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SUMMARY
Prediction-for-perception theories suggest that the brain predicts incoming stimuli to facilitate their catego-
rization.1–17 However, it remains unknown what the information contents of these predictions are, which hin-
ders mechanistic explanations. This is because typical approaches cast predictions as an underconstrained
contrast between two categories18–24—e.g., faces versus cars, which could lead to predictions of features
specific to faces or cars, or features from both categories. Here, to pinpoint the information contents of pre-
dictions and thus their mechanistic processing in the brain, we identified the features that enable two
different categorical perceptions of the same stimuli. We then trained multivariate classifiers to discern,
from dynamic MEG brain responses, the features tied to each perception. With an auditory cueing design,
we reveal where, when, and how the brain reactivates visual category features (versus the typical category
contrast) before the stimulus is shown. We demonstrate that the predictions of category features have a
more direct influence (bias) on subsequent decision behavior in participants than the typical category
contrast. Specifically, these predictions are more precisely localized in the brain (lateralized), are more spe-
cifically driven by the auditory cues, and their reactivation strength before a stimulus presentation exerts a
greater bias on how the individual participant later categorizes this stimulus. By characterizing the specific
information contents that the brain predicts and then processes, our findings provide new insights into the
brain’s mechanisms of prediction for perception.
RESULTS

Cued predictions bias perceptual decisions
We used a unique stimulus, Dali’s Slave Market with the Disap-

pearing Bust of Voltaire, which is known to elicit two distinct per-

ceptions based on processing contents represented within

different spatial frequency (SF) bands.25–27 This image can be in-

terpreted as either a Voltaire bust or as two nuns (Figure 1A, orig-

inal). This differentiation arises from processing either low SF

(LSF, at 8 cycles per image) or high SF (HSF, at 16 and 32 cycles

per image),25 as illustrated in Figure 1A, features (STARMethods

section stimuli; Figures S1A and S1B).

Before the experiment, we trained our participants (n = 10) to

recognize and differentiate the specific features that enable each

of these distinct perceptions. Additionally, we introduced audi-

tory cues: a 250-ms pure tone at either 196 Hz (associated

with Voltaire) or 1,760 Hz (associated with nuns). A neutral tone

at 880 Hz was also introduced, which didn’t predict any partic-

ular perception. During the main experiment, participants were

presented with hybrid images. To create these images, we uti-

lized Gabor sampling to adjust the visibilities of LSF Gabor fea-

tures that induce Voltaire perception and, independently, HSF

Gabor features that induce nuns perception. We manipulated

these features by altering the proportions of visible information.
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The stimuli images were essentially a blend, containing varying

proportions of the two features, added to a noise background.

It is important to note that the proportions of Voltaire and nuns

Gabor features were not fixed. They were independently and

randomly sampled for each trial based on predetermined distri-

butions, as shown in Figure 1A. The experiment was structured in

two phases for each trial: a prediction stage followed by a cate-

gorization stage (Figure 1B). During prediction, one of the three

auditory cues was randomly played to predict the features of

the upcoming visual stimulus (Voltaire or nuns) or nothing. In

the subsequent categorization stage, participants viewed the

hybrid image and were tasked with reporting their strongest

perception: Voltaire, nuns, or—in cases of uncertainty—they

could respond with ‘‘don’t know.’’

Figure 1C confirms that predictive cues biased perceptual deci-

sion behavior, as evidenced by the group-level psychometric

curves. For each auditory cue (panel) and each potential decision

response (colored curves), we analyzed how the presence of spe-

cific features (i.e., relative proportions of Voltaire versus nuns Ga-

bor features in the stimulus, x axis) affected the probability of a

particular response (y axis) (STAR Methods section cued-predic-

tions bias perceptual decisions). The point of subjective equality

(PSE) is a crucial metric here. It represents the level of stimulus ev-

idence (x axis) where both the Voltaire and nuns responses (y axis)
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Figure 1. Experimental design

(A) Stimuli. From the original ambiguous stimulus,

we applied filters to extract the Voltaire and nuns

stimulus features,25 respectively represented

within LSF 8 cycles/image and HSF 16–32 cycles/

image (see also STARMethods section stimuli and

Figure S1). On each trial, a hybrid stimulus

comprised randomly and independently selected

proportions of the Voltaire (red) + nuns (blue) fea-

tures filtered with spatial Gabors. These pro-

portions were independently and randomly

sampled from the distributions, based on whether

the cue was Voltaire versus nuns (under neutral

cueing, proportions were random between 0%

and 100%). The hybrid example illustrates pro-

portions of 74% Voltaire + 42% nuns Gabor fea-

tures (see vertical marks in the distribution) in-

serted inGabor background noise (STARMethods

section stimuli).

(B) Cueing experiment. Prediction stage: a 250-ms

pure tone cued either the Voltaire (196 Hz) or nuns

(1,760 Hz) stimulus distribution, or was neutral

(880 Hz), followed by a 1.2-s blank interval. Cate-

gorization stage: a 500-ms fixation was followed

by a hybrid image that remained on the screen

until response (nuns versus Voltaire versus don’t

know, 3-AFC), followed by a 750- to 1,250-ms

inter-trial interval (ITI) with jitter.

(C) Decision behavior. Relationships between

stimulus feature evidence and response proba-

bility, i.e., color-coded curves of p(Voltaire),

p(nuns), and p(don’t know), for each auditory cue

(panel). The point of subjective equality (PSE,

black dot) is the level of stimulus evidence of

equally likely p(Voltaire) and p(nuns), as illustrated

in the stimulus image. Left and right panels show

that Voltaire and nuns cues shift the PSE in

opposite directions compared with the neutral cue

(central). See also Table S1.

(D) Cued-prediction reactivation. (1) Category-

contrast classifier. Trained on a localizer run prior

to the cueing experiment, category-contrast

classifiers learn to discriminate the bottom-up

patterns of sensor-level neural responses to each

stimulus category (color-coded as Voltaire versus

nuns and measured with MEG). (2) Category-feature classifier. Trained on categorization-stage sensor-level data under the neutral cue, category-feature

classifiers learn to discriminate the high (>70%) versus low (<30%) proportions of Voltaire Gabor features and, separately, nuns Gabor features. (3) Prediction

stage reactivation. Following the auditory cues that predict the Voltaire versus nuns Gabor feature distributions (A), the category-contrast and the category-

feature classifiers quantify the single-trial reactivation strength of the sensor-level pattern of MEG activity every 4 ms of the prediction stage.
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intersect and are equally probable. Under the neutral cue (Fig-

ure 1C, central), the PSE is �8%, meaning that 8%more Voltaire

evidence is required for equiprobable responses, a small bias to-

ward nuns responses. However, when we cue Voltaire (left), the

PSE shifts because participants require 33% less Voltaire evi-

dence. Similarly, when we cue nuns (middle) the PSE shifts to

38% less nuns evidence. These cue-induced shifts in PSE were

replicated in each participant (Table S1), reinforcing the idea

that predictive cueing strongly biases responses toward the

cued behavior.

