

Petrov, A. V. and Macdonald, C. (2024) RecJPQ: Training Large-Catalogue
Sequential Recommenders. In: 17th ACM International Conference on Web Search
and Data Mining, Merida, Mexico, 04-08 Mar 2024, pp. 538-547. ISBN
9798400703713
(doi: 10.1145/3616855.3635821)

There may be differences between this version and the published version. You are
advised to consult the publisher’s version if you wish to cite from it.

© 2024 Copyright held by the owner/author(s). This is the author's version of the
work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in WSDM '24: Proceedings of the 17th ACM
International Conference on Web Search and Data Mining:
https://doi.org/10.1145/3616855.3635821

https://eprints.gla.ac.uk/308675/

Deposited on: 24 October 2023

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/view/author/62761.html
http://eprints.gla.ac.uk/view/author/3545.html
https://doi.org/10.1145/3616855.3635821
https://doi.org/10.1145/3616855.3635821
https://eprints.gla.ac.uk/308675/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

RecJPQ: Training Large-Catalogue Sequential Recommenders
Aleksandr V. Petrov
University of Glasgow

United Kingdom
a.petrov.1@research.gla.ac.uk

Craig Macdonald
University of Glasgow

United Kingdom
craig.macdonald@glasgow.ac.uk

ABSTRACT
Sequential recommender systems rank items based on the likeli-
hood of their next appearance in user-item interactions. Current
models such as BERT4Rec and SASRec generate sequence embed-
dings and compute scores for catalogue items, but the increasing
catalogue size makes training these models costly. The Joint Prod-
uct Quantisation (JPQ) method, originally proposed for passage
retrieval, markedly reduces the size of the retrieval index with mini-
mal effect on model effectiveness by replacing passage embeddings
with a limited number of shared centroid embeddings. This paper
introduces RecJPQ, a novel adaptation of JPQ for sequential recom-
mendations. We apply RecJPQ to SASRec, BERT4Rec, and GRU4rec
models on three large-scale sequential datasets. Our results showed
that RecJPQ can notably reduce model size (e.g., 48x reduction for
the Gowalla dataset with no effectiveness degradation). RecJPQ can
also improve model performance through a regularisation effect
(e.g. +0.96% NDCG@10 improvement on the Booking.com dataset).
ACM Reference Format:
Aleksandr V. Petrov and Craig Macdonald. 2023. RecJPQ: Training Large-
Catalogue Sequential Recommenders. InWSDM ’24), March 4–8, 2024, Mérida,
Mexico.ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
Sequential recommender systems are a class of recommendation
models that use the sequence of user-item interactions to predict
the next item. Most of the state-of-the-art models for sequential
recommendation are based on deep neural networks, for exam-
ple, recurrent neural networks [17, 18], convolutional neural net-
works [49, 57], and most recently, transformers [25, 37, 38, 48].
All these models use learnable item embeddings as an essential
component in their model architectures. Figure 1 illustrates item
embeddings in a typical neural sequential recommendation model.
As the figure shows, item embeddings usually have two roles in the
model architecture: (i) to convert the sequence of input item ids to
a sequence of item representation vectors and (ii) to convert the
sequence embedding produced by the model into the distribution
of predicted item scores. In both cases, a recommender system that
works with an item set 𝐼 requires an embedding tensor with |𝐼 | · 𝑑
parameters, where 𝑑 is the size of each embedding.

When a recommender has many items in the catalogue, vari-
ous challenges arise in training the neural recommendation model.
Firstly, the item embedding tensor may contain more model param-
eters than the rest of the model. For example, there are more than
800 million videos on YouTube1. If the model uses 128-dimensional
1 https://earthweb.com/how-many-videos-are-on-youtube/

WSDM ’24, March 4–8, 2024, Mérida, Mexico
© 2023 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published inWSDM ’24), March
4–8, 2024, Mérida, Mexico, https://doi.org/10.1145/nnnnnnn.nnnnnnn.

embeddings, the whole item embeddings tensor will havemore than
100 billion parameters, which is comparable with the number of pa-
rameters of the largest available machine learning models [2], even
without accounting for the parameters of the model’s intermediate
layers. This is a problem specific to recommender systems. How-
ever, in the related area of dense passage retrieval [26, 27], passage
embeddings are obtained by encoding passage text using a pre-
trained language model. In contrast, item side information, such as
text, is not necessarily available in a typical recommender systems
scenario; therefore, item embeddings should be directly learned
from the interactions. Secondly, a large number of such trainable
parameters also makes the model prone to overfitting. A third chal-
lenge caused by the large catalogue is the size of the output scores
tensor (rightmost tensor in Figure 1): for example, in BERT4Rec,
it contains a score for each item for every position, for every se-
quence in the training batch, so training BERT4Rec with more than
1 million items in the catalogue may be prohibitively expensive [37].
This problem is typically solved using negative sampling, whereby
instead of computing the full output tensor, the model computes
scores for a small proportion of negative items (e.g. SASRec [25]
uses one negative per positive). However, negative sampling comes
with its own challenges (for example, it usually requires informa-
tive negative mining [41]). Nevertheless, negative sampling is an
orthogonal research direction, and in this paper, we use SASRec in
cases where negative sampling is necessary. To summarise the chal-
lenges, a large embedding tensor increases the model size, slows
model training down, and can necessitate further modelling tricks
such as negative sampling, which bring their own challenges.

There are some existing methods [24, 51, 55] for item embedding
compression (we discuss these methods in Section 2). However,
most of these methods compress the embedding tensor after the
model is fully trained (including training the full embedding tensor).
However, as argued above, training may be prohibitively expensive
in large-scale recommender systems. Hence, this paper addresses
the problem of a large item embedding tensor in sequential recom-
mendation models at the training stage.

To mitigate this problem, we propose a novel RecJPQ technique
inspired by the success of a recent Joint Product Quantisation (JPQ)
work [58] for text retrieval. JPQ itself is based on Product Quantisa-
tion (PQ) [22], a popular method of compressing vectors by splitting
them into sub-embeddings and encoding them using a discrete cen-
troids codebook (the codebook maps from item ids to the associated
centroids; see Section 3.1 for the details). The main innovation of
JPQ compared to the standard PQ method is that it learns the cen-
troids embeddings as part of the overall model training process. In
contrast, PQ requires training the model first and only then com-
pressing the embeddings (frequently, this second step uses external
tools, such as FAISS [23]). This means that JPQ does not need to
keep the embedding matrix in memory during model training. We
argue that this innovation is valuable for recommender systems. In-
deed, as mentioned above, real-life recommender systems can have
hundreds of millions of items in their catalogues and keeping full

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://earthweb.com/how-many-videos-are-on-youtube/
https://doi.org/10.1145/nnnnnnn.nnnnnnn

WSDM ’24, March 4–8, 2024, Mérida, Mexico Aleksandr V. Petrov and Craig Macdonald

i1

i2

in

Item
Embedding

Tensor

Sequence
embedding

X Output
scores

Input
Sequence …

|I|·d parameters

Encoder
Network

Figure 1: Item embeddings in a typical sequential recom-
mender system. These item embeddings are used in twoways:
(i) to obtain sequence representation and (ii) to generate item
scores. The embedding tensor requires |𝐼 | · 𝑑 trainable pa-
rameters, where |𝐼 | is the items catalogue size, and 𝑑 is the
size of an embedding. When catalogue size |𝐼 | is large, item
embeddings comprise most of the model’s parameters.

embeddings tensor in memory may be prohibitively expensive. This
is particularly important for deep-learning-based sequential recom-
mender systems because these models require keeping the whole
model in GPU (or TPU) memory during training. GPU memory is
costly even when compared to regular computer RAM.

Unfortunately, it is hard to adapt JPQ to the recommendation sce-
nario, as it is specific to textual information retrieval. In particular,
JPQ assumes the existence of a pre-trained passage retrieval model
and index, which it uses to assign items to centroids (see more de-
tails in Section 3.2). These pre-trainedmodels rarely exist in item rec-
ommendations. Hence, in RecJPQ, we experiment with performing
the initial assignment of centroids using three different strategies: (i)
discrete truncated SVD (centroids obtained by discretising the item
representations obtained by an SVD decomposition of the user-item
matrix), (ii) discrete BPR (centroids obtained by discretising the
item embeddings obtained from BPR) and (iii) random assignments.
We describe these assignment strategies in detail in Section 4.

