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A B S T R A C T

Due to the lack of global positioning system (GPS) signals in some enclosed areas, indoor localisation has
recently gained significant importance for academics. However, indoor localisation has a number of challenges
and defects, including accuracy, cost, coverage, and ease of use. This paper explores the integration between
the inertial measurement unit (IMU) and Wi-Fi-based received signal strength indicator (RSSI) measurements,
demonstrating their combined potential for robust indoor localisation. IMUs excel at capturing precise short-
term motion dynamics, offering insights into an object’s acceleration and orientation. Conversely, RSSI
measurements serve as valuable indicators for relative positioning within indoor environments. By fusing
data from these sources, our approach compensates for the inherent weaknesses of each sensor type. To
achieve accurate indoor positioning, we employ techniques such as sensor fusion, Wi-Fi fingerprinting, and
dead reckoning. Wi-Fi fingerprinting allows us to create a database that maps RSSI measurements to specific
locations, while dead reckoning helps mitigate drift and inaccuracies. By combining these methods, we estimate
a device’s position with increased precision. Through experimental evaluation, we assess the performance
and efficiency of our integrated approach, comparing the estimated path or new location with a predefined
reference path. The findings emphasise a significant improvement in accuracy, with the integration of crowd-
sensing, particle filtering, and magnetic fingerprinting techniques resulting in a notable increase from 80.49%
to 96.32% accuracy.
1. Introduction

Indoor localisation systems offer a wide range of applications and
services, primarily focused on the identification and monitoring of indi-
viduals through the wireless signals emitted by their personal devices,
as well as the utilisation of wireless sensor networks for asset tracking.
The advent of the internet-of-things (IoT) has introduced a pivotal
application in this domain, enabling seamless connectivity and com-
munication within smart homes, hospitals, schools, malls, and factories
by leveraging various IoT technologies such as SigFox, LoRa, Wi-Fi
HaLow, Weightless, and NB-IoT. Additionally, other wireless standards
including BLE, Wi-Fi, Zigbee, RFID, and UWB play a significant role
in facilitating these functionalities [1]. However, the development of
an indoor localisation system that achieves high accuracy, flexibility,
affordability, and user-friendliness presents significant challenges [2,3].
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In this challenging scenario, relying on a single sensor for indoor local-
isation is not recommended, as it leads to cumulative errors over time
and inaccurate positioning [3]. Therefore, the integration of multiple
sensors becomes necessary for computing predicted paths or deter-
mining new locations. This involves aggregating and synchronising
data and information from different sensors and feeding them into an
estimation algorithm. Comparisons between the estimated path or new
location and a predefined reference path are performed to assess the
performance and efficiency of the proposed method.

Designing an indoor localisation system with the aforementioned
characteristics requires careful consideration and innovative approaches
to address the challenges associated with accuracy, flexibility, cost-
effectiveness, and usability [4]. The proposed method aims to overcome
these challenges and demonstrate superior performance and efficiency
compared to existing approaches. This paper introduces an enhanced
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indoor localisation system that utilises a particle filter algorithm and
incorporates crowd-sensing or multi-sensor fusion techniques. The aim
is to achieve a low-cost system that maintains high accuracy and robust-
ness. The proposed system combines traditional positioning technolo-
gies with innovative approaches to overcome limitations and improve
performance.

Our proposed system aims to enhance the accuracy of indoor po-
sitioning by leveraging a combination of technologies. It integrates
inertial navigation, utilising data from an inertial measurement unit
(IMU), with a prior training phase and a carefully constructed magnetic
map created using fingerprinting techniques. This integration serves to
mitigate the inherent drift-related inaccuracies associated with IMU-
based systems. Additionally, our system utilises the pedestrian dead
reckoning (PDR) method [5], which allows for unrestricted data col-
lection. To determine the user’s position accurately, our positioning
algorithm takes into account two data sources: the magnetic field and
received signal strength (RSS) data from Wi-Fi devices [6,7]. These
data are compared to a fingerprint map database that has been pre-
established. This comprehensive approach offers a robust solution for
predicting the user’s movements within a defined test area. By combin-
ing IMU data, PDR, and magnetic field or RSS data with a fingerprint
map, the system minimises positioning errors and provides reliable
indoor localisation.

The system constructs a magnetic fingerprint database specific to
the test area by fusing all available data and feeding it into the
particle filter algorithm. The positioning results are promptly trans-
mitted to the server, enabling real-time responsiveness to dynamic
changes within the test area. To prove the validation of the proposed
method, ultra-wideband (UWB) anchors are utilised to compute the
reference trajectory, which closely approximates the actual path of the
user equipment (UE). This reference trajectory is computed using the
trilateration method and then compared with the predicted trajectory
computed by the particle filter, demonstrating the effectiveness of the
proposed technique.

The proposed framework offers several significant contributions,
which can be summarised as follows:

1. The proposed framework provides a comprehensive exploration
and analysis of various techniques, methods, technologies, and
algorithms employed in indoor positioning. Through an exten-
sive evaluation and comparison, it offers a profound understand-
ing of the effectiveness and performance of different positioning
methods and algorithms. This in-depth analysis serves as a valu-
able resource for researchers in the field, providing them with
valuable insights that can drive innovation and the development
of more accurate algorithms to meet the evolving requirements
of indoor positioning in the future.

2. The proposed approach introduces a cost-effective mobile map-
ping and reliable indoor positioning system that combines crowd-
sensing data fusion with a particle filter. It utilises fingerprinting
to incrementally construct a comprehensive database for the test
area, employing an infrastructure-free or PDR method to collect
data and determine Wi-Fi device-equipped region’s RSS values.
For accurate performance evaluation, the positions of deployed
UWB devices are leveraged for trilateration-based trajectory
computation of the UE, which is then compared to the estimated
trajectory using the proposed approach.

