and its internal structure. The ANN should be trained 
with a large amount of data before using it to solve the corresponding 
problems [41]. Because of its massively parallel distributed structure 
and its powerful learning and generalisation capabilities, ANN can solve 
many complex problems. 

2.1.1. Back propagation network 
A back propagation (BP) neural network is a multi-layer feedforward 

neural network, which is characterised by the forward propagation of 
signals and backward propagation of errors. The BP neural network 
propagates forward layer by layer to obtain a result, and this result o is 
compared with the expected result d to obtain an error e. The neural 
network passes the error from the back to the front using the `gradient 
descent’ strategy to adjust weights and thresholds until a selected 
stopping criterion is met. The specific analysis of the working process of 
the BP neural network can be divided into five steps. The first step is 
initialization, which refers to setting the initial values of the weights and 
thresholds, generally set to zero without prior information. An error 
equation and an activation function need to be chosen and used in the BP 
network. The learning rate, number of iterations, and target error also 
need to be set. The second step is briefly summarised as input training 
data and the desired output. The third and fourth steps are the forward 
and backward computations, which are the most important processes for 
BP to adjust the weights and bias. The fifth step is the iterative forward 
and backward computations with the training data [42]. 

2.2. Feature selection 

The selection of model inputs is essential to the result. The selection 
of inputs is known as feature selection (FS) in ML, which is the process of 
selecting the most relevant features for use in model construction. 
Features are divided into three categories: those that are useful for the 
learning task and can enhance the effectiveness of the learning algo
rithm are called relevant features; features that do not help the algo
rithm in any way and do not bring any improvement to the effectiveness 
of the algorithm are called irrelevant features; features that do not bring 
new information to the algorithm, or whose information can be inferred 
from other features, are called redundant features [43]. Removing 
irrelevant and redundant features reduces the difficulty of the learning 
task, simplifies the model and makes it easier to understand. Fewer in
puts also save on storage and computational overheads. The additional 
features, while better fitting the training data, may also increase the 
variance. Typically, the training sample of a model increases signifi
cantly with the number of features. Therefore, FS reduces the risk of 
overfitting and improves generalization ability. The three types of 
feature selection methods are filter, wrapper and embedded [33]. The 
filter applies feature selection before training the network, so the pro
cess of feature selection is independent of the learning process. It is 
similar to applying a filter to the features and then using a subset of the 
features to train the network. It does not rely on any ML methods and 
does not require cross-validation, making it computationally more effi
cient. However, the characteristics of ML algorithms are not considered. 
Wrapper combines FS with ML algorithms. The usage of ML algorithms 
to evaluate the effectiveness of feature subsets allows the detection of 
interactions between two or more features. In general, different com
binations of subsets are generated. These combinations are compared, 
and the selection of subsets can be considered as an optimization 
problem. However, this method requires training a model for each 
subset of features, which is computationally intensive. It is likely to be 
overfitting if the training sample is not sufficient, and the computational 
complexity is too high when the number of feature variables is large. 
Embedded in the selection of those features that are important for the 
training of the model in the process of determining the model, which has 

the advantage of being combined with an ML algorithm, as well as the 
computational efficiency of the filter method. However, this method 
does not eliminate noisy or irrelevant features and therefore sacrifices 
model performance [33,43,44]. 

2.2.1. Sensitivity analysis 
Sensitivity analysis is the study of the importance of different inputs 

to a model and measures the effect of changes in the inputs on the 
output. Typical sensitivity analysis is divided into local and global 
sensitivity analyses. The one-way method is a type of local sensitivity 
analysis where one parameter is changed at a time and the change in 
output is observed to determine the effect of the input on the output. 
Although local sensitivity analysis does not consider the interactions 
between inputs, it is a simple and intuitive way of explaining the effects 
of inputs. Hence, the local sensitivity analysis method is a common 
approach in engineering research. 

