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Alterations in the neuromuscular system underlie several neuromuscular dis-
eases and play critical roles in the development of sarcopenia, the age-related
loss of muscle mass and function. Mammalian Myostatin (MST) and GDF11,
members of the TGF-β superfamily of growth factors, are powerful regulators
of muscle size in both model organisms and humans. Myoglianin (MYO),
the Drosophila homologue of MST and GDF11, is a strong inhibitor of synaptic
function and structure at the neuromuscular junction in flies. Here, we ident-
ified Plum, a transmembrane cell surface protein, as a modulator of MYO
function in the larval neuromuscular system. Reduction of Plum in the
larval body-wall muscles abolishes the previously demonstrated positive
effect of attenuated MYO signalling on both muscle size and neuromuscular
junction structure and function. In addition, downregulation of Plum on its
own results in decreased synaptic strength and body weight, classifying
Plum as a (novel) regulator of neuromuscular function and body (muscle)
size. These findings offer new insights into possible regulatory mechanisms
behind ageing- and disease-related neuromuscular dysfunctions in humans
and identify potential targets for therapeutic interventions.
1. Introduction
The neuromuscular system is composed of individual motor units, each consist-
ing of a single motor neuron, a neuromuscular junction (NMJ), and muscle fibres
innervated by the motor neuron. Diminished motor unit function and decreased
muscle volume are hallmarks of several neuromuscular disorders [1] and of sar-
copenia, the age-associated loss of skeletal muscle mass and function [2]. Gradual
loss of skeletal muscle capacity has been reported in invertebrates, rodents and
humans [3–5], with intrinsic mechanisms regulating age-related muscle dysfunc-
tion largely conserved across species [6]. Age-related muscle loss is accompanied
by progressivemodifications in the structure and function of theNMJ, the special-
ized synapse at the interface between the nervous and muscular system [1], with
the resulting uncoupling of the excitation–contraction machinery [7,8]. In mam-
mals, including humans, these modifications include changes in the branching
pattern of the motor nerve terminal that contacts the myofibre, fragmented
NMJ architecture, impaired synaptic neurotransmitter distribution, and
decreased density of presynaptic active zone markers [9–13]. Functionally, aged
mammalian NMJs exhibit increased failures in evoked release [14], changes in
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quantal release [15] and a slowing-down of axoplasmic trans-
port of proteins [16]. Skeletal muscle and NMJ deficits are
found in many motoneuronal and neuromuscular disorders,
with impaired neurotransmission and muscle wasting charac-
terizing amyotrophic lateral sclerosis (ALS) [17–19], myotonic
and muscular dystrophies [20–24] and myasthenia gravis
[25,26]. Whether muscle loss precedes or follows the changes
in the function of the NMJ is currently unresolved, but
animal studies suggest that NMJ remodelling plays a critical
role in the progression of sarcopenia [27].

Drosophila melanogaster is a convenient and proven
model system for studying various aspects of developmental
regulation of muscle mass and control of NMJ function
[28–30]. Drosophila larval glutamatergic NMJs share structural
and functional similarities with mammalian junctions [31]
and striated muscles in Drosophila resemble vertebrate skeletal
muscles in structure, function, and protein composition [28].
Previously, we used this model system to investigate the role
of Drosophila MYO, the muscle- and glia-expressed fly homol-
ogue of TGF-β growth factorsMyostatin (MST) andGDF11 [32]
in regulating synaptic function, muscle size and body weight
[33]. MST (also known as GDF-8) is a circulating cytokine
that serves as a powerful negative regulator of muscle mass
in mammalian species [34,35]. In addition to its MST-
like role as an inhibitor of larval weight and muscle size,
muscle-derived MYO is a strong negative regulator of neuro-
transmission, synaptic morphology and the density of critical
pre- and post-synaptic components [33].

