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Abstract: Climate change is perceived to be the primary reason for the amplification of extreme
climatic phenomena. Estimation of changes in extreme values under climate change thus plays
an important role in disaster risk assessment and management. However, the different changes in
extremes in two distinct regions: inland and coast under climate change are yet to be investigated
meticulously. This study is intended to assess the changes in frequency of rainfall and temperature
extremes under the impact of climate change in two distinct locations: coast and inland of Bengal
delta, a region highly vulnerable to climate change. The multi-model ensemble (projections from
CMIP6 framework) technique with the application of frequency analysis was employed to appraise
the impact in two future time horizons. Results suggest that the inland estimate of extreme rainfall
by the end of this century is barely able to exceed the coastal estimate of extreme rainfall in present
conditions. The rate of increase of warm extremes is almost similar; however, with the cold extreme,
the increase rate is a little higher inland than on the coast. In both regions, a greater rise in climate
extremes is expected in the far future than in the near future. Overall, the coastal area is expected
to be more vulnerable to flooding while the inland to drought under climate change in the Bengal
delta region.

Keywords: climate extremes; temperature extremes; rainfall extremes; extreme value analysis; change
in extremes; climate change; CMIP6; frequency analysis

1. Introduction

Climate change is perceived to be a major threat to the world [1,2]. Rapid increases in
temperature under anthropogenic disturbances alter the hydrological cycle and change the
rainfall pattern [2,3]. With the overall changes in climate, the phenomenon has the ability
to modify extremes such as temperature and rainfall extremes, which have been recognized
by the past studies with the observed data [4–9] and simulated future data [10–15]. Since
abrupt changes in climate extremes lead to severe floods and droughts, studies on extremes
have attracted global attention to planning and managing water resources.

The changes in extremes are, however, asymmetrical across the world. A large
variation is perceived in frequency, spatial and temporal extent across different conti-
nents [4,5,10,11]. Scientists are thus encouraged to explore different territories of the world
so that different changes can be reported, which would offer a different perspective. Coastal
area is one important domain that is considered vulnerable to climate change [2,16–20].
It is understood that the spatiotemporal dynamics of disastrous occurrences may fluc-
tuate significantly between coastal and inland locations due to differing physiographic
and climatic environments. Despite the disparity, there has been only a limited effort to
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comprehend the differential pattern of extreme occurrences between coastal and inland
regions under climate change. Temperature and rainfall extremes are identified as two
climatic components that have a major impact on society and the environment [4,10,11].
Therefore, how these extremes behave in those areas under climate change is a matter
of concern.

This study compares the effect of climate change on temperature and rainfall extremes
(return period values) between coastal and inland regions of Bengal delta, territory which
is highly vulnerable to climate change. The Bengal delta is unique in many ways [21,22].
It has Himalayan Mountains in the north and the Bay of Bengal in the south. The Bay of
Bengal has a major influence on the climate of the coastal area and beyond. The monsoon
is prominent, and it dominates the climate. The total discharge accumulating into the
Ganges–Brahmaputra–Meghna basin flows through the delta. Due to this, the region,
namely Bangladesh, is one of the most vulnerable places on earth to climate change [23,24].
Disasters such as floods and droughts cost the country over USD 3 billion between 1998
and 2014 [25]. It is estimated that overall crop production in Bangladesh is expected to fall
by 7.4% per year from 2005 to 2050 due to extreme climatic events [26]. Thus, quantifying
the changes in climatic extremes is essential for adaptation planning for the future.

However, the changes in rainfall and temperature extremes have not been properly
understood in the changing setting of climate at the regional extent of Bengal delta. Even
though significant work [21,27–33] has been performed in this region to investigate the
characteristic changes in overall temperature and rainfall values, there has hardly been
any attempt to quantify the combined assessment of changes of extreme temperature and
rainfall under climate change. Additionally, relatively less effort has been invested to
unearth the changes in extremes in Bangladesh’s coastal regions. The Bangladesh coast is
considered to be the most climatically susceptible area, which is incessantly hit by tidal
surges, cyclones and flooding [21]. The investigation of extremes in general explores either
the changes in the observed trend [21] or the simulated indices [22]. A very limited study
has been carried out to date to evaluate the temporal and spatial extent of rainfall and
temperature extremes in the coastal area under various climatic scenarios, as adopted in the
CMIP6 (Coupled Model Intercomparison Project Phase 6) framework, which is the region’s
most vulnerable area to climate change and where the Bangladesh government is planning
and implementing climate change adaptation strategies.

