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Slicing the Nash equilibrium manifold
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Abstract. This paper uses tools on the structure of the Nash equilibrium
correspondence of strategic-form games to characterize a class of fixed-
point correspondences, that is, correspondences assigning, for a given
parametrized function, the fixed-points associated with each value of
the parameter. After generalizing recent results from the game-theoretic
literature, we deduce that every fixed-point correspondence associated
with a semi-algebraic function is the projection of a Nash equilibrium
correspondence, and hence its graph is a slice of a projection, as well as a
projection of a slice, of a manifold that is homeomorphic, even isotopic,
to a Euclidean space. As a result, we derive an illustrative proof of
Browder’s theorem for fixed-point correspondences.
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1. Introduction

The seminal paper of Nash [24], which showed that every finite strategic-
form game possesses an equilibrium in mixed (randomized) strategies, re-
vealed much more than it was saying: it showed that the Nash equilibrium
correspondence, assigning to each game its equilibria, is a particular type
of fixed-point correspondence: that is, a case of a map from a space (the
mixed-strategy profiles) to itself, which depends on a parameter (the game’s
payoffs), inducing a correspondence which assigns to each value of the param-
eter the associated fixed points (the equilibria). The following decades would
yield a symbiotic relationship between fixed-point theory and game theory,
and economic theory more generally: fixed-point theorems yield equilibria
and other solution concepts, and the search for more general equilibrium
existence brought forth new fixed-point theorems; for a partial survey, see
Border [6].
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Additionally, since Nash equilibria are naturally defined using algebraic
equalities and inequalities (sets defined in this way are semi-algebraic), tech-
niques from real algebraic geometry have been employed to study the struc-
ture of Nash equilibria, e.g., Blume and Zame [4], Blume and Zame [3],
Schanuel et al. [26], (Neyman and Sorin [25], Ch.6), and the many refer-
ences within. This relationship (particularly in recent years) has gone the
other way as well: Nash equilibria, and the Nash equilibria correspondence,
have been shown to be universal, in certain senses, for semi-algebraic sets
and functions. For example, Levy [18] and Vigeral and Viossat [32] show
that every non-empty compact semi-algebraic set is the projection of the set
of Nash equilibria of some game,1 and Vigeral [31] shows that for N ≥ 3,
every such set is the set of Nash equilibrium payoffs of some N player game.
Other universality results include [2,8,17].

One of the most prominent results on fixed-point correspondences is
Browder’s theorem [7]: given a continuous mapping from [0, 1] × X → X for
compact convex X in a Euclidean space, the graph of the associated fixed-
point correspondence [0, 1] → X has a connected component whose projec-
tion is [0, 1]. In the context of Nash equilibria, this shows that if a game is
parametrized continuously by [0, 1], then the graph of the Nash equilibrium
has a connected component that provides equilibria for all values of the pa-
rameter. (A useful generalization to fixed-point correspondences associated
with parametrized correspondences, satisfying certain assumptions, is given
in Mas-Colell [19]. Generalizations to more general parameter spaces appear
in Solan and Solan [29], Solan and Solan [30].) Browder’s theorem is most
well known in game theory for its use in homotopy methods and equilibrium
selection, going back to Harsanyi’s tracing procedure [14]; see Herings and
Peeters [15] for a modern survey of techniques. It has also been used to prove
the existence of equilibria in some classes of dynamic games; see Solan and
Solan [28].

In this paper, we show that the Nash equilibrium correspondence is
universal—up to some massaging in the form of projecting and slicing (i.e., re-
stricting domain)—for the class of fixed-point correspondences of parametrized
semi-algebraic functions. More specifically, any semi-algebraic fixed-point cor-
respondence is the projection of a Nash equilibrium correspondence, with
some large enough sets of binary (i.e., two-action) players. This is accom-
plished by first extending [18, Theorem 2], which shows that any semi-
algebraic continuous bounded function is the projection of a Nash equilibrium
correspondence, and then creating a feedback loop which feeds the function’s
output back into itself. We can then evoke the Kohlberg–Mertens structure
theorem [16], which shows that the Nash equilibrium correspondence’s graph
is homeomorphic (in fact, isotopic) to the space of games—a Euclidean space
of appropriate dimension—to deduce that the graph of a semi-algebraic fixed-
point correspondence is a slice (that is, a restriction of domain) of a projection

1More precisely, the given set is ⊆ [0, 1]N for some N , the game has binary (i.e., two-action)
players, and hence, each agent’s mixed actions are identified with [0, 1].
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of a manifold isotopic to a Euclidean space (or, alternatively, a projection of
a slice of such a manifold).

As a corollary, we obtain a novel proof of Browder’s theorem. After
first demonstrating via an approximation argument that it suffices to prove
the theorem for semi-algebraic functions, we proceed essentially by making
a reduction to the case when the fixed-point correspondence in question is a
Nash equilibrium correspondence, and then relying on the structure provided
by the Kohlberg–Mertens result. We show that if Browder’s theorem did not
hold in that context, we could continuously deform the graph of the Nash
equilibrium correspondence—this graph being homeomorphic, even isotopic
to a Euclidean space—to the graph of a correspondence with empty values for
some parameters, violating Brouwer’s theorem. Hence, we produce a proof of
Browder’s theorem which makes no reliance on the machinery of the fixed-
point index; this machinery was used in Browder [7]. Another such ‘direct’
proof appears in Solan and Solan [27].

The organization of the paper is as follows. Section 2 presents the prelim-
inaries of games, semi-algebraic sets and functions, isotopies and the Kohlberg–
Mertens structure theorem. Section 3 then generalizes [18, Theorem 2] to
functions on unbounded domain, with the conclusion also strengthened. Sec-
tion 4 presents fixed-point correspondences, and states the main results of
the paper: Structure theorems for semi-algebraic fixed-point correspondences.
Section 5 presents and proves Browder’s theorem. Section 6 briefly discusses
some directions for future research. Section 7 gives extensions to some of the
results, showing that the constructed objects can have stricter conclusions.
The appendices discuss briefly the notions of the Vietoris topology induced
by the Hausdorff metric (this is used in the first step of the proof of Browder’s
theorem), and of the fixed-point index and Nash maps (these are used only
in the extensions presented in Sect. 7).

2. Preliminaries

2.1. Games and equilibria

For a finite set of players I, with finite action spaces (Ai)i∈I , a game is a
mapping G :

∏
i∈I Ai → R

I , which assigns to each action profile a payoff
for each player. G extends multi-affinely to action profiles z ∈ ∏

i∈I Δ(Ai),
where Δ(Ai) denotes the simplex of probability distributions on Ai, by

G(z) =
∑

a=(ai)i∈I∈ ∏

i∈I

Ai

(∏

i∈I

zi[ai]
)
G(a).

The Nash equilibria of a game G are those z ∈ ∏
i∈I Δ(Ai) satisfying

Gj(z) ≥ Gj(b, z−j), ∀j ∈ I, b ∈ Aj ,

where z−j = (zi)i�=j .
We adopt several conventions:
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If J ⊆ I is a subset of players, GJ(z) denotes the payoffs to the players
in J , and zJ denotes the mixed actions of the players in J ; formally, GJ (z) =
(Gi(z))i∈J , zJ = (zi)i∈J .

A binary player is a player with two actions, and instead of writing a
mixed action as (q, 1 − q), we denote the mixed action by the single number
q ∈ [0, 1]. Similarly, if x = (x1, . . . , xI) ∈ [0, 1]I , we view x as a mixed-
action profile of binary players I, and similarly, sets X ⊆ [0, 1]I are viewed
as sets of mixed-action profiles. Often, we will define the payoff to a player
expressed in terms of mixed-action profiles. As long as the defined payoff is
affine separately in each player’s action, the game’s payoffs are well defined.

We will consider in this paper games where the payoffs depend, in addi-
tion to the actions of the players, also on a multi-dimensional parameter. For
each value p of the parameter, let G[p] denote the induced game. The param-
eter input will be denoted within square brackets [, ], while the actions input
will be denoted, as above, within parenthesis (, ); hence, G[p](x) denotes the
payoff profile of the game G[p] under the action profile x.