RecJPQ is a model component that replaces traditional item em-
beddings in sequential recommender systems. In general, it can be
applied to any recommender system based on item embeddings, but
in this paper, we focus specifically on sequential models, as in these
models, item embeddings comprise the biggest part of the model
(e.g. sequential models usually do not have user embeddings). In
contrast with existing methods, RecJPQ does not require training
full uncompressed embedding and does not modify the original
model loss function. Our experimentation on three datasets (see
Section 5) demonstrates that RecJPQ can be successfully applied
to different models, including SASRec [25], BERT4Rec [48] and
GRU [18, 37], achieving a large factor of embeddings compression
(e.g. 47.94x compression of SASRec on Gowalla) without any ef-
fectiveness degradation. Moreover, on 2 out of our 3 experimental
datasets, applying RecJPQ increases model performance (e.g. +0.96%
NDCG@10 on Booking.com dataset, significant improvement); we
attribute these improvements to model regularisation.

In short, the contributions of this paper are as follows:
(1) We propose RecJPQ, a novel technique for reducing the size of

sequential recommendation models during training based on
Joint Product Quantisation.

(2) We propose three strategies for assigning codes to items, two of
which (discrete truncated SVD and discrete BPR) assign similar
codes to similar items, and one assigns codes randomly.

(3) We perform an extensive experimental evaluation of RecJPQ
on three datasets and show that RecJPQ allows reducing the
models’ size without hindering the model performance.
The rest of the paper is organised as follows: Section 2 introduces

related work on embeddings compression and identifies limitations
of existingmethods; Section 3 covers Product Quantisation (PQ) and
Joint Product Quantisation (JPQ) - the methods, which serve as the

Table 1: Existing embedding compression methods. Desired
method characteristics are highlighted in bold.

Model
Agnostic Method Backbone Models Sequential

backbone

Trains
full
embeddings

Compression
Unit

No EODRec [55] SASRec [25] Yes Yes Item
LightRec [31] DSSM [20] No Yes Item
MDQE [51] SASRec [25] Yes Yes Item

Yes PreHash [47] BiasedMF [28]; NeuMF [16] No No User
Quotient
Remainder [46] DCN [52]; DLRM [35] No No Features

MGQE [24] SASRec [25]; NeuMF [16]; GCF [16] Yes Yes Item

Yes RecJPQ (ours) SASRec [25]; BERT4Rec [48]; GRU [18] Yes No Item

basis for our work; Section 4 introduces RecJPQ and covers centroid
assignment strategies for RecJPQ; in Section 5 we experimentally
evaluate RecJPQ; Section 6 contains final remarks.

2 RELATEDWORK
This section covers existing work on compressing and discretising
embeddings in recommender systems, identifies the limitations in
existing work and positions our contributions in the context of ex-
isting methods. Table 1 summarises existing methods and positions
RecJPQ, our proposed compression technique. The table highlights
with boldface the desirable characteristics necessary for training
a large-scale2 sequential model, specifically: the method can be ap-
plied to work with different backbone sequential models, and does
not require training full embeddings (as we work with the assump-
tion that full embeddings tensor does not fit into GPUmemory); and
we want the model to focus on item embeddings rather than embed-
dings of other entities, such as users or features. As illustrated in
the table, the methods for compressing the models can be broadly
divided into two groups: model dependent and model agnostic.

In the model-dependent methods [31, 55], embedding compres-
sion mechanism is integrated as a component into the recommenda-
tion model itself. Hence the training architecture of these methods
has to be aware of the compression, and the loss function includes
components responsible for the embedding compression. For ex-
ample, LightRec [31] uses the Deep Semantic Similarity Model
(DSSM) [20] as the backbone model and uses an additional knowl-
edge distillation component in the loss, which allows for learning
compressed representations of the embeddings. However, DSSM is
not a sequential model, and it is unclear whether or not the method
can be adapted to the sequential recommendation case. Similarly,
EODRec [55] which uses SASRec [25] as its backbone, one of the
most popular sequential models based on the Transformer archi-
tecture [50]. The loss function of EODRec also consists of four
components, some of which are responsible for recommendation,
and others are responsible for embedding compression. While SAS-
Rec, used by EODRec as its backbone, is an efficient model, in many
cases other models such as BERT4Rec show better results [38, 48].
In general, while some model-dependent methods may substan-
tially reduce the size of a trained model, these methods have several
limitations, which make them unsuitable for training sequential
recommendation models with large catalogues. In particular:

L1 Model-dependent methods are, by their nature, tied to a spe-
cific model, making them inflexible when adapting to a specific task.
For example, LightRec [31] uses a non-sequential DSSM model as a
backbone. The core component of LightRec (Recurrent Composite

2 For simplicity, we say that a catalogue is "large-scale" if it has more than 1 million,
as it becomes challenging to train recommender systems on that scale [37].

RecJPQ: Training Large-Catalogue Sequential Recommenders WSDM ’24, March 4–8, 2024, Mérida, Mexico

Encoding) is tightly integrated into the DSSM architecture, and it
is unclear whether or not it can be used outside of DSSM.

L2 Model-dependent methods usually require training (uncom-
pressed) item embeddings and then use knowledge distillation or
teacher-student techniques to obtain compressed representations
of the embeddings. This approach substantially reduces the final
model size, thereby helping inference on smaller devices, but re-
quires a large amount of GPU memory while training, thereby
limiting the overall number of items in the catalogue. For this rea-
son, the main positioning for EODRec model [55] is the on-device
recommendation: while the final model produced by this method is
small, it requires storing full item embeddings while training. Post-
training quantisation methods [56], which recently became popular
to reduce the size of large language models via quantising their
weights into lower-precision numbers (e.g. float16, or int8) also
have this limitation – they need to have access to full model before
quantising. Similarly, Mixed Precision Training [34] builds a smaller
precision model, but it requires keeping full precision weights in
memory. Placing the embeddings tensor into Approximate Nearest
Neighbours [23] or Hierarchical Navigable Small Worlds [33] in-
dexes also requires access to the full embedding tensor at model
training time, and therefore also exhibits this limitation.

L3 Model-dependent methods require multi-component loss
functions, some of which are responsible for the recommendation
task and others for the model compression. This is a form of multi-
objective optimisation, which is a challenging problem [8, 45], as
finding the balance between the loss components for different ob-
jectives usually requires extensive hyperparameters search.

On the other hand, the existing model-agnostic methods [46, 47]
do not depend on the specific model architecture, and likewise do
not add extra components to the loss functions. Typically, these
methods implement a mechanism that takes the place of the embed-
dings tensor in the backbone model, and hence can be used with
many models. However, on inspection of the relevant work, we
identified additional limitations of these methods:

L4 Many methods are not designed for compressing item em-
beddings. For example, PreHash [47] is a method specific for com-
pressing user embeddings (i.e. it uses the user’s history to construct
user embeddings). The method uses an attention network over the
history of user interactions. Adapting this network structure for
items embeddings is a hard task: a user may only interact with a few
items; in contrast, a popular item may be interact with by millions
of users. The attention mechanism depends quadratically on the
sequence length, and therefore applying it to users who interacted
with a popular item would be prohibitively expensive.

L5 Finally, many methods lack structure in compressed item
representations. This leads to situations where unrelated items have
similar representations and, conversely, when similar items have
dissimilar representations. Both these cases may limit the models’
generalisation ability and hinder the models’ performance. One
example of such unstructured methods is hashing-based Quotient
Remainder [46], which compresses embeddings of categorical fea-
tures (e.g., genres). Quotient Remainder assigns feature codes based
on the quotient and the remainder of the division of the feature id by
some number. When applied to item ids (items can also be seen as
categorical features), the quotient and the remainder are unrelated
to the item characteristics. Hence similar items are unlikely to have
similar codes. Nevertheless, Quotient Remainder is one of the few
methods that can be used to train a model on a large-scale dataset,
and therefore we use this method as a baseline in our experiments.

4

Item id

5 12 44 134

4 25 7 2

3 5 8 125
Lookup

Codebook G
…

…

26 0.4 0.1 0.8 0.2

25 0.1 0.8 0.2 0.6

24 0.7 0.3 0.1 0.4

…

…

Centroids set Ĉ1

8 0.2 0.2 0.3 0.5

7 0.2 0.4 0.7 0.1

6 0.6 0.3 0.5 0.1

…

…

Centroids set Ĉ2

3 0.3 -0.4 3.1 0.7

2 1.3 -1.5 0.4 2.7

1 0.1 0.7 -1.0 2.1

…

Centroids set Ĉ3

1.3 -1.5 0.4 2.70.2 0.4 0.7 0.10.1 0.8 0.2 0.6
Reconstruct

Centroid 25
from Ĉ1

Centroid 7
from set Ĉ2

Centroid 2
from set Ĉ3

Item Embedding

…

Figure 2: Reconstruction of item embeddings in RecJPQ:
Codebook length𝑚 = 3, item embedding length 𝑑 = 12, num-
ber of centroids per split 𝑏 = 256.

