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A B S T R A C T

Machine learning (ML) is a data-driven approach that can be applied to design, analyze, predict, and optimize a
process based on existing data. Recently, ML has found its application in improving membrane separation per-
formance for wastewater treatment. Models have been developed to predict the performance of membranes to
separate contaminants from wastewater, design optimum conditions for membrane fabrication for greater
membrane separation performance and predict backwashing membranes and membrane fouling. This review
summarizes the progress of ML-based membrane separation modeling and explores the direction of the future
development of ML in membrane separation-based wastewater treatment. The strengths and drawbacks of the ML
algorithms extensively used in membrane separation-based wastewater treatment are summarized. Artificial
neural network (ANN) was the most used algorithm for modeling membrane separation-based wastewater
treatment. Future research is recommended to focus on the development of integrated ML algorithms and on
combining ML algorithms with other modeling approaches (e.g., process-based models and statistical models).
This will serve to achieve higher accuracy and better performance of the ML application.
1. Introduction

Big data and data analytics are receiving increasing attention due to
the potential advantages of improved data management, analysis, and
creation of prediction models from large volumes of data for wide ap-
plications [1,2]. Recently, relevant approaches have been applied to
model and optimize wastewater treatment processes, with machine
learning (ML)-based modeling being one of the most popular choices. ML
is one typical type of data-driven modeling approach, and it starts with
training an algorithmwith a dataset to explain the phenomena of the data
[3]. ML has been applied to predict relevant phenomena or processes for
wastewater treatment modeling, featured by high efficiency and
reasonable accuracy [4,5].

Conventional approaches for wastewater treatment modeling often
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rely on process-based models that involve combinations of process-based
mathematical equations [6]. Compared with ML, the process-based
model's disadvantages include relatively low efficiency, low accuracy,
and time-consuming [7–9]. Process-based models assume that predictors
or input features are known, and models are parametric. In comparison,
the ML model is usually based on a non-parametric model in which the
structure is not specified. ML modeling does not need assumptions about
distributions or linearity [10,11]. ML aims to achieve prediction using
learning algorithms to find patterns within a given dataset without
relying on previous understanding of underlying structures [12,13].

Wastewater can contain various contaminants, such as pharmaceu-
tical compounds, heavy metals, oil-water emulsions, microorganisms,
disinfection byproducts, and pesticides [14]. Some contaminants are
poorly degraded and can remain dissolved in water for long periods,
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Fig. 1. Schematic diagram of the procedure of ML for wastewater treatment.
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posing long-term environmental and health risks [15]. Membrane tech-
nologies are one kind of wastewater treatment technology that has
developed significantly over the past two decades. Due to their advan-
tages in wastewater treatment, such as small equipment size, decreased
energy demand, reduced cost of operation, and higher efficiency, mem-
brane technologies have been applied in various ways, such as filtration,
desalination, coagulation-flocculation, maturation lagoons, and mem-
brane biological reactors [16,17]. However, applying membrane tech-
nologies for wastewater treatment still faces challenges, such as easy
fouling, low permeability rate, low flux rate, and limited membrane
fabrication efficiency [18,19].

ML can be applied for designing, analyzing, and predicting the per-
formance of membrane technologies, including determining the opti-
mum operation conditions for maximum membrane performance,
alleviating the need for costly, time-consuming experimental research
and pilot studies. Specifically, it has been applied to predict the perfor-
mance of membranes for separating contaminants from wastewater [20,
21], designing optimum conditions for membrane fabrication and ap-
plications to achieve optimum separation performance [22,23], and
predicting membrane fouling [24,25].

In recent years, many reviews have been published regarding the
application of ML for membrane separation-based wastewater treatment,
such as ANN-based modeling for wastewater treatment [26,27] and
general application of ML for wastewater treatment [28,29]. However,
there is lacking systematic summary of the trend of ML development for
membrane separation-based wastewater treatment. This review focused
on and summarized the advantages and disadvantages of the most used
Fig. 2. Machine learning algorithms used for membrane separation-b
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ML algorithms for membrane-based wastewater treatment. The applica-
tion of ML and the trend of the most widely used ML algorithms for
membrane separation-based wastewater treatment in the last five years
(2018-present) were discussed. Finally, a detailed conclusion and our
perspectives on the current constraints and viable remedies for future
research and advancements were provided.