2.2. Semi-algebraic sets and functions

Let R[x1, . . . , xN ] denote the ring2 of polynomials in N variables, x1, . . . , xN .
A semi-algebraic (henceforth, s.a.) subset of RN is a set of the form

∪m
j=1 ∩mj

i=1{(x1, . . . , xN ) ∈ R
n | Pi,j(x) ∗i,j 0} (2.1)

for some finite collection (Pi,j)i,j ⊆ R[x1, . . . , xN ], where for each i, j, ∗i,j is
one of the relations >,<,≥,≤,=, �=. The s.a. sets form an algebra: i.e., they
are closed under finite unions, finite intersections, and complements.

Equivalently [e.g., (Bochnak et al. [5], Ch. 2)], s.a. sets are those that
can be expressed as a formula in first-order logic whose atoms are of the form
P (x) > 0 or of the form P (x) = 0 for some P ∈ R[x1, . . . , xN ]. In particular,
we mention the Tarski–Seidenberg theorem:

Theorem 2.1. Let A ⊆ R
N be s.a., let πK : RN → R

K denote the projection
to a subset K ⊆ {1, . . . , N} of coordinates. Then, πK(A) is s.a.

A s.a. set also must have finitely many connected components.
A s.a. function (resp. correspondence) f : A → R

K , where A ⊆ R
N ,

is one whose graph Gr(f) := {(x, y) ∈ A × R
K | y = f(x)} (resp. ∈ f(x))

is s.a.: it follows from Theorem 2.1 that the domain A is s.a., and that the
image/inverse image of a s.a. set under a s.a. function is also s.a. It also
follows that the composition of s.a. functions is s.a.

2.3. Ambient isotopies

Fix topological spaces X,Y and embeddings f, g : X → Y .3

• f, g are homotopic if there is continuous H : [0, 1] × X → Y s.t. f =
H(0, ·), g = H(1, ·).

2A ring is an algebraic structure with operations of addition and multiplication satisfying
certain axioms; we will not need to make use of the specific axioms, which can be found
in any introductory text on abstract algebra.
3An embedding is a continuous map, which is a homeomorphism with its image. The notion
of homotopy is valid also when f, g are merely continuous.
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• f, g are isotopic if H(t, ·) is an embedding for each t ∈ [0, 1].
• f, g are ambient isotopic if there is F : [0, 1] × Y → Y s.t. F (0, ·) ≡ id;

for each t ∈ [0, 1], F (t, ·) is a homeomorphism; and F (1, ·) ◦ f = g.4

An ambient isotopy, the strongest of the above notions, can be thought
of as a deformation of the entire space Y , which deforms one function f to
the other g.

We have the notions of semi-algebraically homotopic/isotopic/ambient
isotopic if the maps H/F are s.a.

2.4. Kohlberg–Mertens structure theorem

The following is a slight generalization of Kohlberg and Mertens [16], see
(Demichelis and Germano [10], Sec. 3); although for simplicity, we restrict
the statement to binary players. Let G(J) denote the space of all games with
J binary players, identified with R

J×2J . Recall that [0, 1]J in this case is
identified with the space of mixed-action profiles. Let E denote the manifold
of Nash equilibria

E = {(G, x) | G ∈ G(J), x ∈ [0, 1]J is a Nash equilibrium of G.}
E is easily seen to be s.a.

Theorem 2.2. There is a s.a. homeomorphism Φ : G(J) × R
J → G(J) × R

J

s.t.:
• Φ(E) = G(J) × {0J}, where 0J = (0, . . . , 0) ∈ R

J .
• Φ is semi-algebraically5 ambient isotopic to the identity.

Remark 2.1. It follows that the projection prj : E → G(J) is homotopic to a
homeomorphism, in the sense that there is a homeomorphism φ : G(J) → E

s.t. prj ◦ φ is homotopic to the identity; in this case, φ = Φ−1 |G(J)×{0J}.

3. Representation of functions via Nash equilibrium
correspondences

The following is (Levy [18], Theorem 2):

Theorem 3.1. Let A ⊆ R
N be bounded and s.a.; and let f : A → [0, 1]K

be a continuous s.a. function. Then, there exists a set of binary players
J := {α1, . . . , αK} ∪ J0 and a mapping G : R

N → G(J) affine in each
coordinate, such that for each p ∈ A, in any equilibrium z of G[p], we have
(zα1 , . . . , zαK ) = f(p).

Here, we prove that Theorem 3.1 holds for domain A not necessarily
bounded, and that the mapping G can be strengthened to be affine (not just
affine in each coordinate); as we will see in Sect. 7, the conclusion can be
strengthened further.

4Note that (t, x) → F (t, f(x)) is an isotopy from f to g.
5Kohlberg and Mertens, [16] and Demichelis and Germano [10] do not mention the semi-
algebricity, but the relevant isotopies are given there explicitly.
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Theorem 3.2. Let A ⊆ R
N be s.a.; and let f : A → [0, 1]K be a continuous s.a.

function. Then, there exists a set of binary players J := {α1, . . . , αK} ∪ J0

and a mapping G : R
N → G(J) affine, such that for each p ∈ A, in any

equilibrium z of G[p], we have (zα1 , . . . , zαK ) = f(p).

It turns out the fact that G is affine is already part of the construction
in Levy [18], but was not identified there. However, while extending to un-
bounded domain, we will get this affinity ‘for free’. The proof proceeds in two
steps: the first step will introduce several auxiliary games and mappings. The
second step will construct the mapping G : RN → G(J), relying on Theorem
3.1.

Proof. Step #1: We construct, in three sub-steps, an auxiliary game H̃ which
will be use to simulate copying the real line to the interval (0, 1). Observe
the following useful two-player game, which depends on the parameter q (for
q = 1

2 , this is the game matching pennies), which was introduced in Levy
[18]:

H[q] =
−1, 1 4q − 1, 4q − 3

3 − 4q, 1 − 4q −1, 1
. (3.1)

For 0 < q < 1, the unique equilibrium is (q, 1 − q) ⊗ (q, 1 − q); for
q ∈ {0, 1}, the set of equilibria is {(q, 1−q)⊗(w, 1−w) | w ∈ [0, 1]}; for q > 1
(resp. q < 0), the unique equilibrium is (1, 0) × (0, 1) (resp. (0, 1) × (1, 0)).
Hence, denoting

u(x) =

⎧
⎨

⎩

1, if x ≥ 1,
x, if 0 ≤ x ≤ 1,
0, if x ≤ 0,

(3.2)

we obtain that for any q ∈ R and equilibrium (zα, zβ) of H[q], it holds that
zα = u(q).

Define

H[q, r] = r · H[
1
2
(
q

r
+ 1)] =

−r, r 2q + r, 2q − r
r − 2q,−r − 2q −r, r.

(3.3)

Observe that H[·, ·] depends (jointly) affinely on (q, r), and if |q| < r, then
0 < 1

2 ( q
r + 1) < 1, and hence, the unique equilibrium of H[q, r] is for each to

play their first action with weight 1
2 ( q

r + 1).
Observe that the map φ : RN → (−1, 1)N given by

φ(x1, . . . , xN ) =
(

1
2

[
xj

1 + |xj | + 1
])N

j=1

(3.4)

is a s.a. homeomorphism of RN with the open box (0, 1)N .
Finally, define a three-player game H̃, with binary players β, γ, δ, which

depends on real parameter q, by

H̃δ[q](xβ , xγ , xδ) =
{

q, if xδ = L,
−q, if xδ = R.

(3.5)

H̃β,γ [q](xβ , xγ , xδ) =
{

H[q, 1 + q](xβ , xγ), if xδ = L,
H[q, 1 − q](xβ , xγ), if xδ = R.

(3.6)



Slicing the Nash equilibrium manifold Page 7 of 28    85 

Figure 1. The Case N = 2, parameter p = (p1, p2)

The definition is legitimate, as H[q, 1±q] are both affine in q. It follows that if
z is an equilibrium of H̃[q], q ∈ R, then zβ,γ is an equilibrium of H[q, 1+ |q|],
and therefore, zβ = 1

2 ( q
1+|q| + 1).

Step #2: Now, we can proceed to the choice of J ≥ K and the con-
struction of the mapping G : R

N → G(J). Suppose A ⊆ R
N is s.a., and

f : A → [0, 1]K is s.a. Denote g = f ◦ φ−1, for φ defined in (3.4), which is a
s.a. map g : φ(A) → [0, 1]K . φ(A) ⊆ (0, 1)N , and hence is s.a. and bounded.
Heuristically, what we shall do is follows: N copies of the games H̃, one acting
on each input coordinate, will simulate the function φ defined in (3.4), and
hence transform the domain A to a bounded domain φ(A). Then, using The-
orem 3.1, we will find a game which simulates the function g on the bounded
domain φ(A). The composition of these constructions will give the original
function f . This is shown in Fig. 2, with the notations being defined below.