3. Finally, this paper employs a particle filter algorithm to enhance
indoor localisation accuracy through the fusion of data from var-
ious sources, including Wi-Fi, RSS, magnetic field measurements,
UWB, and smartphone inertial sensors (i.e., IMUs). synchronis-
ing the Wi-Fi access points with particles posed a challenge
in achieving high granularity and precise timing. The findings
presented in this paper demonstrate the remarkable capability
of the proposed system to significantly improve performance.
The results indicate an enhancement from 80.49% to 96.32%
accuracy by integrating crowd-sensing, particle filtering, and
magnetic fingerprinting techniques.
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Table 1
List of acronyms.
Symbol Definition

AOA Angle of arrival
CSI Channel state information
IMU Inertial measurement unit
IoT Internet-of-things
NICs Network interface cards
PDF Probability density function
PDR Pedestrian dead reckoning
PF Particle filter
PoA Phase of arrival
RNs Reference nodes
RSS Received signal strength
RSSI Received signal strength indicator
RToF Return time of flight
TDoA Time difference of arrival
ToF Time of flight
UWB Ultra-wideband

For ease of understanding, the acronyms used in this paper are listed
in Table 1.

This paper is organised into the following sections: Section 2 dis-
cusses related work. Section 3 covers preliminary concepts, provid-
ing a foundation for the subsequent sections. Section 4 presents the
system and scheme modelling. Section 5 presents and discusses the
experimental results. Lastly, Section 6 provides the conclusions.

2. Related works

This paper specifically examines the utilisation of Wi-Fi technology
based on the RSS fingerprinting technique for indoor positioning. In
this context, it is essential to acquire a comprehensive understand-
ing of the diverse range of techniques and technologies currently
employed in indoor positioning. Furthermore, it is crucial to assess
the merits, drawbacks, and key characteristics associated with each
technique and technology in order to obtain a comprehension of in-
door positioning. Generally, indoor positioning methods incorporate a
variety of localisation resources, including the received signal strength
indicator (RSSI) [8,9], channel state information (CSI) [10], angle
of arrival (AOA) [11], fingerprinting/scene analysis, time of flight
(ToF) [12], time difference of arrival (TDoA) [13], return time of flight
(RToF) [14], and phase of arrival (PoA) [15]. Table 2 provides a brief
overview of the advantages and disadvantages of these localisation
techniques [16,17].

The first technique discussed is the RSSI-based method, which
stands out due to its simplicity, affordability, and compatibility with
diverse technologies. Nonetheless, its susceptibility to multipath fad-
ing and environmental noise poses a challenge to its accuracy. In
certain scenarios, the utilisation of fingerprinting becomes necessary
to achieve higher localisation accuracy [18]. The second technique
examined is the CSI-based method, which exhibits greater resilience
to indoor noise and multi-trajectories compared to RSSI. However,
the accessibility of CSI is not always guaranteed in commercially
available network interface cards (NICs) [19]. Next, the AoA-based
technique is explored, which offers a high level of localisation accuracy
without the need for fingerprinting. Nevertheless, the implementation
of directional antennas and complex hardware may be required, and
the involved algorithms tend to be relatively intricate. Additionally,
the performance of AoA deteriorates as the distance between the
transmitter and receiver increases [20]. The ToF-based technique is
then discussed, which achieves high localisation accuracy without
reliance on fingerprinting. However, it necessitates the availability of
time stamps and multiple antennas at both the transmitter and receiver
to ensure synchronisation. Furthermore, the accurate performance of
ToF depends on the line-of-sight conditions.

The TDoA-based method is presented as another fingerprinting-free

technique that does not require clock synchronisation between devices
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Table 2
Comparison between different localisation techniques [16,17].
Technique Advantages Disadvantages

RSSI [8,9] Simple to do, affordable, and can be used with a
number of technologies.

Prone to multipath fading and environmental noise,
Fingerprinting may be necessary at lower localisation
accuracy.

CSI [10] More resilient to indoor noise and multi-trajectories. On commercially available NICs, it is not always
accessible.

AoA [11] Can provide high localisation accuracy, does not
require any fingerprinting.

Might require directional antennas and complex hard-
ware, requires comparatively complex algorithms and
performance deteriorates with increase in distance
between the transmitter and receiver.

ToF [12] Provides high localisation accuracy, does not require
any fingerprinting.

Require time stamps and multiple antennas at the
transmitter and receiver to ensure that the transmit-
ters and receivers are in synchronisation with one
another. Line of Sight is mandatory for accurate
performance.

TDoA [13] Does not need any fingerprinting, does not require
clock synchronisation among the device and RN.

Requires clock synchronisation among the RNs, might
require time stamps, requires larger bandwidth

RToF [14] Does not require any fingerprinting, can provide high
localisation accuracy.

Requires clock synchronisation, processing delay
can have an impact on short-range measurement
performance.

PoA [15] Can be used in conjunction with RSS, ToA, TDoA to
improve the overall localisation accuracy.

Reduced performance when the line of sight is not
present.