Brain predictions: Category contrast versus category
features
We sought to determine how auditory cues reactivate from the

participant’s memory specific visual representations, namely
5506 Current Biology 33, 5505–5514, December 18, 2023
the Gabor features associated with Voltaire and nuns behavioral

responses. This was based on an extensive dataset of 3,375 tri-

als per participant, with all decoding and statistical inferences

performed with each participant.28,29 The core of our analyses

is a comparison between two types of cued reactivations: (1)

our new category features reactivations, where specific features

of Voltaire and nuns are evoked, and (2) the more typical cate-

gory contrast reactivations, where there is an underconstrained

contrast being made between Voltaire and nuns, which could

be feature specific to Voltaire or nuns, or features from both

categories.

Our methods are illustrated in Figure 1D. Initially, we devel-

oped category-contrast classifiers (Figure 1D1). These were

trained to discriminate between images containing 100% Vol-

taire features and those containing 100% nuns features. To
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achieve this, we relied on the bottom-up MEG responses from a

localizer run before the main experiment. In this localizer, the

participants categorized an outlier in a sequence (e.g., in a series

of 100%Voltaire images, spot the lone 100%nuns image). Using

these category-contrast classifiers, we gauged the prediction

strength during the prediction stage, essentially evaluating the

per-trial cued reactivation of the Voltaire versus nuns category

contrast based on the auditory cues, where prediction strength

is the per-trial decision value of the classifier. However, these

classifiers cannot separately quantify the reactivation of the

feature content unique to Voltaire and to nuns. To overcome

this, we developed category-feature classifiers. These learned

the relationship between Voltaire-specific features and brain re-

sponses, and independently between nuns-specific features

and brain responses. Training for these classifiers occurred us-

ing the categorization stage data, under neutral cueing (Fig-

ure 1D2). In the prediction stage, the per-trial decision values

of these classifiers quantified how strongly the cues reactivated

the predicted category features (Figure 1D3). Our final task was

comparing how the per-trial prediction strengths of these two

types of classifiers influence participant behavior. To preview

our results, predictions rooted in category features are superior.

They offer more precise localization, are more specifically driven

by auditory cues, and their per-trial reactivations more strongly

bias participant behavior. We now detail these results below.

Reactivation of predictions with category-contrast
classifiers
Previous research indicates that top-down predictions of cate-

gory contrast reverse their bottom-up flow.18,19 We therefore

applied category-contrast classifiers during the prediction stage

of our study to set a comparison standard for our novel category-

feature classifiers.

For every participant, binary category-contrast classifiers

were trained and cross-validated on images of 100% Voltaire

and 100% nuns, every 4 ms of the 0–400 ms post-stimulus

response of the MEG localizer (Figure 1D1). We similarly trained

classifiers in a separate MEG localizer of the auditory cues

(196 Hz, Voltaire versus 1,760 Hz, nuns). Both these localizers

were trained before the primary cueing experiment to avoid

contamination (STAR Methods sections visual localizer and

auditory localizer). Classifiers were further split into the ‘‘early’’

set, trained 75–150 ms post stimulus (capturing low-level visual

features processing,30,31 early P1 event-related potential [ERP]),

and the ‘‘late’’ set, trained 150–280 ms post stimulus (capturing

advanced categorization stages, N170 and N250 ERPs26,32–37)

(STAR Methods section localizer cross-validation).

During the top-down prediction stage, we applied these early

and late bottom-up category-contrast classifiers (illustrated in

Figures 1B and 1D3). This generated per-trial classifier decision

values every 4 ms, representing the prediction strength of cate-

gory contrast. We calculated the progression of this prediction

strength over time (i.e., reactivation performance), computing

for each classifier mutual information (MI) between ground truth

Voltaire versus nuns cue and decision valuet, (FWER corrected

over 100 localizer training time points and 150 prediction stage

testing time points, p < 0.05, one-tailed; STAR Methods section

category-contrast reactivation). We then identified two classi-

fiers: one with maximum prediction reactivation performance
from the early set (75–150ms) and one with maximum prediction

reactivation from the late set (150–280 ms)—i.e., both selected

from the matrix of localizer training time points 3 prediction

testing time points (see Figure S1C for complete data). These

classifiers gauged the strength of the auditory-cue-induced re-

activation of the prediction of Voltaire versus nuns category

contrast.

As depicted in Figure 2, dark purple curves reveal across partic-

ipants that auditory cues reactivate late classifiers more strongly

comparedwith the early ones (shown in light purple). Source local-

izations of these predictions were determined by computing MI(-

late classifier decision value; MEG source activity) on all 8,196 in-

dividual sources during the prediction stage. Initial ventral stream

involvement from the temporal cortex (middle temporal gyrus

[MTG], superior temporal gyrus [STG], parahippocampal cortex

[PHC], and fusiform gyrus [FG]) moving down to the occipital cor-

tex (lingual gyrus [LG], pericalcarine cortex [PCAL], cuneus [CUN],

and lateral occipital cortex [LOC]), followed by the bilateral occip-

ital cortex.18,19 9/10 participants displayed such consistent visual

category-contrast predictions (Figure S1; FWER, p < 0.05, one-

tailed, Bayesian population prevalence [BPP]28,38) with maximum

a posteriori probability (MAP) estimate of the population preva-

lence of the effect of 9/10 replications = 0.9 (95%highest posterior

density interval [HPDI] [0.61 0.99]).

We controlled the distinct propagation of the auditory cue

contrast by decoding the prediction stage with classifiers trained

on the auditory localizer data (orange). Initially discriminated in

the temporal cortex (75–150 ms post-cue), the auditory cue

contrast does not propagate beyond MTG and STG. It is impor-

tant to note that while the auditory cue contrast and the reacti-

vated visual category contrast occur at similar times, they spread

differently within the brain (see regions’ histograms and STAR

Methods section source representation of category contrast).

We replicated this result in all participants (BPP = 1.0 [0.75

1.0]; MAP [95% HPDI]; see Figure S1 for individual results).

Moreover, when we accounted for and removed the effect of

the auditory cue contrast, the spread pattern of the visual reac-

tivation remained similar—i.e., computed as conditional MI

(CMI), that is CMI(ground truth Voltaire versus nuns cue; visual

decision value|auditory decision value; Figure S2A). This analysis

clearly shows that the reactivation patterns observed for visual

category contrast are not conflated with the contrasts present

in the auditory cues.