By Theorem 3.1, there is a collection J ′ := {α1, . . . , αK} ∪ J ′
0 of binary

players, and a mapping G′ : RN → G(J ′) affine in each coordinate s.t. for
each q ∈ φ(A), in any equilibrium z of G′[q], zα := (zα1 , . . . , zαK ) = g(q); we
use the notation zα for brevity, which will apply to the K-profile zβ below
as well.

Add to J ′ binary players (βj , γj , δj)N
j=1, denoting the enlarged set J :=

J ′ ∪ (βj , γj , δj)N
j=1. The payoffs are given, for p = (p1, . . . , pN ) ∈ R

N , by

Gβj ,γj ,δj [p](x) = H̃[pj ](xβj , xγj , xδj ), j = 1, . . . , N. (3.7)

These are portrayed in Fig. 1 for N = 2. Then, we set

GJ ′
[p](x) = G′[xβ1 , . . . , xβN ](xJ ′

). (3.8)

As stated, this is shown in Fig. 2.
In any equilibrium z of G[p], p = (p1, . . . , pN ) ∈ A, zJ ′

is an equilibrium
of G′[zβ ] and for j = 1, . . . , K, zβj ,γj ,δj is an equilibrium of H̃[pj ]. By the
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Figure 2. Completing Proof of Theorem 3.2

properties of these games, respectively, zβ = φ(p) and zα = g(zβ). Together,
these imply zα = g(φ(p)) = f(p), as required.

Furthermore, the map G : RN → G(J) is affine, as H̃ depends affinely
on a single coordinate, and the parameters (p1, . . . , pN ) only effect the payoffs
via (3.7). �

Remark 3.1. (Levy [18], Theorem 3) generalizes Theorem 3.1 to certain cor-
respondences; specifically, if F is a convex-valued upper semicontinuous cor-
respondence from a bounded s.a. set A ⊆ R

N to [0, 1]K , then there exists a
set of binary players K = {α1, . . . , αK} ∪ J0 and a mapping G : RN → G(J)
affine in each coordinate, s.t. for p ∈ A

{(zα1 , . . . , zαK ) | z is an equilibrium of G[p]} = F (p).

Theorem 3.2 generalizes similarly to convex-valued upper semicontinuous cor-
respondences, as do Theorem 4.1 and Theorem 4.2 in Sect. 4 below, as well as
Browder’s Theorem, Theorem 5.1 in Sect. 5. [Such generalizations of Brow-
der’s theorem have been known, see e.g., (Mas-Colell [19], Theorem 3) and
the references in the remark after it.]

4. Fixed-point correspondences

Given parameter set T and space X, and f : T × X → X, we have the
fixed-point correspondence FP(f) : T → X given by

FP(f)(p) = {x ∈ X | f(p, x) = x}.

When f : X → X, we also denote its fixed points as FP(f); hence, when
f : T ×X → X and p ∈ T , FP(f)(p) = FP(f(p, ·)). Note that when T = [0, 1],
as in the example below, f is a homotopy.
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Example 1. Define f0 : [0, 1] → [0, 1] by

f0(x) =

⎧
⎨

⎩

0.05, if x < 0.25,
6
5x − 0.25, if 0.25 ≤ x ≤ 0.75,
0.65, if x > 0.75.

Note that f0 is continuous and 0.05 ≤ f0 ≤ 0.65. Then, define a parametrized
function (a homotopy, in this case) f : [0, 1] × [0, 1] → [0, 1] by

f(p, x) = 0.3 · p + f0(x).

See Fig. 3, which shows the graph of f(p, ·) for values of p = 0, 1
3 , 1

2 , 2
3 , 1.

For values of the parameter p < 1
3 , e.g., p = 0, the function f(0, ·) has a

single fixed point. As p increases, f(p, ·) homotopes upward. For p = 1
3 , the

function f(13 , ·) has two fixed points. For 1
3 < p < 2

3 , e.g., p = 0.5, the
function f(0.5, ·) has three fixed points. At p = 2

3 , the function f( 23 , ·) again
has two fixed points; and for p > 2

3 , e.g., p = 1, the function f(1, ·) again has
a single fixed point. For each value of p, the fixed points are given by6

FP(f)(p) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{0.05 + 0.3 · p}, if p < 1
3 ,

{0.15, 0.75}, if p = 1
3 ,

{0.05 + 0.3 · p, 1.25 − 1.5 · p, 0.65 + 0.3 · p}, if 1
3 < p < 2

3 .
{0.25, 0.85}, if p = 2

3 ,
{0.65 + 0.3 · p}, if p > 2

3 .

The fixed-point correspondence, as a function of p, is shown on the right-
hand side of the figure; the zig-zag curve is the graph of the correspondence
FP(f).

If f is s.a., then so is FP(f), i.e., Gr(FP(f)) is s.a. Recall that G(J)
denotes the space of games with J binary players.

Theorem 4.1. Fix f : RM × [0, 1]K → [0, 1]K s.a. and continuous. There exist
K ∈ N, K ≥ K, and an affine injective map T : RM → G(K), such that

FP(f)(p) = prj
RK→RK (ET [p]), ∀p ∈ R

M , (4.1)

where Eq = {x ∈ R
K | (q, x) ∈ E}, E is the manifold of Nash equilibria of K

binary players.

Remark 4.1. By a s.a. version of the Urysohn–Tietze extension theorem [e.g.,
(Bochnak et al. [5], Prop. 2.6.9.)], a continuous bounded s.a. function on a
closed set can be extended, with the same bound, to an s.a. function on the
entire Euclidean space. Therefore, Theorem 4.1, and hence also Theorem 4.2
below, apply to f : A × [0, 1]K → [0, 1]K for closed s.a. A ⊆ R

M ; (4.1) and
(4.2) then hold for ∀p ∈ A.

6Indeed, 0.25 ≤ 1.25 − 1.5p ≤ 0.75 iff 1
3

≤ p ≤ 2
3
, and for such p

f(p, 1.25 − 1.5p) = 0.3 · p +
6

5
(1.25 − 1.5p) − 0.25 = 1.25 − 1.5p

.
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Figure 3. A fixed-point correspondence

Proof. The idea is as follows: Using Theorem 3.2, we will have a collection
of players who simulate the function f(p, x); so that in any equilibrium of
G[p, x], xα = f(p, x), where xα = (xα1 , . . . , xαK ). We then have other players
who will (with the help of some others) copy xα—essentially, simulating the
identity function—so that in equilibrium xβ

(
= (xβ1 , . . . , xβK )

)
= xα. We

then create a feedback loop; while the input of the parameter p is exogeneous,
the parameter x will be endogenous; it will be xβ itself. Hence, for each input
p, in equilibrium, xα = f(p, xβ) and xβ = xα. This is portrayed in Fig. 4,
with the notations being introduced below.

By Theorem 3.2, there are J ≥ K players, and an affine mapping G :
R

M+K → G(J), such that for all p ∈ R
M and x ∈ [0, 1]K , denoting the first

K players of J as α1, . . . , αK , it holds that for each equilibrium z = (zj)j∈J of
G[p, x], zα := (zα1 , . . . , zαK ) = f(p, x). Denote J0 = J\{α1, . . . , αK}. Now,
we create a feedback loop: to J , add players (βi, γi)K

i=1, denoting K = J ∪
(βi, γi)K

i=1. In the game T [p], the players in J will play the game G[p, xβ ], and
for each i, the players βi, γi will play H[xαi ]. Formally, define T : RM → G(K)
by

(T [p])j(x) = Gj [p, xβ1 , . . . , xβK ](xJ ),

for each j ∈ J , where xJ = (xj)j∈J , and for i = 1, . . . , K

(T [p])βi,γi(x) = H[xαi ](xβi , xγi),

where H[·] was defined in (3.1). As mentioned, the loop we have constructed
is portrayed in Fig. 4.