2. Machine learning for wastewater treatment

As a subset of artificial intelligence (AI), ML is an interdisciplinary
field that integrates computer science, mathematics, and statistics to
perform intelligent analysis with increasingly accurate and efficient
models, algorithms, and more data processing through computational
learning theory and pattern recognition [30,31]. ML is developed by
imitating the human ability to modify model parameters automatically,
continually learning and upgrading the model over time, solving prob-
lems, and finding relationships between input and output features [32,
33].

A typical ML procedure consists of the following steps. The first step is
data collection - a dataset of input and output features is obtained from
publications, open-source databases, and laboratory databases. Un-
wanted data (e.g., missing values, duplicate values) in the dataset will be
preprocessed, typically involving a normalization process and/or data
cleaning. After preprocessing, the data structure in the relationship be-
tween data features will be visualized, and the dataset will be separated
into training and testing sets. Second, ML algorithms are selected and
trained for autonomous learning using the training dataset to find
ased wastewater treatment in recent five years (2018- present).



Fig. 3. Schematic diagram of boosting algorithm.
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patterns and make predictions. During autonomous learning, ML algo-
rithms will optimize and adjust model parameters. Third, the trained
model will be validated by a comparison based on the testing dataset.
Accuracy, precision, and sensitivity are the three main metrics used to
evaluate the performance of developed ML model and associated metrics
include mean square error (MSE), root mean squared error (RMSE), mean
absolute error (MAE), and coefficient of determination (R2) [34,35]. The
model will then be adjusted by tuning the parameters until achieving
good performance if overfitting or underfitting. Finally, the developed
optimum model is applied for new scenario prediction or identifying
patterns of datasets [36,37].

Wastewater treatment is a complicated, nonlinear system involved
with varying flow rates, pollutant loads, chemical environment, and
hydraulic conditions, making the management of wastewater treatment
environments challenging [38,39]. ML has been applied in various as-
pects of wastewater treatment (Fig. 1), such as predicting effluent quality
[40,41], estimating pathogens in the wastewater [42,43], predicting
contaminant removal [44,45], predicting wastewater treatment plants
(WWTPs) operation [46,47], and predicting energy cost and consump-
tion of WWTPs [48]. The existing applications of ML algorithms for
membrane separation-based wastewater treatment vary depending on
the data types and structures, learning techniques, and expected output.
The details will be discussed in the next section.

3. Machine learning for membrane separation-based wastewater
treatment

ML has been applied in various wastewater treatment processes,
especially for membrane separation-based processes, due to its advan-
tages and the capacity to improve membrane separation performance in
wastewater treatment areas. ML is increasingly applied for membrane
separation-based wastewater treatment in recent years. For example, it
has been applied for permeate flux prediction [49,50], increasing in
predicted transmembrane pressure (TMP) prediction [51], appropriate
selection of membranes for treating wastewater [52], membrane fouling
Fig. 4. Schematic diagram of regression algorithms: a) multiple linear reg
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solution prediction [53], and prediction of WWTPs performance and
pollutant removal [54,55]. 36 publications that are on the application of
ML for membrane separation-based wastewater treatment in the past five
years were gathered fromWeb of Science and Google Scholar and shown
in Fig. 2. Regression algorithms, especially ANN are the most used ML
algorithm, followed by boosting algorithms. In contrast, clustering al-
gorithms are the lowest-studied ML algorithms in membrane
separation-based wastewater treatment.
3.1. Boosting algorithms