Plum is a Drosophila transmembrane, immunoglobulin
superfamily protein [36] and a distant homologue of
Protogenin, Sidekick and Nope, mammalian regulators of
developmental processes in nervous, muscle and epithelial tis-
sues [37–39]. Protogenin was also associated with attention
deficit hyperactivity disorder [40]. Sidekick regulates synaptic
connections in the vertebrate retina [41], and Nope is a surface
marker for human and murine liver cancers [42,43]. Recently,
Plumwas identified as amodulator of axon pruning in theDro-
sophila nervous system [36]. Plum genetically interacts and
interferes with MYO function, likely by sequestrating MYO
[36]. In this study, we examined the interactions between
Plum and MYO in regulating larval muscles and NMJ physi-
ology. We identified Plum as a novel modulator of MYO
action on NMJ synaptic transmission and muscle size, and an
independent regulator of synaptic strength and larval weight.
2. Results
2.1. Muscle-derived plum regulates NMJ synapse

strength independently and by modulating MYO
We previously showed that genetic attenuation ofMyo specifi-
cally in the larval somatic muscle, using amicroRNA construct
to target the Myo transcript (genotype: Mef2-GAL4/UAS-
miRNAmyo) [44], increases muscle size, NMJ synaptic trans-
mission and locomotion by greater than 20% [33], defining
MYO as a potent neuromuscular inhibitor in flies. Considering
the expression of the Plum mammalian homologue Nope in
developing skeletal muscles [37] and the microarray data indi-
cating the expression of Plum in the body-wall muscles of WT
and larvae expressing the human PAX-FKHR protein [45], we
first investigated the possible expression of Plum in the larval
somatic musculature. Using a previously published rabbit
antibody to Plum [36], we visualized the expression of themus-
cular system of third instar larvae using immunofluorescence,
but the result was inconclusive (data not shown). We therefore
used a different strategy involving a protein trap (MI01835)
that specifically introduced a GFP cassette (flanked with a
splice donor and acceptor site) within an intron of the Plum
transcriptional unit (figure 1a). The GFP cassette is spliced
into the Plum protein, providing an alternative readout of
protein expression. Importantly, the protein would also be
expressed at physiologically normal levels as Plum expression
is controlled from the endogenous promoter and enhancers.
We detected strong expression of the Plum gene at the NMJ,
particularly around the periphery of the bouton, typical of
post-synaptic staining. We also observed weaker expression
within muscle tissue (figure 1b). The muscle expression of
Plum was also confirmed using a CRIMIC Gal4 line
(CR01114-TG4.1) that also located to the same intron as the
GFP protein trap (figure 1c). These data showed that the
Plum protein could be detected post-synaptically at the NMJ
and within the surrounding muscle tissue.

We examined the effect of overexpressing Myo and/or
Plum in muscles. There was no significant electrophysiological
differences observed when Myo, Plum or both were overex-
pressed in the muscle (electronic supplementary material,
figure S1). We then assessed the impact of Plum downregula-
tion on NMJ physiology, when expressed in the muscles. We
analysed phenotypes in double knock-down Myo-Plum
larvae (Mef2-GAL4/UAS-miRNAmyo/plumRNAi) and single
knock-down Plum animals (Mef2-GAL4/UAS-plumRNAi).

