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The ageing process is associated with a profound decline in phys-
iological function and increased prevalence in multiple patholo-
gies (Figueira et al., 2016). It is well established that lifespan can 
be extended through dietary, pharmacological, and genetic means 
(Fontana & Partridge, 2015; Gems & Partridge, 2013; Mannick & 
Lamming, 2023), with several of these interventions also delaying 
and/or reducing age- related pathology (Selman & Withers, 2011). 
RNA polymerase III (Pol III) is one of three nuclear RNA polymerases 

found in eukaryotes. It transcribes a number of short non- coding 
RNAs (e.g., tRNAs, snRNAs, 5S rRNA (Kulaberoglu et al., 2021)), 
and is estimated to account for ~15% of total cellular transcription 
(Moir & Willis, 2013). Pol III inhibition extends lifespan in yeast, C. 
elegans and D. melanogaster, acting through the intestine/intesti-
nal stem cells to achieve this in worms and flies respectively (Filer 
et al., 2017). Inhibition also preserves age- related health in flies and 
acts downstream of mTORC1 (Filer et al., 2017).
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Abstract
The genetic pathways that modulate ageing in multicellular organisms are typically 
highly conserved across wide evolutionary distances. Recently RNA polymerase III 
(Pol III) was shown to promote ageing in yeast, C. elegans and D. melanogaster. In this 
study we investigated the role of Pol III in mammalian ageing using C57BL/6N mice 
heterozygous for Pol III (Polr3b+/−). We identified sexually dimorphic, organ- specific 
beneficial as well as detrimental effects of the Polr3b+/− mutation on health. Female 
Polr3b+/− mice displayed improved bone health during ageing, but their ability to main-
tain an effective gut barrier function was compromised and they were susceptible to 
idiopathic dermatitis (ID). In contrast, male Polr3b+/− mice were lighter than wild- type 
(WT) males and had a significantly improved gut barrier function in old age. Several 
metabolic parameters were affected by both age and sex, but no genotype differ-
ences were detected. Neither male nor female Polr3b+/− mice were long- lived com-
pared to WT controls. Overall, we find no evidence that a reduced Pol III activity 
extends mouse lifespan but we do find some potential organ-  and sex- specific ben-
efits for old- age health.
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In mammals, Pol III consists of 17 subunits, of which Polr3a and 
Polr3b are the largest and form the catalytic subunit of the poly-
merase (Choquet et al., 2019; Kulaberoglu et al., 2021). Given that 
Pol III can modulate lifespan in invertebrate models and that this phe-
notype appears not to be subunit- specific in flies (Filer et al., 2017), 
we examined longevity and aspects of age- related health in mice 
heterozygous for Polr3b (Polr3b+/−) which encodes the second larg-
est catalytic subunit of Pol III (Figure S1A,B); global homozygous 
loss of Polr3b causes embryonic lethality (see Methods Data S1). 
Mice bred with expected Mendelian frequencies (Figure 1a) and 
hepatic expression of Polr3b was reduced in both female and male 

Polr3b+/− mice (Figure 1b; Hepatic POLR3b protein levels were also 
reduced in female, but not male, mice) (Figure S2A,B). Performing ex-
tensive phenotyping at different ages, we observed both beneficial 
and detrimental, sexually dimorphic, organ- specific effects of the 
heterozygous Polr3b mutation on health. Akin to humans, mice ex-
hibit age- related bone loss (Jilka, 2013) and this loss can be assessed 
by microCT (Selman et al., 2009). Female Polr3b+/− mice showed in-
creased trabecular bone relative to WT females particularly evident 
at mid- life (Figure 1c–e; Figure S3), similar to our previously findings 
in long- lived IIS and mTOR mutants (Selman et al., 2008, 2009), in-
dicating that reduced Pol III activity may help maintain bone health 

F I G U R E  1 (a)	Mendelian	frequencies	of	mice	born	from	heterozygous	Polr3b+/− x wild- type (WT) parents. (b) Hepatic Polr3b expression 
in 14- month- old mice. (c) Percentage bone volume, (d) Trabecular separation, (e) Trabecular number in female mouse femurs at 14 and 
20 months.	(f)	Faecal	albumin	levels	in	female	and	male	mice	at	22 months.	(g)	Percentage	of	mice	(of	total	number)	presenting	with	idiopathic	
dermatitis.	(h)	Body	mass	(mean ± SEM)	across	the	life-	course	in	female	and	male	WT	and	Polr3b+/−	mice.	Histograms	denote	mean ± SEM,	
with sample sizes indicated by individual points within a group. For (b–f), a two- way ANOVA was used to test for age/sex and genotype 
effects (both main and interaction effects). Only significant main and/or interaction effects are reported within the figures.
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during ageing in female mice. No phenotypic differences in bone 
characteristics were observed in males (Figure S4A–C).