Reactivation of predictions with category-feature
classifiers
We now turn to study the Gabor features that the participant’s

brain reactivates separately for Voltaire and for nuns. We divided

the stimuli into those with high (>70%) versus low (<30%) Gabor

features (Figure 1A). Then, we trained our new bottom-up cate-

gory-feature classifiers (Figure 1D2) to discriminate high versus

lowGabor features.We did this frommultivariateMEG sensor re-

sponses every 4 ms of the categorization stage, under the

neutral cue (STAR Methods section category-feature classifier

cross-validation). With these we could study how the brain reac-

tivates theGabor features of Voltaire and those of nuns at predic-

tion, separately under Voltaire and under nuns cueing—i.e.,

separately computing MI(Voltaire versus neutral cue; Voltaire-

feature-classifier decision value) and MI(nuns versus neutral
Current Biology 33, 5505–5514, December 18, 2023 5507



Figure 2. Voltaire versus nuns category-

contrast reactivation

(A) Prediction reactivation performance. Purple

curves show the dynamic prediction reactivation

performance of the Voltaire versus nuns category

contrast at each time point of the prediction stage,

for the early classifier (with the highest perfor-

mance over 75–150 ms post-cue, light purple) and

late classifier (with highest performance over 150–

280 ms post-cue, dark purple) averaged across

participants—shaded regions denote ±SEM. To

control for the propagation of the auditory cue

contrast, we trained auditory classifiers to

discriminate the two cues on the auditory localizer

data and similarly tested their decoding perfor-

mance on the same prediction stage responses

(orange). The curves show that the late bottom-up

classifier (dark purple) better models the two

peaks of Voltaire versus nuns visual prediction

reactivation (dashed arrows) whereas the early

classifier (light orange) better models the two

peaks of auditory decoding.

(B) Source representations. Cortical surface maps

reveal the MEG sources that contribute to the two

reactivation peaks of the late category-contrast

classifier (dark purple) and early auditory classifier

(light orange), computed as MI(classifier decision

value; MEG source activity).

Bar plots in (A) show their mean representation

strength (MI) across all sources in each ROI at the

two peak time points (early, filled bars; late, un-

filled bars). LG, lingual gyrus; PCAL, pericalcarine

cortex; CUN, cuneus; LOC, lateral occipital cor-

tex; FG, fusiform gyrus; ITG, inferior temporal gy-

rus; MTG, middle temporal gyrus; STG, superior

temporal gyrus; TP, temporal lobe; PHC, para-

hippocampal cortex.

See also Figures S1 and S2.
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cue; nuns-feature-classifier decision value). Furthermore, we

selected the best-performing classifiers at the peak time point

of prediction decoding (FWER corrected over 100 categoriza-

tion-stage training time points and 150 prediction stage testing

time points, p < 0.05, one-tailed; STAR Methods section cate-

gory-feature reactivation). We replicated this significant decod-

ing (FWER corrected over 100 categorization-stage training

time points and 150 prediction-stage testing time points,

p < 0.05, one-tailed) in 10/10 participants for Voltaire (BPP =

1.0 [0.75 1.0]; MAP [95% HPDI]) and 9/10 participants for nuns

(BPP = 0.9 [0.61 0.99]; MAP [95% HPDI]; Figure S1).

We then localized the brain sources giving rise to these cate-

gory-feature predictions by computing MI(Voltaire-feature-clas-

sifier decision value; MEG source activity) and MI(nuns-feature-

classifier decision value; MEG source activity) on 8,196 sources

at peak reactivation time (see complete data in Figure S1D;

STAR Methods section category-feature reactivation). What we

found (as shown in Figure 3A) is that category-feature predic-

tions comprise bilateral PHC, but also that they lateralize to left

LG, LOC, and FG for coarser-scale Voltaire, but bilateral to the

early visual cortex and right LOC for finer-scale nuns. Thus, cate-

gory-feature classifiers lateralized the reactivations of the pre-

dicted features, a result that aligns with lateralized bottom-up

representations of scale information shown in other work39,40

and in our localizer task (Figure S2).
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Additionally, Figure S3 highlights an interesting pattern: when

prediction is lateralized to one hemifield to the left or right HSF

nun’s face, individual participants subsequently represent the

same-side HSF nun’s face for categorization behavior. This sug-

gests a relationship between prediction and categorization

behavior that the next sections develop.

Specificity of cued reactivations
To investigate how selectively auditory cues reactivate visual

predictions, we contrasted reactivations when cues are Voltaire

versus neutral and when they are nuns versus neutral. For both

contrasts, we compared the performance of the category-

contrast and category-feature classifiers (Figure 3B; STAR

Methods section specificity of cued reactivations). For each

feature, we found that selective reactivation for the cue contrast

is highest with the category-feature classifier, indicating its

higher cue specificity. That is, the Voltaire cue contrast reacti-

vates the Voltaire-feature classifier more strongly than the

nuns-feature classifier and category-contrast classifier. We

replicated this cue specificity in 8/10 participants for Voltaire-

cued reactivations (BPP = 0.8 [0.49 0.96]; MAP [95% HPDI])

and 7/10 participants for nuns-cued reactivations (BPP = 0.7

[0.53 0.82]; MAP [95% HPDI]). Thus, with greater specificity of

cued reactivations, the category-feature classifiers (versus cate-

gory-contrast classifier) provide a finer conceptual resolution of



Figure 3. Predictions of Voltaire and nuns

Gabor features

(A) Source representations. Cortical surface plots

localize the MEG sources that contribute to cate-

gory-feature predictions, at themaximal time point

of cued reactivation of the pattern that represents

the discrimination of high versus low Gabor fea-

tures for Voltaire (red) and for nuns (blue). See also

Figure S2. Bar plots indicate mean (across par-

ticipants) reactivated category-feature prediction

strength (MI) at peak time, in left (darker) and right

(lighter) hemispheres, showing that (1) bilateral

PHC represent Voltaire and nuns Gabor pre-

dictions, (2) Voltaire Gabor predictions are left

lateralized (in LG, LOC, and FG), and nuns Gabor

predictions are right lateralized (in LOC). For each

ROI, we compared the source representations

between the left and right hemispheres, separately

for Voltaire and nuns feature predictions. Asterisk

(*) provides the prevalence of participants with

significant lateralization (p < 0.05, independent t

tests with Bonferroni correction). See also

Figures S1 and S2.

(B) Specificity of reactivation. Color-coded curves

show the relative performance of the best cate-

gory feature (red for high versus low Voltaire Ga-

bors; blue for nuns) and best category-contrast

(Voltaire versus nuns) classifiers during the pre-

diction stage. See also Figure S3.
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the visual contents predicted when studying the mechanisms of

prediction for categorization.

Reactivation of category features at prediction bias
behavior at categorization
Finally, we wanted to compare how cued reactivations of cate-

gory contrast versus category features during prediction change

decision behavior during categorization. Specifically, we

compared how the top 30% (strong) versus bottom 30%

(weak) prediction strengths (i.e., the classifier decision values)

trials change the psychometric relationship between stimulus

evidence and decision probabilities (STAR Methods section re-

activation biases behavior). Figures 4A and 4B present these

results.