Body-wallmuscles indeveloping larvae consist of bilaterally
symmetrical hemi-segments composed of 30 multinucleated
muscle fibres [46]. We focused our analyses on muscles 6 and
7, large myofibres innervated by two motoneurons forming a
single, excitatory, glutamatergic NMJ. Contractions of these
muscles are triggered by ‘non-spiking’ postsynaptic potentials
that are graded in duration and amplitude, allowing for quanti-
tative comparisons between genotypes [47]. The amplitude of
these Ca2+-dependent, nerve-evoked postsynaptic excitatory
junctional currents (eEJCs) reflects either the magnitude of
presynaptic release or the postsynaptic sensitivity to neuro-
transmitter [47]. Muscle-specific reduction of MYO leads to
dramatically increased evoked response [33]; simultaneous sup-
pression of Plum, however, reversed the response to control
(+ Mef2-GAL4) levels, with the downregulation of Plum alone
further diminishing the evoked currents. Further examination
of the data showed a statistically significant interaction between
the effects of simultaneously reducedMYOand Plum relative to
the control genotype (two-way ANOVA analysis in figure 2b).
We then measured the amplitudes of spontaneous ‘miniature’
postsynaptic currents (mEJCs), also known as ‘quantal size’
[48]. The mEJCs represent postsynaptic responses to a single
presynaptically released vesicle containing neurotransmitter
and are a reliable indicator of the density of functional, NMJ,
glutamate receptors [49]. While the mean mEJC amplitude
showed only minor differences between the genotypes
(figure 2a,c), the frequency distribution analysis revealed that
Plum downregulation in either control or reduced MYO back-
ground caused a strong shift toward smaller ‘miniature’
currents (figure 2d). Taken together, our electrophysiological
results imply that MYO and Plum affect NMJ physiology by
controlling the density of the postsynaptic glutamate receptor
field, with Plum having a modulatory effect on MYO and
acting as an autonomous synaptic regulator.
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Figure 1. Plum is expressed at the postsynaptic NMJ and within muscle. (a) Plum transcriptional unit (blue) on chromosome 3, showing four isoforms (Plum-RB,RC,
RD and RE), modified from Flybase. Two independent insertion lines were used to detect expression of the Plum protein in 3rd Instar larvae. The mimic protein trap
line MI01835 (red) and CRIMIC line CR01114-TG4.1 containing the GAL4 cassette (blue) insertion sites show that these tools detect all plum isoforms. (b) Protein trap
clearly shows Plum expression at the neuromuscular junction (arrow) and perinuclear staining in muscle nuclei (arrowhead) as well as low level staining in muscle
fibres. (c) CRIMIC line driving the expression of membrane localized CD8::GFP shows perinuclear staining (arrowheads) and staining at the NMJ. Note the staining is
localized to the outer bouton membrane, indicating postsynaptic localization (arrows in b and c). Scale bars indicate 10 µm.
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2.2. Plum modulates the action of MYO on synapse
structure and receptor composition

Postsynaptic receptors at the larval NMJ are AMPA-type tetra-
meric complexes formed by glutamate receptor (GluR)
subunits IIC, IID and IIE, in addition to either subunit IIA or
IIB [50,51]. Assemblies containing the IIA subunit (GluRIIA)
are pharmacologically and biophysically distinct from the
ones incorporating GluRIIB and carry the bulk of the ionic cur-
rent at this synapse [48,49]. We have recently shown that
elevated evoked and spontaneous synaptic currents in ‘low
MYO’ larvae show corresponding increase in the density of
GluRIIA receptors [33], in line with previously demonstrated
correlation betweenGluRIIA levels and either evoked response
[52] or quantal size [49]. We therefore used immunohistochem-
istry to measure the area of GluRIIA clusters in the NMJ
boutons (figure 3a) of control and mutant animals. The
GluRIIA cluster area is directly proportional to the number
of functional GluRs measured electrophysiologically, and
independent of changes in NMJ morphology [53–55].

Our results showed that Plum downregulation in the
muscle led to significantly (approx. 20%) smaller GluRIIA clus-
ters in animalswithmuscle-reducedMyo expression (figure 3a,
b). This reduction was identical in magnitude to the increase in
the density of IIA-type receptors upon Myo downregulation
relative to the control genotype [33], demonstrating the reversal
towild-type receptor levels caused by reduced Plum.Unlike its
effect on evoked response and distribution of mEJC ampli-
tudes, muscle-specific Plum suppression alone was unable to
further reduce the GluRIIA cluster area. The lack of perfect cor-
relation between electrophysiological analyses and antibody
staining probably occurred because the latter cannot dis-
tinguish between functional and non-functional glutamate
receptors. Another possible explanation is that, in Mef2-
GAL4/UAS-PlumRNAi larvae, there is a change in the recep-
tors’ biophysical properties resulting in reduced average
single-channel conductance [56].

Our immuno-staining data confirm the negative effect of
Plum downregulation on enhanced neurotransmission
caused by muscle-specific knock-down of Myo.
2.3. The number of Brp puncta scales with NMJ size
upon Plum and/or MYO attenuation

Bruchpilot (Brp) is a presynaptic marker at the larval NMJ
and the Drosophila homologue of the vertebrate active zone
protein ELKS [57]. Brp is required for function and structural
integrity of synaptic active zones and is necessary for regulat-
ing evoked, but not spontaneous, release at the glutamatergic
synapse of the NMJ [57].

