
Blockchain Nash Dynamics and the Pursuit of Compliance
Dimitris Karakostas

University of Edinburgh

dkarakos@inf.ed.ac.uk

Aggelos Kiayias

University of Edinburgh and IOG

akiayias@inf.ed.ac.uk

Thomas Zacharias

University of Edinburgh

tzachari@inf.ed.ac.uk

ABSTRACT
We study “Nash dynamics” in the context of adversarial devia-

tions in blockchain protocols. We introduce a formal model, within

which one can assess whether the Nash dynamics can lead utility-

maximizing participants to defect from the “honest” protocol op-

eration, towards variations that exhibit one or more undesirable

infractions that affect protocol security, like abstaining from par-

ticipation and producing conflicting protocol histories. Blockchain

protocols that lead to no such infraction states are deemed compli-
ant. Armed with this model, we evaluate the compliance of various

Proof-of-Work (PoW) and Proof-of-Stake (PoS) protocol families,

under different utility functions and reward schemes, leading to the

following results: i) PoW and PoS protocols exhibit different com-

pliance behavior, depending on the lossiness of the network; ii) PoS

ledgers can be compliant w.r.t. one realistic infraction (producing

conflicting messages) but non-compliant (hence non-equilibria)

w.r.t. others (abstaining or an attack we call selfish signing); iii) con-

sidering externalities, like exchange rate fluctuations, we quantify

the benefit of economic penalties in the context of PoS protocols as

mitigation for particular infractions that affect protocol security.

CCS CONCEPTS
• Security and privacy→ Distributed systems security.

KEYWORDS
blockchain, Nash dynamics, nothing-at-stake

1 INTRODUCTION
The advent of Bitcoin [52] brought the economic aspects of consen-
sus protocols to the forefront. While classical literature in consensus
primarily dealt with fail-stop or “Byzantine error models” [56], the
pressing question post-Bitcoin is whether the participants’ incen-
tives align with what the consensus protocol asks them to do. This
question is crucial since, if a large number of participants devi-
ate from the protocol, all its known security properties become
moot. Motivated by this, some works investigated if Bitcoin is an
equilibrium under certain conditions [36, 43]. Others pinpointed
deviations that are more profitable for some p layers, assuming
others follow the protocol [19, 58]. The literature also includes
tweaks towards improving the blockchain protocol in various set-
tings [21, 42], game-theoretic studies of pooling behavior [1, 45],
and equilibria that involve abstaining from the protocol [23] in high

AFT ’22, September 19–21, 2022, Cambridge, MA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9861-9/22/09.
https://doi.org/10.1145/3558535.3559781

cost scenarios. Beyond consensus, economic mechanisms have also

been considered in the context of multi-party computation to dis-

incentivize “cheating” [13, 44]. Finally, various works optimized

particular attacks e.g., : i) optimal selfish mining [58]; ii) quantita-

tively evaluating blockchain parameters and identifying optimal

strategies for selfish mining and double-spending under network

delays [28]; iii) strategies more profitable than selfish mining [53].

Though these works provide glimpses on these protocols’ be-

havior from a game-theoretic perspective, they offer little guidance

on how to design and parameterize new consensus protocols. This

problem is of high importance, given the negative light shed on

Bitcoin’s energy consumption and carbon footprint [48] and the

need for more efficient designs. Proof-of-Stake (PoS) is currently

the most prominent alternative to Bitcoin’s Proof-of-Work (PoW)

mechanism. To create an acceptable block of processed transac-

tions, PoW requires the expenditure of computational power. In

contrast, PoS relies on each party’s owned assets (“stake”), so blocks

are created at (virtually) no cost beyond transaction processing. In-

terestingly, while it is proven that PoS protocols are Byzantine

resilient [10, 29, 39] and are even equilibria under certain condi-

tions [39], their security is heavily contested by PoW proponents

via an economic argument termed nothing-at-stake [17, 46, 49]. This
argument asserts that PoS ledgers’ maintainers can maximize their

expected rewards by producing conflicting blocks when possible.

Whatmerit do these criticisms have? Participating in a blockchain

protocol is a voluntary action that involves a participant download-

ing the software and committing resources to run it. Given the open

source nature of these protocols, nothing prevents the participant

from modifying the behaviour of the software in some way and

engaging with the other parties via a modified strategy. There are

a number of undesirable adjustments that a participant can do, e.g.,

i) run the protocol intermittently instead of continuously; ii) not

extend the most recent ledger of transactions they are aware of; iii)

extend simultaneously more than one ledgers of transactions. One

can consider the above as fundamental infractions to the protocol’s

rules with potential serious security implications, in terms of both

the consistency and the liveness of the underlying ledger.

To address these issues, many systems introduce additional

mechanisms on top of standard incentives, frequently with only

rudimentary formal analysis. These include: i) rewards for “uncle

blocks” (Ethereum), i.e., blocks which are not part of the canonical

chain [37]; ii) stake delegation (EOS, Polkadot, Cardano [34]), where

users assign their participation rights to delegates or stake pools; iii)

penalties for misbehavior, also referred to as “slashing” (Ethereum
2.0 [8, 9]). Unfortunately, the lack of thorough analysis of these

mechanisms is, naturally, a serious impediment to wider adoption.

For instance, consider penalties. Employing multiple replicas, for

redundancy and crash-fault tolerance, may result in conflicting

blocks, due to either a faulty configuration, if two replicas come

alive simultaneously, or even software or hardware bugs. However,

1

281

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3558535.3559781
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3558535.3559781&domain=pdf&date_stamp=2023-07-05

if a party employs no failover mechanism and experiences network

connectivity issues, it may fail to participate. This highlights the

flip side of such penalty mechanisms: participants may choose to

not engage, (e.g., to avoid the risk of forfeiting funds or due to

insufficient funds to make a deposit), or, if they do engage, they

may steer clear of fault-tolerant good sysadmin practices, which

could pose quality of service concerns and hurt the system in the

long run.

The above considerations put forth the fundamental question

that motivates our work: How effective are blockchain protocol de-
signs in disincentivizing particularly adverse protocol infractions? In
more detail, the question we ask is whether selfish behavior can

lead to specific types of deviations, taking a blockchain protocol as

the initial point of reference of honest — “compliant” — behavior.

Our Contributions and Roadmap. Our main question relates to

the Nash dynamics of blockchain protocols. In the classical Nash

dynamics problem [57], the question is whether allowing selfish

players to perform step-wise payoff-improving moves leads the

system to an equilibrium, and in how many steps this may happen;

e.g., [20] considers the case of congestion games. In this perspective,

the action space can be seen as a directed graph, where vertices rep-

resent vectors of player strategies and edges correspond to player

moves. Notably, deciding whether the Nash dynamics converge to

a (Nash or sink) equilibrium is particularly difficult, often being a

NP-hard or PSPACE-complete problem [50].

This work adapts Nash dynamics to the setting of blockchain

protocols, with a particular focus on studying specific undesirable

protocol infractions. Importantly, instead of asking for convergence,

we ask whether the “cone” in the directed graph positioned at the

protocol contains strategies from a given infraction setX (Figure 1).

If the cone is free of infractions, the protocol is deemedX-compliant.

In turn, we also consider 𝜖-Nash-dynamics [12], i.e., considering

only steps in the graph which represent best responses and improve

the participant’s payoff more than 𝜖 . Armed with this model, we

investigate various protocols from a compliance perspective.

Figure 1: Illustration of a compliant protocol that does not
exhibit an equilibrium (i), vs a protocol which is an approxi-
mate Nash equilibrium (ii).

A core motivation of our work is that X-compliance enables

to validate the incentive structure of a blockchain protocol w.r.t.

specific disruptive behaviors (as captured by X), while abstracting
away any deviations that avoid the infractions. In this sense, X-
compliance of a protocol is a weaker notion compared to a Nash

equilibrium, allowing a variety of possible protocol deviations as

long as they do not fall into X. This also enables a two-tiered analy-
sis where compliance analysis rules out crucial deviations, while the

set of all compliant behaviors can be analyzed in, say, worst-case

fashion. Moreover, negative compliance results are immediately

informative as they identify one or more specific infractions. This is

helpful from the point of view of mechanism parameterisation for

blockchain protocols, where various penalties (e.g., reward reduc-

tion or slashing of funds) are typically employed to mitigate specific

deviant behaviors. So far, there exists no framework that enables

a formal argument as to whether a specific penalty is sufficient to

mitigate a certain behavior. Our work provides such framework

and we illustrate its applicability in this setting, by analyzing an

array of Nakamoto longest chain protocol families.

In detail, our paper is organized as follows.
1
Section 2 describes

our model of compliant strategies and protocols. A strategy is com-

pliant if a party that employs it never violates a predicate X, which
captures well-defined types of deviant behavior. Assuming a start-

ing point where no party deviates and then parties choose their

strategies in sequential steps, a protocol is compliant if no party

eventually employs a non-compliant strategy. Section 3 describes

compliance for blockchain protocols, proposing different infrac-

tion predicates that capture abstaining and producing conflicting

blocks, and two types of utility, reward and profit (rewards minus

cost). We then explore different reward schemes and protocol fam-

ilies. First, we analyze block-proportional rewards w.r.t. the chain
adopted by an impartial observer of the system. Section 4.1 shows

that PoW systems are compliant w.r.t. reward. Section 4.2.1 shows

that single-leader PoS systems, i.e., which enforce that a single

party participates at a time, are compliant under a synchronous

network, but non-compliant under a lossy network (contrary to

PoW). Section 4.2.2 shows that multi-leader PoS systems, i.e., which

allow multiple parties to produce blocks for the same time slot,

are not compliant. Notably, the latter result shows that a party

can gain a non-negligible reward by being non-compliant under a

certain network routing assumption, also highlighting the way the

network interacts with protocol incentives. Section 5.1 shows that

resource-proportional rewards, i.e., which depend only on a party’s

power, result in non-compliance w.r.t. profit. Section 5.2 highlights

the distinction between compliance and Nash equilibria by show-

casing a typical PoS protocol that is compliant w.r.t. an infraction

predicate that captures realistic deviations (conflicting blocks) and

non-compliant w.r.t. another realistic predicate (abstaining), hence

not a Nash equilibrium. Next, in Section 6 we consider relative

profits (as an extension to relative rewards [19, 36]) and introduce

a deviation we call “selfish signing”. Under block-proportional re-

wards, we show that the same PoS protocol is non-compliant w.r.t.

to this deviation, but is compliant w.r.t. to conflicting blocks. Finally,

Section 7 considers a varying exchange rate of the platform’s under-

lying token, which models real-world prices, and external rewards,

which come as a result of successful attacks. We show that penalties

would be needed if a deviant behavior is synergistic to mounting

the attacks, and we provide estimations for such penalties w.r.t. the

ledger’s parameters and the market’s expected behavior.

1
Due to space constraints, we refer to the extended version for an enhanced analysis,

including proofs of all theorems [35].

2

282

2 COMPLIANCE MODEL
We assume a distributed protocol Π, which is executed by a set

of parties P over a number of time slots. Every party P ∈ P is

activated on each time slot, following a schedule set by an environ-

ment Z, which also provides the parties with inputs. Each party

P ∈ P is associated with a number `P ∈ [0, 1]. `P identifies P’s
percentage of participation power in the protocol, e.g., its hashing

or staking power, so

∑
P∈P `P = 1. We use the following nota-

tion: i) ^: Π’s security parameter; ii) negl(·): a negligible function
(asymptotically smaller than the inverse of any polynomial); iii) [𝑛]:
the set {1, . . . , 𝑛}; iv) 𝐸 [𝑋]: the expectation of random variable 𝑋 .

2.1 Preliminaries
We assume a peer-to-peer network, where parties communicate

using the following variant of a diffuse functionality (cf. [27]).

Router. The router A is a special party that, on each time slot,

retrieves all created messages and decides their order and time

of delivery. In essence, A models the underlying communication

network. Following, we consider three properties of interest for

routers: i) synchronous: all messages are delivered at the end of the

round duringwhich theywere created; ii) lossy: a message is omitted

byA, i.e., it is never delivered to any recipient, with probability 𝑑 ;2

iii) uniform: the order of message delivery is uniformly randomized.

The first two properties are mutually exclusive, but they might be

combined with the third. Specifically, when considering plainly a

synchronous router, we do not impose restrictions on the message

ordering. Nonetheless, a synchronous uniform router is a special

case of a synchronous router (equiv. for lossy uniform).

Diffuse Functionality. The functionality, parameterized by a router

A, initializes (to 1) a variable slot readable by all parties. It also

maintains a string ReceiveP () for each party P. P is allowed to

fetch the contents of ReceiveP () at the beginning of each time slot.

To diffuse a (possibly empty) message𝑚, P sends to the function-

ality𝑚, which records it. On each slot, every party completes its

activity by sending a special Complete message to the functional-

ity. When all parties submit Complete, the functionality delivers

the messages, which are diffused during this slot, as follows. First, it

sends all messages toA. Following,A responds with a list of tuples

⟨P, 𝑙P⟩, where P ∈ P and 𝑙P is an ordered list of messages. Subse-

quently, the functionality includes all messages in 𝑙P , following its

specified order, in the ReceiveP () string of P. Hence, the received
messages contain no information on each message’s creator. Finally,

the functionality increases the value of slot by 1.

