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Abstract
In many settings, a collective decision has to be made over a set of alternatives that has a
combinatorial structure: important examples are multi-winner elections, participatory bud-
geting, collective scheduling, and collective network design. A further common point of these
settings is that agents generally submit preferences over issues (e.g., projects to be funded),
each having a cost, and the goal is to find a feasible solution maximising the agents’ satis-
faction under problem-specific constraints. We propose the use of judgment aggregation as a
unifying framework to model these situations, which we refer to as collective combinatorial
optimisation problems. Despite their shared underlying structure, collective combinatorial
optimisation problems have so far been studied independently. Our formulation into judg-
ment aggregation connects them, and we identify their shared structure via five case studies
of well-known collective combinatorial optimisation problems, proving how popular rules
independently defined for each problem actually coincide. We also chart the computational
complexity gap that may arise when using a general judgment aggregation framework instead
of a specific problem-dependent model.
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1 Introduction

Public decisions often have a combinatorial structure. Typical examples are participatory
budgeting (choosing a set of projects to fund, given some budget constraints), collective
scheduling (collectively deciding on the order some tasks will be executed), collective net-
work design (collectively deciding on the edges of a network to connect multiple locations),
multi-winner elections (find a committee of a fixed size), and many more—including prob-
lems which have not been given much attention, yet are worth investigating.

Many of these problems, including the four examples given above, have been studied
separately while sharing many features. Their input mainly consists of individual preferences
expressed locally (on projects, on the relative order of two projects, on edges between two
nodes) rather than globally (on all sets of projects, all possible schedules or all possible
networks).1 The output is a feasible solution, i.e., a solution which abides by the constraints
and that maximises an objective expressed via a score function. What distinguishes these
problems is the nature of the constraints: the maximum budget should not be exceeded, a
schedule should be a consistent ordering, a network should be a tree, etc.

The problems mentioned above are thus structurally close, and we may ask whether they
could be seen as instances of a more general framework, consisting of a general language
for expressing preferences and constraints, general aggregation functions, and general com-
putational tools. If the answer is positive, each of these problems, their variants, as well as
novel collective combinatorial optimisation (CCO) problems, could be expressed and solved
in such a general framework without the need to study each of them separately.

We give a positive answer, and we do so by showing that judgment aggregation is such
a suitably general framework. This framework has been initially developed to study the
aggregation of binary judgments over logically interconnected issues in an agenda to gain a
collective decision (cf. the survey by Endriss, [13]). Given the type of problems that we wish
to study, we need a slight generalisation of standard judgment aggregation that can allow
for weighted agendas and/or asymmetric agendas. We show that several aggregation rules
used to solve specific problems are actually instances of existing and well-studied judgment
aggregation rules, or of some of their variants (such as weighted generalisations).

However, it is worth first clarifying what our paper is not:

(i) We do not define a brand-new framework: most aspects of the unifying framework that
we give are known from judgment aggregation; we do define weighted variants of some
well-known rules that are useful to capture CCO problems.

(i i) We do not study new problems: instead, we restate several existing problems that have
been studied independently, such that they can be analysed under a common umbrella
framework. By doing so, we do however open the possibility to define and study new
problems, such as what we will call collective placement.

1 Since the set of solutions has a combinatorial structure, expressing preferences globally requires a high
communication burden from the agents—however, using a local approach limits the types of preferences that
can be expressed.
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(i i i) Wedonot give better algorithms for specific problems: in fact, general solvers can perform
at best as well as specific solvers, and sometimes worse. Also, for several rules, the
computational complexity of solving the outcome determination problem for the general
case is higher than that of specific ones.

(iv) We do not give any axiomatisation: the axiomatisation of (judgment aggregation) rules
has been investigated per se. The properties of the rules naturally carry over to the specific
problems (although an axiomatisation of a general rule does not necessarily lead to that
of its specific instantiation).

Our contribution establishes novel and fundamental connections between several lines of
research and problems that have so far been studied separately. Identifying those connections
may lead to meaningful insights across different areas of research. In doing so, we give
an engineering flavour to judgment aggregation, a field that up until now has focused on
impossibility results, axiomatisations, and computational complexity, but not yet on concrete
applications to real-world problems.

Moreover, for some judgment aggregation rules the outcome can be computed via a
translation into integer linear programming (ILP). Of course, such a translation could be
done for each specific problem, but the existence of a general translation allows for a simpler
process in comparing models, since translating a problem to judgment aggregation can be
easier than translating it directly into an ILP.

There are twomain streams of related literature. On the one hand, we have papers studying
specific settings for collective combinatorial optimisation: these will be cited extensively
when they are introduced formally in Section 3. On the other hand, we have papers adapting
classical judgment aggregation to deal with weighted issues, which we discuss here below.

Rey et al. [36] provide efficient and exhaustive embeddings of participatory budget-
ing problems via DNNF circuits in non-weighted judgment aggregation, giving an initial
axiomatic study of asymmetric additive rules extended from known judgment aggregation
rules. Chingoma et al. [8] simulate multi-winner voting rules in judgment aggregation for
both ordinal and approval-based preferences and study their complexity. Both of these works,
however, do not generalise directly to other CCO settings. Nehring and Pivato [32] introduce
and study a setting of judgment aggregation with weighted issues: we use their definitions to
build our general framework, including themedian rule of which they give an axiomatisation.

Our paper is structured as follows. In Section 2, we give an overview of judgment
aggregation rules and their generalisations to weighted asymmetric agendas, and we also
generalise the Chamberlin-Courant voting rule for approval ballots to judgment aggregation.
In Section 3, we show how numerous collective combinatorial optimisation settings can be
expressed in weighted judgment aggregation and we prove that some of the specific rules
from these settings are in fact instances of judgment aggregation rules. In Section 4 we give a
computational study of the rules, both from a theoretical and an experimental point of view.
We conclude in Section 5.

2 Weighted asymmetric judgment aggregation

Judgment aggregation is a general framework to make collective decisions over a set of pos-
sibly interconnected issues linked by constraints. Nehring and Pivato [32] have considered
a generalisation of judgment aggregation where each issue is associated with a numerical
weight, while Rey et al. [36] have defined asymmetric judgment aggregation rules. We com-
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bine both approaches and consider agendas for which each item and its negation have weights
(which are not required to be equal).

2.1 Formal model

A set of n agents (or voters) N = {1, . . . , n} have to take a collective decision on the
acceptance of m items (projects, issues, etc.) in an agenda A. The agenda A is composed of
two sets A+ and A−, which represent the set of positive and negative issues, respectively.
Hence, A = A+ ∪ A−, where |A+| = |A−| = m/2. This means that for every a ∈ A+ there
is an a ∈ A− which represents the negation of a.

Each item of the agenda A has an associated weight wa ∈ N0 that will be used in the
aggregation by the rules.2 The weight vector w collects the weights of all the m items in the
agenda A. While in the most general setting, each weight can be any natural number or 0,
we are also interested in some specific restrictions on the weight vectors (which determine
different types of agendas) that we describe here below.

First, we can have agendas where each positive item a ∈ A+ and its corresponding
negation a ∈ A− have the same weight (what we call a symmetric agenda, i.e., wa = wa

for each a ∈ A+; although note that each positive-negative issue pair in the agenda may
have a different weight), or agendas where the negated item has weight zero (what we call
an asymmetric agenda, i.e., wa = 0 for each a ∈ A−). Second, we can have agendas where
the items’ weights are in the set {0, 1} (what we call a binary agenda) or where they are in
N0 (what we call a weighted agenda).

By combining the above cases, we derive the following four natural variants of judgment
aggregation, defined by the corresponding restrictions on the weight vector of the agenda,
whichwewill focus on in the rest of this paper. Note that an agendamay be neither symmetric
nor asymmetric (i.e., wa, wa ∈ N, yet wa �= wa).

Standard judgment aggregation (wa = wa = 1) In standard judgment aggregation,
denoted by w

sym
bin , all issues (and their negations) have equal weights. Formally, for any

a, a′ ∈ A we have that wa = wa′ . Without loss of generality, we can assume that all weights
are equal to 1, thus yielding a symmetric binary agenda.
Asymmetric judgment aggregation (wa = 1;wa = 0) For binary asymmetric agendas,
which were studied by Rey et al. [36], and which we denote by w

asym
bin , we assume that

wa = 1 for all a ∈ A+ and wa = 0 for all a ∈ A−. Intuitively, when an item’s weight is 0,
the support for this item will be discarded when computing an outcome. Thus, in the setting
by Rey et al. [36], asymmetric weights allow for rules to be biased towards the acceptance
of positive agenda items.
Weighted judgment aggregation (wa = wa ∈ N0) In symmetric weighted judgment aggre-
gation, which we denote by w

sym
we , different items of the agenda can have different weights,

yet an item and its dual must have the same weight, wa = wa ∈ N0. This was described by
Nehring and Pivato [32].
Weighted asymmetric judgment aggregation (wa ∈ N0;wa = 0) Finally, in the w

asym
we

restriction we have wa = 0 for all a ∈ A− and wa ∈ N0 for all a ∈ A+.