Fingerprinting [18] Reasonable ease of use. Even when there is a slight change in the space, new
fingerprints are necessary.
and reference nodes (RNs) [16]. Nonetheless, time stamps and larger
bandwidth may be necessary for its implementation. The RToF-based
technique is introduced, which also eliminates the need for fingerprint-
ing and offers high localisation accuracy. However, clock synchronisa-
tion is imperative, and the performance of short-range measurements
may be affected by processing delay [21]. The PoA-based method can
be employed in conjunction with RSSI, ToA, and TDoA techniques
to enhance overall localisation accuracy. However, its performance is
diminished in the absence of line of sight. Lastly, fingerprinting is
examined as a localisation technique that offers reasonable ease of use.
Nevertheless, any slight alterations in the physical space may require
the creation of new fingerprints [17].

This study incorporates a range of techniques that utilise diverse
technological approaches, encompassing radio communication tech-
nologies such as IEEE 802.11 (Wi-Fi) [22], UWB [23], radio frequency
identification devices (RFID) [24], Bluetooth [25], ultrasound [20],
and visible light [26]. Moreover, the utilisation of visible light and
acoustic-based technologies [27] is also prominent. For a compre-
hensive comparison between these technologies, Table 3 presents a
summary of the merits and drawbacks associated with these technolo-
gies, as reported in Refs. [28]. This table presents a comparison of
various localisation technologies based on their maximum range, power
consumption, advantages, and disadvantages. Wi-Fi is a widely avail-
able technology that offers high accuracy and does not require complex
additional hardware. However, it is prone to noise and necessitates
complex processing algorithms. UWB technology provides immunity to
interference and delivers high accuracy. Nonetheless, it has a shorter
range, requires extra hardware on different user devices, and comes
with a higher cost. RFID has a wide range and low power consumption.
However, its localisation accuracy is relatively low. Bluetooth offers
high throughput, reception range, and low energy consumption. Yet,
it exhibits weak positioning accuracy and is susceptible to noise. Ul-
trasound technology covers a range of a few tens of meters and has
comparatively less absorption. However, its effectiveness heavily relies
on sensor placement. Visible Light technology can achieve a range of up
to 1.4 km but is relatively higher in power consumption. It also depends
significantly on sensor placement and its effectiveness is reduced by
obstacles, often requiring line-of-sight conditions. Acoustics technology
operates within a range of a few meters and can provide high accuracy
3

for proprietary applications. However, it is affected by sound pollution
and necessitates extra anchor points or hardware. These localisation
technologies offer a range of capabilities and trade-offs, making them
suitable for different use cases depending on the specific requirements
and constraints of the application [29–31].

3. Preliminaries

This section introduces the formulation techniques (Sections 3.1 and
3.2) and outlines the performance evaluation method (Section 3.3) for
the proposed system.

3.1. Spatial fingerprinting technique

The Wi-Fi technology explored in this work are widely employed
and straightforward method for indoor positioning [32]. In this study,
the PDR approach is employed in conjunction with the inertial sensors
of the smartphone, including the accelerometer, gyroscope, and mag-
netometer. This allows for the collection of real-time data while the
user is walking. The collected magnetic readings are compared with
the magnetic fingerprint of an offline map. The output of the PDR
approach serves as the motion model in the fusion process to determine
the user’s position, while the magnetic data is utilised in the monitoring
model [21,24].

The fingerprint based on the indoor localisation system includes two
main stages:

1. Offline stage: In this stage, the RSS samples are gathered at
predefined locations known as reference points (RPs).

2. Online stage: In this stage, the users’ positions are established by
comparing real-time RSS estimates to the database, as shown in
Fig. 1.

Due to the dependence of the indoor localisation strategy on the mag-
netic fingerprint, which is utilised to calibrate the results of the PDR
approach, Wi-Fi fingerprinting is typically conducted in two phases:

1. The offline phase (survey): In this phase, the vector of 𝑅𝑆𝑆𝑖 of all
detected Wi-Fi signals from 𝑁 number of access points 𝐴𝑃𝑖, ∀𝑖 =
{1,… , 𝑁}, at multiple reference points of recognised positions
are collected during a site assessment. Hence, the fingerprint of
each RP is used to represent it [33,34]. The fingerprints of the
site are formed by aggregating all the RSS vectors, which are
then stored in a database for subsequent online queries.



Physical Communication 61 (2023) 102225A.G. Abdellatif et al.
Table 3
Comparison between localisation technologies [28].
Technology Maximum range Power consumption Advantages Disadvantages

Wi-Fi [22] 250 m outdoor
35 m indoor

Medium Widely available, high accuracy,
does not require complex extra
hardware

Prone to noise, requires complex
processing algorithms

UWB [23] 10-20 m Medium Immune to interference, provides
high accuracy

Shorter range, requires extra
hardware on different user devices,
and high cost

RFID [24] 200 m Low Has a wide range and uses little
power

Low localisation accuracy

Bluetooth [25] 100 m Low High throughput, reception range,
low energy consumption

Weak positioning accuracy and
susceptible to noise

Ultrasound [20] Couple-tens of
meters

Low-Moderate Comparatively less absorption High dependence on sensor
placement

Visible Light [26] 1.4 km Relatively higher High dependence on the sensor
placement

Obstacles reduce range and mostly
require LoS

Acoustics [27] Couple of meters Low-Moderate Can be used for proprietary
applications can provide high
accuracy

Affected by sound pollution and
requires extra anchor points or
hardware
Fig. 1. An overview of fundamental system flow for indoor localisation through
fingerprinting.

2. The online phase (query): When the user (or object) samples or
measures an RSS vector, the server compares it with the stored
fingerprints using a similarity metric in the signal space, such
as the Euclidean distance. This allows the server to identify the
‘‘neighbouring’’ fingerprints that are most similar to the received
RSS vector [35]. The target position is then calculated based on
these neighbouring fingerprints, taking into consideration their
similarities to the measured RSS vector.