Approximate Nash Equilibrium. An approximate Nash equilib-

rium is a common tool for expressing a solution to a non-cooperative

game involving 𝑛 parties P1, . . . ,P𝑛 . Each party P𝑖 employs a strat-

egy 𝑆𝑖 . The strategy is a set of rules and actions the party makes,

depending on what has happened up to any point in the game, i.e.,

it defines the part of the entire distributed protocol Π performed by

P𝑖 . There exists an “honest” strategy, defined by Π, which parties

may employ; for ease of notation, Π denotes both the distributed

2
This router models a network with stochastic delays, where users reject messages

delivered with later than a (protocol-specific) limit. For example, protocols like Bitcoin

resolve message conflicts via delivery order; thus, delaying a message for long enough,

such that a competing message is delivered first, is equivalent to dropping the message.

protocol and the honest strategy. A strategy profile is a vector of all
players’ strategies. Each party P𝑖 has a game utility 𝑈𝑖 , which is a

real function that takes as input a strategy profile. A strategy profile

is an 𝜖-Nash equilibriumwhen no party can increase its utility more

than 𝜖 by unilaterally changing its strategy (Definition 2.1).

Definition 2.1. Let: i) 𝜖 be a non-negative real number; ii) S be the

set of strategies a party may employ; iii) 𝜎∗ = (𝑆∗
𝑖
, 𝑆∗−𝑖) be a strategy

profile of P, where 𝑆∗
𝑖
is the strategy followed by P𝑖 ; iv) 𝑆∗−𝑖 denote

the 𝑛 − 1 strategies employed by all parties except P𝑖 . We say that

𝜎∗ is an 𝜖-Nash equilibrium w.r.t. a utility vector 𝑈 = ⟨𝑈1, . . . ,𝑈𝑛⟩
if: ∀P𝑖 ∈ P ∀𝑆𝑖 ∈ S \ {𝑆∗

𝑖
} : 𝑈𝑖 (𝑆∗𝑖 , 𝑆

∗
−𝑖) ≥ 𝑈𝑖 (𝑆𝑖 , 𝑆∗−𝑖) − 𝜖 .

For simplicity, when all parties have the same utility 𝑈 , we say

that 𝜎∗ is an 𝜖-Nash equilibrium w.r.t. 𝑈 . We also say that Π is

an 𝜖-Nash equilibrium w.r.t. 𝑈 when 𝜎Π = ⟨Π, . . . ,Π⟩, where all
parties follow the honest strategy, is an 𝜖-Nash equilibrium for 𝑈 .

2.2 Basic Notions
A protocol’s execution EZ,A,𝜎,𝑟 until a given time slot 𝑟 is proba-

bilistic and parameterized by: i) the environmentZ; ii) a router A;

iii) the strategy profile 𝜎 of the participating parties. As discussed,

Z provides the parties with inputs and schedules their activation.

For notation simplicity, when 𝑟 is omitted, EZ,A,𝜎 refers to the end

of the execution, which occurs after polynomially many time slots.

An execution trace ℑZ,A,𝜎,𝑟 until a time slot 𝑟 is the value that

the random variable EZ,A,𝜎,𝑟 takes for a fixed: i) environmentZ;

ii) routerA; iii) profile 𝜎 ; iv) random coins ofZ, each party P ∈ P,
and every protocol-specific oracle (see below). A party P’s view of

an execution trace ℑPZ,A,𝜎,𝑟
consists of the messages that P has

sent and received until slot 𝑟 . For notation simplicity, we omit the

subscripts {Z,A, 𝜎, 𝑟 } from E and ℑ, unless required for clarity.

The protocol Π defines two components, which are related to

our analysis: (1) the oracle OΠ , and (2) the “infraction” predicate X.

The Oracle OΠ . The oracle OΠ provides the parties with the

core functionality needed to participate in Π. For example, in a

Proof-of-Work (PoW) system, OΠ is the random or hashing oracle,

whereas in an authenticated Byzantine Agreement protocol, OΠ
is a signing oracle. On each time slot, a party can perform at most

a polynomial number of queries to OΠ ; in the simplest case, each

party can submit a single query per slot. Finally, OΠ is stateless, i.e.,
its random coins are decided upon the beginning of the execution

and its responses do not depend on the order of the queries.

The Infraction Predicate X. The infraction predicate X abstracts

the deviant behavior that the analysis aims to capture. Given the

execution trace and a party P,X responds with 1 only if P deviates

from Π in some well-defined manner. Definition 2.2 provides the

core generic property of X, i.e., that honest parties never deviate.
With hindsight, our analysis will focus on infraction predicates that

capture either producing conflicting messages or abstaining.

Definition 2.2. The infraction predicate X has the property that,

for every execution traceℑ and for every party P ∈ P, if P employs

the (honest) strategy Π then X(ℑ,P) = 0.

We stress that Definition 2.2 implies thatX being 0 is a necessary

but not sufficient condition for honesty. Specifically, for all honest

partiesX is always 0, butX might also be 0 for a party that deviates

3

283

from Π, in a way not captured by X. In that case, we say that the

party employs anX−compliant strategy (Definition 2.3). A strategy

profile is X−compliant if all its strategies are X−compliant, so the

“all honest” profile 𝜎Π , where all parties employ Π, is X−compliant.

Definition 2.3 (Compliant Strategy). Let X be an infraction pred-

icate. A strategy 𝑆 is X-compliant if and only if X(ℑ,P) = 0 for

every party P and for every trace ℑ where P employs 𝑆 .

The observer Ω. We assume a special party Ω, the (passive) ob-
server. This party does not actively participate in the execution,

but it runs Π and observes the protocol’s execution. Notably, Ω is

always online, i.e., it bootstraps at the beginning of the execution
and is activated on every slot, in order to receive diffused messages.

Therefore, the observer models a user of the system, who frequently

uses the system but does not actively participate in its maintenance.

Additionally, at the last round of the execution, the environmentZ
activates only Ω, in order to receive the diffused messages of the

penultimate round and have a complete point of view.

2.3 Compliant Protocols
To define the notion of an (𝜖,X)-compliant protocol Π, we require
two parameters: (i) the associated infraction predicate X; (ii) a non-
negative real number 𝜖 . Following Definition 2.3, X determines the

set of compliant strategies that the parties may follow in Π. Intu-
itively, 𝜖 specifies the gain threshold after which a party switches

strategies. In particular, 𝜖 is used to define when a strategy profile

𝜎 ′ is directly reachable from a profile 𝜎 , where 𝜎 ′ results from the

unilateral deviation of a party P𝑖 from 𝜎 and, by this deviation, the

utility of P𝑖 increases by more than 𝜖 , while 𝜎 ′ sets a best response
for P𝑖 . Generally, 𝜎 ′ is reachable from 𝜎 , if 𝜎 ′ results from a “path”

of strategy profiles, starting from 𝜎 , which are sequentially related

via direct reachability. Finally, we define the cone of a profile 𝜎 as

the set of all strategies that are reachable from 𝜎 , including 𝜎 itself.

We say that Π is (𝜖,X)-compliant if the cone of the “all honest”

strategy profile𝜎Π contains only profiles that consist ofX−compliant
strategies. Thus, if a protocol is compliant, then the parties may

(unilaterally) deviate from the honest strategy only in a compliant

manner, as dictated by X. Formally, first we define “reachability”

between two strategy profiles, as well as the notion of a “cone” of a

strategy profile w.r.t. the reachability relation. Then, we define a

compliant protocol w.r.t. its associated infraction predicate.

Definition 2.4. Let: i) 𝜖 be a non-negative real number; ii) Π be a

protocol run by parties P1, . . . ,P𝑛 ; iii)𝑈 = ⟨𝑈1, . . . ,𝑈𝑛⟩ be a utility
vector, where𝑈𝑖 is the utility of P𝑖 ; iv) S be the set of all strategies

a party may employ. We provide the following definitions.

(1) Let𝜎, 𝜎 ′ ∈ S𝑛
be two strategy profileswhere𝜎 = ⟨𝑆1, . . . , 𝑆𝑛⟩

and 𝜎 ′ = ⟨𝑆 ′
1
, . . . , 𝑆 ′𝑛⟩. We say that 𝜎 ′ is directly 𝜖-reachable

from 𝜎 w.r.t. 𝑈 , if there exists 𝑖 ∈ [𝑛] s.t. (i) ∀𝑗 ∈ [𝑛] \ {𝑖} :

𝑆 ′
𝑗
= 𝑆 𝑗 , (ii) 𝑈𝑖 (𝜎 ′) > 𝑈𝑖 (𝜎) + 𝜖 , and (iii) for every strategy

profile 𝜎 ′′ = ⟨𝑆 ′′
1
, . . . , 𝑆 ′′𝑛 ⟩ s.t. ∀𝑗 ∈ [𝑛] \ {𝑖} : 𝑆 ′′

𝑗
= 𝑆 𝑗 , it

holds that𝑈𝑖 (𝜎 ′′) ≤ 𝑈𝑖 (𝜎 ′) (𝜎 ′ sets a best response for P𝑖).
(2) Let 𝜎, 𝜎 ′ ∈ S𝑛

be two distinct strategy profiles. We say

that 𝜎 ′ is 𝜖-reachable from 𝜎 w.r.t. 𝑈 , if there exist profiles

𝜎1, . . . , 𝜎𝑘 s.t. (i) 𝜎1 = 𝜎 , (ii) 𝜎𝑘 = 𝜎 ′, and (iii) ∀𝑗 ∈ [2, 𝑘] it
holds that 𝜎 𝑗 is directly 𝜖-reachable from 𝜎 𝑗−1 w.r.t.𝑈 .

(3) For every strategy profile 𝜎 ∈ S𝑛
we define the (𝜖,𝑈)-cone

of 𝜎 as the set: Cone𝜖,𝑈 (𝜎) := {𝜎 ′ ∈ S𝑛 | (𝜎 ′ = 𝜎) ∨
(𝜎 ′ is 𝜖-reachable from 𝜎 w.r.t.𝑈)}.

Definition 2.5. Let: i) 𝜖 be a non-negative real number; ii) Π be

a protocol run by the parties P1, . . . ,P𝑛 ; iii) X be an infraction

predicate; iv) 𝑈 = ⟨𝑈1, . . . ,𝑈𝑛⟩ be a utility vector, where 𝑈𝑖 is the

utility of party P𝑖 ; v) S be the set of all strategies a party may

employ; vi) SX be the set of X−compliant strategies.
A strategy profile 𝜎 ∈ S𝑛

is X−compliant if 𝜎 ∈ (SX)𝑛 .
The (𝜖,𝑈)-cone ofΠ, denoted byCone𝜖,𝑈 (Π), is the setCone𝜖,𝑈 (𝜎Π),

i.e., the set of all strategies that are 𝜖-reachable from the “all honest”

strategy profile 𝜎Π = ⟨Π, . . . ,Π⟩ w.r.t.𝑈 , including 𝜎Π .

Π is (𝜖,X)-compliant w.r.t. 𝑈 if Cone𝜖,𝑈 (Π) ⊆ (SX)𝑛 , i.e., all
strategy profiles in the (𝜖,𝑈)-cone of Π are X−compliant.

2.4 Compliance and Approximate Nash
Equilibria

In this subsection, we show that a protocol is an 𝜖-Nash equilibrium

w.r.t. some utility if and only if it is (𝜖,X)-compliant w.r.t. the

same utility, for any associated infraction predicate X. We begin

by a useful lemma stating that a protocol is an approximate Nash

equilibrium if and only if the cone of the protocol includes only the

all-honest strategy profile.

Lemma 2.6. Let: i) 𝜖 be a non-negative real number; ii) Π be a pro-
tocol run by the parties P1, . . . ,P𝑛 ; iii)𝑈 = ⟨𝑈1, . . . ,𝑈𝑛⟩ be a utility
vector, with 𝑈𝑖 the utility of P𝑖 . Then, Π is an 𝜖-Nash equilibrium
w.r.t. 𝑈 (i.e., 𝜎Π = ⟨Π, . . . ,Π⟩ is an 𝜖-Nash equilibrium w.r.t. 𝑈) if
and only if the (𝜖,𝑈)-cone of Π, Cone𝜖,𝑈 (Π), is the singleton {𝜎Π}.

The statement in Lemma 2.6 resembles thewell-known statement

that a pure Nash equilibrium is a sink equilibrium that contains

a single strategy profile [30]. Nonetheless, there are differences

between the notions of a sink equilibrium and a cone. Recall that a

sink equilibrium is a strongly connected component of the strategy

profile graph that has no outgoing edges. On the other hand, accord-

ing to Definition 2.4, the subgraph induced by the nodes of a cone

of a strategy profile 𝜎 may not even be strongly connected (e.g., the

cone could be a subtree rooted at 𝜎). By applying Lemma 2.6, we

offer this subsection’s main result.