We have previously shown that enhanced evoked response
in reduced MYO background correlates with increased NMJ
size [33]. These findings agree with the previously established
positive correlation between the number of boutons and
the strength of evoked signal transmission [52,58]. Here we
show that the number of active zones per bouton (active
zones marked by distinct Brp puncta) is not affected by Myo
or Plum manipulations (figure 4a,b). The reversal of the
(increased) amplitude of evoked synaptic responses in reduced
MYO larvae upon Plum suppression (figure 2b) therefore
cannot be explained by reduced number of Brp puncta, despite
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the previously demonstrated correlation between evoked
response and Brp density [59]. Rather, reduced bouton
number, NMJ branching, and NMJ length (figure 4c) are
likely responsible for the physiological attenuation in the
larvae suppressing both MYO and Plum. In addition, Plum
probably exhibits a broader, non-Brp related, physiological
effect because the morphological changes alone cannot explain
the negative effect of Plum knock-down on synaptic strength in
the control background (green bar in figure 2b). These findings
implicate Plum as a modulator of synaptic strength in low
MYO background via its impact on NMJ morphology.

2.4. Knock-down of Plum abolishes the effect of
reduced MYO on muscle size and body weight

Muscle-derived MYO negatively regulates larval weight and
muscle size [33]. We examined the effect of Plum attenuation
on the size of body-wall muscles 6 and 7 (figure 5a) and on
total larval body weight in reduced MYO background. Plum
suppression completely abolished the positive effect of Myo
downregulation on the combined area of muscles 6 and 7
(figure 5b) and on larval wet weight (figure 5c), mirroring its
effects on synaptic physiology (figure 2), synaptic composition
(figure 3b) andNMJmorphology (figures 3a and 4c). The inter-
action betweenMyo and Plum downregulation was significant,
indicating a combinatorial effect of these interventions in abol-
ishing the positive effect of reduced MYO on muscle size and
body weight (two-way ANOVA analysis in figure 5c,d). Fur-
thermore, Plum has an independent effect on body mass,
because Plum knock-down larvae exhibit significantly reduced
wet weight (figure 5c, green bar).

These experimental results identify Plum as a critical modu-
lator of the action of MYO on the neuromuscular physiology,
muscle size andweight, and consequently, a regulatorof synaptic
strength and body weight in developing D. melanogaster.
3. Discussion
Chemical transmission across the neuromuscular junction
is critical for converting action potentials originating in the cen-
tral nervous system into contractile activity in skeletal muscles.
This present work uncovers a previously unknown role for the
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transmembrane protein Plum in regulating muscle size,
muscle weight, GluRIIA receptor clustering and neurotrans-
mission at the larval NMJ when MYO protein is reduced
post-synaptically. Previous experiments identified a genetic
interaction with MYO and Plum pre-synaptically in the central
nervous system, as well as a non-cell autonomous effect from
glial cells [36,60]. However, the post-synaptic effects of MYO
and Plum had not been addressed.

Post-synaptic overexpression ofPlum orMyo alone inmuscle
showed no significant effect on the physiology of the synapse
(electronic supplementary material, figure S1). The current
model of TGF-β signalling suggests that binding of the ligand
by type I and Type II transmembrane receptor kinases are
required for correct phosphorylation of R-Smad, forming a com-
plex that translocates to the nucleus to initiate transcription of
target genes (reviewed by [61]. Wang and colleagues suggest
that Plum acts as a coreceptor to stabilize the type I and type II
receptors [62]. This would explain why we do not observe any
electrophysiological changes when Plum is overexpressed in
the muscle, as plum is required to stabilize the complex, and
there is enough endogenous Plum protein to do so. However,
Wang et al. also show that when they use vCrz neurons as a
model to study programmed cell death (PCD), TGF-β signalling
is not epistatic to ecdysone signalling, which contrasts with
signalling in the mushroom body neurons [36]. Thus, neuron-
specific differences exist when addressing TGF-β signalling,
although in vCrz neurons, Plum does still cooperate with myo
to regulate PCD. Further work will be required to understand
how Plum affects ecdysone signalling in vCrz neurons.

Post-synaptic downregulation of Myo and Plum, on the
other hand, had a more noticeable effect.Myo downregulation
resulted in a significant increase in bouton number, branching
and NMJ length. Plum downregulation ameliorated the effects
ofMyo downregulation and reduced the increases below wild-
type levels. Importantly, post-synaptic downregulation ofMyo
increased the number of GluRIIA puncta at the NMJ, which
were significantly reduced when Plum was concomitantly
downregulated. Thus, a homeostatic stabilization of NMJ
architecture not only requires MYO and Plum pre-
synaptically to ensure normal neuromuscular connectivity
before metamorphosis [36], but also involves the interaction
of MYO and Plum post-synaptically (this study).