Global sensitivity analysis has the ability to show the influence be
tween inputs and it can be applied to non-linear models. However, 
global sensitivity analysis is computationally intensive and is highly 
dependent on the assumed probability distribution of the input param
eters or their range of variation [45]. At the same time, global sensitivity 
analysis does not have a uniform definition of sensitivity coefficients, so 
different methods often lead to different sensitivity rankings. The Morris 
method is a global sensitivity analysis method developed based on the 
local derivative-based sensitivity method, which incorporates the ad
vantages of both local and global sensitivity analyses. Morris method 
approximates this derivative using a finite difference scheme [46]. 

The elementary effect EEi of the ith factor is 

EEi =
f(X1,X2,… + Δ,…,Xn, ) − f(X1,X2,… + Xi,…,Xn, )

Δ
(1)  

where Δ is step size, n is the number of factors 

μi =
∑r

k=1
EEk

i

/

r (2)  

μi is the mean of these elementary effects, r is the repetition time 

μ∗
i =

∑r

k=1

⃒
⃒EEk

i

⃒
⃒

/

r (3)  

μ∗
i is absolute values of μi and this value is used to reflect the significance 

of the input. 

2.2.2. Correlation analysis 
Correlation analysis is the analysis of two or more variables that are 

correlated to measure how closely the variables are related to each 
other. There needs to be a certain association or probability between the 
variables for correlation analysis to be carried out. Correlation analysis 
in statistics usually refers to the degree to which a pair of variables are 
linearly correlated. A well-known correlation analysis method is the 
Pearson Correlation Coefficient, which is defined as the quotient of the 
covariance and standard deviation between two variables, with a value 
between − 1 and 1. If the coefficient is positive, the two variables are 
positively correlated, i.e., the larger the value of one variable, the larger 
the value of the other variable. If the coefficient is negative, the two 
variables are negatively correlated, i.e., the larger the value of one 
variable, the smaller the value of the other variable. The larger the ab
solute value of the coefficient, the stronger the correlation, but it should 
be noted that there is no causality between them. If the coefficient is 
zero, it indicates that the two variables are not linearly related. The 
Pearson Correlation Coefficient is a linear correlation analysis method. 
In addition to this, linear regression is a very powerful tool in terms of 
studying the relationships between variables, but the complexity of 
engineering problems makes it difficult to describe the variable re
lationships with a straight line. Polynomial regression can handle 
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nonlinear problems, and it occupies an important place in regression 
analysis because any function can be approximated by polynomials in 
segments. The great advantage of polynomial regression is that it can 
approach the objective by adding higher terms of inputs until the results 
are satisfactory. Therefore, polynomial regression can always be used to 
analyse the usual practical problems, regardless of the relationship be
tween the dependent variable and other independent variables [47]. 

A kth-order polynomial model in one variable can be represented by 
the following equation, where x is the independent variable y is the 
dependent variable, β is the regression coefficient, and ε is an unob
served random error. 

y = β0 + β1x + β1x2 + … + βkxk + ε (4) 

In regression models, the Coefficient of determination is usually used 
to indicate the strength of the variable association. The coefficient of 
determination R2 is defined by the following equation. 

R2 = 1 −
SSE
SST

(5) 

SST is the total sum of squares, 

SST =
∑

(yi − y)2 (6)  

y is the real value of data set, y = [y1, y2… yi…yn], y is the mean value of 
the data set. 

y =
1
n

∑n

0
yi (7) 

SSE is the error sum of the square, 

SSE =
∑

(yi − ŷi)
2 (8)  

ŷ is the fitted value, ŷ= [ŷ1, ŷ2… ŷi…ŷn]