Theorem 2.7. Let: i) 𝜖 be a non-negative real number; ii) Π be
a protocol run by the parties P1, . . . ,P𝑛 ; iii) 𝑈 = ⟨𝑈1, . . . ,𝑈𝑛⟩ be a
utility vector, with 𝑈𝑖 the utility of P𝑖 . Then, Π is an 𝜖-Nash equi-
librium w.r.t.𝑈 if and only if Π is (𝜖,X)-compliant w.r.t.𝑈 for any
associated infraction predicate X.

According to the equivalence proven in Theorem 2.7, the prop-

erty that “a protocol is an approximate Nash equilibrium” can be

interpreted as a composition of all possible statements that “it is not

in any party’s interest to be non-compliant”, however compliance

is specified by the associated infraction predicate.

Remark. It is easy to see that X-compliance is a strict relaxation
of the approximate Nash equilibrium notion. For example, consider

a protocol Π∗ that is not an 𝜖∗-Nash equilibrium w.r.t. some utility

𝑈 ∗ (cf. Theorem 5.2 for such a counterexample). Now set X∗ to
be the predicate that always returns 0. Clearly, by Definitions 2.3

and 2.5, the protocol Π∗ is (𝜖∗,X∗)-compliant w.r.t.
¯𝑈 ∗.

4

284

3 BLOCKCHAIN PROTOCOLS
In this work, we focus on blockchain-based distributed ledger pro-

tocols. In the general case, a ledger defines a global state, which is

distributed across multiple parties and is maintained via a consen-

sus protocol. The distributed ledger protocol defines the validity

rules which allow a party to extract the final ledger from its view.

A blockchain is a distributed database, where each message𝑚 is a

block B of transactions and each transaction updates the system’s

global state. Therefore, at any point of the execution, a party P
holds some view of the global state, which comprises of the blocks

that P has adopted. We note that, if at least one valid block is dif-

fused (w.r.t. the validity rules of the protocol), then every honest

party can extract a final ledger from its execution view.

3.1 The Setting
Every blockchain protocol Π defines amessage validity predicateV .

PartyP accepts blockB, received during a time slot 𝑟 , ifV(ℑP𝑟 ,B) =
1. For example, in Proof-of-WorK (PoW) systems like Bitcoin, a block

is valid if its hash is below a certain threshold; in Proof-of-Stake

(PoS) protocols like Ouroboros [39], a block is valid if it was created

by a specific party, given a known leader schedule. In all cases, B
is valid if its creator submits at least one query for B to OΠ .

Each block B is associated with the following metadata: i) an

index index (B); ii) the party creator (B) that created B; iii) a set
ancestors(B) ⊆ ℑcreator (B) , i.e., blocks in the view of creator (B) (at
the time of B’s creation) referenced by B. Message references are

implemented as hash pointers, given a hash function H employed

by the protocol. Specifically, each block B contains the hash of all

blocks in the referenced blocks ancestors(B). Blockchain systems

are typically bootstrapped via a global common reference string,

i.e., a “genesis” block B𝐺 . Therefore, the blocks form a hash tree,

stemming from B𝐺 and index (B) is the height of B in the hash

tree. If B references multiple messages, i.e., belongs to multiple tree

branches, index (B) is the height of the longest one.
The protocol also defines the message equivalency operator, ≡.

Specifically, two messages are equivalent if their hashes match,

i.e.,𝑚1 ≡𝑚2 ⇔ H(𝑚1) = H(𝑚2). At a high level, two equivalent

messages are interchangeable by the protocol.

Infraction Predicate. In our analysis of blockchain systems, we

will consider two types of deviant behavior (Definition 3.1): i) creat-

ing conflicting valid messages of same origin, and ii) abstaining. We

choose these predicates because they may lead to non-compliance

in interesting use cases. The former refers to the widely discussed

topic in blockchain systems of one participant extending two con-

flicting transaction histories. The latter deals with the issue of

participants who intermittently engage in the system’s mainte-

nance, thus potentially hurting the safety of the deployed system;

in particular, the more users participate in maintenance, the higher

the level of resources that an adversary needs to reach to break

a system’s security. Other infraction predicates are of course also

possible to define.

Definition 3.1 (Blockchain Infraction Predicate). Given party P
and execution traceℑ, we define the following infraction predicates:

(1) conflicting predicate: X
conf
(ℑ,P) = 1 if there exist blocks

B,B′ ∈ ℑ s.t. creator (B) = creator (B′) = P∧V(ℑP ,B) =
V(ℑP ,B′) = 1 ∧ index (B) = index (B′) ∧ B . B′;

(2) abstaining predicate: X
abs
(ℑ,P) = 1 if there exists a time

slot 𝑟 such that P makes no queries to oracle OΠ during 𝑟 ;

(3) blockchain predicate: X
bc
(ℑ,P) = 1 if (X

conf
(ℑ,P) = 1) ∨

(X
abs
(ℑ,P) = 1).

We note that preventing conflicting messages is not the same

Sybil attack resilience [15]. The latter restricts an attacker from cre-

ating multiple identities. Instead, our infraction predicate ensures

that a user does not increase their utility by creating conflicting

messages with one of its identities. Thus, a system may be compli-

ant but not Sybil resilient, e.g., if a party participates via multiple

identities without increasing its utility via conflicting messages.

Finally, at the end of the execution, the observer Ω outputs a

chain CΩ,ℑ. Typically, this is the longest valid chain, i.e., the longest
branch of the tree that stems from genesis B𝐺 .3 In case multiple

longest chains exist, a choice is made either at random or following

a chronological ordering of messages. The number of messages in

CΩ,ℑ that are created by a party P is denoted by𝑀P,ℑ.

3.2 Utility: Rewards and Costs
For each execution, the blockchain protocol defines a number of

total rewards, which are distributed among the participating par-

ties. For each party P, these rewards are expressed via the reward
random variable 𝑅P,EZ,A,𝜎

. For a specific trace ℑZ,A,𝜎 , the ran-

dom variable takes a non-negative real value, denoted by 𝑅P,ℑZ,A,𝜎
.

Intuitively, 𝑅P,ℑZ,A,𝜎
describes the rewards that P receives from

the protocol from the point of view of the observer Ω, i.e., w.r.t. the
blocks output by Ω at the end of the execution.

Our analysis is restricted to systems where rewards are dis-

tributed to parties if and only if the genesis block is extended by

at least one block during the execution, in which case at least one

party receives a non-negative amount of rewards (Assumption 1).

Assumption 1. Letℑ be an execution trace. If no block is produced
during ℑ, then it holds that ∀P ∈ P : 𝑅P,ℑ = 0. If at least one block
is produced during ℑ, then it holds that ∃P ∈ P : 𝑅P,ℑ ≠ 0.

In addition to rewards, a party’s utility is affected by cost. The

cost random variable 𝐶P,EZ,A,𝜎
expresses the operational cost of P

during an execution EZ,A,𝜎 . For a fixed traceℑZ,A,𝜎 ,𝐶P,ℑZ,A,𝜎
is

a non-negative real value. Our analysis is restricted to cost schemes

which are linearly monotonically increasing in the number of queries

that a party makes to the oracle OΠ , with no queries incurring

zero cost (Assumption 2). Intuitively, this assumption considers the

electricity cost of participation, while the cost of equipment and

other operations, such as parsing or publishing messages, is zero.

Assumption 2. For every execution trace ℑ, a party P’s cost is
𝐶P,ℑ = 0 if and only if it performs no queries to OΠ in every time
slot. Else, if during ℑ a party P performs 𝑡 queries, then its cost is
𝐶P,ℑ = 𝑡 · _, for some fixed parameter _.

3
We assume that the longest chain (in blocks) contains the most hashing power, which

is the metric used in PoW systems.

5

285

We define two types of utility. First is Reward, i.e., the expected
rewards that a party receives when the cost is 0. Second is Profit,
i.e., rewards minus participation cost.

Definition 3.2. Let 𝜎 be a strategy profile and EZ,A,𝜎 be an

execution during which parties follow 𝜎 . We define two types of

blockchain utility 𝑈P of a party P for 𝜎 :

(1) Reward:𝑈P (𝜎) = 𝐸 [𝑅P,EZ,A,𝜎
]

(2) Profit:𝑈P (𝜎) = 𝐸 [𝑅P,EZ,A,𝜎
] − 𝐸 [𝐶P,EZ,A,𝜎

]

For the computation of 𝑈P , the environmentZ and the router

A are fixed. Therefore, the expectation of the random variables

𝑅P,EZ,A,𝜎
and 𝐶P,EZ,A,𝜎

is computed over the random coins of

Z, A, OΠ , and every party P ∈ P. Intuitively, utility depends on

both the strategy choice and the underlying network (expressed via

the router). As such, different routers may yield different optimal

strategies for parties and possibly different equilibria ceteris paribus.

Following, we evaluate the compliance of various Proof-of-Work

(PoW) and Proof-of-Stake (PoS) blockchain protocols w.r.t. two

types of rewards, block-proportional and resource-proportional.

4 BLOCK-PROPORTIONAL REWARDS
The arguably most common type of rewards in blockchain systems

is block-proportional rewards. Each party is rewarded proportionally
to the number of blocks it contributes to the final chain, at the end

of the execution. Block-proportional rewards are a generalization

of the proportional allocation rule, which, for example, is employed

in Bitcoin. The proportional allocation rule states that a party P’s
expected rewards of a single block are `P . As shown by Chen et
al. [11], this is the unique allocation rule that satisfies a list of

desirable properties, namely: i) non-negativity, ii) budget-balance,

iii) symmetry, iv) sybil-proofness, and v) collusion-proofness.

Our work expands the scope by considering proportional re-

wards w.r.t. blocks for the entirety of the execution. Specifically,

Definition 4.1 describes block-proportional rewards, where a party

P’s rewards are strictly monotonically increasing on the number of

blocks that P contributes to the chain output by the observer Ω.
The definition considers a proportional reward function 𝜚 (·, ·) that
takes as input the chain of Ω and P and outputs a value in [0, 1].

Definition 4.1 (Block-Proportional Rewards). For an execution

trace ℑ, let CΩ,ℑ be the chain output by Ω and RΩ,ℑ ∈ R≥0 be

the total number of rewards which are distributed by the protocol,

according to Ω. Let 𝑀P,ℑ be the number of blocks in the chain

output by Ω which are produced by P. A block-proportional reward
random variable 𝑅P,E satisfies the following conditions:

(1) ∀ℑ ∀P ∈ P : 𝑅P,ℑ = 𝜚 (CΩ,ℑ,P) · RΩ,ℑ
(2) ∀ℑ :

∑
P∈P 𝜚 (CΩ,ℑ,P) = 1

(3) ∀ℑ ∀P,P ′ ∈ P : 𝑀P,ℑ > 𝑀P′,ℑ ⇒ 𝜚 (CΩ,ℑ,P) > 𝜚 (CΩ,ℑ,P ′)

4.1 Bitcoin
First, we consider the Bitcoin [52] protocol. Bitcoin is a prime exam-

ple of a family of protocols that links the amount of valid blocks, that

each party can produce per execution, with the party’s hardware

capabilities, including: i) Proof-of-Work systems like Ethereum [60],

Bitcoin NG [18], Zerocash [5]; ii) Proof-of-Space [16] and Proof-of-

Space-Time [51] protocols.

Bitcoin is an Approximate Nash Equilibrium w.r.t. Reward. . Un-
der our model Bitcoin is a Θ(𝛿2)-Nash equilibrium w.r.t. utility

reward, where 𝛿 is the success probability of each independent

block production trial (query) and is a protocol-specific “difficulty”

parameter. This result is in agreement with previous works [40, 43],

while similar results exist w.r.t. profit [2]. Nonetheless, there are a
few remarks to be made. A well-known implication from the selfish

mining attack [19, 58] is that Bitcoin is not an equilibrium w.r.t.

relative rewards. However, selfish mining relies on withholding a

block’s publication, which is a compliant behavior w.r.t.X𝑏𝑐 , Defini-
tion 3.1 (a variation for PoS systems is treated in Section 6). Second,

our analysis assumes fixed difficulty, while Bitcoin operates under

variable difficulty, which is computed on regular intervals depend-

ing on the active mining power. Various interesting result exist

for the variable difficulty setting: i) [33] showed that Bitcoin is not

an equilibrium w.r.t. rewards, as selfish mining is more profitable;

ii) [23] showed that Bitcoin is not an equilibrium w.r.t. profit, as

miners stop performing some hashing queries to artificially reduce

the difficulty; iii) [32] showed that Bitcoin is not an equilibriumw.r.t.

profit in some cases (depending on the cost mechanism) and seem-

ingly also non-compliant w.r.t. X
abs

, as miners take turns shutting

down and resuming operations per difficulty adjustment epoch. So,

Bitcoin’s compliance under alternative utilities, variable difficulty,

and alternative infraction predicates (e.g., with flexibility in the

amount of hashing queries) is a promising line of future research.

4.2 Proof-of-Stake
Proof-of-Stake (PoS) systems differ from Bitcoin in a few points.

Typically, the execution of PoS systems is organized in epochs, each
consisting of a number 𝑙𝑒 of time slots. On each slot, a specified set

of parties is eligible to participate. Depending on the protocol, the

leader schedule of each epoch may or may not be a priori public.