Overall, among the related work, we argue that existing methods
exhibit a number of Limitations (L1-L5). In summary, the model-
dependent methods require training full embeddings first, limiting
the maximum number of items that can be considered in the cat-
alogue of the recommender system. On the other hand, methods
which do not require training full embeddings first, such as Quotient
Remainder, rely on simple heuristics and may result in unrelated
items having similar representations. On the surface, the nearest
related work to ours is VQ-Rec [19] as it also applies JPQ-style tech-
nique to sequential recommendation; however, similarly to JPQ,
it relies on the availability of textual features and pre-trained lan-
guage models. In contrast, our work’s main novelty is adapting JPQ
to the scenario when (e.g., textual) side information is unavailable.
In the next section, we describe JPQ [58], a method of embedding
compression for information retrieval, which directly learns embed-
dings in compressed form, reducing GPU memory requirements.
Then, in Section 4, we propose RecJPQ - an adaptation of JPQ to
the sequential recommendation task, which successfully addresses
Limitations L1-L5.

3 PRODUCT QUANTISATION AND JPQ
We now describe Product Quantisation (PQ) and Joint Product
Quantisation (JPQ), two methods which serve as a backbone for
our method. Section 3.1 covers PQ, a classic embedding compres-
sion technique. Section 3.2 describes JPQ - a recently proposed
information retrieval method that learns compressed embeddings
directly instead of compressing them after the model training.

3.1 Product Quantisation
Product quantisation [13, 22] is a well-cited method of compress-
ing vectors used by many libraries, such as FAISS [23] & nanopq3.
Its main idea is to split a collection of 𝑑-dimensional vectors, 𝑉 ,
into𝑚 collections 𝑉𝑖 ; 𝑖 = 1..𝑚 of smaller vectors of 𝑑

𝑚 dimensions
each. The original vectors can be recovered back via concatena-
tion: 𝑉 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑉1,𝑉2, ...𝑉𝑚). Product quantisation then clusters
each 𝑉𝑖 into 𝑏 clusters (e.g. using the k-means algorithm [32]) and
replaces each vector 𝑣𝑖 𝑗 with the centroid of the assigned cluster
𝑐𝑖 𝑗 ≈ 𝑣𝑖 𝑗 . With this replacement, the original vectors collection
can be approximated as a concatenation of the centroid matrices
𝐶1 ...𝐶𝑚 , which are constructed from𝑉1 ...𝑉𝑚 by replacing each vec-
tor 𝑣𝑖 𝑗 by the closest centroid 𝑐𝑖 𝑗 :

𝑉 ≈ 𝑐𝑜𝑛𝑐𝑎𝑡 (𝐶1,𝐶2, ...𝐶𝑚) (1)

Note that in each centroid matrix 𝐶𝑖 , there are, at most, 𝑏 different
rows, as each row corresponds to one of the centroids of the clusters,
so instead of storing full matrix𝐶𝑖 , we can store these unique rows
in the separate tensor𝐶𝑖 , whose elements 𝑐𝑖 𝑗 , 𝑗 ∈ {1..𝑏} correspond
3 https://github.com/matsui528/nanopq

https://github.com/matsui528/nanopq

WSDM ’24, March 4–8, 2024, Mérida, Mexico Aleksandr V. Petrov and Craig Macdonald

Table 2: Analysis of PQ’s impact on memory requirements
for storing item embeddings tensor for selected recommenda-
tion datasets, based on 512-dimension float32 vector embed-
dings. The table compares base memory usage with different
code lengths, shown as percentages relative to the base.

Dataset Num Items

Size of Item Embedding Tensor

Base
Code length=2
512 centroids

1.00 MB

Code length=8
2,048 centroids

4.00 MB

Code length=32
8,192 centroids

16.00 MB

MovieLens-1M 3,416 6.67 MB 14.988% 59.953% 239.813%
Booking.com 34,742 67.86 MB 1.474% 5.895% 23.580%
Gowalla 1,280,969 2.44 GB 0.040% 0.160% 0.640%

to the unique centroids. To compress the approximate embedding
matrix defined by Equation (1), we need only store the ids of cen-
troids. Overall, there are𝑚 centroid sets 𝐶𝑖 , so each vector can be
encoded using𝑚 integer codes, and each code can have 𝑏 different
values; therefore, overall, this scheme can encode up to 𝑏𝑚 different
vectors. The vector of centroid ids 𝑔𝑖 = {𝑔𝑖1, 𝑔𝑖2 ..., 𝑔𝑖𝑚} associated
with the vector 𝑣𝑖 ∈ 𝑉 is known as the code of the vector 𝑣𝑖 [22].
The number of centroids associated with an item𝑚 is the length
of the code. The table 𝐺 of codes associated with each vector from
𝑉 is also known as a codebook [22].

Figure 2 illustrates the vector reconstruction process applied to
item embeddings. For each centroid id𝑔𝑖 𝑗 in the codes vector𝑔𝑖 of an
item 𝑖 , we extract a centroid associatedwith this centroid id and then
concatenate the centroids to obtain reconstructed item embeddings.

The number of splits𝑚 is usually considerably smaller than the
original vector dimensions 𝑑 :𝑚 ≪ 𝑑 to achieve compression. The
number of centroids per split, 𝑏, is typically a power 𝑘 of 256, so that
the codes can be stored as 𝑘-byte integers. In this paper, for sim-
plicity and following JPQ [58], we fix 𝑘 = 1, so each centroid id can
be represented with a single byte; therefore, we only store𝑚 bytes
for each item. Even with fixed 𝑘 (and therefore 𝑏), we can adjust
model capacity by controlling the number of centroids associated to
each item,𝑚, and the dimension of the centroid embeddings, 𝑑

𝑚 , by
adjusting 𝑑 . Figure 2 illustrates RecJPQ for𝑚 = 3, 𝑑 = 12, 𝑏 = 256.
Further, to illustrate the achieved compression, if embeddings are
stored as 256-dimensional float32 vectors, a full-item embedding
requires 1KB of memory. After compression using product quan-
tisation with𝑚 = 8 splits, we only need to store 8 bytes per item
(0.78% of the original memory requirement). While some memory
is also required to store the centroids themselves, this is a negligible
for large datasets compared to the original vector requirements (see
also Table 2 for an analysis of centroids memory requirements).

Product Quantisation is a well-established vectors compression
technique, which has been shown to be successful in approximate
nearest neighbourmethods [10, 22, 23, 30], information retrieval [21,
27, 44] and recommender systems [1, 24, 51]. However, Product
Quantisation requires the full embeddings tensor to be trained be-
fore the embeddings are compressed. Indeed, the quantisation oper-
ation is not differentiable, and therefore themodel can not be trained
end-to-end. Therefore, it requires first training full (non-quantised)
model and only after that apply compression. Some recommen-
dation models (e.g. [24]) use differentiable variations of Product
Quantisation to allow end-to-end training, but these methods still
require training full embeddings alongside the quantised versions.

Overall, Product Quantisation addresses Limitations L1 (it is
model agnostic), L5 (it is applicable for training item embeddings
compression), and L4 (when centroids assigned using clusterisation,
similar items will have similar codes). However, it does not address

Limitations L2 (it requires training full embeddings first),and L3
(PQ uses a separate loss function for embeddings reconstruction,
which is not aligned with the ranking loss). In the next section, we
discuss Joint Product Quantisation, a method that can be adapted
to addressing these remaining limitations.

3.2 Joint Product Quantisation
Zhan et al. recently proposed Joint Product Quantisation (JPQ) [58],
a Product Quantisation-based method developed for dense informa-
tion retrieval. The main difference with the classic product quanti-
sation is that JPQ generates item codes before training the model. As
code assignment is the only non-differentiable operation in Product
Quantisation, therefore when the codes are assigned before training
the model, the model can be trained end-to-end without training
full item embeddings – JPQ essentially replaces the embeddings
tensor in the model, where item embeddings are constructed via
centroid concatenation, as illustrated in Figure 2. Assuming that
the codebook in the figure is a constant, all other parameters can
be learned using standard gradient descent. In particular, centroid
embeddings in JPQ are learnable model parameters, in the same
way that item embeddings are learnable parameters in a conven-
tional learned recommendation model. This means that JPQ does
not require special loss function components to learn centroids, as
they are learned as part of the overall model training process.