For each p ∈ R
m, we see that in any equilibrium x ∈ [0, 1]K of T [p],

xβi = xαi for i = 1, . . . , K—since we know that in any equilibrium of H[q]
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Figure 4. Feedback loop in Proof of Theorem 4.1

for q ∈ [0, 1], the first player plays q—and xα = (xα1 , . . . , xαK ) = f(p, xβ)—
since, by construction, in any equilibrium of G[p, x] for p ∈ A and x ∈ [0, 1]K ,
the players α1, . . . , αn play the profile f(p, x). Hence, in any equilibrium x ∈
[0, 1]K of T [p], xα = xβ = f(p, xα). Similarly, for any fixed point z ∈ [0, 1]K

of f(p, ·), there is an equilibrium x ∈ [0, 1]K of T [p] with xα = z: indeed,
let xJ be an equilibrium of G[p, z], which implies xα = f(p, z) = z, and set
xβi = xγi = zi for each i = 1, . . . , K. Hence, (4.1) holds.

Finally, note that the mapping T [·] need not be injective—only that
T [p′] �= T [p′′] if f(p′, ·) �= f(p′′, ·), as G[p′] �= G[p′′] in that case—but this
can be rectified, e.g., by adding M dummy players (i.e., whose payoffs do not
depend in any actions) with payoff profile p. �

Now, given f : RM × [0, 1]K → [0, 1]K s.a. and continuous, we can apply
Theorem 4.1 to f to obtain K ≥ K and an affine injective map T : RM →
G(K) satisfying (4.1). Denote M = K × 2K = dim(G(K)). Hence, applying
the Kohlberg–Mertens structure theorem, Theorem 2.2, to the manifold of
Nash equilibria E ⊆ G(K) × [0, 1]K = R

M × [0, 1]K over binary games with
K players, yields the following structure theorem, which abstracts away from
games:

Theorem 4.2. Fix f : RM ×[0, 1]K → [0, 1]K s.a. and continuous. Then, there
exist:

• Integers M ≥ M,K ≥ K.
• A s.a. manifold E ⊆ R

M × [0, 1]K .
• An injective affine map T : RM → R

M , such that7
FP(f)(p) = prj

RK→RK (ET (p)), ∀p ∈ R
M , (4.2)

where Eq = {x ∈ R
K | (q, x) ∈ E}.

7We denote T (p) instead of T [p] here, as we are abstracting away from games, so do not
refer to action profiles.
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Figure 5. Theorem 4.2

• And a s.a. homeomorphism of R
M × R

K which induces a homeomor-
phism of E with R

M ×{0K}, where 0K ∈ R
K , and which is s.a. ambient

isotopic to the identity.

It follows that there is an affine subspace U := T (RM ) of RM of dimen-
sion M , such that

(T × id)
(
Gr(FP(f))

)
= prj

RM×RK→RM×RK (E) ∩ (U × R
K)

= prj
RM×RK→RM×RK (E ∩ (U × R

K)). (4.3)

The last part of the theorem says that the graph of the fixed-point cor-
respondence associated with f is a slice of a projection, as well as a projection
of a slice, of the manifold E, which satisfies the properties above; see Fig. 5.8

Remark 4.2. As per Remark 2.1, it follows that the projection prj : E → R
M

is homotopic to a homeomorphism, in the sense that there is a homeomor-
phism φ : RM → E s.t. prj ◦ φ is homotopic to the identity.

5. Browder’s theorem

The following is a particular case of Browder’s Theorem Browder [7]:

Theorem 5.1. Let X ⊆ R
K be compact and convex, f : [0, 1] × X → X be

continuous. Then, there is a connected component C of Gr(FP(f)) = {(p, x) |
f(p, x) = x} s.t. prj[0,1](C) = [0, 1].

We give a proof of this theorem using Theorem 4.2, without needing
to resort to using the fixed-point index.9 The proof proceeds in five steps,
heuristically described as follows:

8Special thanks to Andre Veiga for help with this figure, created in Matlab.
9We do use the notion of the fixed-point later in this paper, but only for extensions of our
results, which are presented in Sect. 7; it is not used before that section.
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1. We first show, via an approximation argument, that it suffices to prove
Browder’s theorem for s.a. functions.

2. We then make a reduction to proving Browder’s theorem for a fixed-
point correspondence whose graph, like a Nash equilibrium correspon-
dence, is a slice EI of a manifold E ⊆ R

K × R
M homeomorphic to a

Euclidean space (via a homeomorphism homotopic to the identity, in
the sense of Remark 4.2).

3. We then, by way of contradiction, separate by open sets those compo-
nents of EI whose projection includes 0 (under the projection [0, 1] ×
X → [0, 1]) and those components whose projection does not include
0, and identify how the domain of the correspondence can be extended
via E to a narrow tube [0, 1] × Bε ⊆ R

K around [0, 1] in which this
separation, when ’fattened’ to the tube, still holds.

4. We then show how we can homotope the manifold (by changing it only
over [0, 1] × Bε), so that its projection to R

K is no longer surjective.
5. Finally, we use Brouwer’s theorem to deduce a contradiction; indeed,

the manifold E lies like an infinite cloud over a Euclidean space, and
the deformation above (which is constructed under the assumption of a
failure of Browder’s theorem) allows ’sunlight to shine through it’.

Proof. W.l.o.g. X = [0, 1]K .
Step #1: We first claim it suffices to prove Browder’s theorem for f s.a.;

suppose this has been done. The continuous s.a. functions (in fact, polynomi-
als) are dense w.r.t. uniform convergence in the space of continuous functions
[0, 1] × X → X; hence, let (fn)∞

n=1 be such s.a. functions with fn → f uni-
formly. For each n, let Cn ⊆ [0, 1] × X be a connected component of FP(fn)
with prj[0,1](Cn) = [0, 1]; each Cn is compact. The space of compact subsets
of [0, 1] × X is compact in the Vietoris topology (see the Appendix, Sect. 8,
for a discussion of this topology), and by passing to a subsequence, we may
assume Cn → C. C is connected as the limit of connected sets; see Lemma 8.1
of the Appendix. [0, 1] = prj[0,1](Cn) → prj[0,1](C) by Lemma 8.2 of the Ap-
pendix, so prj[0,1](C) = [0, 1]. From the continuity of f , C ⊆ FP(f). Hence,
the connected component of FP(f) containing C is the desired component.

Hence, we proceed under the assumption that f is s.a., with X = [0, 1]K .
Step #2: By Theorem 4.2 (and Remark 4.1), we may assume that there

are M ≥ 1, K ≥ K, a manifold E ⊆ R
M × [0, 1]K for which (see Re-

mark 4.2), there is a homeomorphism φ : RM → E s.t. (prj
RM+K→RM ) ◦ φ

is homotopic to the identity, and an affine embedding T : R → R
M s.t.

FP(f)(p) = prj
RK→RK (ET (p)) for all p ∈ [0, 1]. By applying an affine homeo-

morphism to R
M , we may assume w.l.o.g. T (p) = (p, 0M−1) ∈ R

M for p ∈ R.
Denote X = [0, 1]K , so E ⊆ R

M × X.
Suppose, by way of contradiction, that the theorem does not hold for

f . We claim that there is also no connected component C of

EI := {(p, x) ∈ [0, 1] × X | (p, 0M−1, x) ∈ E} = {(p, x) ∈ [0, 1] × X | x ∈ ET (p)},

which satisfies prj[0,1]×X→[0,1](C) = [0, 1]. Indeed, if there were such a compo-
nent, then the component C ′ of Gr(FP(f)) which contains prj[0,1]×X→[0,1]×X(C)
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Figure 6. Separating components of EI

would be the desired component of Gr(FP(f)), since we would have

prj[0,1]×X→[0,1](C ′) ⊇ prj[0,1]×X→[0,1]

(
prj[0,1]×X→[0,1]×X(C)

)

= prj[0,1]×X→[0,1](C) = [0, 1].

Hence, we have reduced the problem to proving that the correspondence with
graph EI has a component whose projection is [0, 1].

Steps #3, #4, #5 are hence dedicated to proving the following claim,
which we state as a separate proposition:

Proposition 5.1. Let M , K ∈ N, and let E ⊆ R
M × [0, 1]K be an s.a. closed

set for which there is a homeomorphism φ : RM → E s.t. (prj
RM+K→RM ) ◦ φ

is homotopic to the identity. Then, there is a connected component C of
E ∩

(
[0, 1] × {0M−1} × [0, 1]K

)
s.t. prj

RM+K→[0,1](C) = [0, 1].