Thus, it is essential to examine the behavior of climate extremes at coastal locations
and their deviation from the inland territory. Considering the interest in climate change
worldwide, especially in connection with the changes in extremes in the regional context
and their effects, the present work is intended to assess the changes in frequency of rainfall
and temperature extremes under climate change in two distinct regional setups, namely
coastal and inland locations. We investigate the changes in extremes by deriving projections
from CMIP6 under multiple scenarios of the 21st century.

2. Methods and Materials
2.1. Frequency Analysis

In this study, extreme rainfall of one-day duration and temperature extremes of two
types—warm extreme (daily maximum) and cold extreme (daily minimum)—are analyzed.
Extremes can be assessed in various ways. This work analyses extremes based on frequency
analysis using the annual maximum/minimum data [10,34]. One advantage of conducting
frequency analysis [35–37] is that it provides the estimate in terms of the return period,
which is useful in practical applications such as hydrological risk assessment (flood and
drought). The extreme estimation with the annual maximum (minimum) model uses
the following series: X1, X2, · · · , Xn where Xi is the maximum (minimum) climate data
(rainfall/temperature) in the ith year [38]. The series is assumed to be a random sample
generated from some underlying population distribution.

The probability distribution selection is one fundamental aspect of this method. The
generalized extreme value (GEV) distribution has long been considered a theoretically
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sound distribution to model annual maxima (minima) data [39,40]. The model is popular in
estimating rainfall and temperature extremes with both observed and output from general
circulation models (GCMs) [13,41–48].

In this study, we use GEV distribution [37] to estimate return period values of extremes.
The parameters of the GEV distribution were estimated by the method of L-moments. The
L-moments [49] are equivalent to conventional moments determined as linear combinations
of the probability weighted moments (PWM) [50]. The sample estimate of L-moments,
namely first L-moment, second L-moment and L-skewness, are required to estimate GEV’s
parameters. The first L-moment, equal to the mean, expresses the overall magnitude of the
data. The second L-moment, equal to standard deviation, suggests the spread of the data,
while the L-skewness, a dimensionless ratio, conveys the skewness of the data.

In the following paragraphs, the frequency analysis with GEV has been described
to model annual maximum and minimum data. The frequency analysis with the annual
maximum and minimum data has the following forms, respectively:

1− F(X) = 1/T (1)

F(X) = 1/T (2)

where F(X) is the cumulative distribution and T is the return period. With reference to
the annual maximum model (Equation (1)), the return period is determined as the non-
exceedance probability while regarding annual minimum model (Equation (2)); the return
period is taken as the reciprocal of the non-exceedance probability.

The GEV parameterized in [37] has three parameters, location (ξ), scale (α) and
shape (κ):

F(x) = e−e−y
, y =

{
−k−1log

{
1− k(x−ξ)

α

}
, k 6= 0

(x− ξ)/α, k = 0
(3)

The shape parameter (κ) establishes the tail behavior. For κ = 0, the GEV turns
into Gumbel distribution (EV1); for κ< 0 and κ >0 the distribution is, respectively, lower
bounded (EV2) and upper bounded (EV3). The upper- and lower-bounded phenomena
with relation to quantile can be obtained from [51].

The quantiles are estimated as follows:

XF =

{
ξ +

α
{

1−(−log(F))k
}

k , k 6= 0
ξ − αlog(−log(F)), k = 0

(4)

The parameters estimated by L-moments are as follows:

k ≈ 7.8590c + 2.9554c2, c =
2

3 + τ3
− log2

log3
(5)

α =
λ2k(

1− 2−k
)
Γ(1 + k)

(6)

ξ = λ1 − α{1− Γ(1 + k)}/k (7)

where, λ1 in Equation (7), λ2 in Equation (6) and τ3 in Equation (5) are the L-moment
statistics, respectively, the first L-moment, the second L-moment and the L-skewness; Γ is
the complete gamma function.

In Equation (4), F is replaced by (1− 1/T) for the estimation of T-year return value of
extreme rainfall and Tx, while F is replaced by (1/T) for the estimation of Tn.