Finally, pure Wi-Fi-based indoor positioning may introduce con-
siderable errors, which can be mitigated by incorporating IMU data
and employing position estimation techniques such as particle filtering.
To achieve highly accurate indoor localisation using RSS estimates,
certain principles and guidelines need to be followed. For instance, the
reference points should be easily identifiable with at least one access
point and strategically positioned throughout the area of interest to
ensure accurate and reliable data collection during user movement.
Additionally, generating an offline magnetic field fingerprint map and
performing online positioning involve comparing the observed mag-
netic field with the fingerprints stored in the database [36]. These
measures contribute to enhancing the precision and correctness of Wi-
Fi-based indoor localisation systems. The proposed method focuses on
the generation of an RSSI chart for the specified test area, serving as a
viable alternative to the extraction of personalised fingerprints for each
user.
4

3.2. PDR-based site surveying technique

The PDR technique is a highly effective approach for indoor posi-
tioning, involving three main stages: (I) step detection, (II) step length
estimation, and (III) walking direction determination, as depicted in
Fig. 2. Fig. 2(a) illustrates the 2D coordinates associated with each
step undertaken during the process of data collection, whereas Fig. 2(b)
depicts the distinction between the path-based and point-based method-
ologies employed in data collection. In the path-based approach, data
is collected systematically along predefined paths or trajectories within
the environment. These paths can be specific routes or walkways. On
the other hand, the point-based approach involves the collection of
data at discrete, strategically selected locations within the environ-
ment, with the selection of these points often guided by the attributes
or parameters being measured. The proposed algorithm employs the
path-based methodology for site surveying, primarily chosen for its
exceptional accuracy and reliability. The PDR technique offers advan-
tages such as simplifying the path loss model and improving reliability,
particularly in large areas. Unlike fingerprinting, which requires a
lengthy training process, the PDR approach leverages measurements
from integrated IMU sensors in a smartphone, including magnetome-
ters, accelerometers, gyroscopes, and barometers. These sensors enable
the measurement of direction, acceleration, rotational velocity, and
altitude. If the initial location is known, the device can be tracked using
dead reckoning.

The accelerometer is utilised for step counting and estimating step
length, while the accelerometer, magnetometer, and gyroscope are
utilised to measure the differences between two consecutive steps [37–
39]. It is important to highlight that magnetic field data, despite its
inherent noise when employed for localisation, presents significant
advantages for positioning due to its capacity to detect even minor
alterations in the three-dimensional behaviour of the magnetic field, as
discerned by the magnetometer within the IMU sensors [40]. Notably,
this magnetic field data demonstrates a remarkable level of measure-
ment stability that persists over time, thereby establishing it as a viable
and apt choice for facilitating assisted localisation endeavours.

3.3. RSSI-based method

UWB devices can be employed for user equipment positioning
through the utilisation of the trilateration method. UWB technol-
ogy offers the advantage of high-precision distance measurements by
utilising short-duration, wideband radio pulses. When multiple UWB
anchors with known positions are strategically placed, they can enable
accurate trilateration, leading to precise UE positioning based on the
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Fig. 2. Location estimation and data gathering with UWB and IMU by PDR approach.

measurement of the time it takes for UWB signals to travel between
the device and the anchors, see Fig. 3. As the RSS value increases,
the distance between Tx and Rx decreases. A minimum of three UWBs
(𝑈𝑊𝐵𝑖, ∀𝑖 = {1,… ,𝑀}) are needed to determine the position of
the UE, where 𝑀 represents the number of the UWB anchors [30].
The positioning error decreases as the number of 𝑀 increases, and
conversely, it increases as the number of 𝑀 decreases.

This method employs the radio propagation model to calculate the
distance, which can be characterised as follows:

𝑃 𝑖
𝑡 = 𝑃0 −

(

10 𝜂 log10
𝑑𝑖𝑡
𝑑0

)

(1)

where 𝑃 𝑖
𝑡 demonstrates the RSS from the 𝑈𝑊𝐵𝑖 and 𝑑𝑖𝑡 signify the

space from the 𝑈𝑊𝐵𝑖 during the step 𝑡. The parameter 𝑃0 is the RSS
at a reference distance 𝑑0, which is typically one meter [31]. Typically,
𝑃0 is considered equivalent to the power transmitted from the UWB
device. The trajectory loss exponent is represented by 𝜂 and its value is
considered to range from 1.5 to 7.2 for a complex indoor environment.
So, by utilising (1), the distance 𝑑𝑖𝑡 can be defined as:

𝑑𝑖𝑡 = 10

(

𝑃0−𝑃
𝑖
𝑡

10 𝜂

)

(2)

In the Cartesian coordinates, it can be expressed as

𝑑𝑖𝑡 =
√

(

𝑋 − 𝑥𝑖
)2 −

(

𝑌 − 𝑦𝑖
)2 (3)

where (𝑥𝑖, 𝑦𝑖) represents the two-dimensional (2D) coordinates of the
𝑈𝑊𝐵𝑖 and (𝑋, 𝑌 ) is that of the pedestrian. The estimated RSS (𝑅𝑆𝑆 𝑖)
of the signal received from 𝑈𝑊𝐵𝑖 is then converted into the corre-
sponding distance between the UE and 𝑈𝑊𝐵 using (2).
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𝑖

Fig. 3. Position computation utilising trilateration method based on RSS measurements.

4. System and scheme modelling

This section introduces the system model and provides a compre-
hensive discussion of the proposed scheme.