Compared to the original Product Quantisation method, JPQ
addresses Limitations L2 (it does not require training full item
embeddings) and L3 (it does not require a specific loss function).
However, in contrast to plain PQ, JPQ does not provide a mecha-
nism to assign similar embeddings to similar items and therefore
does not address Limitation L4. The centroid assignments method
proposed in the original JPQ paper is specific for text retrieval (as it
relies on the existence of a pre-built index for a text document col-
lection generated using the STAR model [59]). In the next section,
we introduce RecJPQ, an adaptation of JPQ to the sequential recom-
mendation scenario, which does not rely on text-specific datasets
and models. Our adaptation of JPQ to sequential recommendation
requires careful design of novel centroid assignment strategies. In-
deed, to the best of our knowledge, this is the first adaptation of
the JPQ method to sequential recommendation.

4 RECJPQ
RecJPQ is a Joint Product Quantisation-based method for training
recommendation models with a large catalogue of items. As we
discuss in Section 3.2, the method used by JPQ for initial centroids
assignments relies on the existence of a pre-built index of docu-
ments and, therefore, can not be directly used for recommendation
scenarios. Hence, the main difference between RecJPQ and the orig-
inal JPQ is centroid assignment strategies. In general, RecJPQ can
be described as follows:
(1) Build the item-code mapping matrix (codebook) using one of

the centroid assignment strategies (described in Section 4.1).
(2) Initialise the centroid embeddings randomly.
(3) Replace the item embedding tensor with the concatenation of

centroids associated with each item (as illustrated in Figure 2).
(4) Train the model end-to-end using the model’s original training

task and loss function (this process also trains the centroid
embeddings, so they do not need to be trained separately).
The way RecJPQ builds the codebook before training the main

model is also similar to how language models (such as BERT [9])

RecJPQ: Training Large-Catalogue Sequential Recommenders WSDM ’24, March 4–8, 2024, Mérida, Mexico

train a tokenisation algorithm before training the main model. Lan-
guage models also learn embeddings of sub-word tokens instead
of learning embeddings of full words to reduce the model’s size;
similarly, RecJPQ learns sub-item centroid embeddings instead of
learning embeddings of full items. Below, we describe centroid
assignment strategies used by RecJPQ.

4.1 Centroid Assignment Strategies
4.1.1 Random Centroid Assignments. In the most simple scenario,
we can assign items to centroids randomly. We compose the item
code out of𝑚 random integers in this case. RecJPQ with random
centroids assignments strategy does not address Limitation L4
(similar items do not have similar codes). Indeed, with random
centroid assignments, RecJPQ becomes similar to other "random"
embeddings compression methods, such as the hashing trick [53]
or Quotient Reminder method [46]. The main problem with these
methods is that unrelated methods are forced to share parts of their
representation, which limits the generalisation ability of the models.
However, as we show in Section 5, sometimes random assignments
may be beneficial, as the random assignments strategy acts as a form
of regularisation. Nevertheless, as the random centroid assignments
strategy does not address Limitation L4 (similar items should have
similar representations), we introduce further centroid assignment
strategies that can address this limitation in the next sections.

4.1.2 Discrete Truncated SVD. As discussed in Section 3.2, the
only limitation not addressed by JPQ is Limitation L4 (similar items
should have similar codes). Random centroid assignments discussed
in the previous section do not address this limitation either. Hence,
in this section, we design a centroids assignments method that ad-
dresses this remaining limitation and assigns similar codes to similar
items. Some approaches have used item side information, such as
textual data for item representations [40]; however, we address the
more generic classic sequential recommendation scenario (which
does not rely on item side information) and hence must infer item
similarities from the user’s sequences. To achieve this, we employ
the SVD algorithm, which has been shown to achieve good results
in learning item representations [61] for recommender systems.

We first compute the matrix of sequence-item interactions 𝑀 ,
where rows correspond to sequences (users), and columns cor-
respond to items. This matrix’s elements 𝑚𝑖 𝑗 are either 1 if 𝑖𝑡ℎ
contains interactions with item 𝑗 and 0 otherwise. We then com-
pute the truncated SVD decomposition of matrix𝑀 with𝑚 latent
components: 𝑀 ≈ 𝑈 × Σ ×𝑉𝑇 , where 𝑈 is the matrix of user em-
beddings,𝑉 is the matrix of item embeddings, and Σ is the diagonal
matrix of largest singular values.

Our initial experiments showed that some items have equal em-
beddings after performing truncated SVD decomposition. This hap-
pens when two items interacted with exactly the same set of users.
To ensure that all items have different embeddings, we normalise
𝑉 using the min-max normalisation range and add a small amount

of Gaussian noise: 𝑣𝑎𝑏 =
𝑣𝑎𝑏−min

𝑘
𝑣𝑎𝑘

max
𝑘

𝑣𝑎𝑘−min
𝑘

𝑣𝑎𝑘
+ N(0, 10−5);∀𝑣𝑎𝑏 ∈ 𝑉

The variance of the noise (10−5) is negligible compared to the
range of possible values of normalised embeddings ([0..1] after
min-max normalisation). Therefore it has a very small influence on
the position of the items in the embeddings space. However, if two
items have exactly the same embeddings after decomposition (e.g.
this can happen if two items appear in exactly the same set of se-
quences), the noise allows us to distinguish these two embeddings.

Lastly, the assignment of centroids involves discretising each di-
mension of the normalised item embeddings into 𝑏 quantiles so that
each quantile contains an approximately equal number of items.
We use these bins as centroid assignments for the items. Note that
although this method requires computing an𝑚-dimensional item
embeddings tensor (and there can be hundreds of millions of items),
it does not require computing them as part of a deep learning model
training on a GPU. Indeed, truncated SVD is a well-studied problem.
There are effective algorithms for performing it that do not require
modern GPUs [14]. Moreover, as the method only requires comput-
ing𝑚-dimensionsional embeddings, the table will be many times
smaller than full𝑑-dimensional embeddings, so the method requires
𝑑
𝑚 times less memory to store embeddings. Finally, performing trun-
cated SVD is possible in a distributed manner4, which makes it is
possible to perform truncated SVD even on very large datasets.

In summary, discrete truncated SVD allows assigning similar
codes to similar items; it does not require a GPU for intermediate
computations and can be easily performed for very large datasets.

4.1.3 Discrete BPR. Truncated SVD is not the onlyMatrix Factorisa-
tion method that can be used for initial centroid assignments. In
particular, we also use the classic BPR approach [42] to obtain
coarse item embeddings. The method also learns user embeddings
(or, in our case, sequence embeddings) 𝑈 and item embeddings
𝑉 . The estimate of the relevance of an item 𝑖 for user 𝑗 is defined
as the dot product of user and item embeddings: 𝑟 = 𝑢 𝑗 · 𝑣𝑖 . In
contrast with truncated SVD, BPR does not directly approximate
the user-item interaction matrix. Instead, BPR optimises a pairwise
loss function that aims to ensure that positive items are scored
higher than negative items: L𝐵𝑃𝑅 = − log(𝜎 (𝑢𝑖 · 𝑣 𝑗+ − 𝑢𝑖 · 𝑣 𝑗−)),
where 𝑣 𝑗+ is the embedding of a positive item for the user 𝑢, 𝑣 𝑗− is
the embedding of a randomly sampled negative item, and 𝜎 is the
logistic sigmoid function.

BPR is a very successful and one of the most cited methods in
recommender systems, and therefore we use BPR as an alternative
strategy for coarse item embedding learning. The rest of the discrete
BPR strategy is the same as in the truncated SVD: we also normalise
the learned embeddings using min-max normalisation and add a
small amount of Gaussian noise to ensure different embeddings
for different items. Similar to truncated SVD, BPR does not require
learning on a GPU, and there exist distributed implementations5
that allow for learning item embeddings on very large datasets,
so overall it can be used as an alternative to truncated SVD for
centroids assignments in RecJPQ.

This concludes the description of the centroid assignment strate-
gies for RecJPQ. We now discuss why RecJPQ may act as a regular-
isation mechanism and improve the performance on the datasets
with many long-tail items.