In addition to being able to capture standard judgment aggregation, the setting we provide
is more general in two ways: the presence of weights and the possible asymmetry between

2 Although Nehring and Pivato [32] assume real-valued weights, integer weights allow us to use compact
languages for the constraints; a further generalisation to values in R (or to negative values) for the weights is
also possible.
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issues and their negations. The latter generalisation goes slightly in the direction of belief
merging (see [28]); however, we assume that all agents report judgments on the same agenda,
unlike belief merging.3

For an agenda A and an agent i ∈ N , an agent’s ballot is a vector Bi ∈ {0, 1}m , where
each entry represents the agent’s decision on a fixed agenda item. In this context, the notation
Bi (a) refers to the entry of vector Bi ∈ {0, 1}m for issue a ∈ A. The collection of the agents’
ballots is a profile B = (B1, . . . , Bn).

Constraints can be imposed on a weighted judgment aggregation problem, either on the
collective outcome (e.g., abiding by a budget constraint) or on the individual ballots (e.g.,
approving a minimal number of items). Following Endriss [14] we call the former feasibility
constraints (denoted by�F ) and the latter rationality constraints (denoted by�R). Throughout
the paper, we will express these constraints as sets of linear (in)equalities, allowing the
constraints from many CCO settings that include numerical values to be formalised clearly.4

Moreover,BR ⊆ {0, 1}m is the set of all ballots satisfying the rationality constraints, while
BF ⊆ {0, 1}m is the set of outcomes satisfying the feasibility constraints. Since agendas
include an issue and its negation, we always assume that all ballots and all outcomes accept
either an issue or its negation (no matter the issues’ weights). Additionally, when imposing
rationality and feasibility constraints, we require that any voter’s ballot Bi ∈ {0, 1, }m must
be rational, i.e., Bi ∈ BR , and any outcome of an aggregation method X ∈ {0, 1}m must be
feasible, i.e., X ∈ BF .

An important remark tomake here is that theweightswill be used by our rules as a proxy for
the agents’ satisfaction during the aggregation step in order to identify the optimal outcomes.
However, as we shall see for the case of participatory budgeting (in Section 3.2), in some
CCO settings the weights will also determine the feasibility of the outcomes themselves: i.e.,
we could have a participatory budgeting scenario where the weights associated to projects
correspond to their costs (thus, the satisfaction of an agent is the total cost of the accepted
items they approve of), but they also appear in the constraints (i.e., the budget limit should
not be exceeded).

In the following, we sometimes use j ∈ [x, y] as a shorthand for j ∈ {x, . . . , y}, and
j ∈ [x] as a shorthand for j ∈ {1, . . . , x}.

2.2 Weighted asymmetric judgment aggregation rules

In this section we recap some well-studied rules from judgment aggregation, but we define
them generally in the sense that the agenda items can have any weight vector (recall that,
with a slight abuse of terminology, we refer to the weighted versions of the rules when the
weights are not binary).

We call a weighted asymmetric judgment aggregation rule a function F that takes as input
a rational profile B ∈ BR , set of feasibility constraints �F , and weight vectorw for the items
in an agenda A and it gives as output a set of feasible outcomes (i.e., where X ∈ BF for each
outcome X ). Observe that rules are thus irresolute, in the sense that they may return a set of
tied feasible outcomes.

3 See [19] for a comparison of belief merging and judgment aggregation.
4 Note that the constraints can be expressed inmanyways: for instance, in the standard (symmetric) framework
of binary judgment aggregation, they are usually expressed as formulas of propositional logic [23].
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2.2.1 The (weighted) median rule

The median rule finds the outcomes that globally minimise the number of changes between
the profile and the outcome or equivalently, maximise the number of agreements between
the agents’ ballots and the outcome. The weighted median rule extends the median rule by
maximising the total sum of the weights of accepted items in the outcome and each of the
agents’ ballots.

Definition 1 The (weighted) median rule takes a rational profile B, feasibility constraint �F ,
and agenda weights w and gives a set of outcomes found by:

argmax
{X |X∈BF }

∑

i∈N

∑

a j∈A

wa j × Bi (a j ) × X(a j ).

Wemay choose anyweight vector pairedwith this rule, however, when pairedwith specific
weight vectors, the function aligns with specific rules. When the agenda’s weight vector is
restricted to be unary (i.e., symmetric and binary,wsym

bin ), this rule reflects the standardmedian
rule (which we will refer to as Med); while under symmetric non-binary weights, wsym

we , we
obtain the symmetric weighted median rule defined byNehring and Pivato [32] (which we
will refer to as WMed).

Observe thatMed andWMed differ in name, yet they are the same function with different
weights being used for the aggregation. In the former, theweights of the items, for aggregation
purposes, are binary. Hence, the satisfaction of the agents is based on the cardinality of the
intersection between the outcome and voters’ ballots only. Note that this does not stop the
feasibility constraint to use the weights of the items when determining if an outcome is
feasible. In the latter, i.e.,WMed, the issues’ weights represent the satisfaction of the voters:
instead of getting one point for every item approved by both the outcome and the voters’
ballots, we now get the sum of the items’ weights which are approved by both.

2.2.2 The (weighted) egalitarian rule

The standard egalitarian rule outputs the outcomes that maximise the minimum number of
projects approved by any agent in the outcome. When the weight vector is restricted towsym

bin
it is called the dH -max rule by Lang et al. [31] and the MaxHam rule by Botan et al. [4].

Definition 2 The (weighted) egalitarian rule takes a rational profile B, feasibility constraint
�F , and agenda weights w and gives a set of outcomes found by:

argmax
{X |X∈BF }

min
i∈N

∑

a j∈A

wa j × Bi (a j ) × X(a j ).

In general, we will refer to this rule as Egal when weights are binary and asWEgal when
weights are non-binary (wasym

we or wsym
we ). Although egalitarian rules have also been studied

in belief merging (see, e.g., [18]), to the best of our knowledgeWEgal is new. Its motivation
is natural in participatory budgeting instances with few agents, where we may want to ensure
that each agent agrees with the funded projects to some minimum level.

2.2.3 The (weighted) ranked agenda rule

The ranked agenda rule was studied by Lang and Slavkovik [30] and its leximax refinement
was studied by Nehring et al. [33]. The rule iteratively considers issues following the order
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induced by the support received, rejecting an issue if its addition would break the feasibility
constraint. There are two variants of the rule, depending on whether ties are broken immedi-
ately, using a tie-breaking rule, or if all tie-breaking possibilities are considered in parallel.
For simplicity, we only consider the former variant.

Algorithm 1 The (weighted) ranked agenda rule.
1: Input: �F , B, A, w
2: � := {�F } and X := {0}|A|
3: Order the issues of A w.r.t.

∑
i∈N Bi (a) × wa in descending order

4: for each issue a j in the ordering do
5: if � and a j is consistent then
6: X(a j ) := 1 and � := � ∪ {a j }
7: end if
8: end for
9: return X

The rule follows Algorithm 1. It has as input the constraint �F , the profile of ballots B,
the agenda A, and the weight vector w; the output is an outcome X ∈ BF . On line 2, � is
initialised to be a set containing �F and the outcome vector X sets a 0 for each item. It then
orders the items in A with respect to their weighted support (using a linear tie-breaking rule
when items have equal support). Following this order of items, in the for-loop on line 4, it
first checks if the addition of this item breaks feasibility given the currently accepted items.
If feasibility is respected, then the outcome for that item is set to 1 and the item is added to
� (otherwise, its negation will be in the outcome). This algorithm can be altered to get other
ranked rules, such as the greedy Chamberlin-Courant rule (see [41]).

For a non-binary agenda, we will refer to this rule as WRank and for a binary agenda we
will refer to it as Rank.

2.2.4 The Chamberlin-Courant rule

The Chamberlin-Courant voting rule (CC) was originally introduced for ordinal preferences
by Chamberlin and Courant [7] as a way to try to ensure that all voices are present in
deliberation. We consider a variant for approval-based preferences, studied by Skowron and
Faliszewski [37] for multi-winner elections and generalised to participatory budgeting by
Talmon and Faliszewski [41].5 For approval-based preferences, an outcome shouldmaximise
the number of agents who have at least one item in the outcome that they approve of. We
define the rule here for general agendas: we say that an agent is satisfied by an outcome if
there is at least one issue with non-zero weight approved by the agent and contained in the
outcome; then, the rule outputs every outcome that maximises the number of satisfied agents.

Definition 3 The Chamberlin-Courant rule takes a rational profile B, feasibility constraint
�F , and agenda weights w and gives a set of outcomes found by:

CC(B, �F ,w)= argmax
{X |X∈BF }

∑

i∈N
min(1,

∑

a j∈A

X(a j ) × Bi (a j ) × wa j ).

5 In a related approach, Chingoma et al. [8] generalised the Chamberlin-Courant rule and the proportional
approval voting rule (PAV) to judgment aggregation, relying on weak rankings to model either dichotomous
or ordinal preferences.
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First, note that changing the weight of an issue from some non-zero number to another
non-zero number has no impact on the outcome: only changing non-zero weights to zero
and vice-versa can affect the outcome (without loss of generality non-zero weights can
be 1). Second, the rule makes particular sense for asymmetric agendas, such as those for
participatory budgeting or multi-winner elections.

2.3 Examples

We now provide an example illustrating the four rules we just introduced, both in their
weighted and binary versions.