2.2. Frequency Analysis at Present and Under Climate Change

The above approach (Section 2.1) has been widely used for the present condition with
observed data. However, the challenge is to estimate the same in a changing climate [15,52,53].
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Historical data cannot be used under climate change unless additional assumptions (e.g.,
non-stationary assumptions) are made. The use of historical data with stationary assump-
tion is considered to undervalue the risk by the estimate.

One way to dent the stationary assumption is to apply the projections from
GCMs [10,15,53–55]. In order to estimate extremes under climate change, the simulated
data of future climate conditions need to be fed into the frequency model. Nevertheless,
to perform an effective impact study at a regional level, multiple things should be consid-
ered, including choice of model and scenarios; multi-model ensemble investigation and
downscaling/bias-correction [56–60]. These all help cover the uncertainty (or minimize the
uncertainty) to a great extent, which is required in impact analysis.

Selecting GCMs is the first step in this process. The goal is to obtain reliable projections
when predicting future climate. The Coupled Model Intercomparison Project Phase 6
(CMIP6), is regarded as the upgraded version of earlier frameworks in several aspects,
including greater geographic resolutions and improved cloud microphysical process pa-
rameters [61]. The SSPs (Shared Socioeconomic Pathways) of CMIP6 are incorporated with
the RCPs (Representative Concentration Pathways) of CMIP5 [62]. The SSPs [63,64] are,
therefore, interpreted as more probable future options [65,66]. Hence, assessment of future
changes of climate extremes based on CIMP6 GCM projections is chosen in this work.

To use the projections from GCMs for impact studies at a local scale, bias correction,
together with downscaling, is a common practice. In order to carry out these analyses,
statistical methodologies have often been preferred in studies related to climate change [67].
The relationship between observed and historical period simulated data is the basis for
the statistical approach [68]. Quantile-based mapping is an accepted approach to reduce
such model biases in statistical downscaling investigations [67,69,70]. This comprises GCM
data drawn out and downscaled uniformly to the same resolutions (spatial scale) to reduce
biases commenced by non-identical resolutions of GCMs [71]. The spatial quantile mapping
scheme generally had superior performance to other methods [70,72]. Thus, GCM outputs
bias corrected by the quantile mapping were used in this study. A detailed account of
bias correction with reference to datasets employed in this investigation can be accessed
from [25,32,33,71].

The multi-model ensemble [10,15,73–75] with the inclusion of a good number of
climate models and scenarios is regarded as a superior practice to measure uncertainty, and
this study is no exception. Projections from several GCMs under a couple of scenarios are
used for the assessment of extremes in this study.

The overall analysis is illustrated in a flow chart in Figure 1.
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Figure 1. Proposed framework for evaluating climate extremes under climate change using a multi-
model ensemble approach. The employed GCMs and scenarios are listed in the framework.

2.3. Observed and Simulated Data

Observed daily rainfall, daily maximum and minimum temperature data of 35 stations
were collected from the Bangladesh Meteorological Department (BMD). One of the major
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challenges with observational data is the missing data. Continuous rainfall records (<2%
missing data) of more than 28 years (1986–2014) are available at only 30 stations. Thus, the
data from 30 stations were considered in this study. The missing data in this case (<2% of
the data) were replaced by the average values of three nearest neighboring stations. The
locations of the considered stations are shown in Figure 2.
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Figure 2. Map of Bangladesh showing coastal (gray color) and inland regions (white color) with
location of weather stations. The coastal zone is defined by the Bangladesh Government according to
natural systems and events that govern its opportunities and vulnerabilities [76]. The elevation (m)
associated with stations (number in pink color) are also indicated in the plot.

In Bangladesh, the coastal zone is defined by the Bangladeshi Government according
to natural systems and events that govern its opportunities and vulnerabilities [76]. It
includes factors such as tidal variations, soil salinity levels, surface or groundwater salinity
and, cyclonic and storm surge risks. According to these processes, the coastal zone is
made up of sixteen districts in the southern part of the country (out of sixty-four) [21].
The coastal locations are emphasized in the map. Out of 30 stations, 17 stations fall in
this area. The remaining 13 are considered inland stations. Annual maximum (minimum)
data were used to model extremes in this work. The series of annual maximum (rainfall of
one-day duration and daily maximum temperature) and annual minimum (daily minimum
temperature) were extracted for each station.