The core difference with PoW concerns the power `P . In PoS, `P
represents their stake, i.e., the number of coins that P owns. Stake

is dynamic, therefore the system’s coins may change hands and the

leader schedule of each epoch depends on the stake distribution at

the beginning of the epoch.
4
As in Bitcoin, each party participates

proportionately to their power, so the expected ratio of slots for

which P is leader over the total number of the epoch’s slots is `P .
Also, in PoS protocols, the oracle OΠ does not perform hashing.

Instead, it is parameterized by the leader schedule and typically

performs signing. A signature output by OΠ is valid if and only

if the input message is submitted by the slot leader in time. This

introduces two important consequences: i) only the leader can

produce valid messages for a given slot; ii) the leader can produce

as many valid messages as the number of possible queries to OΠ .
Following we use this notation: i) 𝐶: a single query’s cost; ii) 𝑅:

the (fixed) reward per block; iii) 𝑒 : the execution’s number of epochs;

iv) 𝑙𝑒 : the epoch’s number of slots; v) `P, 𝑗 : P’s power on epoch 𝑗 .

4.2.1 Single-Leader Proof-of-Stake. As before, we analyze a rep-
resentative of a family of protocols; the family is single-leader

PoS (SL-PoS) and the representative is Ouroboros [39]. The SL-

PoS family includes systems like EOS
5
and Ouroboros BFT [38].

4
In reality, the snapshot of the stake distribution is retrieved at an earlier point of the

previous epoch, but we can employ this simplified version without loss of generality.

5
https://developers.eos.io/welcome/latest/protocol/consensus_protocol

6

286

https://developers.eos.io/welcome/latest/protocol/consensus_protocol

We again utilize the blockchain infraction predicates (cf. Defini-

tion 3.1). Ouroboros, as a consensus protocol, does not define re-

wards. Nonetheless, the Ouroboros implementation (in Cardano)

employs block-proportional rewards, so we will also consider fixed

rewards per block (cf. Definition 4.1).

On each slot, Ouroboros defines a single party, the “slot leader”, as

eligible to create a valid message. Specifically, the protocol restricts

that a leader cannot extend the chain with multiple blocks for the

same slot, therefore all honest parties extend their chain by at most

1 block per slot. The leader schedule is public and is computed at

the beginning of each epoch via a secure, publicly verifiable Multi-

Party Computation (MPC) sub-protocol, which cannot be biased

by any single party. To prevent long-range attacks [7], Ouroboros

employs a form of rolling checkpoints (“a bounded-depth longest-

chain rule” [39]), i.e., a party ignores forks that stem from a block

older than a (protocol-specific) limit from the adopted chain’s head

(it should be noted that subsequent versions of Ouroboros did not

utilize the same logic, cf. Subsection 4.2.2).

The SL-PoS protocol Π has the following characteristics:

• the execution is organized in epochs;

• within each epoch, a single party (the leader) is
eligible to produce a message per index;

• a party which is online considers the blocks of each

past epoch finalized (i.e., does not remove them in

favor of a competing, albeit possibly longer, chain);

• no partyP with `P < 1

2
can bias the epoch’s leader

schedule.

Single-Leader Proof-of-Stake Protocol (SL-PoS)

Figure 2: A generic SL-PoS protocol Π.

Synchronous network. First, we assume a diffuse functionality

with a synchronous router (cf. Section 2.1). Theorem 4.2 shows that

SL-PoS with block-proportional rewards is an 𝜖-Nash equilibrium

for negligible 𝜖 (hence, by Theorem 2.7, it is also (𝜖,X)-compliant,

X being any associated infraction predicate); this result is in line

with the incentives’ analysis of Ouroboros [39]. We remark that [6]

explored the same setting (synchronous, longest-chain PoS) and

identified a selfish mining-like attack against so-called “predictable”

protocols, like Ouroboros. This result was later refined by [22],

showing that such attacks are profitable for participants controlling

more than 32.5% of total stake. Nonetheless, that line of research

targeted relative rewards and relied on withholding a block’s publi-

cation for some time; here, we consider absolute rewards and leave

block withholding for consideration in Section 6.

Theorem 4.2. Assume: i) a synchronous router A; ii) ∀P ∈ P :

`P < 1

2
. SL-PoS with block-proportional rewards (Definition 4.1 for

fixed block reward 𝑅) is an 𝜖-Nash equilibrium w.r.t. utility Reward

and, if 𝑅 > 𝐶 , is an 𝜖-Nash equilibrium w.r.t. utility Profit, both for
negligible 𝜖 and under A.

Lossy network. Second, we assume a lossy, randomized router

(cf. Section 2.1).
6
Theorem 4.3 shows that SL-PoS with block pro-

portional rewards is not compliant w.r.t. the conflicting infraction

predicate X
conf

; specifically, it shows that 𝜖 is upper-bounded by a

typically non-negligible value.

Theorem 4.3. Assume: i) a lossy, randomized routerA with (non-
negligible) parameter 𝑑 (cf. Section 2.1); ii) ∀P ′ ∈ P : `P′ < 1

2
;

iii) P is the party with maximum power `P across the execution and
𝑠P =

∑
𝑗 ∈[1,𝑒] 𝑙𝑒 · `P, 𝑗 is the expected number of slots for which P is

leader; iv) (1−𝑑) ·𝑅 ≫ 𝐶 . SL-PoS with block-proportional rewards (cf.
Definition 4.1) is not (𝜖,X𝑐𝑜𝑛𝑓)-compliant (cf. Definition 2.5) under
A w.r.t. : i) utility Reward for (non-negligible) 𝜖 < (𝑑 − 𝑑𝑡) · 𝑅 · 𝑠P ;
ii) utility Profit for (non-negligible) 𝜖 < ((𝑑 −𝑑𝑡) ·𝑅− (𝑡 −1) ·𝐶) ·𝑠P ,

where 𝑡 = ⌊
ln(𝐶

𝑅·ln(1/𝑑))
ln(𝑑) ⌋.

The lossy network settingwas observed onDecember 2019, when

Cardano released its Incentivized Testnet (ITN)
7
. Stakeholders, i.e.,

users owning Cardano tokens, participated in PoS by forming stake

pools. The ITN used proportional rewards and the SL-PoS execu-

tion model. Each pool was elected as a slot leader proportionally

to its stake and received its share of an epoch’s rewards based on

its performance, i.e., the produced blocks compared to the expected
blocks w.r.t. its stake. Thus, pool operators were highly motivated

to always produce a block when needed. However, the network was

unstable, so forks started to form. In turn, pools were incentivized
8

to “clone” their nodes, i.e., run multiple parallel instances, to in-

crease network connectivity, reduce packet loss, and also extend all

possible forks. To make matters worse, this solution both perpetu-

ated forks and created new ones, as clones did not coordinate but

produced different blocks, even when extending the same chain.

We note that, although a lossy network may render a PoS proto-

col non-compliant, the same does not hold for PoW. In the setting of

Theorem 4.3, a party produces multiple blocks per slot to maximize

the probability that one of them is output by Ω. Notably, since the
PoS protocol restricts that at most one block extends the longest

chain per slot, these blocks are conflicting. However, PoW ledgers

do not enforce such restriction, so a party would instead create

multiple consecutive (instead of conflicting) blocks, which yields

maximal rewards even under a lossy network.

4.2.2 Multi-Leader Proof-of-Stake. We now turn to multi-leader

PoS (ML-PoS) and Ouroboros Praos [14], a representative of a family

alongside Ouroboros Genesis [3], Peercoin [41], and Tezos’ bak-

ing system [59]. These protocols are similar SL-PoS, but with a

core difference: multiple parties may be chosen as leaders for the

same slot. As Theorem 4.4 shows, ML-PoS protocols are not com-

pliant for block-proportional rewards. The core idea is the same

as with SL-PoS under a lossy network: a party is incentivized to

produce multiple blocks to decrease the probability that a com-

peting leader’s competing block is adopted over their own. We

note that, although consensus doesn’t enforce a tie-breaking pol-

icy for competing messages, parties typically opt for the message

6
The randomized router is an example, which will be used to prove the negative result

of Theorem 4.4. Other routers, which would model arguably more realistic networks,

could also be considered to, possibly, achieve compliance results.

7
https://staking.cardano.org/

8
https://www.reddit.com/r/cardano/comments/ekncza

7

287

https://staking.cardano.org/
https://www.reddit.com/r/cardano/comments/ekncza

that arrives first. The dependency on randomized routing is also

worth noting. Since alternative routers could yield positive results,

an interesting research direction is to explore the class of routers

under which compliance holds, possibly avoiding infractions via

specially-crafted peer-to-peer message passing protocols.

Theorem 4.4. Assume: i) a synchronous, randomized routerA (cf.
Section 2.1); ii) ∀P ′ ∈ P : `P′ <

1

2
; iii) P is the party with maximum

power `P across the execution and 𝑠P =
∑

𝑗 ∈[1,𝑒] 𝑙𝑒 · `P, 𝑗 is the
expected number of slots s.t. P is leader; iv) (1−𝑑) ·𝑅 ≫ 𝐶 . Let 𝑝𝑙 be
the (protocol-dependent) probability that multiple leaders are elected
in a slot. ML-PoS with block-proportional rewards (Definition 4.1) is
not (𝜖,X𝑐𝑜𝑛𝑓)-compliant (Definition 2.5) under A w.r.t. : i) utility
reward for (non-negligible) 𝜖 <

𝑝𝑙
2
· 𝑅 · 𝑠P ; ii) utility profit for (non-

negligible) 𝜖 < (𝑡−1

2· (𝑡+1) ·𝑝𝑙 ·𝑅−(𝑡−1) ·𝐶) ·𝑠P , where 𝑡 = ⌊
√︃

𝑝𝑙 ·𝑅
𝐶
⌋−1.

5 RESOURCE-PROPORTIONAL REWARDS
As described in Section 2, a party P controls a percentage `P of

the system’s power. Although this is set at the beginning of the

execution, it is not always public. For instance, P could obscure

its amount of hashing power by refraining from performing some

queries. In some cases, each party’s power is published on the ledger

and, for all executions, can be extracted from the observer’s chain.

This is the case in non-anonymous PoS ledgers, where each party’s

power, denoted by its assets, is logged in real time on the ledger.

These systems, where power distribution is public, can employ a

special type of rewards, resource-proportional rewards. Specifically,
the system defines a fixed, total number of rewards R > 0. At the

end of an execution, if at least one block is created, each party P
receives a percentage b (`P) of R, where b (·) : [0, 1] → [0, 1]; in
the real world, b is usually the identity function. If no blocks are

created during the execution, then every party gets 0 rewards.

Intuitively, resource-proportional rewards (Definition 5.1) com-

pensate users for investing in the system. Unless no block is created

(which typically happens with negligible probability when the par-

ties follow the protocol), the reward level depends solely on a party’s
power, instead of the messages diffused in the execution.

Definition 5.1 (Resource-proportional Rewards). For a total num-

ber of rewardsR ∈ R>0 and b : [0, 1] → [0, 1] s.t.∑P∈P b (`P) = 1,

a resource-proportional reward random variable 𝑅P,E is:

∀ℑ ∀P ∈ P : 𝑅P,ℑ =

{
b (`P) · R, if at least one valid block in ℑ
0, otherwise

5.1 Cost-induced Non-compliance
Given Definition 5.1, we observe that blockchains with resource-

proportional rewards are 𝜖-Nash equilibria w.r.t. utility Reward
(Definition 3.2) for small 𝜖 . By Theorem 2.7, the latter implies that

such protocols are also (𝜖,X)-compliant w.r.t. the same utility for

an arbitrary associated predicate X. Intuitively, a party is rewarded

the same amount regardless of their protocol-related actions, so

nobody can increase their rewards by deviating from the honest

strategy.

Nonetheless, when introducing operational costs to analyze

profit, a problem arises: a user can simply abstain and be rewarded

nonetheless. Such behavior results in a “free-rider problem” [4],

where a user reaps some benefits while not under-paying them or

not paying at all. Lemma 5.2 formalizes this argument and shows

that a blockchain protocol, associated with the abstaining infrac-

tion predicate X
abs

(cf. Definition 3.1), under resource-proportional

rewards is not (𝜖,X
abs
)-compliant w.r.t. utility Profit, for reasonable

values of 𝜖 .

Lemma 5.2. Let: i) Π be a blockchain protocol run by the parties
P1, . . . ,P𝑛 ; ii) A be a synchronous router (cf. Section 2.1); iii) 𝑈 =

⟨𝑈1, . . . ,𝑈𝑛⟩ be a utility vector, where 𝑈𝑖 is the utility Profit of
party P𝑖 ; iv) R be the total rewards distributed by the protocol;
v) b : [0, 1] → [0, 1] be a resource-proportional reward function;
vi) 𝛼 be the probability that no blocks are produced when all parties
follow the honest strategy.
For 𝑖 ∈ [𝑛], also let the following: i) 𝑞 be the maximum number of
queries that a party can make to the oracle OΠ in each time slot. ii)𝐶
be the cost of a single query to OΠ ; iii) 𝐶𝑖 be the expected cost of
P𝑖 when P𝑖 employs Π; iv) 𝛽𝑖 be the probability that no blocks are
produced when P𝑖 abstains throughout the entire execution and all
the other parties follow Π.
Assume that for every 𝑖 ∈ [𝑛], it holds that 𝐶 > 𝛽𝑖 · b (`P𝑖) · R · 𝑞.
Then, for every 𝜖 ≥ 0 s.t. 𝜖 < max

𝑖∈[𝑛]
{𝐶𝑖 − (𝛽𝑖 − 𝛼) · b (`P𝑖) · R}, the

protocol Π is not (𝜖,X
abs
)-compliant w.r.t. 𝑈 .