Let N be a set of 8 voters and A+ = {i, j, k, �,m, n} be a set of 6 (positive) issues.
Each positive issue has an associated cost, modelled by vector c = (1, 2, 2, 2, 3, 4). In this
example, costs are used to determine if an outcome is feasible. Moreover, when the weights
are non-binary, theywill correspond to the issues’ costs.Wewill only consider an asymmetric
agenda, thus, the weight vectors will be restricted to be of the form w

asym
bin or wasym

we . Hence,
for each a ∈ A−, wa = 0.

The feasibility constraint states that the total cost of the collectively accepted issues is no
greater than 5. We first study the profile B given in Table 1. The line labelled sum gives the
total support for each of the issues in the profile, while the line labelled weighted sum gives
the total support for that issue times its weight.

Binary asymmetric weights We first consider the aggregation weights to be binary and
asymmetric. Thus, the aggregation weight vector w is such that wa = 1 for a ∈ A+ and
wa = 0, otherwise. Given w, we compute the rules Med, CC, and Rank: each of them
considers the amount of support each item of A+ has received, as per the sum line in the
table.

The unique outcome ofMed is accepting only i , j , and k as it has the highest total support
of 13 and all other feasible outcomes have smaller total support.

The Rank rule returns the outcome that accepts only i and m. It orders the issues with
respect to how much support they have received: i.e., i,m, j, k, n, � (breaking ties alphabet-
ically); then, it accepts i and then m as their total cost is 4. None of the remaining issues can
be added without exceeding the budget limit.

The CC rule returns the outcome that only accepts � and m as this is the only feasible
outcome in which all voters approve of at least one of the issues.

Weighted asymmetric weights We now consider a weighted asymmetric vector w′, where
w′
a = c(a) for all a ∈ A+, giving w′+ = (1, 2, 2, 2, 3, 4), i.e., the weight of each issue is its

cost, and each issue in A− has a weight of 0. The outcomes of the rules WMed and WRank
on w′ are given in Table 1 (we do not consider the CC rule on non-binary weights).

The ruleWMed returns two tied outcomes that maximise the total weighted support. The
first outcome accepts only issues j , and m, while the second accepts only issues k and m:
both have a total weighted support of 23.

The ruleWRank first orders the issues with respect to their weighted support (the numbers
in the weighted sum line), giving the order: n, m, j , k, �, i (ties are broken alphabetically).
Then, it accepts issue n with cost 4. It then must reject m, j , k, and then �, in this order, as
their acceptance would exceed the limit of 5 given by the constraint. Then issue i is added,
giving the outcome where only n and i are accepted.

Egalitarian rules For the egalitarian rules, we consider a different profile B′ given in Table 2
withN = [6], wherewe consider the same issues as before except j , i.e., A+\{ j}. Ourweight
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Table 1 Profile B from the
example given in Section 2.3

i j k � m n

cost 1 2 2 2 3 4

voter 1 1 0 1 0 1 0

voter 2 0 1 1 1 0 1

voter 3 1 1 1 0 1 1

voter 4 1 1 0 0 1 1

voter 5 1 1 0 1 0 1

voter 6 1 0 1 0 1 0

voter 7 0 0 0 1 0 0

voter 8 0 0 0 0 1 0

sum 5 4 4 3 5 4

Med 1 1 1 0 0 0

CC 0 0 0 1 1 0

Rank 1 0 0 0 1 0

weighted sum 5 8 8 6 15 16

WMed 0 1 0 0 1 0

0 0 1 0 1 0

WRank 1 0 0 0 0 1

We give the total number of approvals for each issue (sum), the weighted
number of approvals (weighted sum), and the outcome of the different
rules (including possible ties, as seen for WMed)

vectors remain the same excluding the entry corresponding to j . The cost of each issue is
given in c′ = (1, 2, 2, 3, 4), and the budget constraint remains at 5.

First consider Egal, where the weight vector has wa = 1 if a ∈ A+\{ j}, and wa = 0 if
a ∈ A−\{ j}. In this instance, the outcomes of Egal contain, for each voter, at least one issue

Table 2 Profile B′ from
Section 2.3 used to show the
outcome(s) of Egal andWEgal

i k � m n

cost 1 2 2 3 4

voter 1 1 1 0 1 0

voter 2 0 1 1 0 0

voter 3 0 1 0 1 1

voter 4 1 0 0 1 1

voter 5 1 0 1 0 1

voter 6 1 1 0 1 0

Egal 1 1 1 0 0

1 1 0 0 0

0 0 1 1 0

WEgal 0 0 1 1 0
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that they approve of. In particular, each of the 6 voters approves of either issue � or m, so
Egal returns the outcome approving these two issues (no more items can be added without
exceeding the budget limit). Then, there is only one feasible outcome accepting three issues
from the positive agenda: i , k and �. Here the least satisfied voters (voters 3 and 4) approve
exactly one issue in the outcome. Note that the outcome accepting only issues i and k is
returned by Egal, as the least satisfied voter (voter 3) also approves of only one issue.

AsWEgal is aweighted judgment aggregation rule (i.e., using a non-binaryweight vector),
we let the issues’ weights be their cost. Thus, wa = c(a) for a ∈ A+\{ j} and wa = 0 if
a ∈ A−\{ j}. Then, only the outcome accepting issues � and m is returned by WEgal, as
every agent gets at least a minimum weight of 2 (out of 5) that they approve of.

3 Collective combinatorial optimisation: five problems

In this section, we present five examples of collective combinatorial optimisation (CCO)
problems from the literature, and we model them in judgment aggregation. A CCO problem
has the following characteristics. First, a collective decision must be taken to decide which
discrete items should be accepted from a given finite set. In many examples of CCO settings,
each of the items will have a cost, which may be used by the constraints. In general, the
combinatorial nature of the problem then arises from the presence of constraints specifying
what is a feasible outcome. CCO rules will then take a rational profile of ballots and return a
feasible collective combinatorial outcome, optimising some metric of satisfaction. Note that
rationality and feasibility constraints here correspond to the specifics of the CCO setting in
question.

We show that specific rules, studied independently within each CCO setting, are instances
of the rules defined in Section 2.2. Formally, a CCO rule R is an instance of a judgment
aggregation rule R′ if there is a translation from any profile B of this specific CCO setting
into a judgment aggregation profile B′ such that the outcome ofR on B is equivalent to the
outcome of R′ on B′, i.e., they correspond to the same collective decision.

3.1 Multi-winner elections

This well-studied framework models the collective selection problem of a set of candidates.
The candidates have equal weight, which can be assumed to be unitary without a loss of
generality. The agenda is A = {a, a | a is a candidate}. Furthermore, we mainly consider
CCO rules in which the agents only vote on the acceptance of the candidates, the exception
being theminimax approval rule (details are given in the following). Thus, the agenda is binary
and asymmetric, i.e., for each pair a, a ∈ A, wa = 1 and wa = 0. We thus only consider
the judgment aggregation rules with binary weights. The feasibility constraint requires that
exactly a given number k ∈ N of candidates are elected, thusBF = {X | ∑

a∈A X(a)×wa =
k}. The ballots represent the agents’ approval of the candidates: they can approve as many
candidates as they like, or exactly k candidates (BR = BF ).

The following proposition shows the correspondence between rules in the literature on
multi-winner voting and our general judgment aggregation rules. Definitions of multiwinner
voting rules can be found in the work of Lackner and Skowron [29].

Proposition 1 The following multi-winner rules are instances of their judgment aggregation
counterparts:
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i) the standard multi-winner approval voting rule, that outputs the most approved k candi-
dates, is an instance of both Med and Rank (modulo tie-breaking);

ii) the Chamberlin-Courant rule for approval ballots (see [37]) is an instance of CC;
iii) the minimax approval voting rule by Brams et al. [5], that outputs the outcomes min-

imising the maximum, over all agents i , of the Hamming distance between the outcome
and i’s ballot, is an instance of Egal with binary symmetric weights (wsym

bin ).
6

Proof For asymmetric agendas equippedwith amulti-winner constraint, themedian ruleMed
selects all subsets of candidates that maximise the (sum of the) overlap of voters’ approved
issues with the outcome. This is exactly what the multi-winner approval voting rule does.
The ranked agenda rule Rank sorts the issues by voters’ support first and then sequentially
adds the best k issues to the outcome. Considering parallel-universe tie-breaking, we derive
exactly those outcomes that are output by the median rule.

As the Chamberlin-Courant rule for approval ballots was adapted from Skowron and
Faliszewski [37] into our judgment aggregation framework, the instantiation follows by
design. Both in multi-winner elections and judgment aggregation (equipped with a multi-
winner constraint), the Chamberlin-Courant rule selects those fixed-size subsets of issues
that maximise the number of voters that approve of at least one (positive) issue.

Theminimax approval voting rule byBrams et al. [5] selects those outcomes thatminimise
the maximum Hamming distance to the voters’ approval ballots. Botan et al. [4] point out
that their judgment aggregation ruleMaxHam generalises the minimax approval voting rule.
Note that maximising the minimum support instead of minimising the maximum lack of
support is only a difference in modelling. In particular, as we consider symmetric agendas,
each agent supports exactly half of the issues (counting rejections). Thus, the Hamming
distance between a voter’s ballot and an outcome can be derived from counting the supported
issues, subtractingm/2, andmultiplying by−1 (and swappingminimisation andmaximisation
operators due to the sign change). ��

The egalitarian multi-winner rule appears to be novel—although a recent paper on par-
ticipatory budgeting proposed an asymmetric egalitarian rule [40]. The rule outputs the
committees of k candidates that maximise the minimum number of committee members
approved by any agent. It is close to the rules studied by Aziz et al. [2], who however
consider ballots to be rankings over alternatives.

