Protein retention in the endoplasmic reticulum rescues Aβ toxicity in Drosophila

Catterson, J. H. et al. (2023) Protein retention in the endoplasmic reticulum rescues Aβ toxicity in Drosophila. Neurobiology of Aging, 132, pp. 154-174. (doi: 10.1016/j.neurobiolaging.2023.09.008) (PMID:37837732)

[img] Text
308880.pdf - Published Version
Available under License Creative Commons Attribution.

17MB

Abstract

Amyloid β (Aβ) accumulation is a hallmark of Alzheimer’s disease. In adult Drosophila brains, human Aβ overexpression harms climbing and lifespan. It’s uncertain whether Aβ is intrinsically toxic or activates downstream neurodegeneration pathways. Our study uncovers a novel protective role against Aβ toxicity: intra-endoplasmic reticulum (ER) protein accumulation with a focus on laminin and collagen subunits. Despite high Aβ, laminin B1 (LanB1) overexpression robustly counters toxicity, suggesting a potential Aβ resistance mechanism. Other laminin subunits and collagen IV also alleviate Aβ toxicity; combining them with LanB1 augments the effect. Imaging reveals ER retention of LanB1 without altering Aβ secretion. LanB1’s rescue function operates independently of the IRE1α/XBP1 ER stress response. ER-targeted GFP overexpression also mitigates Aβ toxicity, highlighting broader ER protein retention advantages. Proof-of-principle tests in murine hippocampal slices using mouse Lamb1 demonstrate ER retention in transduced cells, indicating a conserved mechanism. Though ER protein retention generally harms, it could paradoxically counter neuronal Aβ toxicity, offering a new therapeutic avenue for Alzheimer’s disease.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Woodling, Dr Nathan
Authors: Catterson, J. H., Minkley, L., Aspe, S., Judd-Mole, S., Moura, S., Dyson, M. C., Rajasingam, A., Woodling, N. S., Atilano, M. L., Ahmad, M., Durrant, C. S., Spires-Jones, T. L., and Partridge, L.
College/School:College of Medical Veterinary and Life Sciences > School of Molecular Biosciences
Journal Name:Neurobiology of Aging
Publisher:Elsevier BV
ISSN:0197-4580
ISSN (Online):1558-1497
Published Online:21 September 2023
Copyright Holders:Copyright © 2023 The Authors
First Published:First published in Neurobiology of Aging 132:154-174
Publisher Policy:Reproduced under a Creative Commons licence

University Staff: Request a correction | Enlighten Editors: Update this record