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Transmission of many infectious diseases depends on interactions between humans, animals, and the environment. 
Incorporating these complex processes in transmission dynamic models can help inform policy and disease control 
interventions. We identified 20 diseases involving environmentally persistent pathogens (ie, pathogens that survive 
for more than 48 h in the environment and can cause subsequent human infections), of which indirect transmission 
can occur from animals to humans via the environment. Using a systematic approach, we critically appraised dynamic 
transmission models for environmentally persistent zoonotic diseases to quantify traits of models across diseases. 
210 transmission modelling studies were identified and most studies considered diseases of domestic animals or 
high-income settings, or both. We found that less than half of studies validated their models to real-world data, and 
environmental data on pathogen persistence was rarely incorporated. Model structures varied, with few studies 
considering the animal–human–environment interface of transmission in the context of a One Health framework. 
This Review highlights the need for more data-driven modelling of these diseases and a holistic One Health approach 
to model these pathogens to inform disease prevention and control strategies.

Introduction 
WHO defines zoonotic diseases as diseases that can 
transmit naturally between vertebrate animals and 
humans.1 Such zoonoses can be transmitted either 
directly from animals to humans, or indirectly via food or 
the environment. Diseases that can be transmitted 
indirectly via the environment, such as leptospirosis and 
hantavirus disease, are particularly challenging to control 
as the natural environment also acts as a reservoir. For 
this reason, it is important to consider this additional 
dimension of the transmission process within a 
One Health framework, which accounts for inter
connectedness between the health of humans, animals 
and their environment.2–4 These diseases at the animal–
human–environment interface are the focus of this 
Review.

Understanding disease transmission processes at the 
animal–human–environment interface is an increasingly 
important issue, especially because climate change, loss 
of biodiversity, land use, and landcover change alter and 
often increase pathogen transfer to, and from, the 
environment. The multihost and environmental persis
tence of such pathogens can lead to complex disease 
dynamics.5 For example, many different factors drive the 
transmission of leptospirosis; there are numerous 
exposure routes (ie, occupational, recreational, and 
socioeconomic circumstances) and many animals are 
known to be involved, including both rodents and 
domestic animals.6 Understanding the underlying 
disease dynamics can enable insight into how anthro
pogenic change will affect transmission. Furthermore, 
because of these complex transmission dynamics, these 
diseases can be difficult to control, with several possible 
interventions. Many of these diseases will not be 
controlled using just one intervention, but instead with 
multimodal control programmes, targeting vaccination, 
health education and disease awareness, and improved 
sanitation and environmental hygiene. Dynamic models 

can be used to explore the underlying transmission 
dynamics, answer questions as to the effect of 
environmental change on transmission and provide 
insight into the most effective interventions. Further
more, formulating models within a One Health frame
work provides an integrated approach for understanding 
these transmission processes.3,4

Dynamic disease transmission models can be used to 
improve understanding of the disease transmission 
process, predict the risk of disease outbreaks, and inform 
the development of effective control policies. In a basic 
dynamic transmission model, a population is divided into 
epidemiological classifications (eg, susceptible, infected, 
and recovered) and populations can be tracked over 
time.7,8 Unlike noncommunicable diseases, the risk of 
infectious disease transmission depends not only on 
individual risk factors, but also on the infectious state of 
others in the population. Because of this epidemiology, it 
is important to understand how the infectious state of the 
population changes over time. Compartmental models 

Key messages

• We identified a group of environmentally persistent zoonotic diseases, which share 
similarities in their transmission dynamics and appraised the methodological 
approaches used to develop transmission dynamic models

• We highlight the need for more data-driven modelling for this class of diseases, 
particularly neglected tropical diseases and diseases with a wildlife host

• The full transmission process was often not considered, and models were rarely 
formulated using a One Health framework, including interactions between humans, 
animals, and the environment

• We identified gaps in our knowledge about the environmental pathogen burden, 
despite it being a major source of transmission to humans for many of these diseases

• Moving forward, it will become increasingly important to consider the effect of 
environmental change and global heating, particularly because of the environmental 
pathogen burden many of these diseases are climate sensitive and expected to 
increase their range in the future
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Pathogen species Pathogen 
class

Animal reservoirs 
or hosts

Primary 
animal 
reservoir or 
host

Climate 
sensitive

Human–
human 
transmission

Primary 
transmission 
route

Environmental 
transmission 
pathway

Duration 
environmental 
persistence

Considered 
to be an 
NTD*

Anthrax18–21 Bacillus anthracis Bacteria Domestic and wild 
animals, including 
cattle, sheep, 
goats, antelope, 
and deer

Domestic 
and wild 
animals

Changing 
range as a 
result of 
climate 
change

No Direct 
transmission 
with infected 
animal, or 
environmental 
transmission

Inhalation Up to 48 years No

Brucellosis22–24 Brucella abortus, 
B melitensus, B suis, 
B neotomae, B ovis, 
and B canis