3.2 Participatory budgeting

Participatory budgeting (PB) is a class of collective selection problems, generalising multi-
winner elections, where the agents approve projects to be funded by a limited resource (e.g.,
a monetary budget). A PB problem consists of a set of projects P , and each p ∈ P has a cost
cp if implemented. The PB rule will return a set of selected projects with a total cost that
must not exceed the budget limit � ∈ N.

We will now rephrase the PB problem in terms of our judgment aggregation notation
introduced in Section 2.1. The selection agenda A contains issues for each project p ∈ P
represented by ap . The agenda has asymmetric weights, i.e.,wa = 0 for every project a ∈ A.
We focus on the case where the agenda weights are either binary (wp = 1 for each ap ∈ A+)
or a weighted agenda (where wp = cp), depending on the notion of satisfaction required by
the rule.

6 The link between minimax approval voting and judgment aggregation was discussed by Grossi and Pigozzi
[24].
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Note that in participatory budgeting, the feasibility of the outcome is always determined by
the projects’ costs. Theweights, asmentioned in Section 2, are instead used in the aggregation
to quantify the voters’ satisfaction.

Regarding the feasibility of the outcomes, the cost of the collectively selected projects
must not exceed the budget limit � ∈ N. Hence,

BF = {X |
∑

a∈A+
X(a) × ca ≤ �}

are the feasible outcomes, with A+ the positive issues of A.
If there are no rationality constraints, BR = {0, 1}m , agents can approve any number

of items (regardless of their costs); if BR = BF , agents must submit their ideal allocation
under the budget limit. Related problems include collective knapsack or knapsack voting [22],
where rationality and feasibility constraints coincide, andweighted committee selection [27].

Proposition 2 The following PB rules are instances of their judgment aggregation counter-
parts:

i) themax rule with cardinality satisfaction fromTalmon andFaliszewski [41] is an instance
of Med;

ii) the generalised approval-based Chamberlin-Courant rule by Talmon and Faliszewski
[41] is an instance of CC;

iii) the max rule with cost satisfaction from Talmon and Faliszewski [41] is an instance of
WMed;

iv) the greedy rulewith cardinality satisfaction by Talmon andFaliszewski [41] is an instance
of Rank;

v) the greedy rule with cost satisfaction from Talmon and Faliszewski [41] is an instance of
WRank;

vi) the maxmin participatory budgeting rule from Sreedurga et al. [40] is an instance of
WEgal;

vi i) the individually best knapsack rule from Fluschnik et al. [20] is an instance of Med when
their utilities are binary;

vi i i) the diverse knapsack rule from Fluschnik et al. [20] is an instance of CC when their
utilities are binary.

Proof We begin with the rules by Talmon and Faliszewski [41]. The max rule with car-
dinality satisfaction and the generalised approval-based Chamberlin-Courant respectively
generalise the multi-winner rules approval voting rule and Chamberlin-Courant rule for
approval ballots, with the only difference that feasibility is determined by a participatory
budgeting constraint. Following Proposition 1, the rules are instances ofMed and CC.

In participatory budgeting, a voter’s cost-based satisfaction corresponds to the funds spent
on projects the voter approves of. The max rule with cost satisfaction selects those feasible
bundles thatmaximise the (sumof) voters’ cost-based satisfaction. This is exactlywhatWMed
for weighted asymmetric agendas doeswhen theweightsmodel the respective projects’ costs.

The greedy rule with cardinality (resp. cost) satisfaction constructs an outcome sequen-
tially. The issues are first ranked either by the sum of cardinality satisfaction (i.e., the number
of supporting voters) or the sum of cost satisfaction, then projects are selected by descend-
ing total satisfaction (with some tie-breaking rule), skipping projects that would break the
feasibility constraint. Translated to judgment aggregation with asymmetric agendas, the vot-
ers’ satisfaction with each issue is preserved. Assuming the same tie-breaking scheme is
used, (W )Rank ranks the projects in the same way as the greedy rule with cardinality (cost)
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satisfaction and issues are added to the outcome sequentially, skipping issues that break
feasibility.

The maxmin participatory budgeting rule from Sreedurga et al. [40] also assumes cost-
based voters’ satisfaction. The rule selects those outcomes that maximise satisfaction for the
least satisfied voter, analogously toWEgal.

For the remaining two rules by Fluschnik et al. [20], the voters assign each item a non-
negative integer utility. Assuming these utilities are binary, each item has an individual
voter’s utility of zero or one. Given a participatory budgeting constraint, the individually best
knapsack rule selects a subset of items that maximises the (sum of the) voters’ utilities in
an analogous way to Med. In contrast, the diverse knapsack rule maximises the number of
voters that have a non-zero utility (for non-binary utilities every voter is represented by the
utility of her most preferred item in the outcome). For binary utilities, this corresponds to
CC. ��

3.3 Collective networking

In the problem of collective networking, the agents have to design a common network—
whether the network consists of water pipelines, internet services, or travel connections
between countries. The agents specify which links they approve of, and the goal is to find
a spanning tree from such input, i.e., an undirected acyclic graph that includes all nodes,
maximising the satisfaction of the agents. This problem has been introduced and studied by
Darmann et al. [10, 11].

Given an undirected network G = (V , E) a networking agenda is the set of items A =
{ai j , ai j | (i, j) ∈ E}, where wai j = 0 for all ai j ∈ A− (i.e., the agenda has asymmetric
weights). Then, ci j is the cost of adding edge (i, j) to the outcome network. Darmann et al.
[11] consider edges with costs but no budget limit determining what is a feasible outcome,
as they assume that some central authority will fund any outcome. As for participatory
budgeting, we can consider eitherwai j = ci j orwai j = 1, depending on how the rule is going
to model the agents’ satisfaction for building such a connection.

The set of accepted edges must form a spanning tree (i.e., acyclic and connected tree),
this is reflected in the feasibility constraints—and a budget limit can also be imposed. These
constraints can be formulated as linear inequalities in many ways.7 We here focus on the
single commodity flow model by Abdelmaguid [1], where we first move from undirected to
directed graphs, andwe then forget the direction of the edges to obtain the collective spanning
tree. We have |E | variables ai j stating whether (i, j) is in the collective spanning tree, and
2|E | variables yi j and y ji in set Y for the two directions of each edge in E . Each yi j ∈ N

describes the flow going from node i to node j .
We also have |V | constraints as follows, for j ∈ V :

∑

i :(i, j)∈E
(yi j − y ji ) =

{
1 − |V |, if j = 1

1, otherwise
(1)

The first case accounts for the (artificial) root of the tree j = 1, having no in-flowing
edges. Thus, yi1 = 0 for all (i, 1) ∈ E and the out-flowing edges have a total weight of
|V | − 1. The second case ensures that in a spanning tree, the in-flowing weight exceeds the
out-flowing by one.

7 Note that without the use of linear inequalities, constraints can still be expressed compactly (only adding a
polynomial number of variables) when weights are unary (see [25]).
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Next, we ensure that directed edges correspond to the undirected edges:

yi j ≤ (|V | − 1)xi j and y ji ≤ (|V | − 1)xi j . (2)

For every (i, j) ∈ E , the constraints impose that each of yi j and y ji can carry flow only
when xi j is in the spanning tree. Finally, the tree must have |V | − 1 edges:

∑

(i, j)∈E
xi j = |V | − 1. (3)

Example 1 Four cities want to improve their train connections (illustrated in Fig. 1) and need
to decide which rails should become high-speed. Let G = (V , E) represent the cities and
candidate rails, where V = {h, i, j, k} and E = {(h, i), (h, k), (i, j), (i, k), ( j, k)}. Thus,
the agenda is A+ = {ahi , ahk, ai j , aik, a jk}, and (1, 2, 4, 3, 2) are the respective costs to
build such connections, in millions of euros. Assuming the cities themselves may submit
a preference on which connections to upgrade, h may want a faster connection with cities
i and k, where many of its citizens work, thus submitting ballot Bh = (1, 1, 0, 0, 0). A
solution would then need to choose which connections to improve, ensuring that all cities
are connected by high-speed rails (possibly abiding by a budget if previously specified).

We now show that the specific rules introduced for the collective network problem are all
instances of judgment aggregation rules.

Proposition 3 The following collective network rules are instances of their judgment aggre-
gation counterparts:

i) the maximum collective spanning tree from Darmann et al. [10] is an instance of Med;
ii) the maximin voter satisfaction problem for approval voting for spanning trees from Dar-

mann et al. [11] is an instance of Egal;
i i i) the greedy algorithm for the maximum spanning tree problem from Escoffier et al. [17]

is an instance of Rank, when restricted to approval ballots.