4.1. Overview

For a clear understanding of the proposed approach, it consists of
two stages: collecting reference fingerprints and performing location
estimation.

4.1.1. Stage 1: Collection of reference fingerprints
Reference fingerprints constitute a dataset of Wi-Fi signal charac-

teristics gathered from different locations within the test area, serving
as reference points for subsequent localisation. This collection process
encompasses the following steps:

1. Placement of access points: Strategically positioning Wi-Fi access
points across the test area to ensure sufficient coverage.

2. Signal measurement : Employing devices equipped with Wi-Fi re-
ceivers, such as smartphones, to measure the RSS from nearby
𝐴𝑃 at predefined locations.

3. Data recording : Recording the measured signal characteristics
alongside the corresponding location details to establish the
reference fingerprint dataset.

4.1.2. Stage 2: Location estimation
Upon the collection of reference fingerprints, the process of localis-

ing a target device goes through the following typical steps:

1. Signal sampling : The target device, often a smartphone, continu-
ally scans and samples the Wi-Fi signals in its vicinity.

2. Signal matching : The sampled Wi-Fi signal characteristics are
compared to the reference fingerprints stored within the dataset,
with the objective of identifying the closest match based on
signal similarity.

3. Location estimation: Upon discovering a match, the associated
location information linked to the reference fingerprint is des-
ignated as the estimated location of the target device.

4.2. System modelling

The system comprises two primary components, Wi-Fi devices and
smartphone inertial sensors integrated within the UE. For testing, ultra-
wideband devices are employed to calculate the reference or actual
trajectory of the UE within the designated test area. Each device has
a specific role defined as follows.
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Fig. 4. The proposed method architecture and the evaluation method.
1. Wi-Fi devices: These devices, as part of the system, play a signifi-
cant role in facilitating wireless connectivity and data exchange.
They utilise Wi-Fi technology to establish communication within
the system and contribute to the localisation process. These
devices provide additional information such as signal strength
and connectivity patterns, which are utilised for positioning and
tracking purposes in conjunction with other devices.

2. Smartphone inertial sensors: Smartphones are equipped with var-
ious sensors, such as the accelerometer, magnetometer, and
gyroscope, that can measure different physical quantities related
to the smartphone’s movement and orientation. The measure-
ments of these sensors are used as input to the PDR technique
to estimate the user’s position and track their movement.

3. Pozyx ultra-wideband devices: In the system, the UWB devices,
also referred to as anchors and rover devices operate in conjunc-
tion with a network of devices placed at fixed and predetermined
locations. The tag, connected to the smartphone’s inertial sen-
sors, captures UWB measurements and timestamps throughout
the designated experimental area. Trilateration is employed to
calculate the distances between the UE and anchors, yielding
a near-actual trajectory for assessing the proposed method’s
accuracy. It is important to note that precise calibration of UWB
readings is essential to accurately model the range error and
achieve improved localisation accuracy.

4.3. Scheme modelling

This research paper presents a novel system, depicted in Fig. 4, that
introduces an enhanced indoor positioning solution characterised by
improved reliability, cost-efficiency, and accuracy. The proposed sys-
tem leverages the particle filter algorithm and integrates data obtained
from various sensors or crowd-sensing techniques. The data collection
process occurs within the designated test area, as previously mentioned.
The system involves the meticulous scanning of the test area by the
6

user. The IMU features embedded in the user’s smartphone are utilised
to enable positioning using the PDR method. Additionally, measure-
ments of the magnetic field obtained from Wi-Fi RSS are captured to
construct a magnetic map employing fingerprinting techniques. Conse-
quently, a magnetic database specific to the test region is developed.
The collected data from the aforementioned sources are synchronised,
fused, and subsequently transmitted to the particle filter algorithm. In
this context, we discuss in detail the particle filter fusion algorithm and
the positioning method used in the proposed scheme.

4.3.1. Particle filter fusion algorithm
Fig. 5 depicts the flowchart of the proposed system, which high-

lights the process of matching various data derived from crowdsensing
through the PDR approach. These data are subsequently fed into the
particle filter algorithm to predict the new location and generate a
path. The generated path is then compared with the reference trajectory
obtained from UWB anchors. Furthermore, the system leverages Wi-
Fi devices positioned at strategic locations within the test area to
construct a magnetic map. This map is pre-drawn and computed to
capture acceleration data using a set of 𝑁 access points. The magnetic
map serves as a fingerprinting database, enabling synchronisation to
identify the access point with the highest RSS within the test area.
This data is then utilised to update the particle filter and enhance the
accuracy of localisation. By comparing the particle filter’s trajectory
with the reference path, the closest match is determined for evaluation.
Additionally, the mutual information method is employed to facilitate
a comprehensive comparison and assessment of the results.

4.3.2. The positioning algorithm
The particle filter (PF) plays a crucial role in the proposed system as

it serves as a probabilistic estimator capable of handling non-Gaussian
and nonlinear processes. This estimation technique relies on random
samples, known as particles, to recursively approximate the target
distribution. The PF offers several advantages, including the ability to
estimate full probability density functions (PDFs), efficiency in con-

centrating particles in high probability regions, and the capability to
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Fig. 5. The flowchart of the proposed system and the evaluation process.

handle non-linear state and observation models. In order to gain a
deeper understanding of the PF’s operation within the proposed system,
it is important to discuss its key steps, see Fig. 4.