Subsequently, we examine the variables of the bound max
𝑖∈[𝑛]
{𝐶𝑖 −

(𝛽𝑖 − 𝛼) · b (`P𝑖) · R}. We note that, in the context of blockchain

systems, a “party” is equivalent to a unit of power; therefore, a

party P that controls `P of the total power, in effect controls `P
of all “parties” that participate in the blockchain protocol.

To discuss𝛼 and 𝛽𝑖 , we first consider the liveness property [26] of

blockchain protocols. Briefly, if a protocol guarantees liveness with

parameter 𝑢, then a transaction which is diffused on slot 𝑟 is part of

the (finalized) ledger of every honest party on round 𝑟+𝑢. Therefore,
assuming that the environment gives at least one transaction to the

parties, if a protocol Π guarantees liveness unless with negligible

probability negl(^),9 then at least one block is created during the

execution with overwhelming probability (in ^).

Now, we consider 𝛼 and 𝛽𝑖 . The former is negligible, since con-

sensus protocols typically guarantee liveness against a number of

crash (or Byzantine) faults, let alone if all parties are honest. The

latter, however, depends on P𝑖 ’s percentage of power `P𝑖 . For in-
stance, consider Ouroboros, which is secure if a deviating party P𝑖
controls less than

1

2
of the staking power and all others employ Π.

Thus, if `P𝑖 = 2

3
and P𝑖 abstains, the protocol cannot guarantee

liveness, i.e., it is probable that no blocks are created. However,

if `P𝑖 =
1

4
, then liveness is guaranteed with overwhelming prob-

ability; hence, even if P𝑖 abstains, at least one block is typically

created. Corollary 5.3 generalizes this argument, by showing that,

if enough parties participate, then at least one of them is small

enough, such that its abstaining does not result in a system halt,

hence it is incentivized to be non-compliant.

Corollary 5.3. Let Π be a blockchain protocol, with security
parameter ^ , which is run by 𝑛 parties, under the same considerations
of Theorem 5.2. Additionally, assume that Π has liveness with security
threshold 1

𝑥 in the following sense: for every strategy profile 𝜎 , if
9
Recall that ^ is Π’s security parameter, while negl(·) is a negligible function.

8

288

∑
P∈P−𝜎

`P < 1

𝑥 , where P−𝜎 is the set of parties that deviate from Π

when 𝜎 is followed, then Π guarantees liveness with overwhelming
(i.e., 1−negl(^)) probability. If 𝑥 < 𝑛, then for (non-negligible) values
𝜖 < max

𝑖∈[𝑛]
{𝐶𝑖 } − negl(^), Π is not (𝜖,X

abs
)-compliant w.r.t. 𝑈 .

The minimal cost 𝐶⊥P𝑖 of (honest) participation for party P𝑖
depends on the underlying ledger. In PoW systems, where partici-

pation consists of repeated computations, cost increases with the

percentage of mining power; for instance, controlling 51% of Bit-

coin’s mining power for 1 hour costs $1, 700, 000.
10

In PoS systems,

cost is typically irrespective of staking power, since participation

consists only of monitoring the network and regularly signing mes-

sages; for example, a production-grade Cardano node costs $180

per month
11
. Therefore, considering Corollary 5.3, the upper bound

of 𝜖 is typically rather large for PoS systems.

The free-rider hazard is manifested in Algorand
12
, a cryptocur-

rency system that follows the Algorand consensus protocol [10, 29]

and employs resource-proportional rewards, as defined above. Its

users own “Algo” tokens and transact over a ledger maintained by

“participation nodes”, which run the Algorand protocol and extend

the ledger via blocks. Each user receives a fixed reward
13

per Algo

token they own [25], awarded with every new block. Users may

also run a participation node, but are not rewarded [24] for doing

so, and participation is proportional to the amount of Algos that the

user owns. Therefore, a party that owns a few Algos will expectedly

abstain from participation in the consensus protocol.

Remark. In summary, resource-proportional rewards in PoS pro-

tocols may incentivize users to abstain. This can impact perfor-

mance, e.g., delaying block production and transaction finalization;

in the extreme case, it could result in a “tragedy of the commons” sit-

uation [47], where all users abstain and the system grinds to a halt.

Interestingly, this section illustrates a difference between PoW and

PoS. In PoS systems, each party’s power is registered on the ledger,

without requiring any action from them. In PoW, power becomes

evident only after the party puts their hardware to work. Therefore,

the idea behind Theorem 5.2’s proof, which relies on abstaining,

does not necessarily hold in PoW systems, like Fruitchains [55],

that define rewards (approximately) proportional to each party’s

mining power, as identified by their hashing operations.

5.2 Compliant Non-equilibrium PoS
So far, our positive results w.r.t. compliance relied on showing that

the protocol is an equilibrium. We now demonstrate the distinction

between the two notions via a protocol that is compliant w.r.t.

a non-trivial infraction predicate, but not Nash equilibrium. The

said protocol is a simple, yet typical, SL-PoS blockchain and its

characteristics are presented in Figure 3.

We consider Π (Figure 3) under resource-proportional rewards

(Definition 5.1) and profit and investigate compliance w.r.t. the

two types of attacks captured by X
conf

and X
abs

(Definition 3.1).

The goal of this study is to show that, under a well-defined in-

terval of approximation factor values, the protocol, although non

10
https://www.crypto51.app [February 2022]

11
https://forum.cardano.org/t/realistic-cost-to-operate-stake-pool/40056 [Jan 2022]

12
https://algorand.foundation

13
The weekly reward per Algo is 0.00012 Algos. [AlgoExplorer, Feb 2022]

The extended SL-PoS protocol Π (Figure 2) has the follow-

ing characteristics:

• The slot leaders are randomly elected, directly pro-

portional to their staking power.

• A party P’s staking power `P is fixed across

the execution (this always holds under resource-

proportional rewards).

• If elected as slot 𝑟 ’s leader,P makes a signing query

to OΠ and casts the received block at 𝑟 .

• The single query cost is 𝐶 , a (typically small) poly-

nomial on the security parameter ^.

Single-Leader Proof-of-Stake Protocol (cont)

Figure 3: A simple, yet typical, extension to the SL-PoS pro-
tocol Π of Figure 2.

X
abs

-compliant (hence, also non approximate Nash equilibrium),

operates in a X
conf

-compliant manner. We note that non X
abs

-

compliance is consistent with Lemma 5.2; In particular, Theorem 5.4

applies Lemma 5.2 and assigns concrete values to the lemma’s

generic parameters.

Theorem 5.4. Let: i) Π be the SL-PoS blockchain protocol specified
in Section 5.2; ii)A be a synchronous router; iii) R be the total rewards
distributed by the protocol; iv) b : [0, 1] → [0, 1] be the identity
resource-proportional reward function, i.e., b (`P) = `P ; v) 𝑁 ≥ ^𝑐

be the number of time slots of the execution, where ^ is the security
parameter and 𝑐 is a sufficiently large constant; vi) Pmax is the party
with the maximum staking power `Pmax

. If `Pmax
< 1

2
, then the

following hold under A: i) for every 𝜖 ≥ 0, Π is (𝜖,X
conf
)-compliant

w.r.t. utility Profit; ii) for 𝜖max := `Pmax
·𝑁 ·𝐶 − `𝑁+1Pmax

· R and every
𝜖 < 𝜖max, Π is not (𝜖,X

abs
)-compliant w.r.t. utility Profit.

6 POS UNDER RELATIVE UTILITIES
We now continue our study of the SL-PoS protocol Π specified

in Figure 3. In particular, we also assume that the protocol is pre-
dictable, i.e., the slot leader schedule for the entire execution is

globally known to the parties in advance [6].
14

We consider block-

proportional rewards (Definition 4.1) and a different utility that we

call Relative Profit. This utility is defined as the fraction of the party’s
expected profit over the aggregate expected rewards of all parties,

when the denominator is not 0 (and 0 otherwise).
15

Formally, for a

party P and strategy profile 𝜎 and with E𝜎 = EZ,A,𝜎 :

14
We can get similar results by studying (sufficiently large) fragments of the execution

when the protocol is predictable.

15
A seemingly plausible alternative approach would be to consider the fraction of the

party’s expected profit over the aggregate expected profit of all parties, i.e.,𝑈P (𝜎) =
𝐸 [𝑅P,EZ,A,𝜎

−𝐶P,EZ,A,𝜎
]

𝐸
[∑

ˆP∈P 𝑅
ˆP,EZ,A,𝜎

−∑
ˆP∈P 𝐶

ˆP,EZ,A,𝜎

] . However, in this approach, the denominator

might become negative, so the utility would not provide intuition on the parties’

payoffs. By considering only the (always non-negative) aggregate expected rewards in

the fraction, we avoid such problematic cases while maintaining relativity.

9

289

https://www.crypto51.app
https://forum.cardano.org/t/realistic-cost-to-operate-stake-pool/40056
https://algorand.foundation
https://algoexplorer.io/rewards-calculator

𝑈P (𝜎) =

𝐸 [𝑅P,E𝜎 −𝐶P,E𝜎]
𝐸
[∑

ˆP∈P 𝑅
ˆP,E𝜎

] , if 𝐸
[∑

ˆP∈P 𝑅
ˆP,E𝜎

]
> 0

0, if 𝐸
[∑

ˆP∈P 𝑅
ˆP,E𝜎

]
= 0

=

=

𝐸 [𝑅P,E𝜎] − 𝐸 [𝐶P,E𝜎]∑

ˆP∈P 𝐸
[
𝑅

ˆP,E𝜎
] , if

∑
ˆP∈P 𝐸

[
𝑅

ˆP,E𝜎
]
> 0

0, if

∑
ˆP∈P 𝐸

[
𝑅

ˆP,E𝜎
]
= 0

(1)

Relative Profit is an extension of relative rewards [6, 19, 36, 40],

where the utility is the fraction of the party’s rewards over the

total rewards, by now taking non-zero costs into account. As we

will shortly prove, Π is X
conf

-compliant w.r.t. to Relative Profit,

but non-compliant under a type of deviant behavior that we call

selfish singing, described in Algorithm 1. In selfish signing, a party

P that knows she is going to be elected for 𝑑 + 1 consecutive time

slots, where 𝑑 is the depth of the specific selfish signing event, can

create a fork of 𝑑 + 1 consecutive blocks pointing to a block created

𝑑 + 1 steps earlier. This results in a new longest chain with the

last 𝑑 blocks of the old chain getting discarded. Since the discarded

blocks belonged to other parties, selfish signing strictly improves

the relative profit of P.

ALGORITHM 1: Selfish signing of depth 𝑑 ≥ 1 during

time slots 𝑟, . . . , 𝑟 + 𝑑 .
Input: A sequence of 𝑑 + 1 blocks B𝑟−𝑑−1 ← · · · ← B𝑟−1 .

Output: A new sequence of 𝑑 + 2 blocks B𝑟−𝑑−1 ← B′𝑟 ← · · · ← B′𝑟+𝑑 .
for 𝑗 ← 0 to 𝑑 do

if 𝑗 == 0 then
As leader of slot 𝑟 , create a new block B′𝑟 pointing to B𝑟−𝑑−1 ;

else
As leader of slot 𝑟 + 𝑗 , create a new block B′𝑟+𝑗 pointing to B′𝑟+𝑗−1

;

Remark. Selfish signing is akin to the “globally predictable selfish

mining” attack presented in [6], with a major difference. In selfish

signing, the deviant creates a fork that discards a sequence of past

blocks, already created by other parties. In [6], the attacker with-

holds their blocks in order to discard future blocks, created after the
attacker’s actions. Consequently, selfish signing requires a shorter

predictability “window” as, at any point in time, the attacker only

needs to know the immediately following slots for which they are

leader. Also, an attacker could employ an adaptive selfish mining at-

tack, so as to choose whether to discard some or all of the available

blocks, e.g., depending on their content.

Next, we describe 𝑆
self

(Algorithm 2), a strategy where P takes

advantage of Π’s predictability and executes selfish signing at max-

imum depth whenever possible, under the condition that she never

abstains or allows her selfish singing actions to discard her own ex-

isting blocks. For an execution of 𝑁 time slots, the input is a string

scheduleP ∈ {0, 1}𝑁 defined as follows: for 𝑟 ∈ [𝑁], scheduleP [𝑟]
is 1, if P is the leader of slot 𝑟 , and 0 otherwise.