Boosting algorithms are built for adjusting model parameters to
obtain high accuracy and computation speed, particularly for large and
complex datasets. Gradient Boosting (GB) is an approach that builds
models sequentially, with each model attempting to decrease the error of
the previous model. It updates weights in the model to decrease the error
and builds a new model based on the errors or residuals from the pre-
vious model, which can be applied for regression problems, as shown in
Fig. 3 [56]. Adaptive Boosting (AdaBoost) operates through an iterative
process wherein weak models are successively trained based on the
training data. In each iteration, the weights of the samples are adjusted to
prioritize those misclassified in the preceding iteration. The final classi-
fier is determined by conducting a weighted majority vote among all the
trees within the ensemble of decision tree [57]. At the same time,
eXtreme Gradient Boosting (XGBoost) is the improved version of GB for
tree-based learning algorithms by increasing functions of algorithm, such
as multiple learning, regularized learning, and automatic sparse aware-
ness of missing values, which is widely used for regression and classifi-
cation problems [58]. Light Gradient Boosting Machine (LightGBM) is
developed based on decision tree algorithms. It is suitable for numerous
datasets with fast training speed and higher performance in missing
values awareness as compared to XGBoost [59]. Categorical Boosting
(CatBoost) has strong compatibility with categorical data, which is
effective in managing categorical information through the utilization of a
systematic encoding technique for the categorical attributes, wherein the
order information is included in the learning procedure. The utilization
of this methodology yields models of higher precision and mitigates
overfitting to a greater extent as compared to conventional encoding
techniques [60].

Boosting algorithms are used to achieve highly effective, accurate,
and flexible modelling and prediction in the wastewater treatment field
[61,62]. AdaBoost, GB, and random forest (RF) models have been used to
predict the removal performance of perfluorooctane sulfonate (PFOS)
from contaminated water using nanofiltration (NF) membranes with
different environmental and operating parameters. It was found that
AdaBoost, GBM, and RF performed high performance in predicting PFOS
removal with MSE of 2.8794, 2.450, and 4.726, respectively, and R2 of
0.968, 0.975, and 0.930, respectively [63]. Gao et al. (2022) used
XGBoost and CatBoost to develop ML by treating missing values of the
membrane datasets of permeability and salt rejection. The efficacy of
these models in membrane design was demonstrated by identifying the
most favorable combinations of membrane materials and production
parameters [64]. Additionally, in real applications, GB is optimal for
ression, b) artificial neural network, c) deep learning neural network.



Fig. 5. Schematic diagram of classification algorithms: a) support vector machine, b) K-nearest neighbors, c) decision tree, and d) random forest.
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neural networks (NNs) that create the gradient of the loss function to
modify the neuronal weight [65]. GB may never converge if it is exces-
sively slow because it is difficult to identify a precise local minimum
[59].

3.2. Regression algorithms

Regression algorithms are supervised learning algorithms that find
and relate predictive relationships between input and output features
[66,67]. The most used regression algorithms for wastewater treatment
include multiple linear regression (MLR) and NNs.

3.2.1. Multiple linear regression
MLR connects various independent and dependent variables, and the

input features are potentially related to both output and input features,
known as multicollinearity (Fig. 4a). In Fig. 4a, there are two straight
hyperplanes, known as predictive relationships between input and
output features as linearity, representing the relationship between mul-
tiple independent and one dependent variable. MLR has been applied to
develop and predict the heavy metal permeate flux in a complexation-
microfiltration, which was compared with ANN and polynomial neural
network (PNN) models. The result showed that the MLRmodel, ANN and
PNN performed well in flux prediction with R2 of 0.9648 [68].

3.2.2. NN
NN is a mathematical model that imitates biological neural in terms of

structure and function. NN is suitable for complicated nonlinear
modeling and prediction using example-based learning. NN also has
multiple sub-categories, such as ANN, PNN, recurrent neural network
(RNN), and deep learning neural network [69,70]. ANN is one of the
most widely used algorithms because of its capability of learning and
summarizing automatically, reliability, parallel processing capability,
and robust nonlinear fitting capability with feed-forward network from
one layer to another without revisiting a node [71]. ANN generally
consists of three layers: input, hidden, and output layer, represented by
green, yellow, and blue points in Fig. 4b. The input layer is composed of
artificial input neurons, which are configured by initial data or input
dataset added. The hidden layer is between the input and output layers
and utilizes a set of weighted inputs to create output by an activation
function. In comparison, RNN possesses a distinctive characteristic
whereby they can effectively handle sequential information by
4