1. State representation or initialisation step: The pdf of the state
values is described using (𝑛-particles) instead of a second-order
statistical description. As a result, the PDF 𝑝(𝑥) can be expressed
as

𝑝(𝑥) = ∫

𝑛

𝑖=1
𝑤𝑖𝐾

(

𝑥 − 𝑥𝑖
)

(4)

where 𝑤𝑖 is the weight of the 𝑖𝑡ℎ particle, and 𝐾(𝑥) is the
basis function. If we assume that 𝐾(𝑥) is Dirac’s delta function,
the particle representation of 𝑝(𝑥) with equal weights can be
exemplified as

𝑝(𝑥) = 1
𝑛 ∫

𝑛

𝑖=1
𝛿
(

𝑥 − 𝑥𝑖
)

(5)

2. Prediction step: Update the particle’s state by applying the state
transition function for each particle 𝑖 as follows.

𝑝
(

𝑥𝑡+𝛥𝑡∕𝑦0,…𝑦𝑡
)

= ∫ 𝑝
(

𝑥𝑡+𝛥𝑡∕𝑥𝑡
)

𝑝
(

𝑥𝑡∕𝑦0,…𝑦𝑡
)

𝑑𝑥𝑡 (6)

𝑝
(

𝑥𝑡+𝛥𝑡∕𝑦0,…𝑦𝑡
)

=
𝑛
∑

𝑖=1
𝑤𝑡,𝑖𝑝

(

𝑥𝑡+𝛥𝑡∕�̄�𝑡,𝑖
)

(7)

where 𝑤𝑡,𝑖 is the weight factor. After sampling �̂�𝑡,𝑖 the equation
of prediction can be expressed as

𝑝
(

𝑥𝑡+𝛥𝑡∕𝑦0,…𝑦𝑡
)

=
𝑛
∑

𝑖=1

1
𝑛
𝛿
(

𝑥𝑡 − �̂�𝑡,𝑖
)

(8)

3. Update step: In this step, the algorithm evaluates the likelihood
or probability of the RSS measurements given the predicted state
of the system. Then, we undertake the computation of likelihood
values, while taking into account the inherent noise and uncer-
tainties, to establish a quantitative assessment of the degree of
concordance between estimated and actual measurements. To
refine the accuracy of our particle filter fusion algorithm, we
7

then proceed to update the weights of the individual particles
based on their respective likelihood values, assigning higher
weights to those particles that exhibit measurements in closer
proximity to the actual sensor measurements. In situations where
the probability is primarily concentrated on a limited set of state
values, the weights associated with these values can diminish
significantly, leading to extremely low probabilities. To miti-
gate this challenge, we employ a resampling procedure aimed
at substituting a particle with a substantial weight, which has
a higher likelihood of being selected multiple times, while a
particle with a low weight is unlikely to be chosen at all. The
resultant equations governing the update step can be expressed
as

𝑝
(

𝑥𝑡∕𝑦0,…𝑦𝑡
)

= ∫

𝑛

𝑖=1

1
𝑛
𝛿
(

𝑥𝑡 − �̄�𝑡,𝑖
)

(9)

𝑝
(

𝑥𝑡+𝛥𝑡∕𝑦0,…𝑦𝑡+𝛥𝑡
)

= ∫

𝑛

𝑖=1

1
𝑛
𝛿
(

𝑥𝑡+𝛥𝑡 − �̄�𝑡+𝛥𝑡,𝑖
)

(10)

4. Particle resample step: The degeneracy problem, which occurs
when only a few particles have a high weight while the rest
have very low weights, can be solved by using the resampling
step. This problem can be identified using an effective sample
size estimate from the following equation:

𝑁𝑒𝑓𝑓 = 1

∫ 𝑛
𝑖=1

(

𝑤𝑡,𝑖
)2

(11)

4.3.3. RSS-based reference trajectory estimation algorithm
This algorithm employs the received data to predict the user’s

current position and generates a reference trajectory that closely aligns
with the UE’s actual path for further comparative analysis. UWB devices
are strategically deployed within the test area to establish a reference
trajectory through the implementation of the trilateration method.
Subsequently, this reference path serves as a basis for comparison with
the anticipated trajectory generated by employing the particle filter
algorithm in conjunction with the mutual information method. The
dynamic model for computing the reference trajectory can be presented
as:
[

�̂�(𝑡 + 𝛥𝑡)
�̂�(𝑡 + 𝛥𝑡)

]

≈
[

�̂�(𝑡)
�̂�(𝑡)

]

+ 𝛥𝑡
[

�̂�𝑥(𝑡)
�̂�𝑦(𝑡)

]

(12)

[

�̂�𝑥(𝑡 + 𝛥𝑡)
�̂�𝑦(𝑡 + 𝛥𝑡)

]

=
[

�̂�𝑥(𝑡)
�̂�𝑦(𝑡)

]

+
[

𝑒𝑣,𝑥(𝑡)
𝑒𝑣,𝑦(𝑡)

]

(13)

where [�̂�(𝑡), �̂�(𝑡)]𝑇 and [�̂�(𝑡+𝛥𝑡), �̂�(𝑡+𝛥𝑡)]𝑇 are the 2D positions at times
𝑡 and 𝑡 + 𝛥𝑡, respectively, [�̂�𝑥(𝑡), �̂�𝑦(𝑡)]𝑇 are the two dimension velocity
at time 𝑡, [𝑒𝑥(𝑡), 𝑒𝑦(𝑡)]𝑇 are the difference variable at time 𝑡, and 𝛥𝑡 is
the time interval between two sequential UWB transceiver devices.