Bacteria Domestic and wild 
animals, including 
cattle, swine, 
goats, dogs, and 
bison

Domestic 
animals

Yes Rare Multiple routes; 
primary route 
unknown

Inhalation 21 days– 
8 months

No

Campylo-
bacteriosis25–27

Campylobacter jejuni 
and C fetus

Bacteria Domestic and wild 
animals (eg, 
cattle, poultry, 
and rodents)

Domestic 
animals

Yes Rare Foodborne Ingestion via 
contaminated 
water

2–14 days No

Crypto-
sporidiosis28–30

Cryptosporidum 
parvum (most 
common zoonotic 
species, but many 
others exist)31

Protozoan Mammals Domestic 
and wild 
animals

Yes Yes Multiple routes; 
primary route 
unknown

Ingestion of 
contaminated 
water and food

Several months Yes (by 
PLoS)†

Echinococcosis31,32 Echinococcus 
granulosus and 
E multilocularis

Helminth 
(cestode) 

Dogs, sheep, and 
foxes

Domestic 
and wild 
animals

Yes No Direct 
transmission 
from an infected 
animal, or 
environmental 
transmission

Ingestion food, 
water or soil

Up to 1 year Yes (by 
WHO and 
PLoS)

E coli33,34 Escherichia coli Bacteria Predominantly 
cattle, but also 
other mammals 
and birds

Domestic 
animals

Yes Rare Foodborne Ingestion via 
contaminated 
water or food

1 day–1 year Yes (by 
PLoS)

Erysipeloid35–37 Erysipelothrix 
rhusiopathiae

Bacteria Predominantly 
pigs, but also 
turkeys, chickens, 
ducks, emus, and 
sheep

Domestic 
animals

Some 
evidence‡

No Direct 
transmission 
from an infected 
animal

Environmental 
transmission 
from 
contaminated 
animal waste 
and soil

2–35 days No

Fascioliasis38–41 Fasciola hepatica 
and Fasciola 
gigantica

Helminth 
(trematode) 

Domestic and wild 
ruminants, 
including cattle, 
sheep, buffaloes, 
donkeys, and pigs

Domestic 
and wild 
animals

Yes No Environmental 
transmission

Environmental 
transmission 
via ingestion of 
contaminated 
aquatic plants 
or water

Several months Yes (by 
WHO and 
PLoS)

Giardiasis42–44 Giardia duodenalis Protozoan Cats and dogs Domestic 
animals

Yes Yes Multiple routes; 
primary route 
unknown

Ingestion 
contaminated 
water and food

Several months Yes (by 
PLoS)

Glanders45–47 Burkholderia mallei Bacteria Primarily horses, 
but also donkeys, 
mules, goats, 
dogs, and cats

Domestic 
animals

No Rare Direct 
transmission 
from an infected 
animal, or 
inhalation of the 
bacteria from 
the environment

Inhalation of 
the bacteria 
from the 
environment

2–6 weeks No

Hantavirus48–52 Puumala spp, Seoul 
spp, and Sin Nombre 
spp

Virus Rodents Wild 
animals

Yes Rare Environmental 
transmission

Inhalation Up to 18 days Yes (by 
PLoS)

Leptospirosis6,12,53 Leptospira spp Bacteria Domestic and wild 
animals including 
rodents, cattle, 
sheep, and dogs.

Domestic 
and wild 
animals

Yes No Multiple routes; 
primary route 
unknown

Ingestion or via 
cuts and 
abrasions in the 
skin from 
contaminated 
water or soil

1–12 months Yes (by 
PLoS)

(Table 1 contines on next page)
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can include more than one population, or in the case of 
zoonotic diseases, models can include both humans and 
animal reservoirs.9 Additionally, individualbased models 
can be formulated to track individuals, rather than 
populations, over time. We can further distinguish 
between models, describing them as deterministic, in 
which the same results are always obtained from a given 
set of parameters, and stochastic, in which chance has a 
role in governing events.7,8,10,11

In their simplest form, models can be used theoretically 
to understand observed patterns and behaviours in 
different systems, for example, they can be used to find 
theoretical thresholds for disease elimination or the 
existence of an endemic equilibrium. Modelling also 
allows exploration of different scenarios, such as the 

comparative effectiveness of different control measures, 
a comparison that can be ethically or logistically 
unfeasible during a realworld outbreak.7,8,10,11 Advances 
of computational capabilities and advances in statistical 
software has enabled the development of more complex 
models, and for realworld data to be used to validate or 
calibrate models, allowing these models to predict 
disease outbreaks and directly inform policy 
and interventions.7,9 Because of these advancements, 
methods of analysis and fitting models to data have 
improved, becoming more refined and better able to 
incorporate reallife complexity.8 In this Review we 
define model validation as the comparison of model 
simulations with observed data, even qualitatively, 
whereas model calibration takes this definition further 