Figure 4A shows that the strength (strong versus weak) of

category-feature reactivations at prediction biases decision

behavior—i.e., shift the PSE by 11% (25%–36%) on Voltaire-

cued trials and �16% (�24% to �40%) on nuns-cued trials.

We replicated these PSE shifts (FWER corrected over 100 cate-

gorization-stage training time points and 150 prediction-stage

testing time points, p < 0.05, two-tailed) in 8/10 participants

(BPP = 0.8 [0.49 0.96]; MAP [95%HPDI]) (see Table S1 for the in-

dividual results). To compare, Figure 4B shows that the strength

of category-contrast reactivations (nuns versus Voltaire, trained

on 100% localizer stimuli), shifts the PSE by only�2% (nuns pre-

dictions, only 2/10 participants with significant effect) and 9%

(Voltaire, only 3/10 participants with significant effect) (see

Table S1 for the individual results).

Notably, the trial-by-trial prediction strength of category fea-

tures biases the participant’s decisions under both auditory

cues. Further, the magnitude of this bias originating from the

brain (before the stimulus is shown) is comparable to the full
effect of the cue itself on behavior following stimulus presenta-

tion (as shown in Figure 1C). Specifically, the PSE changes

due to brain reactivations of category features are 27% (Voltaire)

and 52% (nuns) of the changes in PSE that are due to the audi-

tory cues themselves on behavior (cf. Figure 1C). That is, strong

(versus weak) category-feature reactivations under Voltaire

cueing change behavioral PSE by 11%, whereas Voltaire versus

neutral cueing changes behavioral PSE by 41%; for the nuns

cue, numbers are �16% (strong versus weak nuns-cued reacti-

vations) versus �30% (nuns versus neutral cue).

Finally, we found that participants tend to rely more strongly on

predictions when the evidence is ambiguous.9 Voltaire behavioral

responses when brain predictions are strong versus weak are

significantly higher when stimuli are more ambiguous

([0%,40%], i.e., closer to PSE versus [�0%,�40%], t(9) = 3.648,

p = 0.005, paired-sample t tests, Bonferroni correction).

In sum, the effect of category-feature reactivations on

behavior is stronger and across a wider range of stimulus evi-

dence compared with the category-contrast classifier. Thus,

focusing on category-specific feature predictions can disen-

tangle the decoded category contrast to improve our under-

standing of themechanisms of prediction, from cue reactivations

of category-specific features to the effect that these predictions

exert on decision behavior.

DISCUSSION

To better understand prediction for perception, we must ac-

cess the dynamic perceptual contents that the brain predicts

about a category—i.e., the features that represent this category

in memory. We argued that typical decoders trained to discrim-

inate the bottom-up contrast between two categories (or
Current Biology 33, 5505–5514, December 18, 2023 5509



Figure 4. Strength of predictions biases de-

cision behavior

(A) Category-feature predictions. For Voltaire- and

nuns-cued trials (panels), we independently

computed the relationships between stimulus

feature evidence (i.e., proportions of Voltaire

versus nuns Gabor features, x axis) and response

probabilities (i.e., p(Voltaire) [red curves], p(nuns)

[blue curves], y axis) for different strengths of

predicted category (i.e., Voltaire-cued [left], nuns-

cued [right], and strong [opaque curves] versus

weak [transparent curves] prediction reactivation

strengths of the category-feature decoders). The

black dot is the PSE of equal p(Voltaire) and

p(nuns), as illustrated with the stimulus image. The

curves reveal response bias (vertical offset of light

versus dark curves) across a wide range of Gabor

feature evidence. The differences in the PSE be-

tween the strong and weak reactivation conditions

quantifies this bias.

(B) Category-contrast predictions. Similar ana-

lyses with the category-contrast decoder of Vol-

taire versus nuns only weakly biases perceptual

decisions, and only at high levels of Gabor feature

evidence.

See also Figure S3 and Table S1.
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stimuli) do not access the top-down reactivations of these cate-

gory-specific features. This is because the way in which we set

up a category contrast, such as the difference between a target

category (e.g., car) and a chosen contrast category (like buses

or faces), is inevitably relative to the contrast category (and

often arbitrary) and not necessarily relative to the target cate-

gory itself.

To address this, we considered classifiers that decode the

specific visual features underlying each category—i.e., Voltaire

and nuns Gabor features—and then used these to quantify the

reactivation of the representations of these specific visual fea-

tures at prediction. We showed that top-down reactivations of

the category features (versus category contrast) are more pre-

cisely localized (i.e., lateralized) and more specifically driven by

the cues, with per-trial predicted reactivation strength that

more strongly biases participant’s perceptual categorization

behavior across a wider range of stimulus evidence.
Lateralized source mapping of category-feature
predictions
Previous research has shown that a category contrast can be

predicted across the visual hierarchy, from the prefrontal cortex

to sensory areas.20,41 However, we demonstrated why it is crit-

ical to understand the specific category features that are pre-

dicted. Although category-contrast classifiers showed bilateral

reactivations of the predictions, we showed that classifiers of

the specific category features lateralize the predictions of Vol-

taire features in the left occipital cortex and of nuns features in

right LOC. Importantly, this top-down lateralization of predicted

features is consistent with their bottom-up representations in the

localizers and with the SF-related lateralization in other studies

that show that LSF versus HSF processing is lateralized in left

versus right hemispheres, respectively.39,40
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Generalizing from these insights, it is critical to characterize

the predicted features because predictionmechanismswill likely

align themwith the brain’s representations of the input,6,42 which

could change according to the considered region of the occipito-

ventral hierarchy. Future studies that control stimulus features

could therefore parametrically change the scale or the orienta-

tion features of the same 3D objects to investigate whether

cueing specifically these features (in addition to the object cate-

gory) reactivates category features that are scale- and orienta-

tion-invariant in higher-level rFG43–46 but scale- and orienta-

tion-dependent in the early visual cortex.47–50
Relationship between neural representations of
prediction and perceptual behavior
Advances in neuroimaging have further demonstrated that these

predictions can modulate the neural responses to inputs by

modulating premotor cortex activity51,52 and by suppressing re-

sponses of sensory cortices to predicted stimuli.10,53–56 Such

suppression is tuned to the expected stimulus, indirectly

showing feature specificity57,58 and facilitation of categorization

RT.59 However, these studies did not quantify how strongly the

cue reactivated the predicted contents in the brain nor did they

demonstrate a direct relationship between these reactivated

contents and decision behavior as we did here. One study has

modeled the single-trial relationship between MVPA perfor-

mance and categorization RT.60 Here, we established the direct

relationship between the single-trial prediction strength of spe-

cific visual contents and subsequent perceptual decision

behavior. Our category-feature classifiers directly quantified

the effect of reactivating perception-related category features

on decision behavior bias, whereby stronger feature reactiva-

tions led to stronger decision bias across awider range of feature

evidence, all compared with typical category-contrast
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reactivations. This relationship between reactivation strength

and bias was computed for each cue separately, showing that

the neural reactivations provide additional information about

response bias—i.e., over and above the strong effect of the

behavioral cue.