We obtain climate projections from the state-of-the-art CMIP6 framework. We use four
GCMs in our analysis, which are listed in Figure 1. These climate models were selected
based on the result of the work by [66]. These models came out as the top ranked GCMs in
simulating Bangladesh observed climate.

Simulated data from four GCMs under two SSPs (medium-forcing SSP2-4.5 and the
high-forcing SSP5-8.5) were obtained from the Earth System Grid Data Portal: https://esgf-
node.llnl.gov/search/cmip6 (accessed on 5 October 2022). The medium and high-forcing
scenarios SSP2-4.5 and SSP5-8.5 are selected for this work, which is deemed appropriate for
covering the uncertainty of the estimate of future conditions of Bengal delta. The simulated
daily rainfall, daily maximum and daily minimum temperature data were obtained for
Bangladesh at 30 meteorological stations over the period 2021–2100. The data used in
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this study were already bias corrected. The performance of the bias-corrected data was
evaluated by [32,33].

3. Results
3.1. Characteristics of Observed and Bias-Corrected Data

We analyzed three climate extremes—namely rainfall of 1-day duration (PPT), daily
maximum temperature (Tx) and daily minimum temperature (Tn)—based on L-moments
to understand the behavior of the datasets. The crucial L-moments: first L-moment (L1),
second L-moment (L2), and L-skewness (t3) were estimated for both observed and sim-
ulated datasets. Figure 3 shows the estimated L-statistics in box plots for the present
condition. The plots are also used to demonstrate the performance of the bias-corrected
data in simulating L-statistics. The plots include the statistics derived from the observed
data (specified as ‘O’); bias-corrected historical data (specified as ‘H_BC’) and simulated
historical uncorrected data (specified as ‘H’). The assessment regarding inland and coast are
separately shown in box plots. The title of each plot indicates the above attributes including
the type of extremes assessed (PPT, Tx or Tn). Values from 13 stations are included in inland
box plots while 17 stations are included in coastal box plots. The L-moment values are
only displayed for ESM1-5 climate model for demonstration purpose. The average value
(denoted as blue circle) is pointed out on each box plot so that an appraisal can be obtained.
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Figure 3. Performance of bias-corrected data. Box plots of fitted L−moments (1st L−moment (L1),
2nd L−moment (L2) and L−skewness (t3)) at observed and simulated historic conditions ( data
from GCM model, ESM1−5, is used for demonstration) for PPT, Tx and Tn for both coastal and
inland region. ‘O’ represents estimate of L−moments based on observed data while ‘H_BC’ and
‘H’ represent L-moments estimate, respectively based on bias-corrected historical and uncorrected
historical simulated data. The “blue circle” on each box plot represents the average value.
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There is a considerable difference recognized between statistics of observed data and
simulated historical uncorrected data. This is true for both the inland and coastal region.
Quite a big margin of underestimation is noticed by the uncorrected PPT historical data of
ESM1-5 model (see Figure 3: first row). With the bias-corrected data, the L-statistics present
quite a similar average value to that of the observed data. The similar characteristic (average
value of observed and bias-corrected data) is also noticed for Tx and Tn (Figure 3: second
and third row). Overall, bias-corrected data mimic the observed data quite well. Hence,
this is a significant enhancement. The analogous performance is recognized for other
considered GCMs (Figures S1–S3) which have been included in the Supplementary File.

3.2. Examination of Parameters

Three climate extremes, PPT, Tx and Tn, were analyzed for coastal and inland locations.
Annual maximum datasets of PPT and Tx and annual minimum datasets of Tn were fitted
to GEV distribution. Three GEV parameters, specifically location, scale and shape, were
estimated using the method of L-moments (see Equations (5)–(7)).

Figure 4 shows the parameter values in box plots for PPT, Tx and Tn. The assessment
regarding inland and coast are separately shown in box plots. The title of each plot indicates
the above attributes, including the type of extremes assessed (PPT, Tx or Tn). Values from
13 stations are included in inland box plots, while 17 stations are included in coastal box
plots. The plots comprise parameters derived from observed and simulated bias-corrected
future data. The simulated data include near future (F1:2021–2060) and far future (F2:
2061–2100) under two SSPs: 245 and 585 derived from the considered GCM models. The
parameter values are only displayed for the ESM1-5 climate model for demonstrative
purposes. The average value (denoted as blue circle) is pointed out on each box plot so that
an appraisal can be obtained.