Pathogen species Pathogen 
class

Animal reservoirs 
or hosts

Primary 
animal 
reservoir or 
host

Climate 
sensitive

Human–
human 
transmission

Primary 
transmission 
route

Environmental 
transmission 
pathway

Duration 
environmental 
persistence

Considered 
to be an 
NTD*

(Continued from previous page)

Melioidosis54,55 Burkholderia 
pseudomallei

Bacteria Domestic and wild 
animals, including 
sheep, goats, 
swine, cattle, and 
rodents

Domestic 
and wild 
animals

Yes No Multiple routes; 
primary route 
unknown

Contact, 
inhalation, or 
ingestion

Up to 7 days Yes (by 
PLoS)

Nipah virus56,57 Nipah virus Virus Pigs, dogs, goats, 
cats, horses, and 
sheep; the virus is 
thought to be 
maintained in 
nature by bats

Domestic 
and wild 
animals

Some 
evidence‡

Yes Direct 
transmission 
from an infected 
animal

Environmental 
transmission as 
a result of 
ingesting food 
contaminated 
with bat saliva 
and urine

Several days Yes (by 
PLoS)

Q fever58–60 Coxiella burnetii Bacteria Predominantly 
cattle, sheep, and 
goats

Domestic 
animals

Some 
evidence‡

Rare Multiple routes; 
primary route 
unknown

Inhalation Up to 3 years Yes (by 
PLoS)

Salmonellosis61–63 Salmonella enterica 
Dublin, S enterica 
Enteritidis, 
S enterica 
Typhimurium, 
S enterica 
choleraesuis

Bacteria Domestic and wild 
animals, including 
poultry, pigs, 
cattle, and cats

Domestic 
animals

Yes Yes Foodborne Ingestion of 
contaminated 
water or food

7 weeks Yes (by 
PLoS)

Toxoplasmosis64–66 Toxoplasma gondii Protozoan Domestic animals 
and wild animals 
(eg, cats, pigs, 
sheep, and goats)

Domestic 
and wild 
animals

Climate 
change 
might 
increase 
cases

Yes Foodborne Ingestion of 
contaminated 
soil, water, or 
food

Up to 24 months Yes (by 
PLoS)† 

Toxocariasis67,68 Toxocara canis and 
T cati

Helminth 
(nematode) 

Cats and dogs Domestic 
animals

No No Multiple routes; 
primary route 
unknown

Ingestion 
contaminated 
soil

Several months Yes (by 
PLoS)

Tularaemia69,70 Francisella tularensis Bacteria Rabbits, rodents, 
squirrels, and 
other small 
mammals

Wild 
animals

Climate 
change 
might 
increase 
cases

No Multiple routes; 
primary route 
unknown

Inhalation or 
ingestion of 
contaminated 
water and soil

Several weeks No

Yersinosis71,72 Yersinia
 enterocolitica and 
Y pseudotuberculosis

Bacteria Predominantly 
rodents, but also 
sheep and pigs

Wild 
animals

No Rare Foodborne and 
contaminated 
water

Ingestion of 
contaminated 
water or food

7–36 days No

NTD=neglected tropical disease. PLoS=Public Library of Science. *Based on the WHO list of NTDs73 and PLoS list of major Neglected Tropical Diseases.74 †Classed as on the cusp; which is defined by PLoS as diseases 
that could be classed as NTD’s depending on the availability of disease estimates for that condition, and whether they occur in resource-poor settings.74 ‡Some available studies suggesting the disease might be 
climate-sensitive, but the link has not yet been clearly established. 

Table 1: Summary of diseases included within the systematic review
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and fits models to observed data to estimate key 
unknown biological parameters (eg, by using methods 
such as Markov chain Monte Carlo to estimate 
parameters).7 Studies will have different aims and 
purposes, and the model should only be as complex as 
needed to fulfil the intended objective.

In this Review, we critically appraise studies that have 
attempted to model infectious diseases at the animal–
human–environment interface to quantify traits of 
models across diseases and identify studies that have 
adequately accounted for these three One Health 
components. Previous reviews of modelling studies have 
focussed on vectorborne diseases or zoonotic diseases 
generally9,12,13 and, to the best of our knowledge, this is the 
first review that focusses specifically on environmentally 
persistent pathogens. Of particular interest is the way by 
which models are validated or calibrated, and the data 
that have been used to do so. First, we identified diseases 
in which indirect transmission can occur from animals, 
more specifically land mammals, to humans via the 

environment. This human–environment transmission 
could be the only transmission route, or there might be 
multiple transmission routes to humans, of which 
environmental transmission is just one. Second, we 
reviewed modelling studies using a systematic approach. 
For each paper, we extracted information on the type of 
model, the data used, and the quality of model validation 
and calibration attempts. Finally, using this information, 
we evaluated the current state of transmission modelling 
studies and identified key themes and best practices, 
which could be incorporated in future disease trans
mission analyses and shared between different diseases.