incorporating both historical data and current input data. This attribute
enables RNNs to retain and recall information, thus addressing the lim-
itations of the feed-forward network [72]. PNN is a self-organizing
network with a flexible neural network that is developed through the
learning process; it does not fix the number of layers but rather adapts
neural network dynamically throughout the training process [73]. Deep
learning neural network has similar procedures to ANN but comprises
more hidden layers than ANN (i.e., multiple hidden layers) (Fig. 4c).
Deep learning neural networks and ANN can achieve similar accuracy in
modeling complex nonlinear systems [70,74,75]. ANN has been applied
for predicting reverse osmosis membrane performance using feed char-
acteristics and operational parameters in comparison with XGBoost,
random forest, and MLR. It was found that the pressure difference during
reverse osmosis (RO) operation, the salt passage of RO membrane, and
the permeate flow rate were well predicted by ANN, RF, and MLR,
respectively [76]. Yaqub et al. (2020) used ANN to predict the removal
efficiency of Hg from simulated wastewater by polyacrylonitrile mem-
brane in a micellar enhanced ultrafiltration (MEUF) process. It was found
that ANN was reliable in optimizing the MEUF process with MSE values
for training, validation, and testing as 0.00083, 0.00096, and 0.0025,
respectively [77].

3.3. Classification algorithms

Classification algorithms use input datasets to find a predictive rela-
tionship of the pattern of the output dataset which is classified into
predetermined categories from the same pattern of the input dataset [78,
79]. The widely used classification algorithms applied in the field of
wastewater treatment include logistic regression, Naïve Bayes, Bayesian
network, support vector machine, decision tree, RF, and K-nearest
neighbors.

3.3.1. Support vector machine (SVM)
SVM can accurately manage classification and regression problems

and categorize unlabeled datasets into two groups, using the pattern of
the input dataset to predict the output dataset. The SVM process gener-
ally consists of two steps: first, the SVMmodel is constructed by training a
labeled dataset, and the hyperplane and decision boundary of the SVM
model is determined, for which the decision boundary is established as a
hyperplane to separate different classes of unlabeled datasets with kernel
functions. Kernel functions serve to increase the accuracy and efficiency
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in determining the hyperplane and decision boundary. If the input
dataset represents a nonlinear problem, kernel functions transform the
data to obtain linear classifiers for determining the hyperplane and de-
cision boundary. Fig. 5a is an illustration of SVM, the green and yellow
points are data points from the dataset, and the blue line is the decision
boundary determined based on the nearest data points of each group of
the dataset (represented by the red and dark green points, and thus called
support vectors). SVM has been utilized to forecast the grafting of maleic
anhydride and hyperbranched polyethylene glycol (PEG) onto the sur-
face of polyethersulfone (PES) membranes. This prediction was based on
experimental datasets encompassing oil-water separation and perme-
ation flux, and antifouling properties. The study revealed that the SMV
model demonstrated accurate prediction ability of benzo-phenone for-
mation on the PES membrane [80].

3.3.2. Decision tree (DT)
DT can be used to manage classification and regression problems by

dividing data based on a classification tree. DT has three types of nodes in
structure: the root, internal, and leaf [81,82]. Fig. 5c shows a diagram of
DT within a hierarchical structure that is composed of root nodes, in-
ternal nodes, and leaf nodes, represented by the green, blue, and yellow
points, respectively. The start point of DT is the root nodes, each internal
node is a test on a feature, and the leaf nodes represent the test feature's
outcomes. DT has many advantages, such as simple algorithm structure,
great interpretability, straightforward implementation, and ease of
handling categorical and quantitative values, including the ability to fill
missing attribute values with the most probable value. Nevertheless, the
structure of DT can be unstable or complex, with difficulty in controlling
the tree size. A single DT model can be susceptible to noisy data and
overfitting. DT has been applied to predict bilgewater emulsion stability
based on the image processing of separation experiments of 360 emulsion
samples. The result showed that the predictive performance of DT was
superior for emulsion stability, as evidenced by the average MAE value of
0.1611 [83].