This stabilizing effect is not unique and has also been
observed between other secreted proteins and membrane-
bound receptors. For example, the disruption of the interaction
between the secreted extracellular matrix protein Tenectin and
integrin receptor affected NMJ stability both pre-and post-
synaptically, and overexpression of Tenectin in muscles not
only restored but led to exceedingly high integrin levels [62].
Our data are consistent with the idea that proteins involved
with NMJ architecture need to be correctly maintained both
pre-synaptically and post-synaptically, and disruption of
secreted extracellular molecules may affect NMJ morphology
and consequently, NMJ function. Mammalian MYO has been
shown to interact with extracellular matrix proteins such as
laminin and the extracellular proteoglycan decorin [63,64],
suggesting that the regulation of Myostatin by extracellular
matrix proteins across the synaptic cleft plays a role in
maintaining NMJ stability.

We also showed a significant role for Plum in regulating
muscle mass and larval weight, specifically in the context
of Myo downregulation. Given the role of MYO in regulating



HRP + Brp

HRP + Brp

HRP + Brp

HRP + Brp

+/Mef2-GAL4

+/Mef2-GAL4

B
rp

 p
un

ct
a/

bo
ut

on

Mef2-GAL4/UAS-miRNAmyo
Mef2-GAL4/UAS miRNAmyo/plumRNAi
Mef2-GAL4/UAS-plumRNAi

+/UAS-miRNAmyo

Mef2-GAL4/UAS-miRNAmyo

Mef2-GAL4,UAS-
miRNAmyo/
plum RNAi

10 µm

Mef2-GAL4/UAS-plumRNAi

Brp

Brp

Brp

Brp

5

10

15

n.s.

(c)

+/
M

ef
2-

GAL4

M
ef

2-
GAL4/

UAS-
m

iR
NAm

yo

M
ef

2-
GAL4/

UAS-
m

iR
NAm

yo
/p

lu
m

RNAi

M
ef

2-
GAL4/

UAS-
pl

um
RNAi

+/
UAS-

m
iR

NAm
yo

+/M
ef

2-
GAL4

M
ef

2-
GAL4/

UAS-
m

iR
NAm

yo

M
ef

2-
GAL4/

UAS 
m

iR
NAm

yo
/p

lu
m

RNAi

M
ef

2-
GAL4/

UAS-
pl

um
RNAi

+/
UAS-

m
iR

NAm
yo

+/M
ef

2-
GAL4

M
ef

2-
GAL4/

UAS-
m

iR
NAm

yo

M
ef

2-
GAL4/

UASm
iR

NAm
yo

/p
lu

m
RNAi

M
ef

2-
GAL4/

UAS-
pl

um
RNAi

+/
UAS-

m
iR

NAm
yo

50
2

10

20

30

40

50

60

70

4

6

8

N
M

J 
le

ng
th

 (
�m

)

br
an

ch
es

/N
M

J

bo
ut

on
s/

N
M

J

100

150

200

250

*** **
** ******

***

n.s.

*
**

(a) (b)