Step #3: As EI is s.a., it has finitely many connected components; hence,
there are disjoint open sets W 0,W 1 in [0, 1] × X, which cover EI s.t. ({0} ×
X) ∩ W 1 = ∅, ({1} × X) ∩ W 0 = ∅. See Fig. 6.

Fix some norm || · || on R
M−1. Denote for ε ≥ 0, i = 1, 2

Bε = {q ∈ R
M−1 | ||q|| ≤ ε},

W i
ε = {(p, q, x) | (p, x) ∈ W i, q ∈ Bε} ⊆ [0, 1] × R

M−1 × X,

and Eε := E ∩ ([0, 1] × Bε × X) (note E0 ⊆ [0, 1] × {0M−1} × X and
prj[0,1]×X(E0) = EI) is the part of the manifold E over the tube [0, 1] × Bε;
since E0 is compact and E0 ⊆ W 0

0 ∪W 1
0 , it holds that for ε > 0 small enough,

Eε ⊆ W 0
ε ∪ W 1

ε . Fix some such ε > 0.
Step #4: Define now a homotopy mapping H : [0, 1]×Eε → [0, 1]×Bε×X

in the following way: first, for q ∈ R
M−1, let g(q) = 1 − 1

ε ||q||; note that
0 ≤ g ≤ 1, g(0) = 1, g(∂Bε) = 0. Then, define

H(t, (p, q, x)) =
{

((1 − t · g(q))p, q, x), if (p, x) ∈ W 0
ε ,

((1 − t · g(q))p + t · g(q) · 1, q, x), if (p, x) ∈ W 1
ε .

See Fig. 7. H is continuous, as W 0
ε ,W 1

ε are open and disjoint. Furthermore,
H(t, (p, q, x)) = (p, q, x) if (p, q) ∈ ∂([0, 1]×Bε), i.e., when p = 0, 1 or ||q|| = ε.
Hence, H extends continuously to [0, 1]×E → R

M ×X by H(t, ·) = id outside
of [0, 1] × Bε × X. Observe H(0, ·) ≡ id on E.
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Figure 7. The Homotopy H(·, ·)

Step #5: Let p = prj
RM×RK→RM . Recall that φ : RM → E is a home-

omorphism s.t. p ◦ φ : E → R
M is homotopic to the identity. It follows

that p(∞) = ∞. Define for t ∈ [0, 1], qt : E → R
M by qt = p(H(t, ·));

note q0 = p. Since p ◦ φ is homotopic to the identity, so is q1 ◦ φ, and also
p ◦ φ(∞) = q1 ◦ φ(∞) = ∞, because, for each t, H(t, ·) is the identity outside
of the compact p−1([0, 1] × Bε) ∩ E. Hence, by Brouwer’s theorem, q1 ◦ φ is
surjective, and hence so is q1, but q1(E) ∩

(
(0, 1) × {0M−1}

)
= ∅, a contra-

diction.
�

6. Open directions

A natural question is whether the structure theorem, Theorem 4.2, can be ex-
tended, with appropriate changes, to fixed-point correspondences induced by
functions that are not semi-algebraic, rather satisfy some weaker or different
regularity property; e.g., analytic, or O-minimal (see Dries [11]).

One also wonders what other existing theorems on the structure of fixed-
point correspondences can be proved using Theorem 4.2, like we have proved
Browder’s theorem; e.g., the fixed-point theorem of McLennan [20], which
also has natural game-theoretic connections. More generally, one would hope
that the tools presented here can help to eventually characterize precisely
which upper semicontinuous correspondences are induced as fixed-point cor-
respondences.

Finally, a related and curious open question concerning fixed-point cor-
respondences is whether they are closed under projections. Specifically, let
K,N ∈ N, let P ⊆ R

N be a space of parameters, and let f : P × [0, 1]K →
[0, 1]K be continuous. Let K ′ < K and denote p := prj

RK→RK′ . Must there
exist continuous g : P × [0, 1]K

′ → [0, 1]K
′

s.t. FP(g)(·) ≡ p ◦ FP(f)(·)? In
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particular, when P, f are semi-algebraic, one wonders if the tools in this paper
can help shine some light on this question.

7. Refinements

We give here refinements to the theorems we have presented. The first extends
Theorem 3.2:

Theorem 7.1. In Theorem 3.2, the mapping G can be chosen s.t. for each
p ∈ A, the set of equilibria of G[p] is connected.

The connectedness properties will require some examination of the proofs
from (Levy [18], Theorem 2) and is carried out below.

For the next theorem, which extends Theorem 4.1, the reader is referred
to the Appendix, Sect. 9 for a review on fixed-point indices and Nash maps.

Theorem 7.2. In Theorem 4.1, K,T can be chosen s.t. for each p ∈ R
M and

each connected component C of FP(f)(p), Ψ[p](C) := prj−1(C) ∩ ET (p) is
connected,10 and its fixed-point index under f(p, ·) is equal to the fixed-point
index of Ψ[p](C) under a Nash map.

Note that Ψ[p](C) are those equilibrium in T [p] which project into C.
The proof appears below. The first assertion, concerning the connectedness,
will follow fairly directly from the extension given by Theorem 7.1. To show
the latter assertion, concerning the indices, we will first claim that, using the
semi-algebraic structure, that we can choose finitely many parameters (q∗

i )L
i=1

in the domain R
M of f s.t. if the conclusion holds at the L parameters (q∗

i )L
i=1,

then it holds everywhere. (We will refer to points in the domain of f and its
extension f̃ , defined shortly, as parameters for clarity.) We then extend the
domain of f from R

M ∼ R
M × {0} to a function f̃ on R

M+1, such that two
properties hold: First, from each (q∗

i , 0) one can move to a parameter nearby,
say (q∗

i , 1), s.t. f̃((q∗
i , 1), ·) is close to f̃((q∗

i , 0), ·) := f(q∗
i , ·) but with only

finitely many fixed-points, all of which have fixed-point index ±1, denoted
(zi,j)j . Second, for each of these points zi,j , if zi,j has index +1 one can move
to a parameter ri,j near (q∗

i , 1) in such a way that f̃((q∗
i , 1), ·) homotopes to

f̃(ri,j , ·) with zi,j being the only fixed-point— hence, Ψ[ri,j ](zi,j) has index
+1 under a Nash map as it is the entire set ET [ri,j ], where T is the embedding
induced by applying Theorem 4.1 to f̃— while if zi,j has index −1, one can
move to a parameter ri,j in such a way that f̃ homotopes zi,j to cancel out
with another point zi,j′ of index +1, which will show that that Ψ[ri,j ](zi,j)
has index −1. See Figs. 9 and 10.

The following lemma will be useful in proofs of the extensions:

Lemma 7.1. Let X,Y be compact Hausdorff spaces, S ⊆ X × Y closed with
prjX(S) connected, and for each x ∈ prjX(S), prj−1

X (x) ∩ S is connected.
Then, S is connected.

10Following Theorem 4.1, prj := prj
RK→RK .
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Figure 8. A structure as in Lemma 7.2; each Pi is a col-
lection of players; Pi ≺ Pj if there is a directed path from
Pi to Pj . Note that, in general, there may be multiple graph
components

Proof. Suppose not; then S can be written as the disjoint union of two non-
empty compact subsets S1, S2, with U, V disjoint open sets U ∩ S = S1,
V ∩ S = S2. Since prjX(S) is connected and prjX(S1), prjX(S2) are also
compact, and hence, they cannot be disjoint, as non-empty disjoint compact
subsets of a Hausdorff space can be separated by open sets [e.g., (Munkres
[23], Theorem 32.3)]. Therefore, there is x∗ ∈ prjX(S1) ∩ prjX(S2). Since
prj−1

X (x∗)∩S is connected, U ∩V cover prj−1
X (x∗)∩S, which intersects both

S1, S2, a contradiction. �

Proof of Theorem 7.1. The following lemma follows by an induction on the
size of P using Lemma 7.1; see Fig. 8.

Lemma 7.2. Let G be a game with players J , let P be a partition of J and ≺
a strict partial ordering on the elements of P, s.t.:

• The payoffs of players in partition element P ∈ P depend only on players
in P and on players in partition elements P ′ ∈ P with P ′ ≺ P .

• For each P ∈ P, and each profile x≺P of players in partition elements
P ′ ∈ P with P ′ ≺ P , the set of equilibria of the game for the players in
P , i.e., of the game GP (·, x≺P ), is connected.

Then, the set of equilibria of G is connected.