3. Case study 

3.1. ANN topology 

An ANN has input layers, hidden layers, and output layers, where the 
hidden layer can have one or more layers. In many ANN models for 
estimating building energy consumption, four different types of inputs 
will be included: time, meteorological data, building characteristics and 
human activity. Depending on the purpose of the model, time is 
generally quarterly, monthly, weekly and hourly. Building characteris
tics mainly include floor area, volume, wall isolation and window area. 
ANN models built for a specific building will generally have building 
characteristics as interim parameters. The impact of human activities, 
such as heating schedules, numbers of occupants and heating setpoints, 
are also included in a particular building model. Different from most 
simplified models, the model used in this paper is specific to an area. 
Therefore, building characteristics and human activities will not be 
counted. As inputs such as building construction parameters, heating 
schedules and set temperatures that have a significant impact on ther
mal demand are removed, it is more difficult to forecast heating demand 
for regions compared to forecasting for specific buildings. In the case 
study, the inputs are meteorological data and time while the output is 
the hourly heating demand in Scotland. Fig. 2 shows the ANN topology 
used in this paper. There are 13 inputs to the ANN model, two hidden 
layers with 40 and 1 neuron respectively, and one output. After repeated 
training, a two-layer hidden layer gives more accurate results than a 
one-layer hidden layer, but more neurons in the second layer did not 
improve the accuracy but increased the computation time. The deter
mination of the hidden layers and nodes of an ANN is still a research 
topic and there is no exact formula to give an optimal structure. The 
common approaches to determine the ANN structure are summarised in 
Rules of Thumb, Trial and Error, Exhaustive Search, Growing Algo
rithms, etc. [48]. In the past, a number of works have summarised a 
formula based on experience or case studies to provide an approximate 
range for determining the number of hidden layers and nodes. In this 
paper, the formula in [49] is used to determine the approximate range, 
based on which the final number of layers and nodes is determined by 

Fig. 2. ANN topology in this paper.  
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manual adjustment. 

3.2. Training data 

Scotland, as a complex region where energy policy is governed by 
both the Scottish and UK governments, is often neglected in research. In 
the case study, we took the Scottish domestic sector as an example to 
analyse its heating demands. There are many monitoring stations in 
Scotland, and it is impossible to obtain data from all of them. The 
meteorological data of Glasgow has been chosen to represent Scotland 
because Glasgow is one of the most densely populated areas in Scotland, 
and secondly the meteorological data for Glasgow are the most 
comprehensive we have access to. Fig. 3 shows some of the meteoro
logical data used by the model. 

In a previous study, the authors of this paper presented a bottom-up 
physical model to predict the hourly heat demand in the UK by 2050 
[50]. The building simulation model was developed based on the theory 
of heat balance. The establishment of a physical building model requires 
the collection of environmental and building parameters, such as loca
tion, area size and building materials. It is obvious that the physical 
model is very time-consuming and has high computational costs when 

the method is applied to large areas. The simulation results (monthly 
demand) from DesignBuiler were used as the training data in this work. 
The authors of this paper have used a building simulation model to build 
a bottom-up physical prediction model for the UK and the data used in 
this paper are taken from this physical model [50]. The model divides 
the UK into six regions, each of which is split into three scenarios: res
idential, service, and industrial. The three scenarios contain a set of 
eight building types. Each building type includes three different levels of 
insulation. Thus, a total of 144 building heat demand profiles were 
derived. The profiles for each building type were combined with the 
building stock to calculate the heat demand for the whole of the UK. 

The physical model of the Scottish domestic buildings was built with 
the software DesignBuilder, which is used to simulate building energy 
consumption with key algorithms from the software EnergyPlus. Ac
cording to the UK government’s survey, domestic buildings in the UK are 
classified into four categories. Fig. 4 shows the four types of building 
models in the software, including detached, semi-detached, terraced, 
and flat. In addition, each type of building is divided into three levels of 
insulation based on their age. In total, the domestic buildings in Scotland 
are divided into twelve types and the stock is estimated for each type of 
building to produce a specific heating demand profile. The Design
Builder model produces 12 heating demand profiles. The Scottish do
mestic heating profile is the sum of these profiles, which are used as the 
training data for the ANN model. The training data on heating demand is 
taken from the building simulation model of Scottish domestic buildings 
for the period between January to November 2020. The trained model 
was used to predict the heating demand in December 2020 to validate 
the ANN model. 