Proof We now show that the procedure to find the maximum collective spanning tree from
Darmann et al. [10] is an instance of Med. Finding the maximum collective spanning tree
equates to finding the spanning tree that maximises the total support. Support here is deter-
mined by the number of agents who vote on an edge in the initial graph which is included in
the spanning tree. We see that Med gives the same solution, as it returns a feasible outcome
(in the case of spanning trees, with respect to (1), (2) and (3)) such that the total support
of the issues (i.e., total support on the edges) is maximised. Thus, the maximum collective
spanning tree from Darmann et al. [10] is an instance ofMed.

We then show that the maximin voter satisfaction problem for approval voting as defined
by Darmann et al. [11] is an instance of Egal. Its scoring function for approval voting assigns

Fig. 1 Graph given in Example 1.
Each node represents a city, each
edge is an existing train
connection, and an edge’s weight
is the cost to upgrade a
high-speed connection
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a point for each edge a voter approves of in a given spanning tree. Their egalitarian operator
finds the spanning trees which maximise the minimum approval score of any agent. This
coincides with the formula given in Definition 2 with binary asymmetric weights.

We next show that the greedy algorithm for the maximum spanning tree problem from
Escoffier et al. [17] is an instance of Rank, when restricted to approval ballots. The algorithm
provided by Escoffier et al. [17] orders the items by their approval level by the scoring
function used. The items are added in this order only if they do not break feasibility. When
the setting is restricted to approval voting, i.e., the voters can give only a valuation of 1 or 0 to
every edge, this corresponds to the number of agents in support of an edge. Therefore, given
a profile of votes, both the maximum spanning tree problem from Escoffier et al. [17] and
Rank create the same ordering of the items (provided that they follow the same tie-breaking
rule). As in Algorithm 1, the items are added with respect to this ordering and are only
rejected when their addition would entail that the resulting graph is not a spanning tree (as
per (1), (2) and (3)). Hence, the greedy algorithm for the maximum spanning tree problem
from Escoffier et al. [17] is an instance of Rank. ��

3.4 Collective scheduling

Let P = {p1, . . . , pm} be a set of (at least two) jobs to be performed on a single machine,
with execution time tx for job px ∈ P . The agents submit transitive and asymmetric orderings
over P , indicating their preferred order of execution of the jobs, which is then decided by
a collective rule. Pascual et al. [35] assume that the output schedule has no gaps and is
complete (hence, BR = BF ): the setting is thus equivalent to the aggregation of orderings
of alternatives, where the alternative can have different durations (similarly to costs for
participatory budgeting).8

Let A with A+ = {ax≺y, ay≺x | px , py ∈ P} be a scheduling agenda, where ax≺y being
accepts represents the support of px being scheduled before py , whereas ay≺x represents
support of py being scheduled before px . For an agent i , who provides a complete ranking
over the projects, it holds that Bi (ay≺x ) = 1 − Bi (ax≺y), and similarly for their negations.
The agenda items are either weighted or binary and are usually asymmetric. We focus here
on the binary asymmetric setting, where the weights of all of the items in A+ are set to 1,
and those in A− are 0. In the weighted setting, many different asymmetric weight vectors
could be considered, e.g., weights corresponding to the jobs’ durations (see the discussion
at the end of this section).

Agents submit complete rankings, so their ballots must approve exactly half of the positive
agenda items in A+, i.e., either ax≺y or ay≺x for all {px , py} ⊆ P . For the full agenda A,
each agent approves half of the items (i.e., an item or its negation), even in case we want to
model a voter submitting an incomplete schedule.

The outcome X of the collective scheduling problem must be a linear order of the jobs:
thus, the feasibility constraints must impose transitivity and asymmetry of scheduled jobs.
These can be easily formulated as linear inequalities.

Example 2 A faculty is scheduling the mandatory courses P = {p1, p2, p3, p4} for the first-
year students, and the faculty members have to decide on their ordering. Then the positive
agenda is given by A+ = {a1≺2, a2≺1, a1≺3, a3≺1, a1≺4, . . .}. Professor i thinks that p2 should
come first, then p1 second, p3 third, and that p4 should come last. Hence, i approves of all

8 The connection between the aggregation of (preference) orderings over alternatives without durations and
judgment aggregation is well-known, and thus known how the rules in both settings correspond to each other
Endriss [13].
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items in {a2≺x , ax≺2 | px ∈ {p1, p3, p4}} ∪ {a1≺x , ax≺1 | px ∈ {p3, p4}} ∪ {a3≺4, a4≺3},
and reject the remaining items.

Proposition 4 The following collective scheduling rules are instances of their judgment
aggregation counterparts:

i) the utilitarian aggregation rule with swap distance from Pascual et al. [35] is an instance
of Med;

ii) the egalitarian aggregation rule with swap distance fromPascual et al. [35] is an instance
of Egal.

Proof These rules consider the weight vector to be binary and asymmetric for the items in
A.

Pascual et al. [35] already make the connection between the Kemeny rule and their utili-
tarian aggregation rule with swap distance, which is known to be equivalent toMed.

As for the egalitarian aggregation function with swap distance, this rule gives a score for
each agent i ∈ N and possible outcome, which is one negative point for each item that an
agent wanted and is not accepted. By a slight abuse of notation, we can define for agent
i ∈ N this score as

∑
a j∈A −Bi (a j ) × (1 − X(a j )), where Bi (a j ) ∈ {0, 1} represents if i

accepts issue a j or not, and X(a j ) represents if a j is accepted or not in possible outcome X .
The rule returns those outcomes such that the minimum value Z of this score for any agent

(i.e., the value such that all agents have at least this score) is maximal. All agents approve
the same number of items in collective scheduling, i.e., k = ∑

a∈A Bi (a) for every i ∈ N .
The value of Z can be at worst the number of approvals in any ballot and at best 0. Since
every voter approves exactly k items of the agenda, we can add k to every agent’s summation,
k + ∑

a j∈A −Bi (a j ) × (1 − X(a j )) ≥ Z + k = Z ′, for Z ′ ∈ [0, k]. By rearranging this
inequality, we see that this is equivalent to

∑
a j∈A X(a j ) × Bi (a j ) for i ∈ N , which is

equivalent to maximising the least number of agreements between each agent’s ballot and
the outcome, which is exactly what Egal does. ��

Pascual et al. [35] also study, among others, a tardy measure of satisfaction, which paired
with their utilitarian or egalitarian rules resembleWMed andWEgal, respectively. However,
they are not instances of our judgment aggregation rules, as they rely on information specific
to each agent: namely, a due date which may be different for each agent (thus requiring an
individual weight function). Although these kinds of rules cannot be modelled in weighted
judgment aggregation, and since each item of a scheduling agenda refers to a pair of jobs
(to their preferred ordering), one way to incorporate non-binary weights would be to assign
the duration of the second job as the weight of the item: i.e., the weight of w(ax≺y) = ty and
w(ax≺y) = 0.9

Moreover, if agents are allowed to submit partial schedules, we could integrate this
into our model by letting them disapprove both the four elements of a pair of projects
ax≺y, ay≺x , ax≺y, ay≺x . This could allow for the modelling of being indifferent between
the ordering of px and py .

3.5 Collective placement

Not only does our general framework allow us to give a unifying treatment to many known
problems, but it can also be used to tackle novel applications. Due to the applications being

9 Note that thiswould also require adding extra items to the agenda representing the starting job in the ordering,
e.g., a0≺x , a0≺x for each project px ∈ P , in order to take into account the duration of this starting job as well.
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novel, they have not been studied independently and thus do not currently have a specific
framework. Consider a situation in which agents collectively decide both which projects to
accept and also how a given resource will fund them: e.g., selecting events and the rooms
where they can take place, pieces of furniture to purchase and where to place them in a room,
which tasks to accomplish and by which worker, and so on. The items in a placement agenda
thus represent whether a project is funded and by which part of the resource.

Formally, let P = {p1, . . . , pm} be a set of projects (e.g., events, tasks), where pi ∈ P
requires ci ∈ N

+ parts of a given resource (e.g., rooms, workers) to be implemented. Given
a resource divisible into � separate parts, a placement agenda contains a total of � ·∑pi∈P ci
elements, where each item aki, j ∈ A+ can be read as funding project pi ’s j th part with the

kth part of the resource. Thus, for each pi ∈ P , for all k ∈ [�] and each j ∈ [ci ] we have
aki, j ∈ A+, where wa = 0 for all a ∈ A−.

Feasibility constraints impose that a resource part is only used once in an outcome X (5),
that a project part is only funded once (4), and either every part of the project is funded or
none of it is (6).

Formally, for each pi ∈ P and j ∈ [ci ] we introduce:

�∑

k=1

X(aki, j ) ≤ 1 (4)

For each k ∈ [�] we have:
∑

pi∈P

ci∑

j=1

X(aki, j ) ≤ 1 (5)

Furthermore, we introduce binary variables pi that evaluate to one when project pi has
been accepted and zero otherwise. Therefore, for each pi ∈ P:

ci∑

j=1

�∑

k=1

X(aki, j ) = ci · pi (6)

These constraints define a basic setup where projects may not be funded by consecutive
parts of the resource.