Figure 4. Number of Brp puncta and NMJ morphology. (a) Representative confocal images of Brp puncta in distal NMJ segments. Insets show the puncta in
individual synaptic boutons (inset scale bar: 1 µm). (b) Mean number of Brp puncta per bouton (n = 7–9). (c) NMJ morphology: the number of boutons
(left) and branches (middle) per 6/7 NMJ and NMJ length (right) (n = 9–17). All bar graphs: error bars indicate SEM (one-way ANOVA + Tukey’s post-test:
*p < 0.05, **p < 0.01, ***p < 0.001, n.s. = not significant).
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NMJ architecture and muscle mass, it is perhaps unsurprising
that impairment of the NMJ, in many cases, leads to reduced
muscle mass and function in both vertebrates and invert-
ebrates [28,65]. Our work also addressed the consequences
of Myo and Plum downregulation on neurotransmission,
using electrophysiological measurements as a readout.
Muscle-specific downregulation of Myo elicited an increased
evoke response, which was attenuated by the concomitant
downregulation of Plum. These data indicate that tight regu-
lation of Myo and Plum is crucial in maintaining a stable
NMJ, and Plum can counteract any potential influence on
synaptic strength by deregulated Myo, post-synaptically.
In addition to motor unit elimination [66], reduced motor
axon conduction velocity [67], diminished motor cortex excit-
ability [68,69], and modified activity of muscle-intrinsic
factors [70], NMJ dysfunction is strongly correlated with
decreased skeletal muscle size and strength under both
healthy and pathological conditions [71]. For example,
recent studies suggested that the malfunction of the NMJ
plays a causative role in the onset of sarcopenia [72], and pro-
posed NMJ stabilization as a way to delay its progression
[73]. In dystrophic mdx mice, both pre- and post-synaptic
abnormalities in the NMJ contribute to reduced muscle con-
tractility [71] and therapeutic approaches that specifically
target NMJs have been proposed for treating spinal muscular
atrophy and, possibly, ALS [74].

Several mammalian proteins have identified roles in linking
structural and functional properties of the NMJ and (skeletal)
muscles, the most important being Agrin (no obvious homol-
ogue of Agrin is present in D. melanogaster). Agrin was
identified as a marker for the diagnosis of sarcopenia [75] and
implicated in thepathogenesis of sarcopenia caused bydegener-
ation of the NMJ [76]. Degradation of Agrin results in structural
changes in theNMJ and innervatedmuscles, consistent with the
notion that impaired NMJ functionality plays a role in the onset
of sarcopenia [72]. Agrin was first discovered as a neurotrophic
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factor sufficient for pre- and post-synaptic NMJ assembly and
stabilization [77] and aggregation of the junctional acetylcholine
receptors (AChRs) [78]. Agrin binding to transmembrane pro-
teins such as dystroglycan and the extracellular matrix protein
laminin is thought to stabilize theNMJ [79,80].Reduced function
and density of synaptic AChRs at the NMJ is a hallmark of
‘normal’ human [12] and rodent [81] ageingmuscles and of sev-
eral NMJ disorders characterized by skeletal muscle loss and
weakness [82–84]. These findings underline the importance of
investigating links between the NMJ and muscle function and
searching for novel regulators of these processes. In the fly,
there are several Plum paralogues that show high homology
with Plum, and it is tempting to speculate that Plum may form
a heterodimeric receptor with one or more of the paralogues to
regulate MYO activity. TGF-β ligands are known to bind to
different transmembrane receptors, with varying combinations
of type I and type II forms [85].

Just like Agrin, Drosophila MYO is a secreted ligand
that regulates nervous system development [44] and NMJ
synaptogenesis [33]). While MYO of glial origin governs remo-
delling ofmushroombody neurons in developing animals [44],
muscle-derived MYO functions as strong negative regulator of
the size of larval somatic muscles and NMJ size and function
[33,36]. In this study, we expanded our investigation of the
role of MYO in the larval neuromuscular system by analysing
its interaction with Plum, a trans-membrane protein recently
found to modulate MYO signalling during mushroom body
development [36]. The genetic interaction experiments indicate
that Plum acts as a downstream effector of MYO possibly by
sequestering it and thereby inhibiting its pruning-promoting
effect on mushroom body neurons, with the reduction of
endogenous Plum stimulating MYO-induced pruning [36]. In
the fly brain, Plum expression in mushroom body neurons is
required to prevent β-lobes from crossing the midline [60].
Overexpression of Plum within mushroom body neurons was
sufficient to induce β-lobe retraction. However, the overexpres-
sion of Plumwithin muscle at the neuromuscular junction was
not addressed. We did not see any significant effect of Plum
overexpression in the muscle when looking at the gross mor-
phology at the NMJ. The only significant effect observed
with Plum overexpression in the muscle was when Myo was
also overexpressed. The ‘lowMYO’ animals used in our exper-
iments have the Myo transcript levels reduced by
approximately 60% [33], with the remaining circulating MYO
possibly sequestered by Plum. Curiously, work from the
O’Connor laboratory [86] did not find MYO functioning as a
negative regulator of muscle size. Our work in this paper
focuses on the genetic interaction of Plum and MYO, and
although we do not directly address the specific function of
MYO, we speculate that the differences seen from the O’Con-
nor laboratory data may be due to differences in the genetic
background of the flies used. De-sequestering this Plum-
boundMYO could therefore reverse some of the effects of gen-
etic MYO attenuation on NMJ function and muscle size. In
agreement with this hypothesis, simultaneous suppression of
MYO and Plum only in the muscle completely reversed the
effect of reduced MYO on synaptic physiology, muscle size,
and total body weight. In addition, Plum reduction alone (i.e.
without concomitant downregulation of MYO) reduced the
synaptic strength and body weight below control levels
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Figure 6. Model illustrating the effects of MYO and Plum on synaptic
strength, muscle size and body weight in Drosophila larvae. Model showing
that Plum reduction abolishes the (positive) effect of reduced MYO on synap-
tic strength, total body weight and muscle size. Attenuation of Plum on its
own, or MYO upregulation, negatively affect synaptic strength and larval
weight, with Myo overexpression having an additional (negative) effect on
muscle size.
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(figure 6), identifying muscle-derived Plum as a novel and
independent target for manipulating neuromuscular function.
It is important to note thatMYO and Plum regulate physiologi-
cal properties of the NMJ synapse by controlling the number of
glutamate receptors, the functional analogues of ACh receptors
in mammalian NMJs. Plum mutant alleles are viable and fer-
tile, indicating that modulating plum levels alone is not
detrimental to the development of the fly. Indeed, having
little or no phenotypes when plum is deleted or overexpressed
is desirable for therapeutic targeting, in order to modify
MYO levels.