3.3. Model evaluation 

As previously stated, the absence of monitors for heating demand has 
resulted in a scarcity of actual heating data. In an expansive region like 
Scotland, obtaining hourly heating data is not as readily available as 
data for electricity demand. The evaluation of the model involves two 
crucial elements to verify the reliability of the model. Firstly, a com
parison is made between the annual heating demand obtained from the 
DesignBuilder and the official data obtained from the government. 
Secondly, a comparison of the hourly heating data in this paper with the 
data obtained from the building simulation is conducted. 

3.3.1. Comparison DesignBuilder data with government data 
The Department for Business, Energy and Industrial Strategy pro

vides energy consumption in the UK, including subnational total final 
energy consumption in 2020 the domestic energy consumption in 
Scotland in 2020 is 3750 ktoe (thousand tonnes of oil equivalent) [51]. 
Scottish Energy Statistics Hub provides the percentage of the end use of 
household energy consumption, with space heating accounting for 76 % 
[52]. Based on the percentage and efficiency of the four main types of 
heating in the UK (Gas boiler, Resistive heating, Oil-fired boiler, and 
Solid-fuel boiler), the average energy efficiency of all heating methods is 
estimated as 84 % [53]. According to official statistics, domestic space 
heating in Scotland in 2020 is estimated at 2394 ktoe, converting energy 
units from thousand tonnes of oil equivalent to Terawatt hour is 27.84 
TWh. The total domestic heating demand in 2020 from the Design
Builder model is 27.59 TWh. It can be demonstrated that the results of 
the DesignBuilder (DB) model are highly reliable. 

3.3.2. Comparison prediction results with DesignBuilder data 
In accordance with the guidelines set forth by the ASHRAE, the 

performance evaluation of an ANN model is conducted through the 
computation of the normalised mean bias error (NMBE) and the coef
ficient of variation of the root mean squared error (CV-RMSE). NMBE is 
the mean of the prediction errors divided by the mean of the actual 
values. It gives the total difference between the predicted and actual 
values of the model. CV-RMSE is the root mean square error divided by 

Fig. 3. Examples of meteorological data used by the model: (a) temperature 
and (b) radiation. 

Fig. 4. Domestic building models from DesignBuiler [50].  
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the mean of the actual values. This metric shows the ability of the model 
to predict the overall shape of the load reflected in the data. Their 
acceptable ranges for building energy prediction are indicated in 
Table 1. This study commences by contrasting the training performance 
and the test performance of a basic ANN model, depicted in Fig. 1, to 
assess its performance. Subsequently, the basic model is compared with 
an improved model, with the objective of determining the efficacy of the 
proposed method in enhancing the performance of the ANN model. 

4. Results and analysis 

4.1. Training and testing performance of 2020 

Fig. 5 shows a comparison of the predicted results of ANN and the DB 
results. Fig. 5(a) shows the training results, where the training data is 
from January to December 2020. Fig. 5(b) shows the test results of the 
model, using data from December 2020. The error percentage is not used 
to show the difference as there are periods where the heating demand is 

zero or almost zero. When expressing the predicted difference as a 
percentage of error, the prediction error needs to be divided by the 
heating demand, resulting in infinite errors in some cases. To enhance 
the clarity of analysis, Fig. 6 presents a comparison of the box plots for 
the DB and ANN models. This comparison allows for a more compre
hensive examination of the results. The findings indicate that the 
discrepancy between ANN and DB primarily occurs during periods of 
low heating demand, specifically from 11 a.m. to 3 p.m. Notably, the 
black curves representing the median values in both box plots exhibit a 
similar overall trend. This investigation provides valuable insights into 
the performance and behaviour of the two models. The NMBE value of 
training data is 2.1 % and the CV-RMSE value is 23.1 %. The NMBE 
value of testing data is 2.2 % and the CV-RMSE value is 26.6 %. The 
acceptable value of NMBE and CV-RMSE is 10 % and 30 %. Table 2 gives 
the comparison of CVRMSE and NMBE for the training and test results, 
both of which are within the accepted limits. The maximum error in the 
training results is 3.75 MW, the minimum error is 0 MW, and the average 
error is 0.432 MW. The graph also shows that large errors occur mainly 

Table 1 
Acceptable range of building energy prediction.  