Regarding location parameters for the observed case, the mean PPT value is consider-
ably higher (145 > 122) in the coastal region than inland (see first and second plot of row 1
of Figure 4). In case of temperature extremes, the contrasting behavior is noticed. A higher
Tx value is observed inland compared to the coastal locations (37.7 > 36.3), while for Tn the
opposite is noted: the inland value is lower than coastal value (7.4 < 9.4).

The behavior of the location parameter under climate change for all the extremes gives
similar characteristics (see all plots of columns 1 and 2 of Figure 4): the higher-emission
scenario presents a greater value than that of the medium emission scenario. So does the far
future time horizon, which gives a higher value than that of the near future. The attribute
holds true for all the selected GCMs. This points out that the location of the distribution
shifts rightwards under the impact of climate change.

Regarding scale parameters for the observed case, the average PPT value is higher in
coastal regions than inland, which translates to a higher dispersion in coastal datasets. The
value of the shape parameter in both cases is quite similar (under zero, i.e., unbounded)
which suggests the skewness of both datasets is in the same range. The scale and shape
parameters of Tx and Tn are also in the same range for both coastal and inland locations.
The shape parameter is upper bounded in both cases for Tx and Tn, which means the
skewness is low compared to rainfall value, which is expected.

A similar discernible pattern (such as a location parameter) under climate change
is absent for scale and shape parameters (except for PPT, where a moderately increasing
trend is noted for scale parameter). In certain situations, the average scale and shape
parameters are lower in the far future than in the near future, and vice versa. From this, it
is inferred that there would be no orderly changes in the shape of frequency in the future.
From this, it can also be concluded that a substantial amount of uncertainty prevails in the
future extremes.
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Figure 4. Box plots of fitted GEV parameters (Location, Scale and Shape) at observed (o) and future
conditions (only data from GCM model, ESM1-5, is used for demonstration) for PPT, Tx and Tn for
both coastal and inland region. Future scenarios were represented by ‘S245F1’, ‘S585F1’, ‘S245F2’
and ‘S585F2’, where S245 and S585, respectively, designate SSP245 and SSP585, and F1 and F2,
respectively designate the near (2021–2060) and far future (2061–2100). The “blue circle” on each box
plot represents the average value.

Since the location parameter has a clear trend (which also influences the extreme
estimate to a great extent), the spatial distribution of the parameter has been displayed over
the study region. Maps for the observed case and maps for the changes in values under
climate change are shown in Figure 5. The change is assessed with respect to the observed
value. Only the changes with reference to the scenario: SSP585 (far future) are used.

The observed parameter values for PPT are highest along the coast, extreme north,
and north-east (inland area) near the Himalayan regions (Figure 5a). The lowest values are
generally observed in the west side, which mainly falls in the inland area. Change values
are site dependent, and different values are recognized across the study area. The highest
positive changes can generally be found along the coast (south-east) and north-middle part
of the country (Figure 5d). The lowest positive changes are noticed in the west side.

The spatial pattern of observed Tx is quite opposite to PPT. The highest values are
generally observed in the west side, which mainly falls in the inland area (Figure 5b). The
lowest values are found along the coast and eastern half of the country. The highest positive
(increased) changes are recognized in the south-east along the coast (Figure 5e). Contrasting
spatial behavior is observed for Tn with reference to Tx. The lowest observed values are
noticed in the west, but they are moderated along the coast in the south (Figure 5c). The
highest positive changes are found in the middle–northern part of the country (Figure 5f).
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Hence, climate change is predicted to increase the location parameters in all extreme
cases in both coastal and inland locations—rainfall amount should progress to higher levels
and extreme temperatures should shift to warmer values.
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3.3. Assessment of Extreme Quantile

With the estimated parameters, extremes in terms of return levels were calculated.
The analysis reported here for the 50-year return level (PPT50, Tx50, and Tn50) represents a
medium-high quantile value. The changes of extreme values for those cases under climate
change were also evaluated.

Figure 6 shows the quantile values in box plots for all the GCMs considered in this
study. First row of Figure 6 shows the quantile values for PPT, while the second and third
row, respectively, show the quantile values for Tx and Tn. Inland and coastal values are
shown separately in the figure. Estimated quantiles are displayed for the observed data,
as well as for simulated data derived from all the considered GCMs. The mean values for
observed, as well as future climate (for both scenarios), are summarized for coastal and
inland locations in Table 1.