Sequestration is a well-described mechanism for the regu-
lation of TGF-β ligands, with specific components of the
extracellular matrix known to segregate secreted cytokines
to either inhibit TGF-β signalling or concentrate the ligands
for future use [87]. Sequestration of TGF-β ligands was also
demonstrated in Drosophila [88] and proposed to facilitate
autocrine TGF-β signalling in the larval NMJ [89]. Although
the molecular link between MYO and Plum has not yet
been elucidated, the model of sequestration currently appears
to be the best fit for our observations. Further studies are
required to formulate a molecular mechanism and firmly
establish this mode of ligand control in regulating the
Drosophila neuromuscular system. Considering the important
role of TGF-β ligands in the regulation of muscle mass and
NMJ function in mammalian model species [90,91] and in
humans [92,93], these findings can point to novel mechanism
for therapeutic interventions in pathologies associated with
ageing and neuromuscular disorders.
4. Material and methods
4.1. Fly stocks and husbandry
All stocksweremaintained and all experimentswere conducted
at 25°C on a 12 h : 12 h light: dark cycle at constant humidity
using standard sugar/yeast/agar (SYA) media (15 g l−1 agar,
50 g l−1 sugar, 100 g l−1 autolysed yeast, 100 g l−1 nipagin and
3 ml l−1 propionic acid) [94]. Third-instar wandering larvae
used in the experiments were selected based on morphological
(larval spiracles and mouth-hook) and behavioural criteria
(location outside of the food). Tissue-specific expression was
achieved with the GAL4-UAS system [GAL4-dependent
upstream activator sequence] [95]. Drosophila stocks used
were: UAS-miRNAmyo [44], a gift from T. Awasaki from
Tzumin Lee laboratory at Janelia Farm;Mef2-GAL4 (Blooming-
ton Stock Center BDSC #27390); UAS-PlumRNAi (Vienna
Drosophila Resource Centre #101135) and UAS-PlumFL were a
gift from Oren Schuldiner laboratory at Weitzman Institute of
Technology. TheMef2-GAL4/UAS-miRNAmyo/ UAS-PlumRNAi
line was created using standard Drosophila crossing schemes.
wDah was the ‘wild-type’ strain used in all experiments.
The white Dahomey (wDah) stock was derived by incorporation
of thew1118mutation into the outbredDahomey background by
back-crossing. The plumprotein trap line (plum [MI01835-GFSTF-1])
and plumCRIMIC line (plum[CR01114-TG4.1]) were obtained from
Bloomington (BDSC stocks #60520 and #81177 respectively).
UAS-IVS-CD8::GFP was a generous gift from Nic Tapon
(BDSC#32185).