Methods 
Disease selection 
Two criteria were used to select diseases for inclusion in 
the study: the disease must be zoonotic (transmissible 
from animals to humans, specifically affecting land 
mammals), and the pathogen must persist in the 
environment for at least 48 h and then remain able to 
cause subsequent human infections.

Vectorborne diseases and fungi were excluded. Lists of 
zoonotic diseases were obtained from Public Health 
England,14 the European Centre for Disease Control,15 
and WHO.1 Following these criteria, 20 diseases that had 
freeliving pathogens were identified. We considered free 
living to mean the pathogen could survive in the 
environment for more than 48 h outside of a host. We 
focussed on land mammals as we were particularly 
interested in animals that live alongside humans in the 
same environment, and as a result of our criteria very 
few diseases were excluded (appendix pp 1–3). For 
example, rabies was excluded because transmission to 
humans occurs via direct contact with an infected animal 
or human, and there is no evidence of environmental 
transmission to humans. Ebola was excluded as, 
although there is some evidence of environmental 
persistence, transmission to humans occurs via an 
infected animal, or human–human transmission, and 
not via the environment. Although Lassa fever and 
Bolivian haemorrhagic fever anecdotally have the ability 
to survive in the environment, no evidence was found of 
this, and so these diseases were also excluded from this 
Review.16,17 A summary of each disease is presented in 
table 1 and a generalised schematic representation of the 
transmission pathways for the diseases is shown in 
figure 1A.

There are many different serovars of Salmonella enterica 
subspecies enterica, not all of which are zoonotic. 
Therefore, four common zoonotic serovars were selected 
for the study, S enterica serotype Dublin, S enterica 
serotype Enteritidis, S enterica serotype Typhimurium, 
and S serotype Choleraesuis. Melioidosis is not always 
considered a zoonotic disease because transmission to 
humans occurs primarily via the contaminated 
environment;75 animals can be the source of the 
environmental contamination, but not necessarily so. 

Figure 1: Transmission pathways and studies included in the systematic 
review
(A) Transmission pathways of the diseases included within this study; solid 
arrows show shared transmission routes across all diseases, dashed arrows show 
transmission routes that only occur in some diseases. (B) Number of studies 
(n=208) identified in the systematic review from 1980 to 2019, studies which 
present models on more than one disease are only included once.
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However, because environmental transmission to 
humans is of key interest for this Review, this disease 
matched our inclusion criteria and was included.

Inclusion and exclusion criteria 
To qualify for inclusion, studies had to model one of the 
20 diseases described (table 1) and include a dynamic 
population model (ie, models that track populations over 
time), both compartmental and individualbased models 
were included.

The following studies were excluded from the review: 
PhD theses, grey literature (including conference 
abstracts), statistical models (including timeseries analy
sis, regression, and ARIMA [Auto Regressive Integrated 
Moving Average] models), withinhost models, models 
using cellular automata, and review articles (unless new 
models were presented).

Search strategy 
In June, 2019, we searched Embase, MEDLINE, and Web 
of Science for articles published between January, 1970, 
and June, 2019. Only articles in English were included. 
We used disease specific and modelspecific search terms 
(appendix pp 4–5). An example search strategy used in 
the database Embase for leptospirosis is shown 
(appendix p 6). We aimed to identify all published articles 
that included population dynamic models of the 
20 diseases. To ensure all relevant papers were captured, 
EMR examined the title, abstract and keywords of known 
modelling studies to identify relevant search terms, and 
these were discussed and finalised with other coauthors 
(AM, AKJ, and RL). Each disease was included as a search 
term and as a keyword.

We combined and stored the results from database 
searches using Mendeley reference manager, and 
duplicates were removed manually. We screened the 
titles and abstracts of all papers to remove irrelevant 
studies (eg, experimental animal models). Subsequently, 
abstracts and full texts of potentially relevant papers were 
independently reviewed by two reviewers (EMR and 
AM), and any conflicts were resolved through discussion. 
Any additional studies identified from the reference lists 
of these studies were also included (appendix p 7).

Data extraction 
To compare studies, we extracted information (including 
model structure, model type, and model features) from 
each study (table 2). For studies including models for 
more than one relevant pathogen, we extracted infor
mation separately for each disease.

Results 
Overall, 20 different diseases were identified that 
matched the disease inclusions criteria (table 1). After 
removal of duplicates, a total of 13 420 studies were 
identified using the search terms, and these were 
screened by title and abstract. A further fulltext screen 

was done for 504 studies, and in total 208 studies were 
found as meeting all inclusion criteria (table 3; 
appendix pp 9–33). For papers that included multiple 
models of relevant diseases, data extraction was done for 
each disease individually, resulting in 210 models being 
included in this Review. As expected, the number of 
published studies has increased over time (figure 1B), 
with an average of 0·7 studies published per year 
between 1990 and 2000, rising to 6·8 studies per year 
from 2000 to 2009 and 13·5 studies per year from 2010 
to 2019. Although the overall number of studies has 
increased over time, the proportion of studies that have 
included model validation has not changed (figure 2b). 
The number of studies that had model validation varies 
considerably by disease and is more common in diseases 
where domestic animals are the predominant host 
(figure 2B). When interrogated by study region, model 
validation is more common for diseases studied in 
Europe and Asia (figure 2C).