4.2 RecJPQ as a Regularisation Mechanism
The interactions with items in recommender systems typically have
long tail distribution [36], meaning that few popular items have the
most interactions. In contrast, most items comprise the "long tail"
with few interactions. As the training data for these long-tail items
is limited, models suffer from overfitting on long-tail items [60],
which causes overall performance degradation.

Goodfellow et al. [12, Chapter 7.9] argued that one of the most
powerful techniques for preventing overfitting is parameters sharing
4 For example, using Apache Spark
https://spark.apache.org/docs/latest/mllib-dimensionality-reduction
5 https://github.com/alfredolainez/bpr-spark

https://spark.apache.org/docs/latest/mllib-dimensionality-reduction
https://github.com/alfredolainez/bpr-spark

WSDM ’24, March 4–8, 2024, Mérida, Mexico Aleksandr V. Petrov and Craig Macdonald

Table 3: Salient characteristics of experimental datasets. Long
tail items are the percentage of items in the catalogue with
less than five interactions.

Dataset Users Iems Interactions Average sequence length Long tail items

MovieLens-1M 6,040 3,416 999,611 165.49 0.0%
Booking.com 140,746 34,742 917,729 6.52 61.8%
Gowalla 86,168 1,271,638 6,397,903 74.24 75.8%

- a technique where certain parameters of the model are forced to
be equal. RecJPQ is a special case of parameter sharing: we force
different items to share parts of their embeddings. This prevents the
model from learning item embeddings that are too specific to only
a few training sequences, as each part of the embedding appears in
many other sequences via the sharing mechanism.

In our experiments (see Section 5), we indeed observe that RecJPQ
may act as a model regulariser and improve the model’s perfor-
mance; this is especially apparent in the Gowalla dataset, where
the proportion of long-tail items is the largest.

4.3 RecJPQ: Summary
In summary, RecJPQ is a model component that takes the place of
the item embeddings tensor in sequential recommender systems.
RecJPQ is based on the JPQ method, which is a variation of Product
Quantisation in turn. RecJPQ addresses all of the limitations de-
scribed in Section 2: it is model-agnostic (Limitation L1); does not
require training full embeddings (Limitation L2); does not modify
the backbone model’s loss function (Limitation L3); it is suitable
for item embeddings compression (Limitation L5); it can assign
similar codes to similar items with the help of discrete truncated
SVD or discrete BPR (Limitation L4). Futhermore, we argue that
RecJPQ may act as a model regulariser, which is an additional ad-
vantage when there are many long-tail items in the catalogue. This
concludes the description of RecJPQ. In the next section, we ex-
perimentally evaluate RecJPQ and analyse its effects on required
memory and on the model performance.

5 EXPERIMENTS
Our experiments address the following research questions:
RQ1 What are the effects of centroid assignment strategy in RecJPQ?
RQ2 How do code length𝑚 and embedding size impact effectiveness?
RQ3 What is the effect of RecJPQ on size/effectiveness tradeoff?

5.1 Experimental Setup
5.1.1 Backbone Models. In our experiments, we use two state-
of-the-art Transformer-based sequential recommendation models:
BERT4Rec [48] - a model that uses a transformer encoder based
on BERT [9]; and SASRec [25] - a model which utilises decoder
part of the Transformer (similar to GPT [39]). For both models, we
use the versions6 from a recent reproducibility paper [38], which
provides efficient & effective implementations (using the popular
Huggingface transformers library [54]). Additionally, to demon-
strate that RecJPQ can be applied to other architectures, we use a
GRU [6]-based model from [37] available in the same repository.
This model uses the GRU4Rec [17] architecture, but a slightly dif-
ferent configuration, e.g. it uses LambdaRank [3] as a loss function,
which is shown to be effective [37].

6 The code for the paper is available at
https://anonymous.4open.science/r/RecJPQ-6643/README.md

5.1.2 Datasets. We experiment with three datasets: (i) MovieLens-
1M (denoted ML-1M) [15] - this is a movie rating dataset that
is one of the most popular benchmarks for recommender sys-
tems; (ii) Booking.com [11] - a multi-destination trips dataset, and
(iii) Gowalla [5] - a check-in dataset. Following common prac-
tice [38, 48], we remove users with less than 5 interactions.

Table 3 lists the salient characteristics of the datasets after pre-
processing. As can be seen from the table, the number of items in
these datasets varies from relatively small (3416 in MovieLens-1M)
to large (1,271,638 in Gowalla) - this allows testing RecJPQ in differ-
ent settings (RecJPQ is designed for large datasets, and we expect
it to compress the model by a larger factor on Gowalla).

The datasets are also diverse regarding the number of “long-tail
items” (defined as items with less than five interactions). While
the MovieLens-1M dataset does not have long-tail items, the Book-
ing.com dataset has 60.8% long-tail items, and Gowalla has 75.8%
long-tail items. As discussed in Section 4.2, RecJPQ acts as a model
regulariser in long-tail distributions, and we expect to see the high-
est regularisation effect on the Gowalla dataset.

5.1.3 Evaluation Protocol. Overall, our evaluation protocol follows
the protocol from the recent replicability paper [38]. We use a
leave-one-out data splitting strategy: we hold out the last sequence
in each sequence in the test set. Additionally, for 1024 randomly
selected users, we hold out the second last action into a validation
set, which we use for the early stopping mechanism.

We set the maximum sequence length at 200. If the sequence
contains more than 200 interactions, we use 200 latest interactions.
If the sequence contains less than 200 interactions, we left-pad it
to ensure its length is exactly 200.

To ensure that the models are fully converged, following [37],
we employ an early stopping mechanism on the NDCG@10 metric:
we stop training if the metric is not improved for 200 epochs.

5.1.4 Metrics. The main topic of our research is the trade-off be-
tween model size and model effectiveness. For measuring effective-
ness, following prior research [25, 38, 48], we use NDCG@10, and
as the model size metric, we use the file size of the model check-
point. Following recent recommendations [4, 7, 29], we measure
NDCG without using negative sampling.

5.1.5 Baselines. We deploy an adaptation of Quotient Remain-
der [46] as a baseline compression approach, applied to each base
model – this parameter-free hashing-based approach encodes each
item using two hashes: the quotient and the remainder of the divi-
sion of item id by

⌈√︁
|𝐼 |
⌉
where |𝐼 | is the catalogue size. Quotient

Remainder guarantees that each item has a unique code.
We do not apply post-training embedding quantisation (e.g.

float16), nor use other methods from Table 1 as baselines, as they
are not suitable for our task: EODRec, LightRec, MDQE and MGQE
require training full embeddings (we assume that training full em-
beddings is not an option for a large catalogue), and PreHash is
specific for compressing user embeddings, so is not suitable for
item embeddings. However, reducing the model size by decreasing
the embedding dimensionality can also be seen as a simple baseline.
We analyse models using different embedding sizes in Section 5.2.3.

5.2 Results
5.2.1 RQ1. Effect of centroid assignment strategy. To analyse the ef-
fect of the centroid assignment strategy onmodel performance/model

https://anonymous.4open.science/r/RecJPQ-6643/README.md

RecJPQ: Training Large-Catalogue Sequential Recommenders WSDM ’24, March 4–8, 2024, Mérida, Mexico

Table 4: Impact of RecJPQwith different centroid assignment
strategies onmodel size and effectiveness. Relative Size corre-
sponds tomodel checkpoint size as the percentage of the base
model. =, +, and − denote significance testing results com-
pared to the base, respectively: indistinguishable (𝑝𝑣𝑎𝑙𝑢𝑒 >

0.05, Bonferroni multi-test correction), better or worse.

Model→ BERT4Rec GRU SASRec

Strategy↓ NDCG
@10

Relative
Size

NDCG
@10

Relative
Size

NDCG
@10

Relative
Size

ML-1M

Base 0.157 100.0% 0.072 100.0% 0.131 100.0%
Hashing (Quotient-Remainder) 0.040− 92.4% 0.017− 61.6% 0.009− 124.9%
RecJPQ-BPR 0.156= 93.2% 0.076= 62.5% 0.130= 128.0%
RecJPQ-Random 0.156= 93.2% 0.075= 62.5% 0.125= 127.6%
RecJPQ-SVD 0.154= 93.2% 0.074= 62.5% 0.129= 127.9%

Booking

Base 0.376 100.0% 0.209 100.0% 0.137 100.0%
Hashing (Quotient-Remainder) 0.192− 62.8% 0.186− 27.6% 0.014− 9.2%
RecJPQ-BPR 0.375= 63.3% 0.334+ 27.5% 0.242+ 8.7%
RecJPQ-Random 0.316− 62.3% 0.324+ 27.5% 0.256+ 8.9%
RecJPQ-SVD 0.379+ 63.3% 0.334+ 27.6% 0.185+ 8.8%

size tradeoff, we compare the original (base) versions of BERT4Rec,
SASRec and GRU with RecJPQ versions trained with Random, dis-
crete truncated SVD and discrete BPR centroid assignment strate-
gies. We do not train GRU and BERT4Rec on Gowalla, as these
models do not use negative sampling. Training models on this
dataset without negative sampling is not feasible due to the large
GPU memory requirement for storing output scores [37], while
applying negative sampling is a substantial change to the models’
training process that is outside of the scope of this paper.