With age, the barrier function of the mouse gut becomes com-
promised, and this leakiness can be observed through an increase in 
faecal albumin (Wang et al., 2021). In contrast to the preserved gut 
barrier function observed in older flies with attenuated Pol III activity 
(Filer et al., 2017), female Polr3b+/− mice showed increased gut per-
meability compared to age- matched WT controls (Figure 1f). These 
females were also susceptible to ID (Figure 1g). On the other hand, 
Polr3b+/− males were lighter (Figure 1h) and their gut barrier function 
was preserved in old age (Figure 1f), relative to WT controls. For sev-
eral other metabolic phenotypes (Figure S4d–i) and for grip strength 
(Figure S4j), no genotypic differences were detected at any age in ei-
ther sex, although several significant age and sex effects were seen.

We evaluated lifespan in female and male C57BL/6N WT 
mice compared to Polr3b+/− mice. Combined data from both sexes 
(Figure 2a) showed no significant effect of genotype on median 
or maximum lifespan (oldest 10% of cohort, Figure S5A; Table S1). 
Similarly, when each sex was analysed separately neither female 
nor male Polr3b+/− mice were long- lived (Figure 2b,c; Figure S5B,C: 
Table S1). Male WT mice lived significantly longer than female WT 
mice (X2 = 10.420,	p = 0.001),	with	a	similar	sex-	specific	trend	seen	
in Polr3b+/− mice (X2 = 3.810,	 p = 0.051).	 Median	 lifespan	 of	 our	
C57BL/6N WT mice was shorter than our previously published 
data for C57BL/6J mice (Selman et al., 2008, 2009). C57BL/6J 
and 6N mice differ in a range of metabolic parameters (Selman & 
Swindell, 2018), but there is a current dearth of published lifespan 

data for C57BL/6N mice. However, our lifespans compare favour-
ably with published lifespans for this strain (Reid et al., 2023; Tang 
et al., 2021). No genotype difference in cancer incidence upon post- 
mortem was identified in our ageing cohorts (Figure 2d). Note that 
censoring female mice euthanised for ID did not alter the lifespan 
outcome (Figure S5D; X2 = 0.001,	p = 0.970).

Overall, we observed an indication of organ-  and sex- specific 
benefits for old- age health achieved by a partial loss- of- function in 
Pol III with no effect on lifespan. In support, pathogenic conditions 
associated with Pol III appear to show pronounced tissue- specific 
responses following perturbation in Pol III transcription (Watt 
et al., 2023). The difference to the net beneficial effect on inverte-
brate lifespan may result from a more complex physiological role of 
Pol III in mammals. For example, Pol III plays a critical noncanonical 
role in viral and bacterial DNA sensing within the innate immune 
response (Chiu et al., 2009). It is possible that the appropriate re-
sponse to bacterial and viral challenge at the skin surface is impaired 
in female Polr3b+/− mice causing ID. Our mice were heterozygous 
for Polr3b, and at the level of both protein and gene expression the 
reduction in Polr3b observed was variable both within and between 
sexes. It is possible that a more substantial reduction in Polr3b 
expression in specific cell types is required to obtain a longevity 
phenotype. Still, the observation of some beneficial effects, for ex-
ample, on bone health in females, suggests that cell- type specific 
attenuation of Pol III function may have positive effect on aspects 
of mammalian ageing, as indicated by a recent analysis of human ge-
netic data (Javidnia et al., 2022).

F I G U R E  2 (a)	Kaplan–Meier	survival	
curves for combined female and male 
wild- type (WT) and Polr3b+/− mice (log- 
rank X2 = 3.084,	p = 0.079,	n = 103	for	WT,	
n = 103	for	Polr3b+/−). Survival curves for 
female (b; log- rank X2 = 1.040,	p = 0.308,	
n = 53	for	WT,	n = 51	for	Polr3b+/−) and 
male (c; log- rank X2 = 2.355,	p = 0.125,	
n = 50	for	WT,	n = 52	for	Polr3b+/−) mice. 
Numbers denote median lifespan (days). 
(d) Percentage of mice presenting post- 
mortem with macroscopic tumours.
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