There were no modelling studies identified for 
Glanders, Nipah virus, erysipeloid, yersinosis, and 
toxocariasis. Overall, more studies (n=96) were identified 
for diseases for which domestic animals are the 
predominant host species (eg, brucellosis, echinococcosis, 
and Escherichia coli) rather than wild animals (n=27; 
figure 2A). Five diseases were found to have fewer than 
five studies identified: Q fever, tularaemia, melioidosis, 
giardiasis, and fascioliasis. 165 (79%) of 210 studies were 
deterministic, compartmental based models (table 3), 
with only 55 (26%) of 210 studies using stochastic 

Description

Components

Animals Animals included in the model

Environment Environmental pathogens included in the model

Humans Humans included in the model

Structure of the model

Deterministic or stochastic Model structure of the model was deterministic or stochastic

Compartmental or IBM Model structure of the model was ODE-based or an IBM

Model Features

Data-driven parameters Parameters informed by empirical data

Model validation Model outputs compared with data in any way, even qualitatively

Model calibration Model fitted to data to estimate parameters

Prediction Model used to generate predictions about future cases (limited to studies that 
compared their model with data)

Control measures Were any control measures included within the model, examples include 
vaccination and culling

Climate factors If applicable, were any climate factors (eg, temperature and rainfall) included 
within the model

Data sources

Data used What data was used for model validation (if applicable), including information 
on type of data, time period, and whether data was for animals, humans, the 
environment, or a combination of these three factors

Country Country the study was done in (if applicable)

IBM=individual-based model. ODE=ordinary differential equation.

Table 2: Summary of information recorded from all studies
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models, and 24 (11%) studies using stochastic or 
individualbased models, or both.

93 (44%) of the 210 included studies validated their 
models against realworld data, 65 (30%) calibrated their 
models to data, and 17 (8%) used the model to predict 
future disease transmission (figure 2A; table 3).

Of the 93 studies validated against realworld data, 
62 (67%) used animal data, with 28 (30%) studies using 
human case data (figure 2D). Of the 62 studies with 
animal data, 41 (66%) concerned domestic animals. 
Five (5%) of the 93 validated studies included data on the 
environmental pathogen prevalence (table 3). Data on 
the environmental prevalence was only considered for 
fascioliasis and E Coli; including field studies that 
investigated cow pat sampling (E Coli) and faecal egg 
counts from dairy cows (fascioliasis).

While similarities exist, many of the selected diseases 
have unique transmission pathways. For example, 
campylobacter and E coli infections are usually a result 
of food borne transmission,25,76 whereas leptospirosis trans
mission can occur either by contaminated water or soil, or 
through direct contact with the urine of an infected 
animal.77 Therefore, differing modelling structures have 
been chosen to model these diseases, with varying degrees 
of complexity (table 3; figure 3A; appendix p 8). For most 
diseases, animals were included within the models 
(191 [901%] of 210 studies). The environmental reservoir, 
was included within the model less often (109 [52%] of 
210 studies), and humans less frequently still (64 [31%] 
of 210 studies). Looking specifically at the inclusion of 
the environmental reservoir, we found five diseases 
(brucellosis, lepto spirosis, campylobacteriosis, Hanta 
virus, and tularaemia) by which less than half of published 
models did not include the environmental component 
(figure 3B). Regarding the proportion of studies that 
validated and calibrated their models to data by the number 
of components included (ie, animal, human and, environ
mental components), there was little difference in model 
validation by number of components, but a slightly higher 
proportion of model calibration in modelling studies that 
included all three components (figure 3C). In total, 17 (8%) 
of the studies included all three modelling components; of 
these studies, nine (4%) validated their models to data, and 
six (3%) calibrated their models to data.

Of the diseases that are climate sensitive, very few 
models considered the climatic factors within their 
models (22 [12%] of 178 studies; figure 3D).

Approximately half of studies included control 
measures within their models (94 [44%] of 210 studies). 
Control measures investigated included vaccination 
strategies, disposal of infectious carcasses and contam
inated material, livestock movement restrictions, and 
environmental controls such as water treatment.