Note that the output

(
(𝑟1, 𝑑1), . . . , (𝑟𝑤 , 𝑑𝑤)

)
of Algorithm 2 fully

determines the behavior of P throughout the execution. Namely, P
acts honestly until time slot 𝑟1 when it performs selfish signing that

lasts until 𝑟1+𝑑1, then it acts honestly at slots 𝑟1+ (𝑑1+1), . . . , 𝑟2−1

and at slot 𝑟2 it performs selfish signing that lasts until 𝑟2 + 𝑑2, etc.

ALGORITHM 2: The strategy 𝑆
self

for party P.
Input: A string of bits scheduleP ∈ {0, 1}𝑁 , where 𝑁 is the execution’s

time length and which contains 1 for the slots where P is leader.

Output: A sequence of pairs

(
(𝑟1, 𝑑1), . . . , (𝑟𝑤 , 𝑑𝑤)

)
indicating the time

slots that selfish signing will take place at the respective depth.

Initialize a list strategyP ← () ;
Set 𝑟 ← 1;

while 𝑟 ≤ 𝑁 do
if scheduleP [𝑟] == 0 then

Set 𝑟 ← 𝑟 + 1; /* As no leader of 𝑟, P takes no action */

else
Set 𝑘∗ ← max

{
𝑘
�� (∧𝑘

𝑗=0
scheduleP [𝑟 + 𝑗]

)
== 1

}
;

Set ℓ∗ ← max

{
ℓ
�� | (∨ℓ

𝑗=1
scheduleP [𝑟 − 𝑗]

)
== 0

}
;

if (𝑘∗ == 0) ∨ (ℓ∗ == 0) then
Set 𝑟 ← 𝑟 + 1; /* If no selfish signing is possible,

P acts as an honest party */

else
Set 𝑑 ← min{𝑘∗, ℓ∗ };
Add (𝑟, 𝑑) to strategyP ; /* P will execute Algorithm 1

in slot 𝑟 at depth 𝑑 */
Set 𝑟 ← 𝑟 + (𝑑 + 1) ;

return strategyP ;

Next, we define the infraction predicate X
self

:
16

Xself (ℑ,P) :=

{
0, if P never performs selfish signing in ℑ
1, otherwise

.

Having introduced 𝑆
self

and X
self

, we prove Theorem 6.1. We

deploy the function 𝛿 (`) = 5 · (1 − `) · `2 + 6 · (1 − `)2 · `3 + 3 ·
(1 − `)2 · `4 + 3 · (1 − `)3 · `4

, for ` ∈ (0, 1). The function 𝛿 (`) sets
a lower bound on the expected number of blocks that get discarded

every 7 consecutive time slots, when a party with staking power `

unilaterally deviates from 𝜎Π by following 𝑆
self

. It has a maximum

at ` ≈ 0.64469 and 𝛿 (0.64469) ≈ 1.03001.

Theorem 6.1. Let: i) Π be the SL-PoS blockchain protocol specified
in Section 5.2 with block-proportional rewards (Definition 4.1 for
fixed block reward 𝑅), and assume that Π is also predictable; ii) a
synchronous router A; iii) Pmax is the party with the maximum
staking power `Pmax

.
If 𝑅 > 𝐶 and `Pmax

< 1

2
, then the following hold under A: i) for

every 𝜖 ≥ 0, Π is (𝜖,X
conf
)-compliant w.r.t. utility Relative Profit;

ii) for 𝜖max :=
`Pmax

7

𝛿 (`Pmax
) −1

· 𝑅−𝐶
𝑅

, where 𝛿 (`) = 5 · (1 − `) · `2 + 6 ·

(1 − `)2 · `3 + 3 · (1 − `)2 · `4 + 3 · (1 − `)3 · `4, and every 𝜖 ≤ 𝜖max,
Π is not (𝜖,X

self
)-compliant w.r.t. utility Relative Profit.

7 EXTERNALITIES
In practice, blockchains coexist with other systems, which may

affect the participants’ behavior. This section enhances our analysis

with parameters external to the ledger. We introduce an exchange

rate, to account rewards in the same unit as costs, and analyze how

it should behave to ensure compliance, assuming infractions yield

an external utility, and finally take penalties into account.

7.1 Utility
In distributed ledger systems, rewards are denominated in the

ledger’s native token, but cost is typically denominated in fiat.

16
Observe that X

self
is a special case of the generic family of long-range attacks, when

a party creates a fork by extending a block other than the longest chain’s head.

10

290

So far, we assumed that convertibility between the two is fixed.

Now, we introduce an exchange rate 𝑋 , between the ledger’s token

and USD, which can be variable and help estimate a party’s utility

more precisely. 𝑋E is a random variable, parameterized by a strat-

egy profile 𝜎 . For a trace ℑ𝜎 under 𝜎 , the exchange rate takes a

non-negative real value. The exchange rate is applied once, at the

end of the execution. Intuitively, this implies that a party eventually

sells their rewards at the end of the execution. Therefore, its utility

depends on the accumulated rewards, during the execution, and

the exchange rate at the end.

So far, we considered protocols in a standalone fashion, analyz-

ing whether they incentivize parties to avoid infractions. In reality,

a ledger exists alongside other systems, and a party’s utility may de-

pend on parameters external to the distributed ledger. For instance,

double spending against Bitcoin is a common hazard, which does

not increase an attacker’s Bitcoin rewards, but awards them external

rewards, e.g., goods that are purchased with the double-spent coins.

The external – to the ledger – reward is modeled as a random

variable 𝐵P,E𝜎 , which takes non-negative integer values. Similarly

to the rewards’ random variable, it is parameterized by a party P
and a strategy profile 𝜎 . The infraction utility is applied once and

has the property that, for every trace ℑ during which a party P
performs no infraction, 𝐵P,ℑ = 0, so a party receives these external

rewards only by performing an infraction.

We define a new utility𝑈 , which also takes two forms, Reward
and Profit (Definition 7.1). For rewards, 𝑈 applies the exchange

rate on the protocol rewards and adds the external reward. For

profit, it also subtracts the cost. For ease of notation, we set the

following: i) 𝜌P,𝜎 = 𝐸 [𝑅P,EZ,A,𝜎
]; ii) 𝑥𝜎 = 𝐸 [𝑋EZ,A,𝜎

]; iii) 𝑏P,𝜎 =

𝐸 [𝐵P,EZ,A,𝜎
]; iv) 𝑐P,𝜎 = 𝐸 [𝐶P,EZ,A,𝜎

]. As in Section 3.2, when

computing the utility, the environment and the router are fixed.

Definition 7.1. Let: i)𝜎 be a strategy profile; ii) E𝜎 be an execution

under 𝜎 ; iii) 𝑥𝜎 be the (expected) exchange rate of E𝜎 ; iv) 𝑏P,𝜎
be the (expected) external rewards of P under 𝜎 . We define two

types of utility𝑈P of a party P for 𝜎 under externalities: 1) Reward:
𝑈P (𝜎) = 𝜌P,𝜎 ·𝑥𝜎 +𝑏P,𝜎 ; 2) Profit:𝑈P (𝜎) = 𝜌P,𝜎 ·𝑥𝜎 +𝑏P,𝜎 −𝑐P,𝜎 .

7.2 Compliance
To evaluate compliance under externalities, we will find when a

reduction in asset prices counters external rewards, so parties are

incentivized to remain compliant. Formally, Theorem 7.2 adapts the

compliance bound for SL-PoS under a synchronous network; this

analysis can be applied in a similar manner for the positive results

of Subsections 4.1 and 5.1.

Theorem 7.2. Assume i) a synchronous router A (cf. Section 2.1),
ii) the conflicting predicateX

conf
, and iii) that∀P ∈ P : `P < 1

2
. Also

let: i) S−X
conf

: the set of all nonX
conf

-compliant strategies; ii) 𝑥𝜎Π : the
(expected) exchange rate under E𝜎Π ; iii) 𝑥𝜎𝑆P : the (expected) exchange
rate when only P employs some non X

conf
-compliant strategy 𝑆P ;

iv)𝑏P,𝜎𝑆P : the external utility that 𝑆P yields forP. SL-PoS with block-
proportional rewards (cf. Definition 4.1, for fixed block reward𝑅) under
the aforementioned externalities andA is not (𝜖,X

conf
)-compliant (cf.

Definition 2.5) w.r.t. utility Reward (cf. Definition 3.2) and, if 𝑅 > 𝐶 ,
it is also not (𝜖,X

conf
)-compliant w.r.t. utility Profit, if and only if

𝜖 < max{max
P∈P
{ max
𝑆P ∈S−X

conf

{𝜌P,𝜎Π
· (𝑥𝜎𝑆P − 𝑥𝜎Π) + 𝑏P,𝜎𝑆P }}, 0}.

The previous sections offer non-compliance, negative results

in PoS systems where (a) resource-proportional rewards are em-

ployed and (b) a party is incentivized to producemultiple conflicting

messages, i.e., under a lossy network or multiple leaders per slot.

Regarding (a), Section 5 shows that resource-proportional re-

wards ensure compliance under utility Reward, but non-compliance

regarding profit. Specifically, assuming a minimal participation cost

𝐶⊥P , we showed that, if P abstains, they incur zero cost without any

reward reduction. To explore compliance of resource-proportional

rewards under externalities, we consider two strategy profiles

𝜎Π, 𝜎𝑆P , as before. Notably, 𝑆P is the abstaining strategy which, as

shown in Section 5, maximizes utility in the standalone setting. For

the two profiles, the profit for P becomes 𝜌P,𝜎Π
· 𝑥𝜎Π − 𝑐P,𝜎Π

and

𝜌P,𝜎𝑆P ·𝑥𝜎𝑆P +𝑏P,𝜎𝑆P respectively. Again, in both cases the party’s

rewards are equal. Therefore, since it holds that 𝐶⊥P ≤ 𝑐P,𝜎Π
, P is

incentivized to be (𝜖,X
conf
)-compliant (for some 𝜖) if:

𝜌P,𝜎𝑆P · 𝑥𝜎𝑆P + 𝑏P,𝜎𝑆P ≤ 𝜌P,𝜎 · 𝑥𝜎Π − 𝑐P,𝜎Π
+ 𝜖 ⇒

⇒ 𝐶⊥P + 𝑏P,𝜎𝑆P ≤ 𝜌P,𝜎Π
· (𝑥𝜎Π − 𝑥𝜎𝑆P) + 𝜖

If the abstaining strategy yields no external rewards, as is typically

the case, 𝑏P,𝜎𝑆P = 0, so the exchange rate needs to only counter-

balance the minimal participation cost.

Regarding (b), we consider SL-PoS under a lossy network, since

the analysis is similar for ML-PoS, and two strategy profiles 𝜎Π, 𝜎𝑆P
as above. Now, under 𝜎𝑆P , P produces 𝑘 blocks during each slot

for which it is leader, to increase the probability that at least one of

them is output in the observer’s final chain. Also, for simplicity, we

set 𝑏P,𝜎𝑆P = 0. These PoS systems become (𝜖 ′,X
conf
)-compliant

(for 𝜖 ′ = 𝜖
(1−𝑑𝑘 · (1−𝑑)2) ·𝑅𝑚𝑎𝑥

) if 𝑥𝜎𝑆P
≤ 1−𝑑 · (1−𝑑)2

1−𝑑𝑘 · (1−𝑑)2 ·𝑥𝜎Π +𝜖 ′ where
𝑅𝑚𝑎𝑥 = 𝑅 ·∑𝑖∈[1,𝑒] 𝑙𝑒 · `P,𝑖 and 𝑑, 𝑅, 𝑙𝑒 are as in Subsection 4.2.2.

7.3 Penalties
Historically, attacks are profitable, so the market’s response is typi-

cally insufficient to incentivize compliance. Interestingly, in many

occasions the external utility was so high that, even if the exchange

rate became 0, it would exceed the amount of lost rewards. There-

fore, an additional form of utility reduction is necessary to prevent

any specific infraction that is essential to mount long-range attacks.

In many PoS systems, like Casper [8, 9] and Tezos [59], utility re-

duction is implemented via penalties. Thus, a party P deposits

an amount of assets 𝑔P , which is forfeited if it violates a defined

condition.

Consider profiles 𝜎Π, 𝜎𝑆P as before. Under penalties, with 𝜎Π , P
receives 𝜌P,𝜎Π

and retains its deposit 𝑔P , both exchanged at rate

𝑥𝜎Π . With 𝜎𝑆P , P forfeits its rewards and deposit, but receives ex-

ternal utility 𝑏P,𝜎𝑆P . Thus, compliance is incentivized if the deposit

and rewards are larger than the external utility. Note that the 𝜖

bound of Theorem 7.3 is tighter than Theorem 7.2’s, so penalties

can make infractions less appealing.

Theorem 7.3. Assume i) a synchronous router A (cf. Section 2.1),
ii) the conflicting predicate X

conf
, and iii) that ∀P ∈ P : `P < 1

2
.