3.3.3. Random forest (RF)
RF is a method of ensemble learning for classification and regression

problems. RF is a solution to the problem of overfitting that can be
encountered using DT. Fig. 5d illustrates the RF structure: the green
points are root nodes, the dark blue points are internal nodes, and the
yellow points are leaf nodes of each DT; the light purple points are the
direction decision of each DT. The result of RF will come from the ma-
jority voting or averaging of the result from all DTs. The advantages of RF
include reduced overfitting and flexibility than DT. Typical disadvan-
tages include being time-consuming, requiring a large dataset, and being
more complex than DT [84,85]. RF has been utilized to forecast the
performance of the backwashing technique of ultrafiltration membranes
by considering environmental and operational variables, including tem-
perature, hydraulic pressure, and water turbidity. It was shown that RF
outperformed both linear regression and ANN in terms of prediction
accuracy as assessed by MSE [86]. Moreover, Henry et al. employed the
RF algorithm to identify the primary factor that governs the critical flux
of oil-in-water emulsions in crossflow microfiltration. The analysis based
on 223 datasets revealed that the crossflow velocity emerged as the most
influential variable for the critical flux of oil-in-water emulsions [87].

3.3.4. K-nearest neighbors (kNN)
kNN is a non-parametric and supervised learning classifier using the

distance between each data point. Labeled data are organized into mul-
tiple groups or classes, and unlabeled data are categorized according to
the hypothesis that similar points can be near one another. Fig. 5b il-
lustrates kNN: the green, blue, and yellow points are different classes of
the dataset, and the red square is a classified dataset of new example
points, which are obtained based on kNN hypothesis. For example, if k
value (the number of data points around new example point) is 4 (the
small circle which measures the circle radius from new example point),
5

kNN will assign the data points in this circle to be class c (i.e. two green,
one blue, and one yellow data points). If k value is 11 (the bigger circle),
kNN will assign the data point in this circle to be class c (i.e. five green,
three blue, and three yellow data points). The model creation of kNN is
inexpensive, and it includes a technique of categorization that is adapt-
able and well-suited for multimodal classes. However, the maximum
error rate of kNN is twice the Naïve Bayesian (NB), or when the size of the
training dataset increased. The kNN needs to calculate the distance be-
tween each data point again, leading to decreasing of noisy or irrelevant
parameters [88,89]. Eight ML models, i.e. kNN, MLR, SVM, ANN, RF,
gradient-boosted decision tree (GBDT), XGBoost, and LightGBM were
applied for prediction of organic contaminant removal from contami-
nated effluents by NF and RO membranes. It was found that RF, GBDT,
XGBoost, and LightGBM performed better than the other four models in
accuracy andmodel robustness with high R2 of 92.4%, 95%, 99.5%, and
92.9 %, respectively [90].

3.4. Clustering algorithms

Clustering algorithms are unsupervised learning for grouping related
data without regard to the specific outcome. It is usually used to identify
interesting trends or patterns in data. The algorithms will organize
datasets into the same category, known as a cluster, which is more similar
than other categories [91,92]. Clustering algorithms aim to divide the
data into separate clusters, where the observations within each cluster
exhibit similarity, while observations in other clusters demonstrate
dissimilarity. However, most datasets on membrane separation-based
wastewater treatment are quantitative data with known data types or
data clusters, which leads to clustering of the datasets is irrelevant.
Moreover, some datasets in this field are known as time-series or
long-term operations, so clustering is unsuitable for data analysis. For
these reasons, there are few studies using clustering algorithms for
modelling the performance of membrane separation in wastewater
treatment.