Now, we see how this applies to our case, beginning with games resulting
from Theorem 3.1, and then to the modified construction in Theorem 3.2.
As per the construction in (Levy [18], Sec. 4.1), it suffices to prove the case
K = 1, i.e., when the function’s output is single-dimensional, and then apply
the result to each coordinate separately; so write α instead of the player α1.
Recall the auxiliary games H[·], H[·, ·], and H̃[·] from (3.1), (3.3), (3.5), and
(3.6).
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• (Levy [18], Sec. 4.1.1) first constructs a family of functions for which
the theorem holds, doing so recursively with the ‘directed structure’
described in Lemma 7.2, where each class P is either a single player—
in which case, for any p ∈ A, the equilibria of G′P [p](·, x≺P ) is either a
pure singleton or any mixture in [0, 1]— or a pair of agents playing H[q]
for some q, which depends on x≺P — which is also necessarily connected.
To elaborate a little more:

– Section 4.1.1, up through Corollary 6, inductively proves the the-
orem for polynomials via such recursive constructions.

– Section 4.1.1, Proposition 4.7, then shows that the family of func-
tions for which the theorem holds is closed under pointwise min-
ima/maxima, again via such recursive constructions.

• Take the specific function on a bounded domain in our context, g = f ◦
φ−1, dom(g) ⊆ (0, 1)N , as introduced in the proof of Theorem 3.2 (recall
that we are assuming that f, g are real-valued functions). (Levy [18],
Sec. 4.2) then shows that there are two functions, ψ+, ψ−, in the class
of functions generated by polynomials and pointwise minima/maxima,
with ψ+ (resp. ψ−) being a function of N + 1 variables with image
⊆ [0, 1], s.t. for p ∈ dom(g) ⊆ (0, 1)N and pN+1 ∈ [0, 1], ψ+(p, pN+1) > 0
(resp. ψ−(p, pN+1) > 0) iff pN+1 > g(p) (resp. pN+1 < g(p)).

• Represent ψ+ (resp. ψ−) with the game G+[p, pN+1] using a set of
players {α+} ∪ J+ (resp. G−[p, pN+1], {α−} ∪ J−). These two games
then play in parallel. By Lemma 7.2, the corresponding set of equilibria
E′(p, pN+1) of the game in which α+, J+ and α−, J− play in parallel is
connected.

• The game G′[p], which we recalled in the proof of Theorem 3.2— which
satisfies, for all p ∈ dom(g), xαg = g(p) for any equilibrium x of G′[p]—
is then constructed by adding a player αg whose payoff depends on his
own action, and those of α+, α−, and then feeding the action of αg back
in instead of pN+1, via

G′α±,J± [p](z) = G±[p, zαg ](zα±,J±),

that is, {α+} ∪ J+ (resp. {α−} ∪ J−) still play the game G+[p, pN+1]
(resp. G−[p, pN+1]) but with pN+1 = zαg , and

G′αg [p](z) = −zα+ · zαg − zα− · (1 − zαg ).

Denote J ′
0 = {α+, α−} ∪ J+ ∪ J−, and the total set of players in G′[·]

by J ′ = {αg} ∪ J ′
0. By construction, in any equilibrium of G′[p], zαg =

g(p).11 Hence, the equilibria of G′[p] are {(xαg , xJ ′
0) | xαg = g(p), xJ ′

0 ∈
E′(p, g(p))} = {g(p)} × E′(p, g(p)), which is connected.

• By direct examination of (3.5) and (3.6), the set of equilibria of H̃[q],
for any q ∈ R

2, are connected. [Indeed, note that for each q, there
is a unique equilibrium of the game H[q, 1 + |q|] which appears in the
sentence after (3.6).] Another application of Lemma 7.2 then shows that

11Indeed, as elaborated in Levy [18], if zαg > g(p), zα− = 0 < zα+ , and hence, αg would

choose 0 ≤ g(p), a contradiction; and similarly we cannot have zαg < g(p).
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for each p ∈ R
N , the set of equilibria of G[p], defined by (3.7) and (3.8),

is connected.

�
Remark 7.3. A version of Lemma 7.1, and hence of Lemma 7.2, could be
proven with ’connected’ being replaced with ’contractible’, and using this
one could strengthen the final conclusion of Theorem 7.1: for each p ∈ A, the
set of equilibria of G[p] is contractible. This strengthening can similarly be
achieved in Theorem 7.2.

Proof of Theorem 7.2. First, we prove the extension concerning connected-
ness; we claim that in the proof of Theorem 4.1, for each p ∈ R

M and each con-
nected component C of FP(f)(p), Ψ[p](C) = prj−1(C) ∩ ET (p) is connected.
Define E(p, x) as the set of equilibria of G[p, x]. G, whose players are denoted
{α1, . . . , αK} ∪ J0, can be constructed, so that E(p, x) is connected by the
above Theorem 7.1. Let Φ(q) = {v ∈ [0, 1] | (q, v) is a Nash equilibrium of
H[q]}, which is {q} (resp. [0, 1]) if q ∈ (0, 1) (resp. q ∈ {0, 1}). Fix a
component C of FP(f)(p); note that C = prj(Ψ[p](C)). Then, for x =
(x1, . . . , xK) ∈ C

Ψ[p](x) = prj−1(x) ∩ Ψ[p](C)

=
K∏

i=1

{(xβi , xγi) ∈ xβi = xi, x
γi ∈ Φ(xi)} × {(xα, xJ0) ∈ E(p, x) | xα = x},

where recall xα = (xα1 , . . . , xαK ). Hence, for each x ∈ C = prj(Ψ[p](C)),
prj−1(x) ∩ Ψ[p](C) is connected. Therefore, Ψ[p](C) is connected by Lemma
7.1.

Now, we prove the extension concerning the fixed-point index. Let || · ||
be the supremum norm on Euclidean spaces. We begin with three lemmas:

Lemma 7.4. Let f : [0, 1]N → [0, 1]N be continuous, and ε > 0. Then, there
is a polynomial g : [0, 1]N → (0, 1)N , with supx∈A |f(x)−g(x)| < ε, such that
FP(g) is finite and all its points are regular fixed points of g, i.e., for each
z ∈ FP(g), I − Dg(z) is non-singular, and hence z has fixed-point index +1
or −1.

Proof. Fix 0 < ε < 1. There is a ε
2 -uniform approximation of f by a polyno-

mial function p(·) which also satisfies Image(p) ⊆ [ ε
4 , 1− ε

4 ]. Applying Sard’s
theorem, there is a constant c ∈ R

N with ||c|| < ε
4 s.t. all fixed points of

g := p + c are regular. Then, ||f − g|| < ε and Im(g) ⊆ (0, 1)N , as required.
�

Lemma 7.5. Let f : [0, 1]N → [0, 1]N , N ≥ 2, be a continuous s.a. map,
let z1, z2 be regular fixed points with indices +1 and −1, respectively. Then,
there is a s.a. open neighborhood U of z1, z2, with FP(f) ∩ U = {z1, z2}, and
a s.a. homotopy H(·, ·) : [0, 1] × [0, 1]N → [0, 1]N of f to an s.a. function
g : [0, 1]N → [0, 1]N s.t. FP(g) ∩ U = ∅, and H does not change outside of
U , i.e., H(t, ·)|[0,1]N\U = f |[0,1]N\U for each t ∈ [0, 1]. A similar conclusion
holds for N = 1 if there are no fixed points in the interval between z1, z2.
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Proof. (Sketch) The lemma is known without the assumptions and conclu-
sions of semi-algebracity; e.g., is established as part of the proof of (McLennan
[21], Theorem 14.13). An approximation can then be taken using polynomial
functions, which can then be smoothed over to guarantee H(0, ·) ≡ f , and
then further smoothed to guarantee H(t, ·)|[0,1]N\U ′ = f |[0,1]N\U ′ for each
t ∈ [0, 1] where U ′ ⊇ U is a slightly larger neighbourhood. (In particular,
for the last part, one can use a continuous s.a. function φ : [0, 1]N → [0, 1]
satisfying φ|U ≡ 1 and φ|U ′ ≡ 0 for a slightly larger neighbourhood U ′ of U ,
which is guaranteed to exist by the s.a. Urysohn–Tietze extension theorem,
e.g., (Bochnak et al. [5], Prop. 2.6.9.)). �

The following lemma is a version of s.a. triviality, e.g., (Bochnak et al.
[5], Theorem 9.3.2).