Data resolution Acceptable range (%) 
NMBE CV-RMSE 

Monthly ±5 15 
Daily ±7.5 22.5 
Hourly ±10 30  

Fig. 5. The comparison of predicted results and DB results.  

Fig. 6. Boxplot of (a) DB results and (b) prediction results of ANN.  

Table 2 
Comparison of training and testing performance of ANN based on 2020 Scottish 
domestic heating demand.   

Acceptable value Training Testing 

NMBE 10 % 2.1 % 2.2 % 
CV-RMSE 30 % 23.1 % 26.6 %  
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when high heating demand. The maximum error in the test results is 
4.67 MW, the minimum error is 0.02 MW and the average error is 1.22 
MW. Even though the model achieves good results during training, it 
still had large errors when it is used to test new data, indicating the weak 
generalisation ability of the network. The most basic reason for the weak 
generalisation capability is the lack of training data in the case of 

complex models. An important reason for weak generalisation is 
excessive sample noise, i.e. the network disrupts the system by treating 
noise as an important feature. Therefore, it is important to remove the 
inputs that are not causally related or that interfere more than they 
contribute from the ANN network. On the other hand, it is also possible 
to add inputs where features have a significant impact on the results. 

4.2. Results of sensitivity analysis and correlation analysis 

Fig. 7(a) shows the sensitivity analysis of the meteorological data. 
The result shows that the dry-bulb temperature has the highest sensi
tivity, followed by the Diffuse Horizontal Irradiance (DHI). Wet-bulb 
temperature and Global Horizontal Irradiance (GHI) also have large 
effects on the results. Direct Normal Irradiance (DNI) and atmospheric 
pressure have the lowest impact on the predicted results. Neither wind 
speed nor wind direction has a high sensitivity. It can be concluded that 
temperature and radiation are the two most important factors influ
encing heating demand, while wind and atmospheric pressure have a 
small effect on heating demand, and they can be neglected in the ANN 

Fig. 7. Sensitivity analysis of meteorological data and time (normalized results).  

Table 3 
R2 value of correlation analysis.   

Dry-bulb temp. DHI 

Wind direction 0.01 0.03 
Wind speed 0.02 0.01 
DHI 0.29 1 
DNI 0.08 0.14 
GHI 0.3 0.79 
Relative humidity 0.16 0.25 
Atmospheric pressure 0.07 0.02 
Wet-bulb temp. 0.75 0.07 
Dry-bulb temp. 1 0.3  

Fig. 8. Polynomial regression fit curve for three inputs (a) Dry-bulb temperature, relative humidity wet-bulb temperature; (b) DHI, DNI, GHI.  
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model in order to reduce interference. Fig. 7(b) shows the sensitivity 
analysis of temporal data, and the results show a quarter of the year and 
day of the week can be ignored. As the temperature is the most impor
tant physical parameter, it is important to improve the impact of tem
perature on the network. The temperature input to the model is the 
temperature point at the current time, but the change in heating demand 
is not sudden but has a process. Since the heating demand changes with 
the temperature, the temperature profile is also important. After 
removing some meteorological data, the temperature profile for the 
following 24 h is used as input to the ANN. 

The correlation analysis is done to analyse the relationship between 
the meteorological inputs and to identify features of the inputs. For 
example, if an input can be fitted by several other inputs, then removing 
one or two of the duplicate inputs can be effective in reducing the 
interference, especially if this input has a low sensitivity. In this model, 
time does not have physical significance and therefore the correlation 
analysis does not consider temporal inputs. Taking the example of dry 
bulb temperature and DHI being selected as dependent variables for 
correlation analysis, with other meteorological data as independent 
variables, Table 3 is the results of the correlation analysis. A higher R2 

value means a higher correlation. The highest correlation with the dry 
bulb temperature is the wet bulb temperature and the highest correla
tion with the DHI is the GHI. It is not reasonable to remove the wet bulb 
temperature and GHI as they also have a high sensitivity. Also, the re
sults in Table 3 only show the correlation of two parameters, in real 
engineering problems more parameters are often included in complex 
relationships. 