Table 1. Coastal and inland average estimate of climate extremes at present and under climate change
with different scenarios in two future time horizons.

Scenarios

50-Year Return Value (Mean) PPT50 (mm) Tx50 (◦C) Tn50 (◦C)

Coastal Inland Coastal Inland Coastal Inland

Observed 360.5 302.8 39.6 41.0 7.2 4.8

SSP245 (21–60) 375.3 340.6 41.5 42.6 8.3 6.0

SSP585 (21–60) 403.0 344.4 42.6 43.7 8.5 6.3

SSP245 (61–100) 403.7 343.0 42.9 43.9 9.5 6.9

SSP585 (61–100) 436.5 387.2 44.1 45.6 10.7 8.6
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Figure 6. Box plots of 50-year return level at observed (o) and future conditions (simulations from
4 GCMs) for PPT, Tx and Tn. Future scenarios were represented by ‘S245F1’, ‘S585F1’, ‘S245F2’ and
‘S585F2’ where S245 and S585, respectively, designate SSP245 and SSP585, and F1 and F2, respectively
designate future time horizon 2021–2060 and 2061–2100. The “blue circle” on each box plot represents
the average value.

The observed mean value of PPT50 is considerably higher (about 20%) in coastal
regions than in inland areas. In case of temperature extremes, the contrasting behavior
is observed for Tx and Tn. In case of Tx50, a higher value is noticed for inland than
coastal locations (the difference is about 1.4 ◦C), and the opposite is observed for Tn50 (the
difference is about 2.4 ◦C).

Under climate change, the quantile values increase for all the extremes. A greater
value is identified in the far future than in the near future. The larger value is also found in
the higher-emission scenario compared to the medium-emission scenario. However, the
differences between coastal and inland estimates vary under climate change. For rainfall,
it is expected to increase in PPT50 by 76 mm (22%) for coastal regions, while for inland
locations, the value is about 85 mm (28%) under SSP585 in the far future. This suggests
that the difference in PPT50 value between coastal and inland is reduced under climate
change. Nonetheless, the inland estimate under climate change is barely able to exceed the
observed coastal estimate.

Regarding coastal extreme temperature, the SSP585 suggests an increase in Tx50 of
4.5 ◦C by the end of the century. With Tn50, the value is 3.5 ◦C. Inland, the scenario
indicates an increase in Tx50 of 4.6 ◦C, which is quite similar to that of the coast. With Tn50,
the increase is about 3.8 ◦C. This implies that the difference in Tx50 under climate change
is quite similar to the observed difference between coastal and inland locations (1.5 ◦C
compared to observed 1.4 ◦C). However, for Tn50, the difference is reduced a little (2.1 ◦C
compared to the observed difference of 2.4 ◦C) under climate change.
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Considerable uncertainty is present in estimating quantile values which have been
shown by the box plots (see Figure 6). Further, two stations were selected, namely Dhaka
(inland) and Khulna (coastal), to demonstrate the uncertainty in the probability plots (return
period value in terms of years) at an individual station. Figure 7 shows the plots for PPT,
Tx and Tn for observed and future conditions. Projections from the scenario SSP585 in the
far future were used to display the plots. The probability plots using observed data (solid
black line) and the associated 95% confidence intervals, CI, (dotted lines) are also shown.
The CIs were constructed based on a bootstrapping method. They can be represented as
curves due to climate variability.
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future conditions (4 GCMs under SSP585 in the far future) for the selected coastal and inland stations.
The y axis represents return period (T) in years.

In most instances, the CIs were outstripped by the curves derived from the future
simulated data. That implies that the impact of climate change is significant, and it can
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change the frequency of climate extremes for both coastal and inland regions of Bengal
delta. It also shows that different quantiles were obtained by different GCMs at different
locations.