Lemma 7.6. Let A ⊆ R
M s.a., and F a s.a. correspondence from A to R

K .
Let p denote the projection from R

M × R
K → R

M . Then, there is L ∈ N,
a finite s.a. partition A1, . . . , AL of A, a collection of s.a. sets F1, . . . , FL

(in some dimensional Euclidean spaces), and a family of homeomorphisms
θi : Ai × Fi → Gr(F ) ∩ (Ai × R

K), s.t. p ◦ θi is the projection mapping
Ai × Fi → Ai.

We can now proceed with the proof of Theorem 7.2. As earlier, we will
refer to points in the domain of f , and its extension f̃ below, as parameters
for clarify. We will extend f to f̃ : D × [0, 1]K → [0, 1]K , where R

M × {0} ⊆
D ⊆ R

M+1, such that f̃(p, 0, y) = f(p, y) for (p, y) ∈ R
M × [0, 1]K , in such a

way that when our construction is applied to f̃ to derive the associated T [·],
it will necessarily be that fixed-point index under of a component f̃(p, 0, ·)
is equal to the associated fixed-point index of ET [p] under a Nash map (see
Appendix 9).

Applying Lemma 7.6 to the fixed-point correspondence FP(f) : RM →
[0, 1]K to obtain the corresponding trivialization (Ai, Fi, θi)L

i=1. W.l.o.g., we
can refine the triviality as to assume that each Ai is connected. For each
i = 1, . . . , L, fix some q∗

i ∈ Ai, and let (Fi,j)j be the connected components
of Fi, where the index j runs over some finite collection; then for each i, j,
p ∈ Ai, θi({p} × Fi,j) is a connected component of FP(f)(p). We will show
that the construction can be done is such a way that it is guaranteed that
for each i = 1, . . . , L, and each connected component C of FP(f(q∗

i , ·)), the
fixed-point index12 of Ψ[(q∗

i , 0)](C) is the same as the fixed-point index of C

under f(q∗
i , ·) = f̃((q∗

i , 0), ·); we will later use the continuity properties of the
index to show why this gives the conclusion at all parameters in the domain
R

M .
For each i = 1, . . . , L, applying Lemma 7.4, we fix an s.a. function

close to f̃((q∗
i , 0), ·) := f(q∗

i , ·), which has only regular fixed points, denoted
{zi,j}j , as j runs over some finite collection, with indices ±1; let this function
be f̃((q∗

i , 1), ·). Specifically, they should be close enough, such that for each
connected component C of FP(f(q∗

i , ·)), there is an s.a. neighbourhood U of

12By the part of the extension already established, the construction can be done, so that
Ψ[(q∗

i , 0)](C) is connected for each connected component C of FP(f(q∗
i , ·)).
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Figure 9. Construction in completion of Proof of Theorem 7.2

C s.t. FP(f(q∗
i , ·))∩U = C, and an s.a. homotopy between the two functions

f̃((q∗
i , 0), ·) and f̃((q∗

i , 1), ·), which introduces no fixed points on ∂U . On the
line segment �i connecting (q∗

i , 0) and (q∗
i , 1), f̃(·, ·) should follow such a

homotopy.
Note that for each i, among the points (zi,j)j , there is precisely one

more point of index +1 than there is of index −1, as the sum of indices must
be +1 (see Sect. 9 in the appendix).

Then, choose a collection of parameters {ri,j}j near (q∗
i , 1), one for each

fixed point zi,j of f̃((q∗
i , 1), ·), such that the line segments connecting (q∗

i , 1)
to each of the ri,j— denote each of these lines �i,j— as well as the line segment
�i are all disjoint from each other (save for the parameter (q∗

i , 1) itself) and
from R

M × {0}, and such that �i,j is disjoint from �i′ and �i′,j′ for i �= i′ and
any j, j′. See Fig. 9.

Define f̃(ri,j , ·) and f̃(·, ·) along �i,j as follows; see Fig. 10.

• If zi,j has index −1, choose some other fixed point zi,j′ with index +1,
and let f̃(ri,j , ·) be s.a. and semi-algebraically homotopic to f̃((q∗

i , 1), ·)
in such a way that these two fixed points ‘cancel out’, while not changing
the function in a neighborhood of the other fixed points, as per Lemma
7.5. (If K = 1, f̃((q∗

i , 1), ·) should have not have any other fixed points
between zi,j and zi,j′ , which is possible to arrange, as the regular fixed
points of f̃((q∗

i , 1), ·) alternate signs.) Let f̃(·, ·) follow such a homotopy
along �i,j .

• If zi,j has index +1, let f̃(ri,j , ·) be s.a. and semi-algebraically homotopic
to f̃((q∗

i , 1), ·) in such a way that all other fixed points cancel out in ±1
pairs, while not changing the function in a neighborhood of zi,j ; such
exists by repeated application of Lemma 7.5. (When K = 1, this, again,
is possible by the alternating signs of the fixed points.) Let f̃(·, ·) follow
such a homotopy along �i,j .

Let D denote RM×{0} together with all the lines �i, �i,j ; hence, dom(f̃) =
D × [0, 1]K . Now, apply the construction of Theorem 4.1 to f̃ to derive the
associated embedding T (·) : RM+1 → G(K) with associated manifold E and
associated Ψ as defined in the statement of the theorem; that is, for each
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Figure 10. Idea in the Proof of Theorem 7.2 First perturb
f(q∗

i , ·) so that fixed points are isolated, indices ±1. For each:
If index +1, cancel out others in pairs; if index −1, cancel
out with a point of index +1

p ∈ D, FP(f̃)(p) = prj(ET (p)), where henceforth, prj := prj
RK→RK ; as we

have already seen in the first part of this extension, it can be guaranteed that
for each connected component C of FP(f̃)(p), Ψ[p](C) is connected, where
recall Ψ[p](C) := prj−1(C)∩ET [p] are those points in ET [p]—i.e., equilibria of
T [p]—which project to C. As mentioned, for each q ∈ D and each component
C ′ of ET [q], C ′ has its fixed-point index under a Nash map (see Appendix 9),
and it is this index we will refer to.

We make the following observation, which we will apply repeatedly:
Suppose r′, r′′ ∈ D, C ′, C ′′ are closed (possibly empty) subsets of R

K , U

is an open subset of RK s.t. FP(f̃(r′, ·)) ∩ U = C ′ and FP(f̃(r′′, ·)) ∩ U =
C ′′, and there is a path � from r′ to r′′ s.t. for any r̂ ∈ � (including r, r′′),
FP(f̃(r̂, ·)) ∩ ∂U = ∅. It follows from the continuity of the fixed-point index
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(applied once to f̃ and once to the Nash map) that the fixed-point indices
of C ′ under f̃(r′, ·), and of C ′′ under f̃(r′′, ·), are equal, and the fixed-point
indices of Ψ[r′](C ′) and Ψ[r′′](C ′′) under a Nash map are equal. (For the
latter conclusion, note that V := prj−1(U) satisfies V ∩ ET (r′) = Ψ[r′](C ′),
V ∩ ET (r′′) = Ψ[r′](C ′′), so for any r̂ ∈ �, since FP(f̃(r̂, ·)) ∩ ∂U = ∅, ∂V ∩
ET [r̂] ⊆ prj−1(∂U) ∩ Ψ[r̂](RK\∂U) = ∅.)

We claim that, for each i = 1, . . . , L, the fixed-point index of a compo-
nent C of FP(f(q∗

i , ·)) = FP(f̃((q∗
i , 0), ·)) under f(q∗

i , ·) must be equal to the
fixed-point index of Ψ[(q∗

i , 0)](C) under a Nash map:

• For each i, j such that zi,j has fixed-points index +1, the mapping
f̃(ri,j , ·) has zi,j as a unique fixed point, and hence the associated com-
ponent of ET (ri,j), Ψ[ri,j ](zi,j), is simply all of ET (ri,j), which must then
also have index +1 under a Nash map; by following the relevant homo-
topy back along �i,j , we see that Ψ[(q∗

i , 1)](zi,j) has index +1 under the
Nash map.