Discussion 
This Review provides biological and epidemiological 
insights into modelling approaches used to study 

Figure 2: Summary of model validation and calibration for all included studies
(A) Number of studies by disease (n=210). Theoretical studies had neither model validation nor calibration; all 
studies that include model calibration also include model validation. (B) Proportion of studies that include model 
validation for all diseases, between 2000 and 2019 (n=195). (C) The number of studies by case study region 
(n=114). (D) Types of data used for model validation by disease (n=93).
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diseases at the human–animal–environment interface, 
and highlights best practice methodological approaches, 
which can be applied to lesser studied diseases that 
have similar transmission dynamics. Environmentally 
persistent zoonotic diseases vary considerably, occurring 
in different regions in the world, with different animal 
hosts and different transmission pathways. However, two 
key similarities link them together: being a zoonosis, and 
the capacity of pathogens to survive in the environment 
for extended periods of time. By contrast with directly 
transmitted human infections, such as measles, different 
approaches are required to model this class of human–
animal–environment diseases to fully capture the 
biological processes involved, which could have hindered 
technical progress. Furthermore, the persistence of 
pathogens in the environment provides an additional 
layer of complexity that needs to be considered when 
studying these diseases. There are many different 
potential transmission routes; therefore, interventions 
need to be formulated using a One Health framework to 
develop effective control programmes, but first this 

requires a good understanding of the underlying trans
mission dynamics. The problem is further compounded 
by the fact that many diseases included in this category 
are considered to be neglected tropical diseases (NTDs),73 
which typically receive less funding and resources. The 
transmission process of NTDs is often ambiguous, and, 
particularly for diseases with wild animal hosts, little is 
known about the behaviours and environmental 
interactions exhibited by these animals.

We identified several key areas for progress in the 
modelling of zoonotic environmental diseases. First, 
there was substantial variation in the extent of model 
validation and calibration across pathogens and studies. 
Overall, less than half of all studies included in this 
review undertook any kind of model validation 
(ie, comparing model outputs to observed data), a trend 
that has not changed over time. This trend can be partly 
explained by the inclusion of theoretical models in this 
Review. The aim of such models is to explore transmission 
dynamics and generate hypotheses, and these models are 
the foundation for the development of datadriven 
models. Validating and calibrating models to data is an 
important step to ensure adequate realism, not only 
to estimate biological parameters and understand 
transmission, but also to predict disease outbreaks.7,8 
However, model validation and calibration is a necessary 
but not sufficient criteria for model realism; the specific 
choice of data, the implementation methods used, and 
the model structure are also key decisions. There is 
substantial future work to be done in this regard, 
including making testable predictions about reallife 
epidemics that later be assessed. Additionally, engaging 
with multidisciplinary and local experts to ensure that 
the model adequately captures the local environment and 
situation is an important consideration. The main reason 
for the lack of extensive model validation is likely to be 
one of complexity. Some of these diseases have very 
complex transmission pathways, which means little data 
exist to understand the full transmission process and, 
historically, modelling studies have tended to focus on 
diseases with simpler transmission pathways that are 
easier to calibrate and validate. In this systematic review, 
models that included two or three components 
(ie, animal, human, or environmental) generally included 
a similar quality of model validation or calibration 
compared with simpler, and intuitively easier to fit, 
models that just included one component. Nevertheless, 
the number of studies validating and calibrating their 
models was still low, and this highlights the need for 
more research into these pathogens to provide data to 
inform models, policy, and important planetary health 
questions related to landscape change and environmental 
degradation. This research is likely to require increased 
transdisciplinary collaboration and coordination between 
policy makers, mathematical modellers, epidemiologists, 
ecologists, and veterinarians to overcome the shortfalls 
of studies to date.

Figure 3: Models included in systematic review
(A) Studies by transmission (ie, human, animal, and environmental) factors. The different triangles represent the 
different components included within the model, with 17 studies including all three components. (B) Proportion 
of studies that included the environment in their models, by disease (n=210). (C) Proportion of models that 
validated or calibrated their models by the number of components included within the study (n=210). 
(D) Proportion of studies that included climate information within their studies (n=178; three diseases excluded 
because they are not considered to be climate sensitive).
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We found that model validation was more common 
for diseases that affect highincome countries (eg, for 
example, E Coli infection and salmonellosis), and for 
diseases by which domestic animals are the predominant 
host. By contrast, fewer models exist for diseases that 
affect predominantly low and middleincome countries 
(eg, melioidosis, fascioliasis, giardiasis, and yersinosis) 
despite a high global burden of disease. This validation 
discrepancy likely reflects a focus on global research and 
public health, which in turn means an absence of 
epidemiological data on the precise number of human 
cases. Few diseases included within this Review occur 
primarily in wild animals, most diseases occur in both 
wild and domestic animals. However, diseases that occur 
in wild animals (eg, tularaemia and yersinosis), which 
have low spillover into human populations, tend to be 
less studied, or do not have model validation and 
calibration.9 It is known that wildlife hosts act as major 
reservoirs of disease, and more effort should be placed 
on understanding their behaviour and disease trans
mission potential. However, there are some exceptions. 
Hantavirus is a disease that is only found in wild animal 
reservoirs, but there have been a number of outbreaks of 
hantavirus in Europe, and this is reflected in the number 
of studies that exist for this disease.78,79 Additionally, 
wildlife in national parks are often closely monitored—eg, 
brucellosis transmission in bison (Bison bison) and elk 
(Cervus canadensis) in Yellowstone National Park, USA,80 

and anthrax transmission in Kruger National Park, South 
Africa.81,82 A study published in 2020 (ie, after our search 
was completed), investigated Nipah virus in bats in 
Bangladesh.83 Bats were sampled over a 6year period and 
a model developed and fitted to seroprevalence data. This 
study provides a good example of repeated monitoring of 
a wildlife population and combining this data along with 
a compartmental model to understand transmission 
dynamics.