We also constructed maps for 50-year quantile values for observed cases (Figure 8a–c)
and maps of change values (difference between future and observed estimate) (Figure 8d–i)
under climate change to reveal the spatial behavior of extreme quantiles. The change values
of extremes are displayed for the scenario SSP585 in the near and far future.
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Figure 8. Spatial distribution of 50-year quantile based on observed data (a) PPT (mm); (b) Tx (◦C)
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Since the location parameter dominates the estimate to a great extent, the spatial
characteristics of observed estimates are quite similar to that of the location parameter.
However, in some sites, they behave quite differently, and that is due to the influence of
scale and shape parameters of that site. The observed values of PPT50 are the highest along
the coast and the extreme north (inland area) near the Himalayan regions (Figure 8a). The
lowest values are generally observed in the west side, which mainly falls in the inland area.
The change values under climate change are different across the country. Highest increase
(positive changes) values of PPT50 can be found along the extreme southern coast and
northern-middle part of the country (Figure 8d,g). The lowest positive changes generally
are observed in the west and eastern side.

In case of temperature extremes, contrasting behavior is noted for Tx50 and Tn50.
The highest observed values are generally found in the west side, which mainly falls in
the inland area. The lowest values are prominent along the coast and eastern half of the
country (Figure 8b). Change values are different in different locations; however, the highest
positive changes are noticed in the southern coastal locations and middle-western inland
area (Figure 8e,h). The spatial pattern of observed Tn50 is quite opposite to Tx50. The
lowest observed estimates are predominantly found in the western side, but medium to
high values are identified in the south along the coast (Figure 8c). The change values are
quite uniform compared to Tx, but the highest positive changes are observed generally in
inland area (Figure 8f,i). Quite a similar pattern of changes is obtained for the near and far
future; however, the greatest changes are shown in the far future.

4. Discussion

The purpose of this work is to compare the effects of climate change on climate
extremes between coastal and inland locations based on an ensemble of GCMs derived
from CMIP6.

Since very often, the generated data from GCMs do not satisfactorily simulate the
observed data at the local scale, bias correction is often considered. This is normally carried
out to reduce the errors. In this study, the bias-corrected data (evaluated based on summary
L-moments) reduced the error quite appropriately (see Figures S1–S3 in the Supplementary
File). The observed and bias-corrected data show similar characteristics which indicate its
effectiveness. This is in agreement with the past studies in this region [32,33].

We employed a GEV-based frequency model to analyze extremes at present and under
climate change conditions. In regard to GEV parameters, the location is the only parameter
that increases linearly under climate change for all the extremes in both regions. This
suggests a uniform repositioning of the location parameter to the right for the extreme
tail of the GEV distribution. There are no such considerable changes in scale and shape
parameters. The result compliments the effective non-stationary analysis, where location is
always used as the time-dependent variable [77,78].

The noteworthy increase in location parameter (Figure 4) reflects the overall changes
in the return period values (See Figure 6). The extremes increase appreciably under climate
change throughout the country (See Figure 8). This reveals that extreme rainfall and
temperatures have the tendency to increase markedly by the end of this century, which is
in line with the previous studies worldwide [9,10,34,45,53–55,79–81]

The spatial behavior of observed climate extremes is quite similar to that of location
parameters. This happens because the location parameter dictates the quantile to a great
degree, especially when the return period is low to medium [52,82]. Rainfall extremes in
both coastal and inland locations are expected to amplify noticeably, which is generally in
accord with the previous studies in the study region [21,22]. However, a slightly higher
rate of increase of extreme rainfall is expected in inland locations, which is in agreement
with the findings in [21]. Thus, the difference of estimate under climate change is reduced a
little compared to the observed difference. Nonetheless, the inland estimate under climate
change is barely able to exceed the observed coastal estimate. As a result, it can be said
that the coastal region is expected to be more vulnerable to heavy storm and subsequent
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severe flooding. In regard to temperature extremes, both coastal and inland locations are
expected to increase appreciably, which is in line with the previous studies [21,22,27], but
the inland region displayed a slight increase in Tx, which is quite in agreement with the
outcome in Bangladesh [28,83]. With Tn, the increase rate is higher in inland locations than
in the coastal region. The amplification of Tx, in particular, in the north-western inland
area is of great concern, because desertification is already on the rise [30,84]. With further
increase, the region is vulnerable to severe drought in the future.

It is also recognized that warming rates of Tx (in both regions) exceed that of Tn
(see Table 1) which is in line with the outcome for subtropical and tropical territories [10],
including Bangladesh [29].