In all cases, we use 512-dimensional embeddings and the code
of length𝑚 = 8 (we experiment with other embedding sizes and
lengths of the code in the next section). One exception is the base
SASRec model on Gowalla; in this case, we use 128-dimensional
item embeddings (item embeddings larger than 128 dimensions
consume all available GPU memory when embedding compression
techniques are not deployed).

5.2.2 RQ2. Effects of code length𝑚 and the embedding size on model
performance. Table 4 shows the experimental results on the smaller
ML-1M and Booking datasets, while Table 5 reports results for
the Gowalla dataset. The tables compare NDCG@10 and model
size of compressed variations of backbone models with the base
(uncompressed) model. Significant differences compared to the cor-
responding base model (BERT4Rec, GRU or SASRec) are indicated.
In general, the tables show that RecJPQ substantially reduces the
model checkpoint size in most cases. For example, the RecJPQ ver-
sions of the GRU models on the Booking dataset are approximately
27% of the original in size. On the Gowalla dataset, compressed mod-
els are approximately 3% of the original. Moreover, model size does
not depend on the centroid assignment strategy. Indeed, centroid as-
signments only influence the values of themodel parameters but not
the number of parameters. Moreover, Quotient Remainder models
have approximately the same compression level as RecJPQ models.
We speculate that after compression, the model checkpoint size is
dominated by other model parameters (e.g., attention matrices). In
our configuration, the centroid embeddings tensor only requires a
few megabytes of memory (see Table 2). In contrast, the full model
checkpoint of a compressed model is typically tens of megabytes
(e.g., 92.8MB for SASRec using RecJPQ-BPR trained on Gowalla).

RecJPQ only increased the model size for SASRec on MovieLens-
1M due to the dataset’s small item count. The overhead of storing

Table 5: Impact of RecJPQwith different centroid assignment
strategies on SASRec model size and effectiveness on the
large-scale Gowalla dataset. Notations follow Table 4.

Strategy NDCG@10 Relative Size

Base 0.110 100.0%
Hashing (Quotient-Remainder) 0.081− 2.8%
RecJPQ-BPR 0.033− 2.8%
RecJPQ-Random 0.173+ 2.9%
RecJPQ-SVD 0.122+ 2.9%

centroid embeddings and the codebook eclipses the benefit of com-
pressing the embeddings table. Using RecJPQ with smaller embed-
dings might reduce the model size without affecting performance
on this dataset (see Section 5.2.3).

On the other hand, we observe from Table 4 and Table 5 that the
choice of the optimal strategy depends on both the model and the
dataset. For example, on MovieLens-1M, the choice of the strategy
is not important, and in all cases, RecJPQ versions of the models
are statistically indistinguishable from the base for all models. On
the larger Booking dataset, the choice of the best strategy is model-
dependent. For BERT4Rec, the best results are achieved with BPR
(NDCG@10 0.375, statistically indistinguishable from the base) and
SVD (NDCG@10 0.379, +0.97%, significant). At the same time, the
Random strategy significantly underperforms the base configura-
tion (NDCG@10 0.316, -15.98%) - this shows that in some cases,
assigning similar codes to similar items is indeed important. How-
ever, in 2 cases, Random performs statistically significantly better
than SVD and BPR. For example, Random assignments perform
best on Gowalla with the SASRec base (a significant improvement
of +57% over the base). SVD assignments also moderately improve
the result in this case (+10%, significant). At the same time, BPR
decreases the quality by a large margin on Gowalla dataset (-70%)7.
We explain the success of the Random strategy on the Gowalla
dataset as giving a larger regularisation effect (random assignments
make the learning task harder, so the model has fewer chances to
overfit). This suggests that the centroid assignment strategy could
be treated as a hyperparameter and tuned for each model/dataset
combination. However, by default, we recommend using RecJPQ
with SVD strategy - in all cases, it achieves significantly better (on
the Booking and Gowalla datasets) or statistically indistinguish-
able (on the MovieLens-1M dataset) results compared to the base
model. We also note that RecJPQ with the SVD strategy is always
better than the Quotient Remainder baseline (Quotient Reminder
is always significantly worse than the base mode, whereas RecJPQ
is better or indistinguishable).

It is also worth mentioning that we do not observe a degradation
of the training efficiency when training the RecJPQ versions of the
models. Indeed, while there are some fluctuations in the training
time the model requires to converge, the magnitude of the required
training time remains the same: for example, training of the base
version of BERT4Rec requires 18.8 hours on Booking.com, and the
RecJPQ-SVD version of BERT4Rec requires 16.1 hours. The training
time of the SVD model (used for initial centroid assignments) in the
same case is negligible compared to the training of the main model
(it takes approximately a minute). Inference time is also unaffected
(e.g. on Gowalla, full evaluation across the 86k users requires 10
minutes for both "base" and RecJPQ versions of the models).

7 The percentages for the Gowalla dataset seem large because this dataset is difficult:
it has the largest number of items and the largest proportion of long-tail items.

WSDM ’24, March 4–8, 2024, Mérida, Mexico Aleksandr V. Petrov and Craig Macdonald

1.0 2.0 4.0 8.0 16.0 32.0 64.0 128.0 256.0
Code Length

1
2

4
8

16
32

64
12

8
25

6
51

2
E

m
be

dd
in

g
S

iz
e

0.016

0.018 0.015

0.018 0.021 0.026

0.016 0.023 0.033 0.037

0.014 0.021 0.037 0.048 0.064

0.013 0.024 0.038 0.055 0.073 0.078

0.016 0.027 0.05 0.069 0.082 0.098 0.097

0.014 0.038 0.074 0.089 0.11 0.12 0.12 0.12

0.013 0.047 0.094 0.12 0.12 0.13 0.14 0.14 0.14

0.012 0.048 0.11 0.13 0.14 0.14 0.14 0.14 0.14

NDCG@10

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(a) MovieLens-1M

1.0 2.0 4.0 8.0 16.0 32.0 64.0 128.0 256.0
Code Length

1
2

4
8

16
32

64
12

8
25

6
51

2
E

m
be

dd
in

g
S

iz
e

0.00037

0.00022 8.3e-06

0.00037 0.00042 9.5e-05

0.00037 0.00089 0.0001 0.0002

0.00037 0.00097 0.00024 0.0021 0.0034

0.00036 0.0075 0.0055 0.0045 0.0038 0.0062

0.00037 0.016 0.037 0.033 0.016 0.013 0.011

0.00072 0.021 0.08 0.066 0.049 0.032 0.018 0.027

0.0006 0.025 0.11 0.1 0.077 0.061 0.036 0.027 0.036

0.00079 0.025 0.12 0.12 0.1 0.078 0.052 0.039 0.039

NDCG@10

0.02

0.04

0.06

0.08

0.10

0.12

(b) Gowalla

Figure 3: RecJPQ performance while varying embedding
size 𝑑 and the number of centroids per item𝑚.

In summary, in answer to RQ1, we conclude that RecJPQ achieves
large model compression levels. The achieved compression is partic-
ularly impressive on datasets with large catalogues (like Gowalla).
The compression does not depend on the centroid assignment strat-
egy. However, the centroid assignment strategy greatly affects the
model performance. The effect is model- and dataset-dependent, so
the strategy should be treated as a hyperparameter. However, the
SVD is a safe choice, as it always provides results that are compara-
ble (i.e statistically indistinguishable) or better than the base model.

To answer RQ2, we perform a grid search over embedding size
and code length on the MovieLens-1M and Gowalla datasets. We
use SASRec as the backbone (the only model that can be easily
trained on Gowalla) and apply the SVD centroid assignment strat-
egy. We select the embedding size 𝑑 from {20, 21, 22, ..., 29} and code
length𝑚 from {20, 21, 22, ..., 28}. Note that𝑚 ≤ 𝑑 , as RecJPQ splits
each embedding of size 𝑑 into𝑚 sub-embeddings.