Example 3 A company is refurbishing the floor of one of its buildings. Ten rooms will be
built with the following constraints: 6 rooms for office space, at most two toilets, at most one
common room and at most 5 meeting rooms (but possibly none). The employees are asked
to vote on possible refurbishment plans. The resource is thus composed of 10 discrete blocks
(the rooms), and the corresponding placement agenda items are akoffice, j for j ∈ [6], akcommon, j
for j = 1, aktoilets, j for j ∈ [2], akmeeting, j for j ∈ [5], with k ∈ [10]. An employee whose
favourite floor plan is to put the six offices together first, then a toilet, and then 3 meeting
rooms will thus vote akoffice,k = 1 for k ∈ [6], a7toilets,1 = 1, a7+ j

meeting,j = 1 for j ∈ [3], and
also vote 0 on all other issues (and 1 on their negations), signalling also that they are not
interested in having a common room on the floor. Of course, a nice user interface could help
to visualise a vote and translate it into a ballot for this placement agenda.
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4 Identifying computational complexity gaps

In the previous section,we saw that our general judgment aggregation framework is expressive
enough to capture a variety of different settings. Therefore, it is a good candidate as a
declarative language for collective combinatorial optimisation problems because it describes
the problems in logical terms, and their algorithmic resolution is taken care of by a general
solver. Moreover, we showed that many domain-specific CCO rules across the literature
can be simulated by known judgment aggregation rules—either directly or with a slight
generalisation to weighted and/or asymmetric agendas.

Shifting to a general framework allows for the use of additional constraints on the output
to study variants of classical problems without modelling a new framework. As an example,
Rey et al. [36] showed that by modelling participatory budgeting in judgment aggregation
they can consider multiple resources, project dependencies or quotas on project types. Yet,
this shift may come with a computational complexity gap. When there is such a gap, large
instances may not become easily solvable when expressed directly in the general language
using a general solver (yet, they could still be solved approximately; and small instances can
be solved easily in spite of the gap). On the other hand, if there is no such gap, then generality
comes for free.

This section is devoted to comparing the complexity of outcome determination for judg-
ment aggregation rules and domain-specific CCO rules. Endriss et al. [16] give a complexity
overview for standard (binary, symmetric) rules. We complement their results by classifying
the complexity of the weighted counterparts of these rules and identifying the presence or
absence of complexity gaps to outcome determination for multi-winner elections and partic-
ipatory budgeting. We do not consider collective scheduling and collective network design
here, as few complexity results are known.

We focus our study of outcome determination on the credulous (i.e., existentially quanti-
fied) version of the decision problem—the results for the skeptical (i.e., universally quantified)
variants are similar, replacing classes by their co-class.

F-Credulous-Outcome-Determination (F-Cred)

Given: An agenda A with associated weight vector w, a set of rationality and feasibility constraints
modelling BR and BF , a profile B ∈ BR

n , and a distinct issue from the agenda a∗ ∈ A.
Question: Is there a feasible outcome B ∈ F(B, �F ,w), such that B(a∗) = 1?

We are now set to discuss the complexity of computing the outcome of the rules we
introduced in Section 2.2, both in the general case and in two restricted cases of participatory
budgeting andmulti-winner elections. Table 3 summarises our results.We do not consider the
complexity in theweighted setting formulti-winner elections since theweights for candidates
are binary (by definition of the setting). Our findings show that for WMed, WEgal and CC
(and we conjecture also for Egal), there is no increase in complexity when moving from
specific CCO problems to our general formulation. This is not true forMed and Rank, whose
application to participatory budgeting or multi-winner elections can be run in polynomial
time. Interestingly, the restriction of the median rule Med to constraints whose consistency
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Table 3 In this table we compare each of the rules used throughout the paper with respect to different settings:
namely, judgment aggregation, multi-winner elections, and participatory budgeting

Rule Judgment Aggregation Multi-winner Participatory
with arbitrary weights in N0 Elections Budgeting

Med �
p
2-c

� P P♠,�

WMed �
p
2-c

�⊕ - �P
2 -c

�

Egal �
p
2-c

� coNP-h� coNP-h�

∈ �P
2
� ∈ �P

2
�

WEgal �P
2 -c

�⊕� - �P
2 -c

�⊕�

(W )Rank �P
2 -c

♣ P P

CC �P
2 -c

♥ �P
2 -c

♥ �P
2 -c

♥

For each rule and setting, we give the computational complexity of the (credulous) outcome determination
decision problem. ♣[15]; �[16]; ♠[41]; ♥[39]; �[3]—hardness proof forWMed in PB holds for one voter, the
extension of this result to other settings can be seen in ⊕Proposition 5 and �Proposition 6; unmarked results
are obviously polynomial-time computable

can be checked in polynomial-time is hard,10 but its application to participatory budgeting
and multi-winner elections is easy.

Proposition 5 For the weighted asymmetric median rule (considering wasym
we ), WMed-Cred

is �
p
2-complete. For the binary restriction (wsym

bin or w
asym
bin ), Med-Cred is �

p
2-complete.

For participatory budgeting constraints, WMed-Cred is �
p
2-complete for weighted agendas

(wasym
we ) and in p for binary agendas (wasym

bin ); it is in p for multi-winner elections.

Proof For the upper �
p
2 and �

p
2 bounds, the proofs are routine. The median rule outputs

judgments maximising a given value. We first identify the optimal score k∗ using binary
search, which needs a polynomial (resp. logarithmic) number of NP-oracle calls for weighted
(resp. binary) agendas. In a final query, we may ask whether this maximal value is reached
for some feasible outcome X ∈ BF where X(a∗) = 1.

For participatory budgeting (and its unit-weight variant multi-winner elections), Talmon
and Faliszewski [41] show that computing an outcome with the median rule (see Proposi-
tion 2) can be done in polynomial time; the result in an irresolute variant for Cred follows
[3].

For the lower bounds, for the (weighted, asymmetric) participatory budgeting agenda,
Baumeister et al. [3] showed thatWMed-Cred for the weighted median rule is�

p
2-hard, even

for settings with a single voter. We described in Section 3.2 how participatory budgeting can
be encoded into our model. Hence, we can use the same reduction as Baumeister et al. [3],
yielding�

p
2-hardness. Finally,Med-Cred for the binary median rule is known to be�

p
2-hard

even for symmetric agendas (see [16]). The hardness result extends to asymmetric agendas
since we can simulate a symmetric agenda with an asymmetric agenda (for each issue in the
negative agenda we add a corresponding issue to the positive agenda, whose values must be
kept consistent with the rationality and feasibility constraints). ��
Proposition 6 For the weighted asymmetric agenda (wasym

we ), WEgal-Cred is �
p
2-complete.

For the binary restriction (wasym
bin or wsym

bin ), Egal-Cred is �
p
2-complete.

10 de Haan [25] showed that hardness already holds for Horn formula constraints for binary symmetric
agendas.
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For participatory budgeting, WEgal-Cred is�
p
2-complete for weighted agendas (w

asym
we );

for binary agendas (wasym
bin ) Egal-Cred is in �

p
2 and coNP-hard for participatory budgeting

and multi-winner election constraints.

Proof Some of the proofs for membership and hardness are similar to the proof of Propo-
sition 5 for the (weighted) median rule. For the upper bound, we can also optimise a value
which is bounded upwards to decide credulous outcome determination. Analogously, we
need a polynomial number of NP-queries for weighted agendas and a logarithmic number of
NP-queries for binary agendas. For the lower bounds, we begin with weighted agendas. Note
that when the profile consists of a single voter B = (B1), then for any constraint �F and any
weight vector w, it holds that WMed(B, �F ,w) = WEgal(B, �F ,w). Hence, for single-
voter profiles, we can reduceWMed-Cred for the weighted median rule toWEgal-Cred for
the egalitarian rule. In the proof of Proposition 5, the reduction for the weighted median rule
only uses a single voter; thus, we can use the same reduction, resulting in �

p
2-hardness. The

result holds in particular for participatory budgeting constraints.
For the binary restriction, Egal-Cred is �

p
2-complete (see [16]), which for symmetric

agendas still holds even if no feasibility constraint is given (see [25]). Hardness transfers
to asymmetric agendas, as we can simulate symmetric agendas with asymmetric agendas.
For multi-winner elections and participatory budgeting, �

p
2 membership follows the same

structure, while coNP-hardness comes from a straightforward reduction of the complement
of the NP-complete problem Exact Cover by 3- Sets (see [21]). We assume that we
are deciding whether a finite set of elements cannot be covered exactly (i.e., each element
once) by a distinct selection of k 3-element subsets. We can reduce each element to a voter
and each 3-element subset to a candidate, approved by the voters representing the contained
elements. If we add another candidate, not approved by any voter, this candidate is in a
winning committee of size k if and only if there is no exact cover. ��

We also classify the weighted version of the ranked agenda rule: the results follow mainly
from the literature.

Proposition 7 For the rank rule (with immediate tie-breaking),WRank-Cred is�p
2-complete,

even for symmetric weights, wsym
bin or wsym

we . For participatory budgeting and multi-winner
elections, which are modelled with wasym

we and wasym
bin weights, respectively, WRank-Cred is

in p.

Proof The upper bound forWRank-Cred for the (weighted, asymmetric) ranked agenda rule
can be derived by executing the rule, and then verifying if a given agenda item is in the final
outcome. This can be done by ordering the agenda items by descending weighted support
(using a fixed tie-breaking) and querying an NP-oracle in (at most) each of the m iterations
(one for each item). ForWRank-Cred the answer is yes, if the distinct agenda item is also in
the outcome. The bounds are inherited from the binary, symmetric version, whose decision
problem Rank-Cred is �

p
2-complete (see [15]).