Overall, the coastal area is expected to be more vulnerable to flooding, while the inland
area to drought in the Bengal delta region. Even though the inland area is prone to drought,
the extreme rainfall is expected to increase there. Changes in dynamic and thermodynamic
activity can explain a significant increase in the maximum one-day rainfall during warmer
circumstances [85,86].

The extreme estimates under climate change, based on which outcomes are drawn,
are subject to uncertainty. Using four GCMs and two SSPs suitable for Bangladesh, we
satisfactorily envelop the larger degree of uncertainty that has been displayed in several
assessments (See Figures 4, 6 and 7). There is visible inter-model uncertainty in the projected
extremes, as indicated in Figure 7. This uncertainty should be taken into account when
estimation is sought; for example, for risk management of floods and drought. The intra-
model uncertainty (uncertainty within the model) is also an issue with the climate change
impact analysis. To accurately assess the uncertainty, it is envisaged to carry out the intra-
model uncertainty by including a member ensemble to a particular GCM. Thus, further
investigation is required in this direction.

Topography is also considered an important factor inducing biases in the simulated
datasets [87,88]. In high elevation areas, the GCM is likely to introduce bias, since it assumes
a smoother and lower topography than is actually the case [89]. The considered study area
is relatively a less complex topography (about 80% plain land), and hilly regions are in the
northeast and southeast of the inland areas [90]. A similar degree of biases is recognized
(in simulating summary L-statistics) in coastal and inland regions (see Figure 3 and related
figures (Figures S1–S3) in the Supplementary File). However, a detailed examination in the
hilly regions is required to understand the fully fledged topographical effect on GCMs.

The findings of our study have noteworthy policy implications for the delta region.
With a substantial rise in extreme temperature on the cards, sustained drought may surface
in the northern and western territories. Drought-tolerant agricultural cultivars and optimal
use of surface water resources may be necessary to adapt to the drying circumstances.
Additionally, with the rise in extreme temperatures, the saline water intrusion in the
southern region might be exacerbated under climate change [29], which requires effective
water resources management. With the expectation of increase in extreme rainfall over the
coastal regions, the risk of severe floods and landslides might be aggravated, which leads
to a need for sustainable flood risk management.

5. Conclusions

This work compares the effect of climate change on climate extremes between coastal
and inland locations in the Bengal delta region. The multi-model ensemble method was
employed to examine the impact in two future time horizons: 2021-2060 and 2061–2100.
The GEV-based frequency analysis was applied to study the climate extremes at present
and under climate change conditions.

The conclusions obtained from the study are summarized below:

• The location parameter of GEV is expected to increase linearly under climate change
in rainfall and temperature extremes for both coastal and inland regions. Changes in
location suggest a uniform repositioning for the extreme tail of the GEV. There are no
such substantial changes in scale and shape parameters.
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• The coast and inland both are expected to amplify the extreme rainfall considerably.
The rate of increase is slightly higher in inland locations under climate change; nonethe-
less, the inland estimate by the end of the century is barely able to exceed the observed
coastal estimate.

• In regard to temperature extremes, both coastal and inland locations are expected to
increase appreciably under climate change. With Tx, the rate of increase is almost
similar; however, with Tn, the increase rate is slightly higher in inland locations than
in the coastal region. The coastal and inland average change in Tx50 by the end of
this century is, respectively, 4.5 and 4.6 ◦C in the SSP585 experiment, compared to the
corresponding changes of 3.5 and 3.8 ◦C in Tn50. The warming rates of Tx surpass
those of Tn.

• The coastal area is expected to be more vulnerable to flooding, while the inland is
more vulnerable to drought under climate change in the Bengal delta region.

The present study considers four GCMs to complete the assessment. Further investiga-
tion is needed to assess the uncertainty in full scale (inter and intra-variability) by including
more GCMs and a member ensemble in a particular GCM model. The findings of our work
have key scientific and practical implications for highly vulnerable regions, such as the
Bengal delta, in terms of water resource management; agricultural arrangement; and flood
and drought deterrence. The study is expected to assist decision makers with developing
ways to offset the effects of climate extremes in coastal and inland locations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13111747/s1, Figure S1: Performance of bias-corrected
data for the GCM model: CanESM5, Figure S2: Performance of bias-corrected data for the GCM model:
CNRM-CM6-1, Figure S3: Performance of bias-corrected data for the GCM model: INM-CM5-0.
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