The correlations were further analysed with the dry bulb tempera

ture as the dependent variable, the wet bulb temperature as one inde
pendent variable, and the input in the model introduced as another 
independent variable. Using the same polynomial regression approach, 
the R2 value increases significantly with the introduction of humidity as 
the third independent variable. The same calculations were applied to 
the DHI and GHI, with a significant increase in R2 value with the 
introduction of DNI. Fig. 8(a) is a polynomial regression fit curve for dry 
bulb temperature, wet bulb temperature, and humidity with an R2 value 
of 0.926. Fig. 8(b) is a polynomial regression fit curve for DHI, GHI and 
DNI with an R-value of 0.985. The results indicate that there is some 
relationship between the three meteorological data, which allows one 
item to be removed, reducing duplicate meteorological information 
while retaining all features. Combined with the sensitivity analysis re
sults, the removal of DNI and humidity is reasonable. 

4.3. Results of improved ANN network 

The improved ANN model includes a dry-bulb temperature 24 h 
profile, wet-bulb temperature, DHI, GHI, month and hour. Although the 
variety of inputs has become less, the number of inputs has increased. 
The modified ANN is the same as Fig. 1 except for the inputs. Fig. 9 
shows the results of the modified ANN training and testing. The 
maximum error in the training of the modified ANN model is 3.17 MW, 
the minimum error is 0 MW, and the average error is 0.37 MW. The 
maximum error in the test data is 1.85 MW, the minimum error is 0.01 
MW, and the average error is 0.71 MW. While the error reduction for 
training is minimal, the error reduction for testing is significant. The box 
plots in Figs. 6 and 10 show that the improved ANN is yielding results 

Fig. 9. Training and testing results of improved ANN model.  

Fig. 10. Boxplot of (a) DB results and (b) prediction results of improved ANN.  
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that are much more consistent with DB. The prediction results from 
11:00 a.m. to 3:00 p.m. have decreased to a much closer proximity with 
the results of DB, and the trend of the median curve is now much more 
aligned. Comparing Tables 1 and 4, it can be found that although both 
training and testing performance have improved, the testing perfor
mance has improved significantly. The NMBE of testing results was 
improved from 2.1 % to 1.2 % and the CVRMSE was reduced from 26.6 
% to 14.6 %, while the trained NMBE improved from 2.2 % to 1.3 % and 
the CVRMSE was reduced from 23.1 % to 18.5 %. The results show that 
removing and selecting appropriate inputs of ANN models when pre
dicting building heating demand of a large-scale can effectively improve 
the generalisation ability of the model. 

The initial ANN weights were assigned randomly by the code, which 
can lead to large differences in results. The models were therefore 
trained 100 times to compare the distributions of the NMBE and 
CVRMSE data sets. Fig. 11(a) compares the NMBE values for the basic 
and improved ANN. The values of NMBE are distributed in the range of 
− 0.4 to 0.8 before the improvement and approximately − 0.1 to 0.2 after 
the improvement. Fig. 11(b) shows the CVRMSE of the ANNs. The values 
of CVRMSE for the basic ANN are distributed between 0.1 and 0.7. The 
CVRMSE of the improved ANN is distributed between 0.15 and 0.35, but 
mainly in the range of 0.15 to 0.25. The performance of improved ANN 
is much better than basic ANN and the values for both NMBE and 
CVRMSE are within reasonable limits. 