Our results show that predictions following cue onset impact

subsequent behavior. However, the reactivation of predicted

features is not sustained. Future work should specifically

address how a brief reactivation influences stimulus representa-

tion61 and subsequent behavior. For example, we could aim to

identify the network mechanisms involving frontal, parietal, and

occipital cortex regions62 that could maintain, trial-by-trial, the

readiness for stimulus features following their cued-predictions,

all before stimulus onset.20

Perceptual bias, biased response to the cue, or spatial
attention?
One could oppose the idea that the reported effects of prediction

on behavior (a bias on stimulus perception) might, in fact, reflect

a simpler response bias to the auditory cue (e.g., responding Vol-

taire when hearing the Voltaire cue). This concern might arise

because we did not explicitly model the decision-making pro-

cess while separating the stimulus evidence. However, our

data provide insights into this issue. Specifically, the behavioral

results show that participants 3 and 9 (cf. Figure S1) did not

engage with the perceptual task as instructed. Rather than re-

porting how they perceived the stimuli, the behavior of these

two participants matched the auditory cue (i.e., a response

bias) and we could not decode cued reactivations of the pre-

dicted category features. In contrast, the strength of these

cued reactivations directly and conclusively biased decision

behavior in the remaining 8/10 participants, who therefore

demonstrate a perceptual bias rather than a response bias to

the auditory cue.

One could also argue that our effects of prediction are partially

conflated with those of attention. This is a thorny issue because

features will have spatial locations in 2D images, and here will be

represented across SF bands with Gabor filters. Hence, the pre-

dicted pixels associated with each perception will necessarily

have attentional correlates. However, we explicitly trained par-

ticipants to learn the relationship between 2D image pixels

across SF bands and different perceptual responses. Therefore,

successful learning prior to the cueing experiment necessarily

implies specifically discriminating the features associated with

each perception (STAR Methods section cue-feature training).

Still, teasing apart the specific effects of visual representations

across high-dimensional SF Gabors versus spatial attention (to

the global features or their detailed Gabor features, and how

this differs from ‘‘representation’’) in the context of visual predic-

tions should be the object of detailed investigations,63–65

including in the laminar layers of the early visual cortex.66–68

To conclude, we traced prediction for perception using a real-

istic and well-known ambiguous stimulus and its two perceptual

categorizations. We showed that predictions of category-rele-

vant features disentangle the typical category contrast to

improve a mechanistic understanding of prediction processes

in the brain, from the top-down cue reactivation of category-

feature representations to the trial-by-trial effect of these reacti-

vations on behavior. This approach generalizes to a wider range
of cognitive neuroscience, such as more naturalistic face (e.g.,

facial identity or expression),69–71 object (e.g., cars or build-

ings),72 or scene (e.g., indoor rooms, outdoor environments)51,73

predictions and categorizations. This point brings up the com-

plex question of what the memorized stimulus features are and

howwe can embed them into a generativemodel of the stimulus,

so we can psychophysically model their dynamic predictions in

the brain,70,74–79 as we started developing here. However, to

minimally apply our approach to a cueing design, all we need

is to characterize the features that subtend a recognition task

and then demonstrate that their cued reactivation facilitates

task-behavior as we did here. Such feature characterization is

applicable to any stimulus category, feature sampling scheme,

and visual categorization task.75,76
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants
Ten participants (18-35 years old, mean=25.1, SD=3.4, 3 males and 7 females) took part in the experiment and provided informed

consent. All had normal or corrected-to-normal vision and reported no history of any psychological, psychiatric, or neurological con-

dition that might affect visual or auditory perception. The University of Glasgow College of Science and Engineering Ethics Commit-

tee approved the experiment (Application Number: 300190094).

METHOD DETAILS

Stimuli
At the Prediction Stage (see Figure 1B), a different pure tone cued Voltaire, Nuns, or had no predictive value (described in cue-feature

training below). The Categorization Stage showed a different hybrid image on each trial. We detail these stimuli below.

Prediction Stage: Auditory cues

Pure tones were played for 250 ms, with auditory frequencies of 196Hz (cueing Voltaire), 1760Hz (cueing Nuns) or 880Hz (no

prediction).

Categorization Stage: Hybrid stimuli

We cropped a grey-level copy of Dali’s Slave Market with the Disappearing Bust of Voltaire to retain the ambiguous part of the image

that simultaneously shows the bust of Voltaire and the two Nuns across different image scales (2563 256 pixels, Figure 1A, Original).

To extract scale information (i.e. Spatial Frequencies, SF), we decomposed the ambiguous image in 5 bands at 128 (22.4), 64 (11.2),

32 (5.6), 16 (2.8), 8 (1.4) cycles per image (c/deg of visual angle), with brightness set at 0.55.

To quantify the image pixels that underlie selective perceptions of Voltaire and Nuns, we computed the Mutual Information (MI)

between the pixel visibility each SF band and perceptual decisions, using data from a previous study.25 Specifically, we computed

MI(Voltaire vs. Don’t Know; pixel visibility) and MI(Nuns vs. Don’t Know; pixel visibility), FWER-corrected over all pixels, p<0.05, one-

tailed. We found significant pixels at 8 cycles/image for Voltaire and at 32 and 16 cycles/image for Nuns.
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To synthesize Hybrid stimuli, we Gabor filtered these significant Voltaire and Nuns pixels to represent themwith Gabor coefficients

at 6 orientations (0, 30, 60, 90, 120, 150 deg.). Then, we randomly sampled X%of the Voltaire Gabor coefficients and independently Y

% of the Nuns Gabor coefficients (2% resolution), while randomly and independently choosing the X and Y proportions according to

the distributions shown in in Figure 1A. Finally, we added the X% Voltaire to the Y% Nuns coefficients and shuffled the Gabor co-

efficients across the background image. We preserved the original contrasts of the Voltaire, Nuns and noisy background Gabors

and set their brightness to the same 0.6 value. We presented the stimuli at 5.72� 3 5.72� of visual angle on a projector screen at

a viewing distance of 115cm.

Procedure
Auditory localizer

Prior to the main experiment, we ran a MEG localizer session to model the bottom-up processing of each auditory cue. Each trial

started with an 250ms pure tone, followed by a 750ms ITI blank. In each 12-trial block, 10 presented the same primary tone; the re-

maining two tones were catch trials. We instructed participants to press a key whenever they heard a catch tone. Each participant

completed 48 such blocks of trials, repeated 16 times for each primary tone, for a total of 576 trials (160 trials per tone).