For the (weighted) WRank rule there is a complexity gap between judgment aggregation
and CCO problems, where we can find efficiently whether a subset of items can be extended
to a feasible outcome (e.g., participatory budgeting). For a linear tie-breaking, we solve its
decision problem by executing the rule and checking whether some item is in the outcome
(which can be done in polynomial time if we can check the constraint efficiently). Note that
Rank(B, �F ,w) ∈ Med(B, �F ,w) holds for multi-winner elections. ��

Finally, Sonar et al. [39] showed �
p
2-completeness for CC with approval ballots in multi-

winner elections. For asymmetric agendas, the lower bound inherits to judgment aggregation,
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while the upper bound can be shown analogously to the upper bound of Med-Cred in the
proof of Proposition 5.

Proposition 8 CC-Cred is �
p
2-complete with either wasym

bin or wasym
we weights.

In classical judgment aggregation, where the agenda is symmetric and every rational
judgment is feasible, the CC rule becomes degenerate, because the only time an agent is not
happy with an outcome is when it is the complement of their ballot. Although the usability of
the Chamberlin-Courant rule is limited for symmetric agendas, we still provide tight bounds
for CC-Cred on symmetric weights.

In the following proofs, we denote by X the complement of a vector X , i.e., a vector
where all 0s and 1s have been swapped and by CCscore(B) the number of voters who are
simultaneously satisfied by a given outcome X ∈ CC(B). Also, for any vector X we denote
Occur(X , B) the number of occurrences of X in B, i.e., the number of voters i such that
Bi = X . We start with the following observation.

Observation 9 For an arbitrary agenda A with symmetric weightswsym
we , and assuming�R =

�F , then

1. CCscore(B) = n − minX∈BR Occur(X , B).
2. If CCscore(B) = n then X ∈ CC(B) if and only if X ∈ BR and Occur(X , B) = 0, that

is, for each i ∈ N , Bi �= X.
3. If CCscore(B) < n, then for all X ∈ CC(B) there is some i∈N with Bi = X.

Proof For point 1, note that we have CC(B) = argminX∈BR
Occur(X , B) by definition.

Therefore, CCscore(B) = n − minX∈BR Occur(X , B).
For point 2, assume CCscore(B) = n. Then, point 1 is minX∈BR Occur(X , B) = 0, i.e.,

there exists a feasible vector X such that for all i , Bi �= X .
For point 3, assume CCscore(B) < n. Then, by point 1, for each X ∈ BR , we have

Occur(X , B) > 0, which means that there is an i ∈ N such that Bi = X . ��
We can now prove that credulous outcome determination becomes coDP-complete, where

coDP = {L∪L ′ | L ∈ NP, L ′ ∈ coNP} (see [34]). Less formally, DP (resp. coDP) is the class
of decision problems that can bewritten as the intersection (resp. the union) of a problem inNP
and a problem in coNP. A canonical DP-complete problem is Sat- Unsat by Papadimitriou
and Yannakakis [34]: an instance (φ, ψ) of the problem consists of two boolean formulas φ

and ψ , and the question is whether φ is satisfiable while ψ is unsatisfiable.

Proposition 10 If �R = �F and the agenda weights are restricted by wsym
bin or wsym

we , CC-
Cred is coDP-complete.

Proof We begin with the upper bound. Observation 9 gives us an algorithm for computing
CC(B): if there is X ∈ BR such that for all i , Bi �= X , then output all such vectors X ; else
output argmini∈N Occur(Bi , B). Therefore, there exists a feasible outcome X ∈ CC(B)

such that X(a∗) = 1 if (at least) one of these two conditions is met:

1. There is X ∈ BR such that for all i , Bi �= X , and X(a∗) = 1.
2. There is no X ∈ BR such that for all i , Bi �= X , and there is an i with Bi (a∗) = 1 such

that Occur(Bi , B) ≤ Occur(Bj , B) for all j .

The set of all instances meeting condition 1 (resp. 2) is a problem in NP (resp. coNP),
therefore CC-Cred restricted to agenda weights in wsym

bin or wsym
we is in coDP.
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For the lower bound, we reduce the DP-complete problem Sat- Unsat to the complement
ofCC-Cred, mapping yes-instances of Sat- Unsat to no-instances ofCC-Cred and vice-
versa. Given any Sat- Unsat instance (φ, ψ), we construct an instance for the complement
of CC-Cred as follows.

Let X (respectively, Y ) contain all variables appearing in φ (respectively, ψ) and their
negations. We assume without loss of generality that X and Y are disjoint, i.e., X ∩ Y = ∅
and set the agenda to be A = X ∪ Y ∪ {a∗, a∗, b, b}, where a∗ and b are newly introduced
variables; thus, m = |X | + |Y | + 4. The rationality and feasibility constraint is defined as
�R = �F = α ∨ β ∨ γ ∨ δ, where α = a∗ ∧ φ ∧ b, β = a∗ ∧ ψ ∧ b, γ = ∧

a∈A+ a and
δ = ∧

a∈A− a. 11 Note that a vote on all positive literals satisfies only γ , while its complement
only satisfies δ. The profile B consist of three voters, for simplicity we give their votes on A+:
B+ = ({1}m/2, {1}m/2, {0}m/2), whereby {1}m/2 we denote for simplicity an agent approving
all the items in A+ and by {0}m/2 an agent approving all the items in A−. We claim that a∗ is
not in any outcome of CC(B) if and only if (φ, ψ) is a yes-instance.

Without considering further satisfying assignments that do not appear in the profile B,
issue a∗ will be a temporary winner (i.e., it appears in the judgment whose complement
occurs in the profile the least number of times). There is only one way that prevents a∗ from
being in any outcome: i.e., if there exists a judgment X ∈ BF with X(a∗) = 0 and X �= {0}m ,
while there exists no judgment X ∈ BF with X(a∗) = 1 and X �= {1}m . By construction,
this can only hold if and only if α is satisfiable and β is unsatisfiable. It is easy to see that
α is satisfiable if and only if φ is satisfiable, while β is unsatisfiable if and only if ψ is
unsatisfiable. ��

5 Conclusion

We have four main take-home messages: (i) when looking for a declarative language to
express various CCO problems, judgment aggregation is a good candidate; (ii) however, we
need a slight generalisationwhere issues are weighted, andweightsmay be asymmetric—this
generalisation allows for specific CCO problems to be seen through the lens of judgment
aggregation; (iii) several rules studied for specific CCO problems, namely participatory
budgeting, multi-winner elections, collective scheduling, and collective network design, are
instances of the general settings—this shows strong connections between two specific ‘sister’
rules, that are instances of the same general rules and share common normative properties;
(iv) in about half of the cases considered, the generalisation does not come with a complexity
increase.

In the Appendix we present an experimental case study intended to show the applicability
of our proposed general judgment aggregation framework.We report on experiments using an
ILP solver to compute the result of collective networking problems, comparing the running
time of three of the proposed rules in different graph configurations and vote generation
models.

11 Observe that we can adapt the construction of the constraints to be linear inequalities rather than proposi-
tional formulas.Assumeφ andψ are in conjunctive normal form (CNF), forwhichSat- Unsat is stillDP-hard.

Then, formulas α, β, γ and δ are also in CNF. For any two formulas ϕ1 = ∧n
i=1 c

i
1 and ϕ2 = ∧m

j=1 c
j
2 in

CNF, we can transform ϕ1 ∨ ϕ2 into CNF in polynomial time. By repeatedly using laws of distributivity, the
resulting CNF formula contains a clause for every pair of clauses (one from each of the two formulas), i.e.,

ϕ1 ∨ ϕ2 ≡ ∧n
i=1

∧m
j=1(c

i
1 ∨ c j2 ). Hence, we can transform �F into CNF using space that is polynomial in

the size of �F . Finally, we can express any formula in CNF as ILP constraints by adding an inequality for
each of its clauses (the sum of its variables’ values must be at least one).
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Appendix: General solvers

Our general framework of weighted asymmetric judgment aggregation can not only be used
for theoretical comparisons of rules for specific CCO settings but also to obtain a modular
implementation of the rules: by simply plugging in the constraints, one can focus on a
particular application. Although there is no specific solver forweighted asymmetric judgment
aggregation, integer linear programming (ILP) is an ideal choice for such a solver. Each rule
given in this paper (see Section 2.2) can be translated into an ILP formulation, as shown in
the following subsection.

To the best of our knowledge, this is the first ILP formulation for judgment aggregation
rules—prior to this, the only other implementations have used answer set programming [26]
and SAT solvers [9]. One of the benefits of using the ILP formalism is the ability to rely on
its vast literature and efficient solvers. Furthermore, we conjecture that many more judgment
aggregation rules (and their weighted extensions) can be expressed as an ILP, which may not
be straightforward when using other solvers that do not use cardinal weights (such as SAT
solvers, where weights might have to be simulated). A benefit of ILP solvers is that many
are efficient, and constraints are expressed compactly as sets of inequalities. Moreover, the
use of JA as a general model for CCO problems can be motivated by the natural translation
of the rules into ILP. This is unlike some of the other general solvers where the translations
of the rules are far more involved.