Figure 3 illustrates the results of the grid search. The figure shows
the NDCG@10 of the SASRec-RecJPQ model for each combination
of code length (x-axis) and embedding size (y-axis), in the form of
a heatmap for both datasets. As we can see from the figure, a larger
embedding size generally positively affects the model performance.
This result echoes similar findings of a recent reproducibility pa-
per [43]; however, interestingly, in the RecJPQ case, increasing
embedding dimensionality does not change the amount of infor-
mation we store per each item, as the length of the code defines it
rather than the embedding size. Instead, it increases model capacity
increasing the amount of information that can be stored in each cen-
troid, allowing centroids to account for more item characteristics.
For example, on Gowalla, the largest embedding we can train using
base SASRec is 128-dimensional embedding, while with RecJPQ,
we can train the model even with 512-dimensional embeddings.

On the other hand, larger code lengths is not always helpful.
As we discussed in Section 4.2, RecJPQ forces the model to share
parts of embeddings with other items and therefore acts as a reg-
ularisation mechanism. Shorter code length forces items to share
more information, and therefore it causes a stronger regularisation
effect. As we can see, on the less sparse MovieLens-1M – where
all items have more than five interactions – regularisation is not
an issue, and longer codes are beneficial. For example, the best

0MB 20MB 40MB 60MB 80MB
Model checkpoint size

0.05

0.10

0.15

N
D

C
G

@
10

4.90x

SASRec-RecJPQ
SASRec

(a) MovieLens-1M

0MB 1.0GB 2.0GB 2.9GB 3.9GB
Model checkpoint size

0.00

0.05

0.10

N
D

C
G

@
10

47.94x

SASRec-RecJPQ
SASRec

(b) Gowalla

Figure 4: Model Performance/Model Size tradeoff for SASRec
and SASRec-RecJPQ.

result is achieved with 512-dimensional embeddings and a code of
length 128 (NDCG@10 0.14). In contrast, for Gowalla, where most
items are long-tail items with less than five interactions (hence the
embeddings of these items should be regularised), the best NDCG
is achieved with the code of length 8 (NDCG@10 0.12). The fact
that the model can perform better with shorter codes confirms that
RecJPQ can work as a regularisation technique.

In short, in answer to RQ2, we conclude that larger embed-
dings are generally beneficial for model performance. However,
the sparser Gowalla dataset benefits from shorter code lengths, due
to the regularisation effect of parameter sharing brought by RecJPQ.

5.2.3 RQ3. Size-Performance tradeoff. To address our last research
question, we analyse the trade-off between model checkpoint size
and NDCG@10 achieved by the model when trained with different
embedding sizes. We select the embedding size from {1, 2, 4, 8, 16,
32, 64, 128, 256, 512} and train the original versions of SASRec and
SASRec-RecJPQ with the SVD strategy on the MovieLens-1M and
Gowalla datasets. For RecJPQ, we select code length 𝑚 optimal
for the dataset/embedding size pair (according to grid search from
Section 5.2.2). For the original SASRec on Gowalla, we only train
up to the embedding size of 128 (larger embedding sizes cannot be
trained on our GPUs’ memory).

Figure 4 illustrates the tradeoff between model checkpoint size
and NDCG@10 for both SASRec and SASRec-RecJPQ on the two
datasets. Each point on the figure corresponds to one embedding
size. As can be seen from the table, a larger model size (correspond-
ing to larger embeddings) leads to better performance for both
SASRec and SASRec-RecJPQ (this echoes findings in the previous
research question). However, SASRec-RecJPQ’s performance grows
much faster with increasing model size than observed for vanilla
SASRec. For example, the largest vanilla SASRec model achieves
roughly the same performance as the 4.9× smaller SASRec-RecJPQ
version of the model (71MB vs. 15 MB). This effect is even more
prominent in Gowalla, where the number of items is larger: the
largest SASRec model achieves roughly the same performance as
the 47.94× smaller SASRec-RecJPQ model (3.2GB vs. 69MB).

Overall in answer to RQ3, we conclude that while larger mod-
els benefit model performance, RecJPQ improves this tradeoff by a
large margin (i.e. to achieve the same performance, RecJPQ requires
much fewer parameters than the original model). This effect is more
markedly pronounced for the larger Gowalla dataset.

6 CONCLUSIONS
In this paper, we discussed the challenge of training sequential
recommender systems with large datasets, primarily due to the
large item embedding tensor. Existing compression methods have
limitations, leading to the proposed method, RecJPQ, based on
Joint Product Quantisation. Our evaluation of RecJPQ on three
datasets resulted in significant model size reduction, e.g., 47.94×

RecJPQ: Training Large-Catalogue Sequential Recommenders WSDM ’24, March 4–8, 2024, Mérida, Mexico

compression of the SASRec model on the Gowalla dataset. Addi-
tionally, RecJPQ serves as a model regulariser, improving model
quality, with SASRec-RecJPQ using SVD strategy outperforming
the original SASRec model (+35% NDCG@10 on Booking, +10% on
Gowalla). This paper’s method could bridge the gap between aca-
demic research, especially on transformer-based architectures, and
large-scale production recommender systems of large companies.

REFERENCES
[1] Jan Van Balen and Mark Levy. 2019. PQ-VAE: Efficient Recommendation Using

Quantized Embeddings. In Proc. RecSys.
[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. 2020. Language Models Are Few-Shot Learners. In Proc. NeurIPS,
Vol. 33. 1877–1901.

[3] Christopher Burges. 2010. From RankNet to LambdaRank to LambdaMART: An
overview. Learning 11 (2010).

[4] Rocío Cañamares and Pablo Castells. 2020. On Target Item Sampling in Offline
Recommender System Evaluation. In Proc. RecSys. 259–268.

[5] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. 2011. Friendship and mobility:
user movement in location-based social networks. In Proc. KDD. 1082–1090.

[6] Kyunghyun Cho and Bart van Merrienboer. 2014. On the Properties of Neural
Machine Translation: Encoder-Decoder Approaches. (2014). arXiv:1409.1259 [cs,
stat]

[7] Alexander Dallmann, Daniel Zoller, and Andreas Hotho. 2021. A Case Study
on Sampling Strategies for Evaluating Neural Sequential Item Recommendation
Models. In Proc. RecSys. 505–514.

[8] Kalyanmoy Deb and Kalyanmoy Deb. 2014. Multi-objective Optimization. In
Search Methodologies: Introductory Tutorials in Optimization and Decision Support
Techniques. 403–449.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proc. NAACL-HLT. 4171–4186.

[10] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2014. Optimized Product
Quantization. IEEE Transactions on Pattern Analysis and Machine Intelligence 36,
4 (2014), 744–755.

[11] Dmitri Goldenberg and Pavel Levin. 2021. Booking.com Multi-Destination Trips
Dataset. In Proc. SIGIR. 2457–2462.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press.

[13] Robert M. Gray. 1984. Vector Quantization. IEEE Assp 1, 2 (1984).
[14] N. Halko, P. G. Martinsson, and J. A. Tropp. 2011. Finding Structure with Ran-

domness: Probabilistic Algorithms for Constructing Approximate Matrix Decom-
positions. 53, 2 (2011), 217–288.

[15] F. Maxwell Harper and Joseph A. Konstan. 2015. TheMovieLens Datasets: History
and Context. 5, 4 (2015), 19:1–19:19.

[16] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In Proc. WWW. 173–182.

[17] Balázs Hidasi and Alexandros Karatzoglou. 2018. Recurrent Neural Networks
with Top-k Gains for Session-based Recommendations. In Proc. CIKM. 843–852.

[18] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-Based Recommendations with Recurrent Neural Networks. In Proc.
ICLR.

[19] Yupeng Hou, Zhankui He, Julian McAuley, and Wayne Xin Zhao. 2023. Learn-
ing Vector-Quantized Item Representation for Transferable Sequential Recom-
menders. In Proc. WWW. 1162–1171.

[20] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning Deep Structured Semantic Models for Web Search Using
Clickthrough Data. In Proc. CIKM. 2333–2338.

[21] Gautier Izacard, Fabio Petroni, Lucas Hosseini, Nicola De Cao, Sebastian Riedel,
and Edouard Grave. 2020. A Memory Efficient Baseline for Open Domain Ques-
tion Answering. arXiv:2012.15156 [cs]

[22] Herve Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization
for Nearest Neighbor Search. IEEE Transactions on Pattern Analysis and Machine
Intelligence 33, 1 (2011), 117–128.