Also let: i) S−X
conf

: the set of all non-compliant strategies; ii) 𝑥𝜎Π : the
(expected) exchange rate under 𝜎Π ; iii) 𝑥𝜎𝑆P : the (expected) exchange
rate when only P employs some non-compliant conflicting strategy
𝑆P ; iv)𝑏P,𝜎𝑆P : the external utility that 𝑆P yields forP; v) and 𝜌P,𝜎 =

11

291

𝐸 [𝑅P,E𝜎], i.e., the expected rewards of P under profile 𝜎 . Finally,
assume the block-proportional rewards (cf. Definition 4.1 for fixed
block reward 𝑅) for which it also holds: for all ℑ and for all P ∈ P, if
P produces no conflicting blocks during ℑ then 𝑅P,ℑ = 𝜚 (CΩ,ℑ,P) ·
RΩ,ℑ+𝑔P , otherwise𝑅P,ℑ = 0, where𝑔P is a protocol-specific deposit
value. SL-PoS with the above rewards and under the aforementioned
externalities is not (𝜖,X

conf
)-compliant (cf. Definition 2.5) w.r.t. utility

Reward (cf. Definition 3.2) and, if 𝑅 > 𝐶 , it is also not (𝜖,X
conf
)-

compliant w.r.t. utility Profit, in both cases under A and if and only
if 𝜖 < max{max

P∈P
{ max
𝑆P ∈S−X

conf

{𝑏P,𝜎𝑆P }} − 𝜌P,𝜎Π
· 𝑥𝜎Π , 0} − negl(^).

The 𝜖 bounds in Theorems 7.2 and 7.3 depend on the external

utility boost𝑏P,𝜎𝑆P . This highlights the inherent limitations of such

systems’ designers, since the bound depends on external (to the

protocol) parameters. Intuitively, these bounds show that attacks

which utilize the X
conf

infraction can be prevented in two ways.

First, larger deposits increase some attacks’ profitability threshold.

However, they also shut off small parties, with inadequate assets.

Therefore, a tradeoff exists in preventing such attacks and enabling

participation. Second, the longer an attack’s duration, the more

blocks an adversary needs to produce, hence the larger the rewards

that it forfeits. Typically, the attack’s duration depends on the re-

quired number of confirmations for a transaction to be finalized. So

different confirmation limits, e.g., based on a transaction’s value,

could satisfy the tradeoff between fast settlement and security.

Considering the latter observation, we now briefly review users’

behavior in SL-PoS (cf. Section 4.2.1) under deposits and penalties.

In an SL-PoS execution, the percentage of parties that actively par-

ticipate during each epoch is identifiable via the block density and

the number of empty slots (when no block is diffused). Therefore, it

is possible to estimate the level of double-signing that a party needs

to perform to mount a double-spending attack, and then enforce a

transaction finalization rule to dis-incentivize such attacks.

Let P be a user of an SL-PoS ledger. P requires 𝑘 confirmations,

i.e., finalizes a transaction after it is “buried” under 𝑘 blocks. Let

𝜏 be a transaction, published on slot 𝑟 , with value 𝑣𝜏 . After 𝑙 slots,

𝜏 is buried under 𝑏 blocks, with 𝑏 = 𝑥 · 𝑙 for some 𝑥 ∈ (0, 1). In
case we have full participation in the protocol and the adversary

is bounded by
1

2
, it holds 𝑥 > 1

2
; in the rest of the section, we will

focus on this setting. Observe that (1 − 𝑥) · 100% of slots will be –

seemingly – empty. P will (on expectation) confirm 𝜏 after
1

𝑥 · 𝑘
slots, i.e., when 𝑘 blocks are produced; of these,

1−𝑥
𝑥 · 𝑘 are empty.

LetM be a party that wants to double-spend 𝜏 .M should pro-

duce a private chain with at least 𝑘 blocks. Of these, at most
1−𝑥
𝑥 ·𝑘

correspond to the respective empty slots, while 𝑘− 1−𝑥
𝑥 ·𝑘 = 2·𝑥−1

𝑥 ·𝑘
conflict with existing blocks, i.e., are evidence of infraction. Let 𝑑

be a deposit amount, which corresponds to a single slot. Thus, for a

period of 𝑡 slots, the total deposited assets 𝐷 = 𝑡 · 𝑑 are distributed

evenly across all slots. M can be penalized only for infraction

blocks, i.e., for slots which showcase conflicting blocks. In a range

of
1

𝑥 · 𝑘 slots, infraction slots are
2·𝑥−1

𝑥 · 𝑘 . Therefore,M forfeits

at most
2·𝑥−1

𝑥 · 𝑘 · 𝑑 in deposit and
2·𝑥−1

𝑥 · 𝑘 · 𝑅 in rewards that

correspond to infraction blocks. Thus, if 𝑣𝜏 > 2·𝑥−1

𝑥 · 𝑘 · (𝑑 + 𝑅),
M can profitably double-spend 𝜏 . Consequently, depending on the

amount 𝑑 of deposit per slot, the block reward 𝑅, and the rate (1−𝑥)

of empty slots, for a transaction 𝜏 with value 𝑣𝜏 , P should set the

confirmation window’s size to: 𝑘𝜏 >
𝑣𝜏

2·𝑥−1

𝑥
· (𝑑+𝑅) .

Finally, the system should allow each participant to withdraw

their deposit at some point. However, it should also enforce some
limit, s.t. deposits can cover (possible) penalties. Intuitively, a party

P should be able to withdraw a deposited amount that corresponds

to a slot 𝑟 , only if no transaction exists, s.t. 𝑟 is part of the window

of size 𝑘 (computed as above). In other words, P’s deposit should
be able to cover all slots which P has led and which are in the

confirmation window of at least one non-finalized transaction.

Acknowledgements. This work was supported by Input Output

(iohk.io) through their funding of the Edinburgh Blockchain Tech-

nology Lab.

REFERENCES
[1] Nick Arnosti and S. Matthew Weinberg. 2019. Bitcoin: A Natural Oligopoly. In

ITCS 2019: 10th Innovations in Theoretical Computer Science Conference, Avrim
Blum (Ed.), Vol. 124. LIPIcs, San Diego, CA, USA, 5:1–5:1. https://doi.org/10.

4230/LIPIcs.ITCS.2019.5

[2] Christian Badertscher, Juan A. Garay, Ueli Maurer, Daniel Tschudi, and Vassilis

Zikas. 2018. But Why Does It Work? A Rational Protocol Design Treatment of

Bitcoin, See [54], 34–65. https://doi.org/10.1007/978-3-319-78375-8_2

[3] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vas-

silis Zikas. 2018. Ouroboros Genesis: Composable Proof-of-Stake Blockchains

with Dynamic Availability. In ACM CCS 2018: 25th Conference on Computer
and Communications Security, David Lie, Mohammad Mannan, Michael Backes,

and XiaoFeng Wang (Eds.). ACM Press, Toronto, ON, Canada, 913–930. https:

//doi.org/10.1145/3243734.3243848

[4] William J Baumol. 2004. Welfare Economics and the Theory of the State. In The
encyclopedia of public choice. Springer, 937–940.

[5] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anonymous

Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, Berkeley, CA, USA, 459–474. https://doi.org/10.1109/

SP.2014.36

[6] Jonah Brown-Cohen, Arvind Narayanan, Alexandros Psomas, and S. Matthew

Weinberg. 2019. Formal Barriers to Longest-Chain Proof-of-Stake Protocols. In

Proceedings of the 2019 ACM Conference on Economics and Computation, EC 2019,
Phoenix, AZ, USA, June 24-28, 2019, Anna Karlin, Nicole Immorlica, and Ramesh

Johari (Eds.). ACM, 459–473. https://doi.org/10.1145/3328526.3329567

[7] Vitalik Buterin. 2014. On stake. https://blog.ethereum.org/2014/07/05/stake/.

[8] Vitalik Buterin and Virgil Griffith. 2017. Casper the friendly finality gadget. arXiv
preprint arXiv:1710.09437 (2017).

[9] Vitalik Buterin, Daniël Reijsbergen, Stefanos Leonardos, and Georgios Piliouras.

2019. Incentives in Ethereum’s Hybrid Casper Protocol. CoRR abs/1903.04205.

arXiv:1903.04205 http://arxiv.org/abs/1903.04205

[10] Jing Chen, Sergey Gorbunov, Silvio Micali, and Georgios Vlachos. 2018. ALGO-

RAND AGREEMENT: Super Fast and Partition Resilient Byzantine Agreement.

Cryptology ePrint Archive, Report 2018/377. https://eprint.iacr.org/2018/377.

[11] Xi Chen, Christos H. Papadimitriou, and Tim Roughgarden. 2019. An Axiomatic

Approach to Block Rewards. In Proceedings of the 1st ACM Conference on Advances
in Financial Technologies, AFT 2019, Zurich, Switzerland, October 21-23, 2019. ACM,

124–131. https://doi.org/10.1145/3318041.3355470

[12] Steve Chien and Alistair Sinclair. 2011. Convergence to approximate Nash

equilibria in congestion games. Games Econ. Behav. 71, 2 (2011), 315–327. https:

//doi.org/10.1016/j.geb.2009.05.004

[13] Bernardo David, Rafael Dowsley, and Mario Larangeira. 2019. ROYALE: A Frame-

work for Universally Composable Card Games with Financial Rewards and

Penalties Enforcement, See [31], 282–300. https://doi.org/10.1007/978-3-030-

32101-7_18

[14] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018.

Ouroboros Praos: An Adaptively-Secure, Semi-synchronous Proof-of-Stake

Blockchain, See [54], 66–98. https://doi.org/10.1007/978-3-319-78375-8_3

[15] John R Douceur. 2002. The sybil attack. In International workshop on peer-to-peer
systems. Springer, 251–260.

[16] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof

Pietrzak. 2015. Proofs of Space. In Advances in Cryptology – CRYPTO 2015, Part II
(Lecture Notes in Computer Science, Vol. 9216), Rosario Gennaro and Matthew

J. B. Robshaw (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA,

585–605. https://doi.org/10.1007/978-3-662-48000-7_29

12

292

iohk.io
https://doi.org/10.4230/LIPIcs.ITCS.2019.5
https://doi.org/10.4230/LIPIcs.ITCS.2019.5
https://doi.org/10.1007/978-3-319-78375-8_2
https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1145/3328526.3329567
http://arxiv.org/abs/1903.04205
https://eprint.iacr.org/2018/377
https://doi.org/10.1145/3318041.3355470
https://doi.org/10.1016/j.geb.2009.05.004
https://doi.org/10.1016/j.geb.2009.05.004
https://doi.org/10.1007/978-3-030-32101-7_18
https://doi.org/10.1007/978-3-030-32101-7_18
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-662-48000-7_29

[17] Ethereum. 2018. Proof of Stake FAQs. https://eth.wiki/en/concepts/proof-of-

stake-faqs.

[18] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. 2016.

Bitcoin-ng: A scalable blockchain protocol. In 13th {USENIX} symposium on
networked systems design and implementation ({NSDI} 16). 45–59.

[19] Ittay Eyal and Emin Gün Sirer. 2014. Majority Is Not Enough: Bitcoin Mining Is

Vulnerable. In FC 2014: 18th International Conference on Financial Cryptography
and Data Security (Lecture Notes in Computer Science, Vol. 8437), Nicolas Christin
and Reihaneh Safavi-Naini (Eds.). Springer, Heidelberg, Germany, Christ Church,

Barbados, 436–454. https://doi.org/10.1007/978-3-662-45472-5_28

[20] Alex Fabrikant, Christos H. Papadimitriou, and Kunal Talwar. 2004. The complex-

ity of pure Nash equilibria. In Proceedings of the 36th Annual ACM Symposium on
Theory of Computing, Chicago, IL, USA, June 13-16, 2004, László Babai (Ed.). ACM,

604–612. https://doi.org/10.1145/1007352.1007445

[21] Giulia C. Fanti, Leonid Kogan, Sewoong Oh, Kathleen Ruan, Pramod Viswanath,

and Gerui Wang. 2019. Compounding of Wealth in Proof-of-Stake Cryptocurren-

cies, See [31], 42–61. https://doi.org/10.1007/978-3-030-32101-7_3

[22] Matheus V. X. Ferreira and S. Matthew Weinberg. 2021. Proof-of-Stake Min-

ing Games with Perfect Randomness. In EC ’21: The 22nd ACM Conference
on Economics and Computation, Budapest, Hungary, July 18-23, 2021, Péter
Biró, Shuchi Chawla, and Federico Echenique (Eds.). ACM, 433–453. https:

//doi.org/10.1145/3465456.3467636

[23] Amos Fiat, Anna Karlin, Elias Koutsoupias, and Christos H. Papadimitriou. 2019.