Ideally, data for model validation would be obtained 
from experiments or field studies specifically designed 
with modelling as a potential application, with modellers 
working as part of an interdisciplinary team. There are 
examples of this collaboration in livestock, such as 
studies of Campylobacter in broiler chickens,84 E coli in 
pigs85,86 and cattle,87,88 Salmonella in cattle,89,90 and examples 
from wildlife populations, such as echinococcosis in fox 
populations.91,92 An illustrative example is a study that 
originally aimed to look at breeding strategies in female 
mice.93 In 2012, there was an outbreak of tularaemia in 
this study population, allowing for optimal monitoring of 
this outbreak and a model was subsequently developed 
using this data. However, often model validation is 
limited by the data available, and it is not always possible 
or practical to do experimental studies. For many of these 
diseases surveillance systems exist, particularly in high
income countries, which monitor the numbers of 
reported cases in both animals and humans, and these 
data can then be used to inform and parameterise 

models. Nevertheless, the existence of surveillance 
systems varies extensively, not only by disease but also by 
setting. These surveillance systems tend to focus on 
human and animal cases, with very little focus on 
surveillance of the natural environment.

The vast majority of studies that validated their models 
to data used animal or human data, with few studies 
including data on the environmental reservoir, which 
could be explained by the difficulties in collecting such 
data. Only two diseases included data on the environ
mental pathogen prevalence, E coli and fascioliasis. Some 
of these studies necessary qualitatively compared their 
model outputs to environmental data; however, other 
studies took this further by comparing or fitting their 
models to observational data. For example, Turner and 
colleagues94 compared their model with Fasciola hepatica 
faecal egg counts sampled from dairy cows. Similarly, 
Mathews and colleagues95 fitted their model to the 
prevalence of E coli O157 in cow faeces sampled monthly 
over 1 year. However, transmission to animals and 
humans is affected by the duration of pathogen survival 
outside of its host and the extent of spatial dispersal, and 
for many of these pathogens this is not well understood, 
highlighting the need for further research and empirical 
data. For disease systems with little observational 
epidemic data, experimental estimates (eg, from in vitro 
or in vivo studies) can be used to parameterise models, 
which in turn can be used to explore dynamics. There are 
many examples, but a useful example is Bontje and 
colleagues96 who modelled Q fever in Dutch dairy goat 
herds. The parameters used a wide range of studies, 
particularly those parameters relating to Coxiella burnetii.

By including multiple sources of data within models, it 
can be possible to estimate the relative contribution and 
importance of these different transmission routes. For 
example, Zinstagg and colleagues97 used demographic 
and livestock field data from cattle and sheep, and human 
case data over 9 years, to build a transmission model of 
brucellosis in Mongolia. This is one of only two examples 
where human and animal data are used together. The 
other study, Waters and colleagues,98 did not fit their 
model formally, instead they qualitatively compared the 
model results to the data. Other examples include 
Gautam and colleagues99 who combined experimental 
data in cattle with environmental contamination in 
faeces, and Ebinger and colleagues80 who used both bison 
and elk field data to model brucellosis in Yellowstone 
National Park.

Another key area for future progress will be consid
eration of these diseases within a One Health framework, 
with models exploring the disease transmission system 
as a whole. Only a small proportion of studies (11%) 
accounted for the full transmission process (human, 
animal, and environmental com ponents) within their 
models, including studies examining the longterm 
trends of echinococcosis, brucellosis,100,101 and hanta
virus.78,102 However, including the full transmission 
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process might not be required for particular research 
questions, and model parsimony should be considered. 
Detail and model complexity should not be mistaken for 
realism; a simple model that explains the data well and 
answers the question of interest is preferred.8 There are a 
number of reasons why some studies have chosen to 
focus on one element of transmission—eg, it can allow 
models to focus on particular aspects of transmission for 
which they have detailed data and a comprehensive 
understanding. Many of the studies included within this 
Review did not include the environmental reservoir and 
the decision to include the environment depends on the 
context. For example, for Campylobacter3 and hantavirus, 
the duration of environmental persistence is relatively 
short (2–14 days for Campylobacter and 1–18 days for 
hantavirus)19,48 and, depending on the timescale of the 
model, might not require consideration. Furthermore, 
although all of these diseases have pathogens that survive 
in the environment, the importance of the environmental 
reservoir as a transmission route varies considerably, and 
in many cases, is unknown. For example, foodborne 
transmission by Campylobacter and E coli is considered to 
be the main transmission route, with environmental 
transmission a secondary transmission route.76 The 
decision of whether or not to include the environment 
can also be due to the difficulty in understanding the 
environmental reservoir. For many of these diseases, 
very little is known about the exact duration of 
environmental persistence of these pathogens, or the 
effect of environmental factors on pathogens survival.