Note that the constraints for theCCOproblemsdescribed inSection 3 are already presented
as sets of linear inequations, allowing us to study those in ILP directly.

Integer Linear Program Formulations forWeighted Asymmetric Judgment
Aggregation Rules

We give an ILP formulation for each of our studied rules. In the following, each agenda item
a j ∈ A is given as binary variable a j ∈ {0, 1} and we assume that we are given a (possibly
empty) feasibility constraint �F as a set of linear inequalities.

The (weighted) median rule

Following Definition 1, we can formulate WMed as the following ILP.

Maximise
∑
a j∈A

n∑
i=1

wa j × Bi (a j ) × a j

Subject to �F

∀a j ∈ A : a j ∈ {0, 1}
∀a j , a j ∈ A : a j = 1 − a j

(A1)

The (weighted) egalitarian rule

To express the egalitarian rule in ILP we use an additional variable Z , which represents the
lowest score of any agent (and thus should be maximised). This maximisation is done subject
to the feasibility constraints (�F ) and the intersection of the outcome assignment over the
agenda A with respect to each agent’s ballot, which must be greater than or equal to Z . A
similar ILP formulation in the context of participatory budgeting was given by Sreedurga et
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al. [40].
Maximise Z
Subject to �F

for i ∈ N : ∑
a j∈A wa j ×Bi (a j )×a j ≥ Z

∀a j ∈ A : a j ∈ {0, 1}
Z ∈ [0,∑a∈A+ wa]

∀a j , a j ∈ A : a j = 1 − a j

(A2)

The (weighted) ranked agenda rule

Note that Rank andWRank can be computed efficiently for easy-to-solve constraints (e.g., a
participatory budgeting constraint). Nevertheless, we provide an ILP formulation to compute
the outcome in general. In a pre-processing step, we compute the order in which decisions
over the agenda are made, i.e., descending by the agents (weighted) support, where ties are
broken alphabetically. For a ∈ A, let πa be the number of items that are ranked after a in
that order. Then, for the ILP formulation ofWRank it is sufficient to ensure that it is always
preferred to include issues that are processed earlier over all issues that are processed later.

Maximise
∑

a j∈A
∑n

i=1 2
πa j × a j

Subject to �F

∀a j ∈ A : a j ∈ {0, 1}
∀a j , a j ∈ A : a j = 1 − a j

(A3)

The Chamberlin-Courant rule

For an ILP formulation of the Chamberlin-Courant rule, we take inspiration from Talmon
and Faliszewski [41]—see also [38] for a translation of the multi-winner election variant into
ILP. We need an extra variable ci for each agent i ∈ N that will model their satisfaction. In
particular, ci will be set to 1 if there is a project in the outcome which the agent approves.

Maximise
∑n

i=1 ci
Subject to �F

∀i ∈ N : ∑
a j∈A

Bi (a j ) × a j × wa j ≥ ci

∀i ∈ N : ci ∈ {0, 1}
∀a j ∈ A : a j ∈ {0, 1}

∀a j , a j ∈ A : a j = 1 − a j

(A4)

A Case Study for General Solvers: Collective Networking

In this section, we provide a case study for the implementation of the collective networking
problem (described inSection 3.3)without a budget constraint, comparing the processing time
of three (binary) rules: themedian rule (Med), the egalitarian rule (Egal), and theChamberlin-
Courant rule (CC). We do not study the (weighted) ranked agenda rules, as they are solvable
in polynomial time (if it can be checked in polynomial time whether a partial assignment
can be extended to a full assignment satisfying the given constraint). The implementation
used the open-source GNU Octave software [12], and its standard ILP solver glpk, using
two-phase primal simplex method. Our implementation is modular: i.e., the same set-up can
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be altered to account for any CCO problem by changing the problem-specific components
(the agenda, the constraints, and the CCO rule).

Recall that in the collective networking problem, we have a graph G = (V , E) and
the agents vote on the edges E in the corresponding agenda, while the rule has to find a
collective spanning tree. Regarding the constraints, we allow for any possible ballot and we
only impose that the outcome must be a spanning tree, thus �F is composed of the ILP
constraints expressed in (1), (2) and (3).

We generate the underlying network in the form of 49 connected graphs G = (V , E)with
number of nodes varying between 6 and 8, i.e., V ∈ [6, 8]. For each value of V we generate

connected graphs with E ∈
[
|V | − 1, |V |(|V |−1)

2

]
: i.e., the graphs vary from being trees (for

|E | = |V | − 1) to being complete (for |E | = |V |(|V |−1)
2 ). Each graph is randomly generated

as follows, for a given |V | and |E | = e.
We initially let S and S′ be two sets such that one element v0 of V is in S (i.e., v0 ∈ S) and

S′ = V \{v0}. The set S and S′ can be seen as the set of connected and unconnected nodes,
respectively. The algorithm iteratively chooses, at random, an item (vi , v j ) ∈ S × S′, moves
v j from S′ to S, and adds (vi , v j ) to the set of edges E . When S′ is empty, we randomly add
e − (|V | − 1) extra edges from (V × V ) \ E .

We let |N | = 100. On each generated graph G we create 10 base profiles. Each base
profile (bp), is an n × E matrix, where for each i ∈ N we have that bpi ∈ (0, 1]E : that
is, for each item of the agenda a real number between 0 and 1 is assigned to represent the
acceptance rate of an issue by an agent. Each base profile is then transformed into 9 new
profiles as follows, under the variant of the p-impartial culture model presented by [6].
According to this model, when generating approval voting ballots, one can assume that every
agent independently approves each item of the agenda with probability p. Therefore, for each
base profile (generated for each graph) we create 9 profiles, one for every p ∈ {0.1, . . . , 0.9}.
If the value of an entry b in the base profile is such that b ≤ p, then in the created profile the
agent’s preference on this issue will be an approval, and an abstention otherwise.

Therefore, for each of our generated graphs (a total of 49 graphs), we created a total of 90
profiles originating from 10 base profiles and the 9 probabilities from our p-impartial culture
assumption. Thus, we ran the three CCO rules on 4410 instances. We then run the ILP solver
on each profile and its related graph to find an outcome for the three rules: Med,Egal and
CC.

For each generated problem instance we measured the processing times of computing the
outcome of three rules, given varying levels of the p-impartial culture and number of nodes
in the underlying initial network.12

We begin by comparing the run-times of the three CCO rules with respect to four levels
of acceptance, p ∈ {0.2, 0.4, 0.6, 0.8} and varying the number of nodes in the graph (we
only highlight four of our nine values of p). Figure 2 shows, for each value of p, the mean
processing times over all profiles and all generated networks varying the number of nodes of
the network V ∈ {6, 7, 8}. In Fig. 2 we use a log2-scale on the y-axis due to the exponential
increase in processing times.

If we focus onCC, we observe that the run-time is inversely proportional to the acceptance
level p, confirming the intuition that finding a collective spanning tree with CC is more
difficult with sparse ballots.

TheMed rule is slower to compute than the other rules for almost all p values (with some
exceptions for small values of p against CC). Observe that without additional constraints

12 The experiments ran on an Intel i7 processor at 4.2 GHz with 4 physical and 8 logical cores and 32 GB of
memory. At any time, six instances were computed in parallel.
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Fig. 2 Mean processing time for the Med,Egal and CC rules applied on the spanning tree problem. The x
axis represents the number of nodes in the graph (from 6 to 8); the y axis represents the mean processing time
(milliseconds) on a logarithmic scale (log2-scale). Each figure shows the mean results for a specific level of
acceptance p ∈ {0.2, 0.4, 0.6, 0.8}

Fig. 3 Mean processing time (seconds) for theMed, Egal and CC rules applied on the spanning tree problem,
for p ∈ {0.1, . . . , 0.9}, on a complete graph with 8 nodes
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on the budget, the Med rule is equivalent to finding the maximum spanning tree where the
weights of the edges are determined by how many voters approved them. Therefore, the
complexity of computing the outcome of Med is proportional to N · p, i.e., the weights of
the edges. A future step would be to check if the same increase in run-time can be observed
for the related rule WMed.

Finally, the run-time of Egal increases steadily with the number of nodes when p =
0.2, 0.4, while for p = 0.6, 0.8 it increases at a much quicker rate. This can be explained
by referring back to (A2), where we see that Egal maximises the value of variable Z , whose
upper bound is the minimum number of items that any agents has approved. Therefore, when
p is low, so is the upper bound on Z , reducing the search space; while when p is high there
are more values which Z can take.

The same experiments for networks with 9 or more nodes resulted in some of the instances
not completing before the chosen time-out of 1200 seconds. The observed behaviour varied
with each rule: for Med the non-completing instances corresponded to the graphs that were
close to being complete, whereas for Med and Egal the pattern was more complex, and it
seemed to depend on both the structure of the graph as well as the profile of individual ballots.

Figure 3 presents the mean run-times of the three chosen rules for varying levels of
acceptance p, starting from a fixed complete network with |V | = 8 and |E | = 28. Each bar
represents the mean run-time for 10 different profiles, for a total of 90 instances. The figure
highlights the exponential increase in running time of Egal, and confirms the observation
that CC is easy on complete graphs.
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