Energy Equilibria in Proof-of-Work Mining. In Proceedings of the 2019 ACM
Conference on Economics and Computation, EC 2019, Phoenix, AZ, USA, June 24-28,
2019, Anna Karlin, Nicole Immorlica, and Ramesh Johari (Eds.). ACM, 489–502.

https://doi.org/10.1145/3328526.3329630

[24] Mehdi Fooladgar, Mohammad Hossein Manshaei, Murtuza Jadliwala, and Mo-

hammad Ashiqur Rahman. 2020. On Incentive Compatible Role-Based Reward

Distribution in Algorand. In 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2020, Valencia, Spain, June 29 - July 2,
2020. IEEE, 452–463. https://doi.org/10.1109/DSN48063.2020.00059

[25] Algorand Foundation. 2020. FAQs. https://algorand.foundation/faq

[26] Juan A. Garay and Aggelos Kiayias. 2020. SoK: A Consensus Taxonomy in the

Blockchain Era. In Topics in Cryptology – CT-RSA 2020 (Lecture Notes in Computer
Science, Vol. 12006), Stanislaw Jarecki (Ed.). Springer, Heidelberg, Germany, San

Francisco, CA, USA, 284–318. https://doi.org/10.1007/978-3-030-40186-3_13

[27] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The Bitcoin Back-

bone Protocol: Analysis and Applications. In Advances in Cryptology – EURO-
CRYPT 2015, Part II (Lecture Notes in Computer Science, Vol. 9057), Elisabeth
Oswald and Marc Fischlin (Eds.). Springer, Heidelberg, Germany, Sofia, Bulgaria,

281–310. https://doi.org/10.1007/978-3-662-46803-6_10

[28] Arthur Gervais, Ghassan O. Karame, Karl Wüst, Vasileios Glykantzis, Hubert

Ritzdorf, and Srdjan Capkun. 2016. On the Security and Performance of Proof of

Work Blockchains. In ACM CCS 2016: 23rd Conference on Computer and Commu-
nications Security, Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,

Andrew C. Myers, and Shai Halevi (Eds.). ACM Press, Vienna, Austria, 3–16.

https://doi.org/10.1145/2976749.2978341

[29] Yossi Gilad, RotemHemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.

2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies. Cryptology

ePrint Archive, Report 2017/454. https://eprint.iacr.org/2017/454.

[30] M. Goemans, VahabMirrokni, and A. Vetta. 2005. Sink equilibria and convergence.

In 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05).
142–151. https://doi.org/10.1109/SFCS.2005.68

[31] Ian Goldberg and Tyler Moore (Eds.). 2019. FC 2019: 23rd International Conference
on Financial Cryptography and Data Security. Lecture Notes in Computer Science,

Vol. 11598. Springer, Heidelberg, Germany, Frigate Bay, St. Kitts and Nevis.

[32] Guy Goren and Alexander Spiegelman. 2019. Mind the Mining. In Proceedings of
the 2019 ACM Conference on Economics and Computation, EC 2019, Phoenix, AZ,
USA, June 24-28, 2019, Anna Karlin, Nicole Immorlica, and Ramesh Johari (Eds.).

ACM, 475–487. https://doi.org/10.1145/3328526.3329566

[33] Cyril Grunspan and Ricardo Pérez-Marco. 2019. On profitability of selfish mining.

arXiv:1805.08281 [cs.GT]

[34] Dimitris Karakostas, Aggelos Kiayias, and Mario Larangeira. 2020. Account

Management in Proof of Stake Ledgers. In SCN 20: 12th International Confer-
ence on Security in Communication Networks (Lecture Notes in Computer Science,
Vol. 12238), Clemente Galdi and Vladimir Kolesnikov (Eds.). Springer, Heidelberg,

Germany, Amalfi, Italy, 3–23. https://doi.org/10.1007/978-3-030-57990-6_1

[35] Dimitris Karakostas, Aggelos Kiayias, and Thomas Zacharias. 2022. Blockchain

Nash Dynamics and the Pursuit of Compliance. arXiv:2201.00858 [cs.CR]

[36] Aggelos Kiayias, Elias Koutsoupias, Maria Kyropoulou, and Yiannis Tselekounis.

2016. Blockchain Mining Games. In Proceedings of the 2016 ACM Conference
on Economics and Computation, EC ’16, Maastricht, The Netherlands, July 24-28,
2016, Vincent Conitzer, Dirk Bergemann, and Yiling Chen (Eds.). ACM, 365–382.

https://doi.org/10.1145/2940716.2940773

[37] Aggelos Kiayias and Giorgos Panagiotakos. 2017. On Trees, Chains and Fast

Transactions in the Blockchain. In Progress in Cryptology - LATINCRYPT 2017:
5th International Conference on Cryptology and Information Security in Latin

America (Lecture Notes in Computer Science, Vol. 11368), Tanja Lange and Orr

Dunkelman (Eds.). Springer, Heidelberg, Germany, Havana, Cuba, 327–351. https:

//doi.org/10.1007/978-3-030-25283-0_18

[38] Aggelos Kiayias and Alexander Russell. 2018. Ouroboros-BFT: A Simple Byzan-

tine Fault Tolerant Consensus Protocol. Cryptology ePrint Archive, Report

2018/1049. https://eprint.iacr.org/2018/1049.

[39] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.

Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. InAdvances in
Cryptology – CRYPTO 2017, Part I (Lecture Notes in Computer Science, Vol. 10401),
Jonathan Katz and Hovav Shacham (Eds.). Springer, Heidelberg, Germany, Santa

Barbara, CA, USA, 357–388. https://doi.org/10.1007/978-3-319-63688-7_12

[40] Aggelos Kiayias and Aikaterini-Panagiota Stouka. 2019. Coalition-Safe Equilibria

with Virtual Payoffs. arXiv:2001.00047 [cs.GT]

[41] Sunny King and Scott Nadal. 2012. Ppcoin: Peer-to-peer crypto-currency with

proof-of-stake. self-published paper, August 19 (2012), 1.
[42] Elias Koutsoupias, Philip Lazos, Foluso Ogunlana, and Paolo Serafino. 2019.

Blockchain Mining Games with Pay Forward. In The World Wide Web Conference,
WWW 2019, San Francisco, CA, USA, May 13-17, 2019, Ling Liu, Ryen W. White,

Amin Mantrach, Fabrizio Silvestri, Julian J. McAuley, Ricardo Baeza-Yates, and

Leila Zia (Eds.). ACM, 917–927. https://doi.org/10.1145/3308558.3313740

[43] Joshua A. Kroll, Ian C. Davey, and Edward W. Felten. 2013. The Economics

of Bitcoin Mining, or Bitcoin in the Presence of Adversaries. In The Twelfth
Workshop on the Economics of Information Security (WEIS 2013).

[44] Ranjit Kumaresan, Tal Moran, and Iddo Bentov. 2015. How to Use Bitcoin to

Play Decentralized Poker. In ACM CCS 2015: 22nd Conference on Computer and
Communications Security, Indrajit Ray, Ninghui Li, and Christopher Kruegel (Eds.).
ACM Press, Denver, CO, USA, 195–206. https://doi.org/10.1145/2810103.2813712

[45] Yoad Lewenberg, Yoram Bachrach, Yonatan Sompolinsky, Aviv Zohar, and Jef-

frey S Rosenschein. 2015. Bitcoin mining pools: A cooperative game theoretic

analysis. In Proceedings of the 2015 international conference on autonomous agents
and multiagent systems. Citeseer, 919–927.

[46] Wenting Li, Sébastien Andreina, Jens-Matthias Bohli, and Ghassan Karame. 2017.

Securing proof-of-stake blockchain protocols. In Data Privacy Management,
Cryptocurrencies and Blockchain Technology. Springer, 297–315.

[47] William Forster Lloyd. 1833. Two lectures on the checks to population. JH Parker.

[48] Katie Martin and Billy Nauman. 2021. Bitcoin’s growing energy problem: ’It’s

a dirty currency’. https://www.ft.com/content/1aecb2db-8f61-427c-a413-

3b929291c8ac.

[49] Julian Martinez. 2018. Understanding Proof of Stake: The Nothing at Stake

Theory. https://medium.com/coinmonks/understanding-proof-of-stake-the-

nothing-at-stake-theory-1f0d71bc027.

[50] Vahab S. Mirrokni and Alexander Skopalik. 2009. On the complexity of nash

dynamics and sink equilibria. In Proceedings 10th ACM Conference on Electronic
Commerce (EC-2009), Stanford, California, USA, July 6–10, 2009, John Chuang,

Lance Fortnow, and Pearl Pu (Eds.). ACM, 1–10. https://doi.org/10.1145/1566374.

1566376

[51] Tal Moran and Ilan Orlov. 2019. Simple Proofs of Space-Time and Rational

Proofs of Storage. In Advances in Cryptology – CRYPTO 2019, Part I (Lecture Notes
in Computer Science, Vol. 11692), Alexandra Boldyreva and Daniele Micciancio

(Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 381–409. https:

//doi.org/10.1007/978-3-030-26948-7_14

[52] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system.

[53] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. 2015. Stubborn

Mining: Generalizing Selfish Mining and Combining with an Eclipse Attack.

Cryptology ePrint Archive, Report 2015/796. https://eprint.iacr.org/2015/796.

[54] Jesper Buus Nielsen and Vincent Rijmen (Eds.). 2018. Advances in Cryptology –
EUROCRYPT 2018, Part II. Lecture Notes in Computer Science, Vol. 10821. Springer,

Heidelberg, Germany, Tel Aviv, Israel.

[55] Rafael Pass and Elaine Shi. 2017. FruitChains: A Fair Blockchain. In 36th ACM
Symposium Annual on Principles of Distributed Computing, Elad Michael Schiller

and Alexander A. Schwarzmann (Eds.). Association for Computing Machinery,

Washington, DC, USA, 315–324. https://doi.org/10.1145/3087801.3087809

[56] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. 1980. Reaching

Agreement in the Presence of Faults. J. ACM 27, 2 (1980), 228–234. https:

//doi.org/10.1145/322186.322188

[57] R. W. Rosenthal. 1973. A class of games possessing pure-strategy nash equilibria.

International Journal of Game Theory 2 (1973), 65–67.

[58] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. 2016. Optimal Selfish

Mining Strategies in Bitcoin. In FC 2016: 20th International Conference on Financial
Cryptography and Data Security (Lecture Notes in Computer Science, Vol. 9603),
Jens Grossklags and Bart Preneel (Eds.). Springer, Heidelberg, Germany, Christ

Church, Barbados, 515–532.

[59] Tezos. 2020. Proof-of-stake in Tezos. https://tezos.gitlab.io/whitedoc/proof_of_

stake.html

[60] Gavin Wood. 2014. Ethereum yellow paper.

13

293

https://eth.wiki/en/concepts/proof-of-stake-faqs
https://eth.wiki/en/concepts/proof-of-stake-faqs
https://doi.org/10.1007/978-3-662-45472-5_28
https://doi.org/10.1145/1007352.1007445
https://doi.org/10.1007/978-3-030-32101-7_3
https://doi.org/10.1145/3465456.3467636
https://doi.org/10.1145/3465456.3467636
https://doi.org/10.1145/3328526.3329630
https://doi.org/10.1109/DSN48063.2020.00059
https://algorand.foundation/faq
https://doi.org/10.1007/978-3-030-40186-3_13
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1145/2976749.2978341
https://eprint.iacr.org/2017/454
https://doi.org/10.1109/SFCS.2005.68
https://doi.org/10.1145/3328526.3329566
https://arxiv.org/abs/1805.08281
https://doi.org/10.1007/978-3-030-57990-6_1
https://arxiv.org/abs/2201.00858
https://doi.org/10.1145/2940716.2940773
https://doi.org/10.1007/978-3-030-25283-0_18
https://doi.org/10.1007/978-3-030-25283-0_18
https://eprint.iacr.org/2018/1049
https://doi.org/10.1007/978-3-319-63688-7_12
https://arxiv.org/abs/2001.00047
https://doi.org/10.1145/3308558.3313740
https://doi.org/10.1145/2810103.2813712
https://www.ft.com/content/1aecb2db-8f61-427c-a413-3b929291c8ac
https://www.ft.com/content/1aecb2db-8f61-427c-a413-3b929291c8ac
https://medium.com/coinmonks/understanding-proof-of-stake-the-nothing-at-stake-theory-1f0d71bc027
https://medium.com/coinmonks/understanding-proof-of-stake-the-nothing-at-stake-theory-1f0d71bc027
https://doi.org/10.1145/1566374.1566376
https://doi.org/10.1145/1566374.1566376
https://doi.org/10.1007/978-3-030-26948-7_14
https://doi.org/10.1007/978-3-030-26948-7_14
https://eprint.iacr.org/2015/796
https://doi.org/10.1145/3087801.3087809
https://doi.org/10.1145/322186.322188
https://doi.org/10.1145/322186.322188
https://tezos.gitlab.io/whitedoc/proof_of_stake.html
https://tezos.gitlab.io/whitedoc/proof_of_stake.html

	Abstract
	1 Introduction
	2 Compliance Model
	2.1 Preliminaries
	2.2 Basic Notions
	2.3 Compliant Protocols
	2.4 Compliance and Approximate Nash Equilibria

	3 Blockchain Protocols
	3.1 The Setting
	3.2 Utility: Rewards and Costs

	4 Block-Proportional Rewards
	4.1 Bitcoin
	4.2 Proof-of-Stake

	5 Resource-Proportional Rewards
	5.1 Cost-induced Non-compliance
	5.2 Compliant Non-equilibrium PoS

	6 POS under Relative Utilities
	7 Externalities
	7.1 Utility
	7.2 Compliance
	7.3 Penalties

	References