The optimisation equation for obtaining the reference trajectory of
UWB devices in the trilateration problem, assuming a fixed altitude of
the device in the z direction, can be expressed as

[�̂�(𝑖) �̂�(𝑖)] = argmin
𝑥𝑖 ,𝑦𝑖

∑

𝑖

∑

𝑗

(

𝑑𝑗 (𝑖) − 𝑟𝑗 (𝑖)2
)2

𝜎2𝑟
(14)

𝑑𝑗 (𝑖) =
√

(

𝑥𝑖 − 𝑥𝑎𝑛𝑐ℎ,𝑗
)2 +

(

𝑦𝑖 − 𝑦𝑎𝑛𝑐ℎ,𝑗
)2 (15)

where [�̂�(𝑖) �̂�(𝑖)] represents the calculated coordinates corresponding to
the 𝑈𝑊𝐵𝑖 time sample, 𝑟𝑗 (𝑖) denotes the measurement obtained from
the 𝑗𝑡ℎ anchor at the 𝑈𝑊𝐵𝑖 time sample, 𝜎𝑟 represents the uncertainty
associated with UWB measurements (assuming a zero-mean Gaussian
distribution for simplicity), and [𝑥𝑎𝑛𝑐ℎ,𝑗 𝑦𝑎𝑛𝑐ℎ,𝑗 ] denote the location of
the 𝑗𝑡ℎ anchor.
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Fig. 6. The map of the test area and the reference trajectory using UWBs.

5. Experimental results and discussion

This section presents the experimental findings of the proposed
scheme. Firstly, the experiment is conducted in a pair of corridors
on the second level of a building at the University of Padua in Italy.
One corridor measures approximately 40 meters in length, while the
other corridor is approximately 12 meters long. The experiment area
is equipped with 11 Pozyx ultra-wideband devices and eighteen Wi-Fi
devices (i.e., 𝑁 = 18 access points) positioned on the tops of the two
corridors. The map of the corridors is illustrated in Fig. 6.

In this experiment, the Pozyx UWB devices are positioned within
the test area to establish a reference trajectory through the utilisation
of the trilateration method. This reference path serves as a basis for
comparison with the predicted trajectory generated using the particle
filter and mutual information method. In this experiment, a total of
11 UWBs are employed. Subsequently, the user proceeds to carefully
traverse back and forth in the corridor adjacent to the CIRGEO lab.
This movement generates three distinct tracks: one in the centre of the
hallway, another adjacent to the wall, and a third in close proximity to
the windows. The sampling rate of the IMU in LG Android smartphones
can range from 100 Hz to 200 Hz. The IMU features integrated within
the smartphone are leveraged to momentarily pause at the conclusion
of each run before recommencing, allowing for the collection of data
using the PDR method. Measurements of the magnetic field from Wi-
Fi RSS are also obtained, enabling the creation of a magnetic map
using fingerprinting techniques. Subsequently, a magnetic database is
constructed specifically tailored to the test region.

The acquired data, encompassing the UWB, IMU, and magnetic
field measurements, are then synchronised, fused, and conveyed to
the particle filter. This filtering mechanism facilitates the prediction
of the new position and draws a trajectory that closely aligns with
the reference path, enabling subsequent comparison and evaluation.
Table 4 lists the localisation algorithm implemented in the proposed
system, outlining the complete sequence of operations involving the
particle filter and crowd-sensing on the designated test area.
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Fig. 6 illustrates the reference trajectory computed using the trilat-
eration method with UWB anchors (𝑈𝑊𝐵𝑖,∀𝑖 = {1,… , 11}). The green
solid line represents the reference trajectory for the trial region, while
the red circles signify the 11 UWB devices, each accompanied by a
number (𝑈𝑊𝐵𝑖) indicating the UWB anchor.

5.1. The obtained UWB trajectories

Fig. 7 presents a comprehensive overview of the data collected dur-
ing the experiment, showcasing the three distinct tracks: left, central,
and right. These tracks serve as the training dataset for the finger-
printing process utilising IMUs with path-based movement within the
test region. Additionally, the figure depicts the resultant 2D trajectory
computed via UWB technology. In order to increase the learning dataset
of the test region and use it as a database for fingerprinting, the
PDR approach is employed to collect data at the centre of the test
area, both in forward and backward directions, thereby creating the
central track. This process has been repeated six times, resulting in six
sub-tracks, see Fig. 7(b). The same process was repeated on the left
side, creating six additional sub-tracks, see Fig. 7(c). Similarly, data is
collected on the right side, resulting in four sub-tracks, see Fig. 7(d).
Note that, we generated many sub-tracks for each main track. However,
we choose the best-estimated sub-tracks that present the left, central,
and right sides of the corridor. Finally, Fig. 7(a) illustrates all computed
reference trajectories using the trilateration method and the estimated
UWB anchors.

5.2. The particle filter process

The inclusion of the particle filter in the proposed method enhances
the accuracy and effectiveness of predicting the position and trajectory
within the trial region. This improvement is achieved by leveraging
data obtained through the PDR approach and IMU, along with con-
tinual updates from the magnetic fingerprint database. Subsequently,
the computed trajectory is compared to the reference trajectory with
a high probability of matching. This process involves utilising particles
and connecting them to the synchronised 18 access points. These access
points are synchronised with the central server. Figs. 8 and 9 provide
visual representations of the RSS estimates, the distribution of particles,
and the resampling step of the particle filter, specifically for the best
13 out of the 18 access points. In the first column of Figs. 8 and
9, the RSS values (𝑅𝑆𝑆𝑖) from 𝐴𝑃𝑖 are presented for 𝑖 = {1,… , 7}
and 𝑖 = {8,… , 13}, respectively. The second column of Figs. 8 and 9
illustrate the distribution of 𝑛 particles at a certain time-slot for 𝐴𝑃𝑖,
where 𝑖 = {1,… , 7} and 𝑖 = {8,… , 13}, respectively. The distribution
is presented within the tested area’s map defined in Fig. 6. Finally,
the third column of Figs. 8 and 9 depict the resampling process of the
particles for 𝐴𝑃𝑖, with 𝑖 = {1,… , 7} and 𝑖 = {8,… , 13}, respectively.