Visual localizer

Prior to the main experiment, we ran another MEG localizer to model the bottom-up processing of 100% Nuns and 100% Voltaire

visual features. Each trial started with a 250ms image (with 100% Nuns features, 100% Voltaire features on a mid-grey background)

followed by a 1s ITI blank screen. In each 11-trial block, 10 presented the same primary features (e.g. of Voltaire); the remaining image

was a catch trial (e.g. of the Nuns). We instructed participants to press a key whenever they saw a catch image. Each participant

completed 48 such blocks (i.e., 24 blocks per primary image), for a total of 528 trials (240 trials per primary image).

Cue-feature training

Following the completion of the localizer tasks, we trained each participant to learn the association between the auditory cues for

Voltaire and Nuns and the 100% Voltaire and Nuns features. Each trial started with an auditory cue, followed by a 1s blank screen

and an image (100% Nuns or Voltaire) that they categorized as ‘‘Voltaire’’ or ‘‘Nuns’’ (2AFC), followed by feedback (correct vs. incor-

rect). All participants achieved over 95% accuracy in 75 trials, while implicitly learning the coupling between cues and perceptions. In

a second training phase, participants heard an auditory cue and chose the corresponding image (amongst 100% Nuns vs. 100%

Voltaire vs. blank image, 3AFC task), followed by feedback (correct vs. incorrect). All participants achieved >90% accuracy in 36

trials.

Cueing experiment (Figure 1B)

Prediction Stage. Each trial started with a 250ms pure tone (Voltaire, 196Hz; Nuns, 1,760Hz; neutral, 880Hz, each presented on 1/3 of

all trials), followed by a 1s blank screen.

Categorization Stage. Started with a 500ms fixation followed by a Hybrid image on the center of the screen that remained until

response. Participants responded ‘‘Voltaire’’ vs. ‘‘Nuns’’ vs. ‘‘Don’t know’’ as quickly as they possibly could (3-AFC). A 750ms to

1.25s inter-trial interval (ITI) with jitter followed the response. We counterbalanced the use of the three keys (i.e., ‘‘Voltaire,’’

‘‘Nuns,’’ and ‘‘Don’t know’’) across participants, which helped to minimize any effect from specific fingers.

Each participant completed 45 blocks of 75 such prediction-then-categorization trials, in 4-5 sessions run over 4-5 days, for a total

of 3,375 trials per participant.

MEG Data Acquisition and Pre-processing
We measured each participant’s MEG activity with a 306-channel Elekta Neuromag MEG scanner (MEGIN) at a 1,000Hz sampling

rate. We performed the analyses according to recommended guidelines using the MNE-python software80,81 and in-house

Python/MATLAB code.

We rejected noisy channels with Maxwell filtering and visual inspection, and blocks of trials with a head movement > 0.6cm

(tracked by cHPI measurement). For each remaining block, we applied signal-space separation (SSS)82,83 to the raw data to reduce

environmental noise and compensate for head movement. We band-pass filtered the data between 1-150Hz (Hamming FIR filter),

notch-filtered them at 50, 100 and 150Hz and rejected muscle artifacts with automatic detection. We epoched the output data

into [-200ms to 2.2s] trial windows around cue onset (visual stimulus onset is at 1.75s), and rejected jump artifacts with automatic

detection. We concatenated the epoched data of all blocks per session (i.e., �10-16 blocks/day), decomposed the output dataset

with ICA, identified and removed the independent components corresponding to artifacts (eyemovements, heartbeat—i.e., 2-5 com-

ponents/participant).

We resampled the output data at 250 Hz, low-pass filtered them at 25Hz (5th Hamming FIR filter) and performed theminimum-norm

estimate (MNE) analysis with an empty-room recording.We reconstructed the time series ofMEG sources on a 5mmgrid of boundary

element model (BEM) surface (computed with Freesurfer and MNE software per participant). We applied this reconstruction to each

session of trials.

These computations produced for each participant a matrix of single-trial MEG response time series–of dimensions 8,196 MEG

sources x 250Hz sampling rate. We applied the same pre-processing pipeline to the MEG localizer, using the epoched data [0 to

1000ms] following auditory and visual stimulus onset.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Cued-Predictions bias perceptual decisions
To reveal the influence of prediction on decision behavior, we computed the relationship between cues, stimulus feature evidence

and perceptual decision probabilities. Pooling all trials across all participants, we quantified the stimulus feature evidence presented

on each trial as the difference between its percentage of Voltaire and Nuns Gabor features. We then binned the trials by levels of

feature evidence (from -100% to 100%, with 10% steps, Figure 1C, X axis) and calculated ‘‘Voltaire,’’ ‘‘Nuns’’ and ‘‘Don’t Know’’

response probabilities (Figure 1C, Y axis), for each cue type (i.e. Voltaire, Neutral and Nuns panels of Figure 1C). We regressed

the feature evidence and the decision probabilities with local linear Gaussian kernels. We computed the Point of Subjective Equality

(PSE) as the level of stimulus evidence (i.e. of Voltaire% - Nuns% feature evidence) for which Voltaire and Nuns decisions are equi-

probable (Figure 1C).

Category-contrast decoding of predictions
Localizer cross-validation

Tomodel the bottom-up representations of the auditory cues and of the visual Gabor features, we trained different linear classifiers84

(Linear Discriminant Analysis, LDA) using the MEG localizer sensor data. That is, separately for the auditory and visual localizers, we

randomly segmented each participant’s MEG trials into 5 folds (without repetitions) and performed a 5-fold cross-validation.

In each validation iteration, we proceeded in 2 steps

Step 1: Training. We trained linear classifiers84 (with MNE decoding module80) to discriminate the Voltaire vs. Nuns auditory cue

and the 100%Voltaire vs. Nuns Gabor features, every 4ms between 0 and 400ms post stimulus, using as training set theMEG sensor

data from 4 folds.

Step 2: Validation. We tested these trained classifiers every 4ms with the left-out fold. At each time point, we computed classifier

decision value as the inner product of the learned linear weights with the held-out fold sensor data.

Following all 5 iterations, we proceeded to Step 3

Step 3: Cross-validation performance. To quantify decoding performance at each time point on a common scale, we concatenated

trials across folds and calculated every 4ms the MI85 between this classifier decision value and the true stimulus label (i.e. auditory

cues for Voltaire vs. Nuns in the auditory classifiers; 100% Voltaire vs. Nuns Gabor features in the visual classifiers). MI quantifies the

discrimination information about the stimulus that is available from the classifier weights, without forcing a discrete classification.86

We repeated Steps 1 to 3 three times and averaged the resulting three MI matrices (of 100 training time points 3100 testing time

points) to quantify the cross-validated decoding performance. To establish statistical significance, we repeated this procedure 1,000

times with shuffled stimulus labels. We applied Threshold-Free Cluster Enhancement87 (TFCE, E=0.5, H=0.5), thresholding for sig-

nificance with the 95th percentile of the distribution of 1,000 maximum values, each taken across all training 3 testing time points in

the temporal generalization matrix of each shuffle after TFCE (FWER corrected over 100 localizer training time points and 100 local-

izer testing time points,88 p<0.05, one-tailed). The resulting matrices of significant MI comprise the time points with significant cross-

validation performance. We repeated this cross-validation independently for each participant.