4.4. Prediction of 2050 

Generally, the training data is at least ten times larger than the 
predicted data to give a reasonably accurate result. Due to the shortage 
of meteorological data, hourly heating demand for ten years cannot be 
calculated through the building simulation model. Hence, the heating 
demand data (from DB model) and meteorological data from January to 
November 2020 were used as training data when predicting the heating 
demand in 2050. Fig. 12 shows the results of the predictions for 2050. 
The figure shows that the prediction errors between ANN model and DB 
model are mainly concentrated in the summer months, with the smallest 
forecast errors in the winter months. It can be seen from Fig. 13’s box 
plot that the results of ANN are generally greater than those of DB. This 
is attributed to the fact that the training data for the model is from 2020 

and is too limited. With the heat demand usually higher in 2020 than in 
2050, the estimations for 2050 will be on the high side. The performance 
of the forecasts for each month is given in Table 5, from which the errors 
increase as the year progresses, peaking in July and then gradually 
decreasing. The forecasts for January, February and March are all within 
the error range, and the forecast errors for November and December are 
also close to the error allowance. There are three reasons for the large 
errors in summer and the small errors in winter. The first is that the 2010 
and 2020 data are insufficient to forecast heating demand for the whole 
of 2050. The second is that both 2010 and 2020 temperatures are lower 
than 2050 temperatures due to global warming, so the predictions are 
more accurate in the lower temperature bands. The third is that the error 
in the calculation is increased by the low heating demand in summer as 
well as the fact that the heating demand is often zero for the period. 
Overall, the model can be used to predict heating demand in winter, but 
more data is needed to support the prediction of heating demand in 
summer. 

5. Conclusion 

In this study, an ANN was used to predict the domestic heating de
mand in Scotland based on meteorological data. The results show that 
ANN is a useful tool for predicting heating demand, with a reasonable 

Table 4 
Performance of improved ANN model.   

Acceptable value Training Testing 

NMBE 10 % 1.3 % 1.2 % 
CV-RMSE 30 % 18.5 % 14.6 %  

Fig. 11. The distribution of (a) NMBE and (b) CVRMSE vale of basic ANN and improved ANN.  

Fig. 12. Prediction results with improved ANN model of 2050.  

M. Zhang et al.                                                                                                                                                                                                                                  



Energy and AI 15 (2024) 100315

11

level of accuracy. The model achieved good results during training, with 
an NMBE value of 2.1 % and a CV-RMSE value of 23.1 % for the training 
data, and an NMBE value of 2.2 % and a CV-RMSE value of 26.6 % for 
the testing data, which were within the acceptable limits of 10 % and 30 
%, respectively. Sensitivity and correlation analysis were conducted to 
identify the most important meteorological inputs, with temperature 
and radiation being identified as the two most important factors 
affecting heating demand. 

The performance of the improved ANN improves in both NMBE and 
CV-RMSE by removing the inputs that have the least impact on the ANN 
prediction. The improved ANN demonstrates better performance than 
its predecessor, as evidenced by a shift in NMBE values from − 0.4 to 0.8 
before the improvement to approximately − 0.1 to 0.2 after the 
enhancement. Additionally, the CVRMSE values for the improved ANN 
range from 0.15 to 0.35, with the majority between 0.15 and 0.25, while 
the basic ANN had values between 0.1 and 0.7. The improved ANN 
model predicts heating demand for 2050 using data from 2010 to 2020. 
The results show that the errors in the predictions increase as the year 
progresses, peaking in July and gradually decreasing. The model’s 
limitations include insufficient data for heating demand in summer and 
the low heating demand during this period, which leads to a higher error 
in the calculation. Overall, the improved ANN model can be used to 
predict heating demand in winter, but additional data is needed to 
support the prediction of heating demand in summer. Furthermore, this 
paper does not delve into the exploration of machine learning algo
rithms. Instead, it emphasizes the application of machine learning and 
the significance of discussing the performance of various algorithms in 
terms of prediction. Subsequently, our forthcoming paper will 

concentrate on investigating the predictive effects of different alterna
tive algorithms like LSTM. 
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