3.5. Applications of ML algorithms for membrane separation-based
wastewater treatment

The applications of ML algorithms for membrane separation-based
wastewater treatment were focused on the prediction of membrane
performance in wastewater treatment and membrane designing for
improving membrane performance. ML algorithms can be applied to
predict optimum conditions for reducing the cost of operation,
decreasing energy demand, and increasing the efficiency of wastewater
treatments. Numerous studies have used ML algorithms for predicting
membrane-based separation for wastewater treatment, which can clas-
sified into three sub-topics: contaminant removal, such as organic, heavy
metal, and salt contamination in wastewater; impacts of operating pa-
rameters such as feed rate, temperature, and pressure of inflow of
wastewater; and other processes, such as the performance of emulsion
removal, flux, and backwashing performance [63,68,76]. Zahmatkesh
et al. (2022) determined optimal conditions for reducing biological ox-
ygen demand (BOD) and chemical oxygen demand (COD) with polymeric
membranes, using ANN, achieved highly appropriate for predicting the
removal of BOD and CODwith R2 and RMSE as 0.99 and 0.05%, and 0.99
and 0.99 %, respectively [93]. Odabaşi et al. (2021) predicted RO
membrane performance from feed characteristics of municipal waste-
water, using RF, XGBoost, ANN, and MLR, achieved MLR more effective
than other methods [94].

ML algorithms can be applied to facilitate the design and fabrication
of membranes to improve performance by identifying materials for
membrane fabrication, fabrication parameters, and modification mem-
brane methods [64,80]. which are the most important ways to gain the
best results of wastewater treatment with using membrane separation.
Gao et al. (2023) designed a high-performance ultrafiltration membrane
for wastewater treatment and resource recovery using XGBoost and



Table 1
Advantages and disadvantages of the most used machine learning algorithms for membrane separation-based wastewater treatment.

Algorithms Typical used Advantages Disadvantages Ref.

1. Boosting Algorithms
Gradient
Boosting

Regression and
classification

Simple implementation, easy to understand, high accuracy, fast
computation for larger datasets, achieving low error with small
datasets.

Easy to be overfitting models and sensitive to outliers. [56,97]

2. Regression Algorithms
Multiple Linear
Regression

Regression Suitable with a linear relationship between one independent and
more than one dependent variable and the ability to identify
outliers.

Not good to explain of nonlinear relationship between
independent and dependent variables, easily resulting in
prediction errors.

[98,99]

Neural
Network

Regression and
classification

High efficiency, good with nonlinear data, continuous and long
learning, multitasking and multiple results simultaneously, and
flexible and wide applications.

Complex and difficult to explain, invisible, requires lots of
data, needs great attention in data preparation, and
adjusting optimization models can be challenging.

[100,101]

3. Classification Algorithms
Support Vector
Machine

Regression and
classification

Simple training, good with high dimensional data, capable of
handling both continuous and categorical data, and high
prediction accuracy.

Not suitable for large datasets, performs poorly when the
dataset has more noise and overlapping classes, and
cannot provide probability estimates.

[102–104]

Decision Tree Regression and
classification

Simple implementation, highly interpretable, simple algorithm
structure, requires less data preparation, no need for data
normalization and scaling, and missing values do not affect the
models.

Requires large memory during computation, small data
changes affect algorithm structure, unstable algorithm
structure, easy to be the overfitting models.

[105,106]

Random Forest Regression and
classification

Good with high dimensional data, capable of handling both
continuous and categorical data, high prediction accuracy, no
need for data normalization and scaling, and missing values do
not affect the models.

Complex algorithm, high computational cost, and
requires much time for computation.

[107–109]
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CatBoost, while Fetanat et al. (2021) designed an ultrafiltration poly-
meric membrane using ANN, which guided the design of separation
membranes suited to their intended purpose [95,96].

Each ML method has its own strengths and drawbacks (Table 1),
leading to selecting suitable algorithms as one of the most significant
aspects of ML research. Membrane separation-based wastewater treat-
ment mainly involves quantitative and non-stationary data. Using ML for
membrane separation-based wastewater treatment can face some chal-
lenges, such as data characteristics, discontinuous of datasets, and ML
algorithms selection and suitability. Integration of ML with other
modeling approaches is a potential way to overcome these challenges.
The details will be discussed in the next section.