Category-contrast reactivation

We used category-contrast classifiers to compute temporal generalization cross-decoding89 on the bottom-up processing of the

auditory cues contrast and the top-down cued-reactivations of the Voltaire vs. Nuns visual contrast as follows (explained with visual

classifiers):

Step 1: Training. We trained Voltaire vs. Nuns classifiers on theMEG localizer data at time points of significant cross-validation (see

localizer cross-validation) between 0 and 400ms post stimulus onset.

Step 2: Testing. At the Prediction Stage, every 4 ms between 0 and 600ms post auditory cue, we computed the singular classifier

decision value from single-trial MEG sensor response. This produced a 2D (training3 testing time) matrix of decision values from the

category-contrast classifiers, where each value indicates the reactivation strength of the category contrast at this time point.

Step 3: Reactivation performance quantification. For each training x testing time combination, we computed across trials the MI

between decision values and ground truth stimulus category (i.e. Voltaire vs. Nuns Gabor features). Permutation testing (1,000 rep-

etitions) established statistical significance (corrected for multiple comparisons with TFCE, FWER corrected over 100 localizer

training time 3 150 Prediction Stage testing time points, one-tailed, p < 0.05).

Step 4: Early vs. Late classifiers. We split the localizer classifiers into the Early (trained 0-150ms post-stimulus) and Late sets

(trained 150-280ms post-stimulus). Tomeasure performance, we chose the Early classifier and the Late classifier withmaximum pre-

diction reactivation performance. As above inference was FWER corrected over all classifiers considered.

We repeated Steps 1 to 4 to generate the performance curves of each participant. Figure 2A averages them across participants,

separately for Early and Late category-contrast classifiers, for the auditory cues (indicating cue processing) and the visual category

contrast (indicating prediction reactivation).

Additionally, for each participant and tested time point t of the Prediction stage, we removed the effect of the auditory cue-

contrast–i.e. computing conditional MI, CMI(ground truth of Voltaire vs. Nuns cue; visual decision valuet | auditory decision valuet)

using the Late visual classifier and the auditory classifier trained at localizer time t. Figure S2A averages the CMI curves across

participants.
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Source representation of category-contrast

To localize the MEG source activity underlying auditory and visual category-contrast performance, we must be careful with direct

interpretation of weight vectors in sensor space.90 To address this we used a correlation forward model, where we computed MI be-

tween the classifier decision value and source activity, to determine the contribution of each source to the classifier performance.91

We proceeded as follows:

Step 1: Time selection. We selected the two time points of the Prediction Stage when classifier performance peaks–i.e. one in Early

prediction (before 150ms post cue); one in Late prediction (after 150ms post-cue).

Step 2: Source representation reconstruction. At Early and Late time points, for all 8,196 sources, we computedMI between single-

trial category-contrast classifier decision values and single-trial source activity.

We repeated this two-step analysis in each participant to reconstruct their source representations of the auditory and visual cate-

gory-contrasts at Early and Late Prediction time points. Figure 2B shows their group average; Figure S1 shows individual participant

results.

Category-feature decoding of predictions
Category-feature classifier cross-validation

To separately model the dynamic bottom-up representations of Nuns features and Voltaire features, we trained classifiers84 (using

the MNE decoding module) at the Categorization Stage under neutral cueing. Specifically, every 4ms post-stimulus, we trained bi-

nary category-feature Voltaire classifiers on sets of trials with >70% Voltaire (i.e., the top 30% of the trial distribution) vs. <30% Vol-

taire (i.e., the bottom 30%), and category-feature Nuns classifiers on sets of trials with >70% Nuns vs. <30%. We segmented the

participant’s trials into 5 folds based on stratified sampling and performed a 5-fold cross-validation.

In each iteration, and separately for Voltaire and Nuns classifiers, we proceeded as follows:

Step 1: Training. We trained linear classifiers to discriminate >70% Voltaire vs.<30% Voltaire, every 4ms between 0 and 400ms

post stimulus at the Categorization Stage, under neutral cueing, using MEG sensor data from 4 folds as the training set. We repeated

training for the >70% Nuns vs. < 30% Nuns classifiers.

Step 2: Validation. We tested the trained classifiers every 4ms on the left-out fold, computing at each time point the decision value

as the inner product between classifier weights and held-out fold trials.

Following all 5 iterations, we proceeded to Step 3

Step 3: Cross-validation performance. To quantify decoding performance every 4ms on a common scale, we concatenated trials

across folds and calculated MI between this classifier decision value and the true stimulus label (>70% Voltaire/Nuns vs. <30%

Voltaire/Nuns).

To quantify cross-validation, we repeated Steps 1 to 3 three times and averaged the resulting three MI matrices (of 100 training3

100 testing time points). We established statistical significance with permutation testing (1,000 repetitions), corrected for multiple

comparisons with TFCE–FWER over 100 Categorization Stage training time points 3 100 Categorization Stage testing time points,

one-tailed, p < 0.05. The resulting matrices of significant MI comprised the time points with significant cross-validation performance.

We repeated this cross-validation independently for each participant.

Category-feature reactivation

We used the category-feature classifiers to separately cross-decode reactivations of Voltaire and Nuns at the Prediction Stage. We

traced their source representations as follows:

Step 1: Training. We trained the >70% vs. <30% category-feature Voltaire and category-feature Nuns classifiers at time points

when they significantly cross-validate (see category-feature classifier cross-validation), using neutral-cued trials with >70% and

<30% Voltaire and Nuns MEG responses.

Step 2: Testing. Every 4ms between 0 and 600ms of the Prediction Stage, we tested category-feature classifiers performance on

theMEG sensor data. Each trial provides a 2D (training3 testing time) matrix of decision values that quantify the reactivation strength

of the category-feature prediction.

Step 3: Reactivation performance quantification. Separately for Voltaire and Nuns reactivations, and for Voltaire-cued, Nuns-cued

and neutral-cued trials, we computed for each training x testing time cell of the matrix the MI between the category-feature classifier

values and the ground truth cue labels (i.e. Voltaire, Nuns and neutral). We established statistical significancewith permutation testing

(1,000 repetitions) and corrected for multiple comparisons with TFCE–FWER over 100 Categorization Stage training time points 3

150 Prediction Stage testing time points, one-tailed, p < 0.05. We then selected the Voltaire classifier and the Nuns classifier with

maximum reactivation performance for the Voltaire Gabor features and separately for the Nuns Gabor features.