• For each i, j such that zi,j has fixed-points index −1, the mapping
f̃(ri,j , ·) has no fixed points in some neighbourhood of {zi,j , zi,j′} for
some other j′ paired to it above, with zi,j′ having fixed-point index +1.
Again, following the homotopy back along �i,j , we similarly see that
Ψ[(q∗

i , 1)]({zi,j , zi,j′}) has index 0 under the Nash map. However, by
the previous step, Ψ[(q∗

i , 1)](zi,j′) has index +1 under the Nash map,
and hence, Ψ[(q∗

i , 1)](zi,j) has index −1.
• Hence, we see that for each fixed point z ∈ FP(f̃((q∗

i , 1), ·)), the fixed-
point index of z under f̃((q∗

i , 1), ·) is equal to the fixed-point index of
Ψ[(q∗

i , 1)](z) under the Nash map.
• Fix a connected component C of FP(f̃((q∗

i , 0), ·)). Since the homo-
topy from f̃((q∗

i , 0), ·) to f̃((q∗
i , 1), ·) has a neighborhood U of C s.t.

FP(f̃((q∗
i , 0), ·)) ∩ U = C, FP(f̃((q∗

i , 1), ·)) ∩ U = (zi,j)j , and s.t. the
homotopy along �i has no fixed points on ∂U , we see that

The fixed-point index of C under f(q∗
i , ·)

= The fixed-point index of C under f̃((q∗
i , 0), ·)

= The fixed-point index of (zi,j)j under f̃((q∗
i , 1), ·)

=
∑

z∈(zi,j)j

The fixed-point index of z under f̃((q∗
i , 1), ·)

=
∑

z∈(zi,j)j

The fixed-point index of Ψ[(q∗
i , 1)](z) under a Nash map

= The fixed-point index of Ψ[(q∗
i , 1)]((zi,j)j) under a Nash map

= The fixed-point index of Ψ[(q∗
i , 0)](C) under a Nash map,

as required.
• Finally, going back to the s.a. trivialization, we need to show that for

each i = 1, . . . , L and each j, the fixed-point index of θi(p, Fi,j) under
f(p, ·) is constant over p ∈ Ai, and similarly that the fixed-point index
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under a Nash map of Ψ[(p, 0)](θi(p, Fi,j)) is constant over p ∈ Ai; it suf-
fices to show they are locally constant, as each Ai is connected. Indeed,
fixing p0 ∈ Ai and letting U ⊆ R

K be any neighbourhood of θi(p0, Fi,j)
s.t. U ∩ FP(f(p0, ·)) = θi(p0, Fi,j), we see that for p close enough to p0,
U ∩ FP(f(p, ·)) = θi(p, Fi,j) and ∂U ∩ FP(f(p, ·)) = ∅, as well. Hence,
the conclusion follows our above observation.

Hence, finally, we see that the embedding R
M → G(K) we seek in the

theorem is given by restricting the domain of T to R
M × {0} ∼ R

M . �
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8. Appendix: Vietoris topology

The reader is referred to, e.g., (Aliprantis and Border [1], Ch. 3) or (McLen-
nan [21], Ch. 4) for a more complete treatment. Let X be a metrizable space,13

let d be a metric on X, and let K = K(X) denote the collection of non-empty
compact subsets on X. For K ∈ K, x ∈ X

d(x,K) = min
y∈K

d(x, y),

and for K1,K2 ∈ K

ρ(K1,K2) = max
[

max
y∈K1

d(y,K2), max
y∈K2

d(y,K1)
]
.

13This generalizes to more general Hausdorff topological spaces, see, e.g., the latter given

reference.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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ρ can be shown to be a metric, the Hausdorff metric, which defines the
Vietoris topology on K. It can be shown that:

• The induced topology on K is independent of the metric d chosen on
X.

• If X is compact, then so is K.

It also follows from the definition that if Kn → K in K, then for every
open neighborhood U of K, it holds for n large enough that Kn ⊆ U , and for
every open set V with K∩V �= ∅, it holds for n large enough that Kn∩V �= ∅.
The following is (Michael [22], Prop. 4.13.5)14:

Lemma 8.1. The collection in K of connected sets is closed in the Vietoris
topology.

The following is (McLennan [21], Lemma 4.12):

Lemma 8.2. Let X,Y be metrizable spaces, and f : X → Y continuous. Then,
the induced map f∗ : K(X) → K(Y ) is continuous.

9. Appendix: The fixed-point index and Nash maps

For a thorough treatment on the fixed-point index, see, e.g., (McLennan [21],
Ch. 13), and on Nash maps, see, e.g., Govindan and Wilson [13]; we have
only brought here the minimal machinery needed.

We begin with a heuristic explanation. For a continuously differentiable
map f : U → R

N , U ⊆ R
N , we define the displacement map to be id − f ;

clearly, the fixed points of f are precisely the inverse image of 0 under the
displacement map. At an isolated fixed point z of f , if the derivative of the
displacement map is non-singular, we say that the fixed point is regular, and
we assign to z index +1 (resp. −1) if the displacement map is orientation
preserving (resp. reversing) at z, i.e., if det(I − df(x)) > 0 (resp. < 0). For
any subset V of U (with no fixed points of f on the boundary ∂V ), whose
fixed points are all regular, we would like the index of f in V to be sum over
all indices of the fixed points in V . It follows that if the function changes
slightly, then for any such open V ⊆ U , the index of f in V should not
change, assuming the change is small enough, so that no fixed points are
created on ∂V .

In the case that the fixed points of f are not isolated and regular, we
would like to define the fixed-point index of a component of FP(f), by saying
that we should perturb f to a nearby function g whose fixed points are all
regular. One must show that this definition would be independent of the
specific perturbation used (at least one such ε-perturbation exists for each
ε > 0 by Sard’s theorem). Built on these heuristic properties, and properties
that can be derived from this approach, an axiomatic approach to the index

14Since a proof there is not given, we provide one here: If not, suppose Kn → K in K(X)
with each Kn connected but K not. There are disjoint open U, V with K ⊆ U∪V , K∩U �= ∅
and K ∩ V �= ∅. Hence, Kn ⊆ U ∪ V , Kn ∩ U �= ∅ and Kn ∩ V �= ∅ for large enough n, a
contradiction, since, by assumption, each Kn is connected.
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can be described, which generalizes to more general spaces; for our purposes,
spaces such as simplices, or not much more imaginative than that, suffice.

To formalize: Let X be a compact convex subset in a Euclidean space.
For each compact C ⊆ X, let FX

C be the collection of continuous functions
C → X with no fixed points on the boundary ∂C (where boundary and
interior refer to the relative boundary and interior in X), and let FX =⋃

C⊆X compact

FX
C ; such functions are index admissible. Then (McLennan [21],

Theorem 13.4), there is a unique function Λ : FX → Z which satisfies:

• (Normalization) If c : C → X is a constant function, whose image is in
the interior int(C), then Λ(c) = 1.

• (Additivity) If f : C → X is an element of FX , C1, . . . , Cr are compact
disjoint subsets of C, and FP(f) ⊆ ∪r

i=1int(Ci), then

Λ(f) =
r∑

i=1

Λ(f |Ci
).

• (Continuity) For each compact C ⊆ X, Λ is continuous on C(C,X)∩FX ,
where C(C,X) is the space of continuous functions from C to X with
maximum norm.

A few immediate properties:

• The index remains constant under homotopy, as long as no fixed points
appear on ∂C throughout.

• Λ(f) = 1 for f ∈ FX
X .15

• If f ∈ FX
C has no fixed points, Λ(f |C) = 0.

• For a connected component C of FP(f), if U, V are any two neighbour-
hoods of C with FP(f) ∩ U = FP(f) ∩ V = C, then Λ(f |U ) = Λ(f |V );
this is the fixed points index of C under f.

For a regular fixed point z in the interior (relative to the ambient Eu-
clidean space) of X, the fixed-point index coincides with the heuristic notion
above: the sign of the determinant of the derivative of the displacement map.

The axiomatization also extends to correspondences, (McLennan [21],
Sec. 13.5); this extension is relevant to the generalizations mentioned in Re-
mark 3.1.

9.1. Nash maps

Now, fix a set of players N with finite action spaces A1, . . . , AN , denote the
space of games with these players as space of games G, and denote the space of
mixed-action profiles Σ. A Nash map is a continuous function φ : G×Σ → Σ,
s.t. for each G ∈ G, FP(φ(G, ·)) = NE(G). For G ∈ G, the index of a
connected component C of Nash equilibria is the fixed-point index of C under
the map φ(G, ·). It can be shown that this definition is independent of the
particular Nash map being used ([10] or [9], also [12]).

15This is a result of our focus on convex X.
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