[23] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021. Billion-Scale Similarity
Search with GPUs. IEEE Transactions on Big Data 7, 3 (2021), 535–547.

[24] Wang-Cheng Kang, Derek Zhiyuan Cheng, Ting Chen, Xinyang Yi, Dong Lin,
Lichan Hong, and Ed H. Chi. 2020. Learning Multi-granular Quantized Embed-
dings for Large-Vocab Categorical Features in Recommender Systems. In Proc.
WWW. 562–566.

[25] Wang-Cheng Kang and Julian McAuley. 2018. Self-Attentive Sequential Recom-
mendation. In Proc. ICDM. 197–206.

[26] Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-
Domain Question Answering. In Proc. EMNLP. arXiv:2004.04906 [cs]

[27] Omar Khattab and Matei Zaharia. 2020. ColBERT: Efficient and Effective Passage
Search via Contextualized Late Interaction over BERT. In Proc. SIGIR. 39–48.

[28] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization Tech-
niques for Recommender Systems. Computer 42, 8 (2009), 30–37.

[29] Walid Krichene and Steffen Rendle. 2022. On sampled metrics for item recom-
mendation. Commun. ACM 65, 7 (2022), 75–83.

[30] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and
Xuemin Lin. 2020. Approximate Nearest Neighbor Search on High Dimensional
Data — Experiments, Analyses, and Improvement. IEEE Transactions on Knowl-
edge and Data Engineering 32, 8 (2020), 1475–1488.

[31] Defu Lian, Haoyu Wang, Zheng Liu, Jianxun Lian, Enhong Chen, and Xing Xie.
2020. LightRec: A Memory and Search-Efficient Recommender System. In Proc.
WWW. 695–705.

[32] J. MacQueen. 1967. Some Methods for Classification and Analysis of Multivariate
Observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Statistics. Vol. 5.1. 281–298.

[33] Yu A. Malkov and D. A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs.
IEEE Transactions on Pattern Analysis and Machine Intelligence 42, 4 (2020), 824–
836.

[34] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich
Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, and Hao Wu. 2018. Mixed Precision Training. In Proc. ICLR.

[35] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean
Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherni-
avskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kon-
dratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang
Xiong, and Misha Smelyanskiy. 2019. Deep Learning Recommendation Model
for Personalization and Recommendation Systems. arXiv:1906.00091 [cs]

[36] Yoon-Joo Park and Alexander Tuzhilin. 2008. The long tail of recommender
systems and how to leverage it. In Proc. RecSys. 11–18.

[37] Aleksandr Petrov and Craig Macdonald. 2022. Effective and Efficient Training for
Sequential Recommendation Using Recency Sampling. In Proc. RecSys. 81–91.

[38] Aleksandr Petrov and Craig Macdonald. 2022. A Systematic Review and Repli-
cability Study of BERT4Rec for Sequential Recommendation. In Proc. RecSys.
436–447.

[39] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Languaga Models are Unsupervised Multitask Learners. OpenAI
blog (2019).

[40] Rajput, Shashank, Mehta, Nikhil, Singh, Anima, Keshavan, Raghunandan, Vu,
Trung, Heldt, Lukasz, Hong, Lichan, Tay, Yi, Tran, Vinh Q., Samost, Jonah, Kula,
Maciej, Chi, Ed H., and Sathiamoorthy, Maheswaran. 2023. Recommender Sys-
tems with Generative Retrieval. arXiv:2305.05065 [cs.IR]

[41] Steffen Rendle. 2022. Item Recommendation from Implicit Feedback. In Recom-
mender Systems Handbook. 143–171.

[42] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In Proc. UAI.

[43] Steffen Rendle, Walid Krichene, Li Zhang, and Yehuda Koren. 2022. Revisiting
the Performance of iALS on Item Recommendation Benchmarks. In Proc. RecSys.
427–435.

[44] Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei
Zaharia. 2022. ColBERTv2: Effective and Efficient Retrieval via Lightweight Late
Interaction. arXiv:2112.01488 [cs]

[45] Ozan Sener and Vladlen Koltun. 2018. Multi-Task Learning as Multi-Objective
Optimization. In Advances in Neural Information Processing Systems, Vol. 31.

[46] Hao-Jun Michael Shi, Dheevatsa Mudigere, Maxim Naumov, and Jiyan Yang.
2020. Compositional Embeddings Using Complementary Partitions for Memory-
Efficient Recommendation Systems. In Proc. KDD. 165–175.

[47] Shaoyun Shi, Weizhi Ma, Min Zhang, Yongfeng Zhang, Xinxing Yu, Houzhi Shan,
Yiqun Liu, and Shaoping Ma. 2020. Beyond User Embedding Matrix: Learning
to Hash for Modeling Large-Scale Users in Recommendation. In Proc. SIGIR.
319–328.

[48] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential Recommendation with Bidirectional Encoder Repre-
sentations from Transformer. In Proc. CIKM. 1441–1450.

[49] Jiaxi Tang and Ke Wang. 2018. Personalized Top-N Sequential Recommendation
via Convolutional Sequence Embedding. In Proc. WSDM. 565–573.

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Proc. NeurIPS.

[51] Feng Wang, Miaomiao Dai, Xudong Li, and Liquan Pan. 2022. Compressing
Embedding Table via Multi-dimensional Quantization Encoding for Sequential

https://arxiv.org/abs/1409.1259 [cs, stat]
https://arxiv.org/abs/1409.1259 [cs, stat]
https://arxiv.org/abs/2012.15156
https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/1906.00091
https://arxiv.org/abs/2305.05065 [cs.IR]
https://arxiv.org/abs/2112.01488

WSDM ’24, March 4–8, 2024, Mérida, Mexico Aleksandr V. Petrov and Craig Macdonald

Recommender Model. In Proc. ICCIP. 234–239.
[52] Ruoxi Wang, Bin Fu, Gang Fu, and MingliangWang. 2017. Deep & Cross Network

for Ad Click Predictions. In Proc. KDD. 1–7.
[53] Kilian Weinberger, Anirban Dasgupta, Josh Attenberg, John Langford, and Alex

Smola. 2010. Feature Hashing for Large Scale Multitask Learning. arXiv:0902.2206
[cs]

[54] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2020. HuggingFace’s Transformers: State-of-the-art
Natural Language Processing. arXiv:1910.03771 [cs]

[55] Xin Xia, Junliang Yu, Qinyong Wang, Chaoqun Yang, Nguyen Quoc Viet Hung,
and Hongzhi Yin. 2023. Efficient On-Device Session-Based Recommendation.
ACM Transactions on Information Systems (2023).

[56] Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong
Li, and Yuxiong He. 2022. ZeroQuant: Efficient and Affordable Post-Training

Quantization for Large-Scale Transformers. In Proc. NeurIPS, Vol. 35. 27168–
27183.

[57] Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M. Jose, and
Xiangnan He. 2019. A Simple Cenvolutional Generative Network for Next Item
Recommendation. In Proc. WSDM. 582–590.

[58] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma.
2021. Jointly Optimizing Query Encoder and Product Quantization to Improve
Retrieval Performance. In Proc. CIKM. 2487–2496.

[59] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma.
2021. Optimizing Dense Retrieval Model Training with Hard Negatives. In Proc.
SIGIR. 1503–1512.

[60] Yin Zhang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Lichan Hong, and
Ed H. Chi. 2021. A Model of Two Tales: Dual Transfer Learning Framework for
Improved Long-tail Item Recommendation. In Proc. WWW. 2220–2231.

[61] Xun Zhou, Jing He, Guangyan Huang, and Yanchun Zhang. 2012. A Personal-
ized Recommendation Algorithm Based on Approximating the Singular Value
Decomposition (ApproSVD). In Proc. WI-IAT, Vol. 2. 458–464.

https://arxiv.org/abs/0902.2206 [cs]
https://arxiv.org/abs/0902.2206 [cs]
https://arxiv.org/abs/1910.03771 [cs]

	Enlighten Accepted coversheet (ACM Statement)
	308675
	Abstract
	1 Introduction
	2 Related work
	3 Product Quantisation and JPQ
	3.1 Product Quantisation
	3.2 Joint Product Quantisation

	4 RecJPQ
	4.1 Centroid Assignment Strategies
	4.2 RecJPQ as a Regularisation Mechanism
	4.3 RecJPQ: Summary

	5 Experiments
	5.1 Experimental Setup
	5.2 Results

	6 Conclusions
	References