Step 5: Source representations.90,91 To visualize the predictions of Voltaire- and Nuns-specific features on MEG sources at their

peak reactivation during the Prediction Stage, we computedMI between single-trial category-specific Gabor feature classifier values

and MEG source activity. We applied this analysis on all 8,196 sources covering the whole brain.

Step 6: Statistical test of lateralization. To test the significance of the lateralization in Voltaire- and Nuns- feature predictions, for

each ROI (including LG, PCAL, CUN, LOC, FG, PHC), we performed independent-sample t-tests comparing the Step 5 source rep-

resentations between the left and right hemispheres. We applied Bonferroni correction for multiple comparisons. We reported the

prevalence of participants displaying significant lateralization patterns.

We repeated Steps 1 to 5 for each participant to produce MEG source representations of Voltaire and Nuns category-feature re-

activations (see Figure 3A for their group averages, Figure S1 for per-participant results).
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Specificity of cued-reactivations

To investigate how selectively the cue (for Voltaire and Nuns) reactivates predictions, we compared per participant the reactivation

performance of the category-feature and the category-contrast classifiers as follows:

Step 1: Classifier selection. For each participant, across all training (0-400ms post visual stimulus) and testing time points (0-600ms

post auditory cue), we selected the three classifiers with maximal reactivation performance: the Voltaire and the Nuns category-

feature classifiers (see category-feature reactivation) and the category-contrast Voltaire vs. Nuns classifier (see category-contrast

reactivation).

Step 2: Reactivation performance quantification. We compared these three classifiers on their classification of Prediction Stage

MEG sensor data, every 4ms between 0–600ms post-cue (Figure 3B).

Reactivation biases behavior

To compare how the trial-by-trial category-feature decoding and category-contrast reactivation at Prediction change response prob-

abilities at Categorization, we examined how their strong vs. weak reactivations change the psychometric relationship between stim-

ulus evidence and response probabilities. For each participant, and separately for Nuns-cued and Voltaire-cued trials, we proceeded

as follows:

Step 1: Time selection. Every 4ms of the Prediction Stage, we computed the difference of reactivation strength (i.e. classifier de-

cision values) when the participant then categorizes the stimulus as ‘‘Voltaire’’ and as ‘‘Nuns’’ (e.g. on Voltaire-cued trials). We es-

tablished statistical significance with permutation testing (1,000 repetitions), corrected for multiple comparisons over training 3

testing time, two-tailed, p<0.05. We extracted the single-trial reactivation strength when this significant difference is maximal.

Step 2: Reactivation split. We binned the Gabor feature evidence from -100% to 100% (10% step). In each bin, we selected trials

with top vs. bottom 30% reactivation strength and compute the probabilities of ‘‘Voltaire,’’ ‘‘Nuns,’’ and ‘‘Don’t Know’’ responses.

We repeated Steps 1 to 2 in each participant and computed the group median of decision probabilities for each bin of feature ev-

idence. We then regressed the feature evidence and the group-median decision probabilities (local linear Gaussian kernel), sepa-

rately for the top and bottom 30% of the trial distribution. Figures 4A and 4B compare these psychometric relationships between

category-feature and category-contrast reactivations.

Localizer Linear Representation

To model the bottom-up representation of Voltaire and Nuns features in the localizer, every 4 ms between 0 and 400 ms post-stim-

ulus, we computed independent multivariate linear regressions separately for Nuns (N) and Voltaire (V).

y = b0 + b1N
y = b0 + b1V

We fitted each model with least-squares, resulting in beta coefficients for the intercept and slope. We computed the fit in the MEG

activity of the source with a multivariate R2 that quantifies multivariate variance as the determinant of the covariance matrix:

R2 = 1�

���ðy � byÞT ðy � byÞ
���

���ðy � yÞT ðy � yÞ
���

where y; y; by are respectively source activity, its mean and the model prediction. This linear modelling produced a time course of R2

values per source every 4ms. For each participant, we localized the Voltaire and Nuns source representation at the time point with

highest R2 between 150-280ms post-stimulus. Figure S2 shows the average source representations across participants.

REACTIVATION OF LEFT VS. RIGHT NUNS FACE FEATURES

We used the left-nun and right-nun classifiers to separately cross-decode reactivations of the left and right Nuns at the Prediction

Stage and their representations at the Categorization Stage. We traced their source representations as follows:

Step 1: Training. Every 4ms between 0 and 500ms, across all participants Categorization stage neutral-cued MEG responses, we

trained high vs. low visibility feature classifiers separately for left and right nun face features. We used two images for high visibility

and two images for low visibility of each feature (left feature, 46% and 76% for high visibility vs. 0% and 2% for low visibility, magenta

in Figure S3; right feature, 42% and 56% vs. 0% and 2%, green).

Then, for each participant, we proceeded as follows

Step 2: Prediction Testing. On Nuns and neutral cued trials, every 4ms between 0 and 600ms of the Prediction Stage, we tested left

and right nuns classifiers performance onMEG sensor data. Each trial provides a 2D (training3 testing time) matrix of decision values

that separately quantifies the reactivation strength of the left nun and right nun predictions. For each training x testing time cell of the

matrix, we computed prediction performance as the MI between the left and right nuns classifier values and the cue (i.e. Nuns vs.

neutral).
Current Biology 33, 5505–5514.e1–e6, December 18, 2023 e5



ll
OPEN ACCESS Report
Step 3: Categorization Testing. Every 4ms between 0 and 500ms of the Categorization Stagewith Nuns cue, we tested left and right

nuns classifiers performance on MEG sensor data. For each training x testing time cell of the matrix, we computed categorization

performance as the MI between nuns proportions of the stimuli and the left and right nuns classifier values.

Step 4: Comparison. To compare the prediction and categorization of left and right nun features, we took for each the maximum

performance over the Prediction and Categorization stages across all training x testing time points.

Step 5: Source representations. To visualize predictions of left and right nun features with the highest performance at Prediction,

we computed MI between single-trial classifier values and MEG source activity. We applied this analysis on all 8,196 sources

covering the whole brain.

Step 6: Bias for behavioral response. For each stimulus pixel, on neutral cued trials we computed MI between single-trial pixel

values and participant’s responses (Nuns vs. other responses), establishing statistical significance with permutation testing–i.e.

100 repetitions, corrected for multiple comparisons over 256 3 256 pixels, one-tailed, p<0.05. Across the pixels representing the

left-nun and separately the right nun, we computed the median of significant MI and compute the difference between these two me-

dians. This difference indicates the bias for the left- or right-nun pixels for behavioral response.

We repeated Steps 2 to 6 for each participant to produce MEG source representations of left or right Nuns category-feature re-

activations (see Figure S3 for per-participant results).
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