The resampling process effectively addresses the degeneracy prob-
lem, wherein only a few particles possess significant weights while the
majority of particles have exceedingly small weights. During resam-
pling, particles with substantial weights are selected multiple times,
while those with low weights are unlikely to be chosen. In the context
of our experiment, the resampling process exhibits two distinct be-
haviours contingent upon the particle’s weight, as presented in the third
column of Figs. 8 and 9. Specifically, when the weight exceeds or equals
the threshold of −70, the particle is deemed eligible for consideration
in our experimental analysis. Conversely, particles failing to meet this
weight criterion are excluded from further consideration.

Following the completion of all the operations and steps described
earlier, the particle filter can predict and estimate the magnetic path
by fusing all the data obtained from crowd-sensing, as illustrated
in Fig. 10. Table 5 summarises the performance metrics of different
methods. These methods are evaluated in terms of enhanced accuracy
and average error. The first method corresponds to the IMU and PDR
approach without a magnetic fingerprinting database, achieving an
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Table 4
Positioning algorithm based on the particle filter.
Step 1: Utilising Pozyx UWB anchors and IMU to collect data by PDR method.

Step 2: Utilising Matlab to preprocess data and then load the processed data.
Step 3: Representing the phase one (3 tracks) and the 2D trajectory predicted by UWB.
Step 4: Displaying points of the initial to the third path in stage one (which is split into 6 sub-paths).
Step 5: Defining Wi-Fi measurements and displaying the RSS vs. time relationship.
Step 6: Measuring Magnetic Fields directions.
Step 7 : Creating the fingerprinting database for the test of area.
Step 8: Particle filter process.
Step 8.1: State representation or initialisation using (5)
Step 8.2: Applying the Prediction step using (8)
Step 8.3: Applying the Update step: using (10)
Step 8.4: Applying the Particle Resample step using (11)

Step 9: Particle filter loop to compute the predicted location and drawing trajectory.
Step 10: Utilising the mutual information and reference trajectory for matching and comparing with the particle filter’s predicted trajectory.
Table 5
Comparison between the root mean square error (RMSE) values for the trajectory states obtained using the IMU, PDR, and
particle filter and magnetic fingerprinting with reference trajectory using UWB.
Algorithm Enhanced accuracy Average error to the

reference trajectory

IMU and PDR approach without magnetic fingerprinting
database

80.49% 0.3

IMU and PDR approach with magnetic fingerprinting
database

85.86% 0.32

The proposed method using the particle filter of 𝑛 = 1000
particles and magnetic fingerprinting database

96.32% 0.359
Fig. 7. Computed paths using 𝑈𝑊𝐵𝑖 devices, ∀𝑖 = 1 → 11, and tracks using the IMU.
9
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Fig. 8. The particle filter process linked with the synchronised access points for each 𝐴𝑃𝑖, ∀𝑖 = 1 → 7.
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nhanced accuracy of 80.49% with an average error of 0.3. In contrast,
he second method presents results for the IMU and PDR approach
hen incorporating a magnetic fingerprinting database, showing an
nhanced accuracy of 85.86% and an average error of 0.32. Finally,
he proposed method employs a particle filter with 1000 particles
nd a magnetic fingerprinting database. This method demonstrates a
ignificantly improved enhanced accuracy of 96.32% while maintaining
n average error of 0.359. Based on these findings, we conclude that
he proposed method achieves the highest level of accuracy, which
ttains an enhanced accuracy of 96.32%. However, this approach does
xhibit the largest average error in the last column from Table 5,
10

t

ndicating an average error of 0.359. Therefore, while the proposed
ethod significantly improves accuracy, it does come at the expense of
slightly higher average error. The choice of which approach is ‘‘best’’
epends on the specific trade-off between accuracy and average error
hat aligns with the application’s objectives and requirements.

. Conclusions

This paper provides an overview of indoor positioning technolo-
ies, methodologies, strategies, and contemporary applications. Addi-
ionally, the paper presents a low-cost, reliable, and highly accurate
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Fig. 9. The particle filter process linked with the synchronised access points for each 𝐴𝑃𝑖, ∀𝑖 = 8 → 13.
Fig. 10. The predicted trajectory using particle filter.
11
indoor localisation system based on crowdsensing, particle filter, and
the test region’s infrastructure. Furthermore, the system relies on the
RSS signals from Wi-Fi devices equipped in the test area, and the
signals from access points are synchronised to build a magnetic finger-
printing database used for acceleration. This approach overcomes the
limitations of traditional magnetic field-based localisation techniques,
which are heavy in terms of comparison workload and insufficient in
analysing magnetic field signals that do not change easily over time.
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The system also employs continuous updating of the particle filter with
data collected by the IMU, using the PDR method to obtain motion data
such as acceleration, stride size, and direction to estimate the predicted
trajectory. Finally, the proposed system’s accuracy is demonstrated
by comparing the estimated trajectory using the particle filter with
the reference path using the UWB anchors through trilateration and
the mutual information approach, which showed an improvement in
accuracy from 80.49% to 96.32% using crowd-sensing, particle filter,
and magnetic fingerprinting.
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