4.2. NMJ electrophysiology
Recordings were performed as described previously [96].
Two-electrode voltage clamp (TEVC) recordings using sharp
electrodes were made from ventral longitudinal muscle 6 in
abdominal segments 2–4 of wandering third instar larvae.
NMJ recordings were performed using pClamp 10, an Axo-
clamp 900A amplifier and Digidata 1440A (Molecular
Devices, USA) in haemolymph-like 3 (HL-3) solution: 70 mM
NaCl, 5 mM KCl, 20 mM MgCl2, 10 mM NaHCO3, 115 mM
sucrose, 5 mM trehalose, 5 mM HEPES and 2 mM CaCl2.
Recording electrodes (10–30 MΩ) were filled with 3 M KCl.
Miniature excitatory junctional currents (mEJCs) were recorded
in the presence of 0.5 µM tetrodotoxin (Tocris, UK). All synaptic
responses were recorded frommuscles with input resistances ≥
4 MΩ and resting potentials more negative than −60 mV at 25°
C as differences in recording temperature cause changes in glu-
tamate receptor kinetics and amplitudes [97]. Holding
potentials were −60 mV. Mean single eEJC amplitudes (stimu-
lus: 0.1 ms, 1–5 V) are based on the mean peak eEJC amplitude
in response to ten presynaptic stimuli (recorded at 0.2 Hz).
Nerve stimulation was performed with an isolated stimulator
(DS2A, Digitimer). The data were digitized at 10 kHz and for
miniature recordings, 200 s recordings were analysed to
obtain mean mEJC amplitudes and frequency values. mEJC
and eEJC recordings were off-line low-pass filtered at 500 Hz
and 1 kHz, respectively. Materials were purchased from
Sigma-Aldrich (UK) unless otherwise stated.

4.3. Immunocytochemistry and confocal microscopy
Immunocytochemistry and confocal microscopy were per-
formed as described previously [33] using Zeiss 700 inverted
confocal microscope and Olympus FV-1000 inverted confocal
microscope. All neuromuscular junction (NMJ) images and
analyses were from NMJs on larval ventral longitudinal
muscles 6 and 7 (hemi-segments A3-A4). For glutamate recep-
tor (GluRIIA) and Brp staining, 3rd instar larval preparations
were dissected in modified HL-3 solution and fixed for
30 min in Bouin’s fixative. Mouse monoclonal anti-GluRIIA
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(8B4D2) and anti-Brp (nc82) antibodies were obtained from the
University of Iowa Developmental Studies Hybridoma Bank
(Iowa City, USA) and used at 1 : 100 and 1 : 20, respectively.
AlexaFluor-conjugated goat anti-mouse secondary antibodies
were used at 1 : 200. AlexaFluor-conjugated 488 goat anti-
rabbit polyclonal GFP (Cat.no #A21311) was used at 1 : 500 to
visualize the plum protein in larval muscles and at the NMJ.
TRITC-labelled anti-horseradish peroxidase (HRP) antibody
(staining neuronalmembranes)was used at 1 : 100. Tovisualize
larval muscles, phalloidin was added to fresh larval prep-
arations fixed for 30 min with 4% paraformaldehyde.
Measurements of the postsynaptic glutamate receptors and
quantifications of the Brp puncta were made from maximum
intensity Z-projections of confocal image stacks using ImageJ
(NIH, Bethesda MD). The postsynaptic receptor fields were
measured by drawing a circle around individual GluRIIA clus-
ters in type Ib synaptic boutons. NMJ branches, defined as an
extension of the presynaptic motor neuron that included at
least 3 boutons, were counted manually. NMJ length, defined
as the longest end-to-end length across a NMJ, was measured
using automated length measurement tool in ImageJ software.

4.4. Statistical analyses
Statistical analyses were performed using GraphPad Prism 5
software. For comparisons between two or more groups, a
one-way ANOVA followed by a Tukey-Kramer test was
used. In all instances, p < 0.05 is considered statistically
significant (*p < 0.05; **p < 0.01; ***p < 0.001). Values are
reported as the mean ± SEM. A 2-way ANOVA test was
used to perform interaction calculations. The Kolmogorov–
Smirnov (KS) test was used to analyse the cumulative
distribution of mEJC amplitudes.
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