However, for some diseases the importance of 
enviro nmental transmission is well established. For 
example, transmission of leptospirosis to humans 
primarily occurs via contaminated water and soil with 
leptospires surviving long periods in the environment, 
yet most of the models included humans and animals, 
without considering the role of the environment (only 
four of 23 models of leptospirosis considered the 
environmental reservoir). A better representation of the 
environmental persistence within these models, 
particularly with the use of empirical data, would allow 
for a better understanding and management of these 
diseases systems, particularly because the environmental 
burden can pose substantial issues when it comes to 
control strategies and interventions. Inclusion of 
environmental data would then lay the groundwork for 
the development of models that address how 
environmental change will shape transmission. Many 
studies also excluded humans from their transmission 
models, with differences observed between diseases. In 
diseases with only sporadic human cases (eg, anthrax), 
human cases provide very little information on the 
underlying dynamics of transmission. However, when 
there are outbreaks or endemic transmission in humans, 
data on humans can help understand the transmission 
dynamics in the animal hosts even if they are not 
contributing to transmission directly. Additionally, data 

collection is usually focussed on human cases, which 
could aid parameterisation of models that have little or 
no animal data.

Although there are many valid reasons to focus on 
particular aspects of transmission when modelling 
these diseases, there is a need for more models that 
explore the system as a whole. This approach would 
allow the transmission dynamics and the effect of 
climate and anthropogenic change on transmission to 
be fully explored. Diseases rarely occur in closed, 
isolated populations and failure to take this complexity 
into account could result in models being unable to 
replicate the observed transmission dynamics. This is 
particularly true for diseases that have an environmental 
component; failure to take this into account can lead 
to overestimation of the importance of particular 
transmission pathways over others, and result in the 
effect of anthropogenic and climate change being 
underestimated and unexplored. Furthermore, many of 
these diseases are climate sensitive, with an increase in 
cases observed as a result of extreme climatic events. 
For example, outbreaks of leptospirosis are often 
associated with heavy rainfall and flooding.6 The 
inclusion of climatic data can help to explain observed 
outbreak dynamics, which was done for hantavirus78 
and brucellosis,103 and this inclusion can be particularly 
useful when little is known about the animal population. 
Furthermore, many of these diseases (eg, anthrax, 
campylobacteriosis, cryptosporidiosis, and leptospirosis) 
are expected to expand their range as a result of climate 
and landuse change and modelling studies 
incorporating climatic data can help identify the effect 
of climate change on these diseases, such as 
campylobacter and cryptosporidium in New Zealand.104 

However, only a small number of models considered 
the effect of climate variables within their models. It is 
also important to take into consideration spatially 
varying covariates, which was done for E coli,105 
hantavirus,79 and echinoccosis.106 An obvious next step is 
to combine these dynamic transmission models with 
other tools, such as ecological niche modelling and 
geospatial approaches.107

Conclusions 
This systematic review identified four areas for 
development in the modelling of zoonotic environmental 
diseases. First, there is a need for more model validation 
and calibration for many of these diseases, particularly 
for models of diseases with wildlife hosts and NTDs 
that often did not have this important component of the 
model fitting process. It is known that wildlife hosts act 
as major reservoirs of diseases; therefore, more effort 
should be placed on understanding their behaviour and 
disease transmission potential. Furthermore, most 
emerging pathogens are zoonotic, with the majority 
emerging from wildlife reservoirs that then spillover to 
domestic animals and humans.2,5,108,109 Second, it is 
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important for more models to be developed that capture 
the full transmission process. In particular, the 
environment as a source of transmission was rarely 
considered, despite being a major source of transmission 
to humans for many diseases. This environmental 
pathogen burden can pose substantial issues when it 
comes to control strategies and interventions and 
should be included in more of these disease models 
using a One Health framework. Third, this Review 
highlighted how little data exists for the environmental 
pathogen burden of disease, and often little is known 
about the environmental burden of these diseases. 
Finally, it is important to consider the effect of climate 
variability and climate change on these diseases. 
Because of the environmental burden, many of these 
diseases (eg, leptospirosis and melioidosis) are climate 
sensitive and they are predicted to increase their range 
in the future.110 It is essential that we combine these 
considerations to generate robust models using a One 
Health approach that are capable of predicting outbreak 
dynamics and changes in disease risk to inform 
planning and control.
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