4. Integration of ML with other modeling approaches

When the datasets are continuously increased, also known as time-
series or long-term operation data, non-stationary data distributions of
experiments will lead to interruption of model computation and a
decrease of model accuracy [110,111]. Consequently, researchers have
undertaken studies aimed at enhancing and advancing the efficacy of ML
techniques in the context of long-term wastewater treatment operations.
For instance, an existing study has paid attention to predicting the
changing trends of chemical oxygen demand (COD) in the outflow of
wastewater treatment, considering various temperature and water inflow
data over 20 months in real-time operations with support vector
regression (SVR), long short-term memory neural networks, and RNN
[97]. Shi et al. (2021) predicted the performance of municipal waste-
water treatment by two anaerobic membrane bioreactors (1 year oper-
ation) using the approach convolutional neural network [49].
Nevertheless, the application of ML approach for predicting long-term
operation of membrane separation-based wastewater treatment has not
been reported yet.

The ML approach's expansion in the wastewater treatment domain to
encompass other applications can be achieved by the coordination or
integration of ML with alternative modeling approaches. For instance,
the combination of ML with the response surface method (RSM) can be
employed to identify the optimal operating parameters for wastewater
treatment. Aghilesh et al. (2021) used RSM, ANN, and adaptive neuro-
fuzzy inference systems (ANFIS) to model and optimize a forward
osmosis (FO) process for textile industry wastewater treatment [112].
Bhatti et al. (2011) used RSM and ANN to optimize the copper removal
efficiency andminimize the energy consumption for a copper wastewater
6

treatment process [113]. Li et al. (2022) combined RSM and ANN to
optimize wastewater treatment membrane fabrication [114]. It is ex-
pected that choosing the appropriate algorithms and operation features is
key to achieve high efficiency and accuracy in modelling and designing
membrane separation-based wastewater treatment.

5. Conclusions and future perspective

ML has been studied and applied to predict and improve the sepa-
ration performance and efficiency of membranes, reduce energy con-
sumption and cost of fabrication and operation, and design and find
appropriate for membrane fabrication and operation. This work
reviewed commonly used ML algorithms for membrane separation-based
wastewater treatment and their advantages and disadvantages. The
commonly used ML algorithms for the membrane separation of waste-
water can be categorized into three groups: boosting, regression, and
classification. Artificial neural networks (ANN) have been widely applied
to predict the performance of membranes includingseparation efficiency,
and for membrane designing and fabrication.

Due to the quantitative and non-stationary data characteristics of
membrane separation-based wastewater treatment, ML algorithms were
commonly used to predict and classify datasets to enhance the perfor-
mance of membranes, as opposed to clustering datasets. There are still
challenges on the use of ML for modelling membrane separation-based
wastewater treatment, in particular, when it is used to deal with time-
series or long-term operation data. Integrating ML with other modeling
approaches for long-term operation is a potential direction ahead.

There are several important challenges to the use of ML for modelling
membrane separation-based wastewater treatment. First, selecting a
suitable ML algorithm for the intended application can be tricky because
of the wide range of algorithms available. With the same input of the
dataset, the prediction outcomes may change depending on the different
algorithms used. For example, DT is a simple algorithm, and missing
values do not affect the models, but the models are easily overfitting, and
the algorithm structure will affect when there are small data changes. On
the other hand, RF is a high prediction accuracy algorithm capable of
handling continuous and categorical data, and missing values do not
affect the models. Therefore, after data preprocessing, choosing appro-
priate algorithms is key and it is necessary to create more knowledge
about the suitability of different models for different applications. Sec-
ond, combining ML algorithms with more than one algorithm or with
other models (e.g., physics-informed models) can potentially help to
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improve efficiency and accuracy of models and outcomes. Nevertheless,
the utilization of integrated process-based models and combining long-
term operation and intensive datasets are limited by the lack of appro-
priate data and relevant collection and management strategies.
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