

Szafarczyk, R., Nabi, S. W. and Vanderbauwhede, W. (2024) A High-
Frequency Load-Store Queue with Speculative Allocations for High-Level
Synthesis. In: International Conference on Field Programmable Technology
(FPT'23), Yokohama, Japan, 11-14 December 2023, pp. 115-124. ISBN
9798350359114 (doi: 10.1109/ICFPT59805.2023.00018)

This is the author version of the work deposited here under a Creative
Commons license: https://creativecommons.org/licenses/by/4.0/

Copyright © 2023 IEEE

This is the author version of the work. There may be differences between
this version and the published version. You are advised to consult the
published version if you wish to cite from it:
https://doi.org/10.1109/ICFPT59805.2023.00018

https://eprints.gla.ac.uk/308569/

Deposited on 23 October 2023

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

https://doi.org/10.1109/ICFPT59805.2023.00018
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ICFPT59805.2023.00018
https://eprints.gla.ac.uk/308569/
http://eprints.gla.ac.uk/

A High-Frequency Load-Store Queue with
Speculative Allocations for High-Level Synthesis

Robert Szafarczyk, Syed Waqar Nabi and Wim Vanderbauwhede
School of Computing Science
University of Glasgow, UK

Email: {robert.szafarczyk, syed.nabi, wim.vanderbauwhede}@glasgow.ac.uk

Abstract—Dynamically scheduled high-level synthesis (HLS)
achieves a higher throughput on codes with unpredictable mem-
ory accesses compared to statically scheduled HLS. However, the
increased throughput comes at the price of increased resource
usage and critical path length, resulting in lower clock fre-
quency. The decrease in clock frequency can be significant, often
nullifying any throughput improvements over static scheduling.
Recent work presented methods for combining static and dy-
namic scheduling to achieve high throughput circuits with a fast
critical path for dynamic codes. However, circuits that require
dynamically scheduled memory still suffer from a decreased
frequency. This paper fills this gap by presenting a method for
achieving dynamically scheduled memory operations in HLS with
a high frequency. Dynamic scheduling of memory operations
is realized with a load-store queue (LSQ). We present a novel
LSQ design adapted to the nature of spatial architectures with
aggressive specialization to the target code – a unique opportunity
in HLS. Our LSQ design works for both on-chip and off-chip
memory and is integrated with a compiler that combines dynamic
and static scheduling. We show a method to speculatively allocate
addresses to our LSQ, significantly increasing pipeline parallelism
in codes that could not benefit from an LSQ before. In stark
contrast to traditional load value speculation, our approach adds
no overhead on misspeculation. On a set of ten benchmarks, we
show that our approach can achieve an up to 10× speedup on
average against static HLS, and an up to 4× speedup against
dynamic HLS that uses an LSQ from previous work, while also
using several times fewer resources and scaling to larger queues.

I. INTRODUCTION

High-level synthesis (HLS) tools transform high-level soft-
ware code into a custom architecture that can be synthe-
sized on an FPGA. Such architectures have the potential
to achieve higher performance and energy efficiency than
general-purpose CPUs and GPUs [1]. A major obstacle to
the wider adoption of FPGA acceleration remains their pro-
grammability. HLS tools have lowered the barrier of entry
for FPGA programmers dramatically when compared to using
hardware description languages, but they still impose a specific
structure on the input code, which is not intuitive to software
programmers. Our goal is to increase the quality of HLS by
shifting the burden of structuring code for a spatial architecture
to the compiler.

Loop pipelining is a critical step in any HLS compiler. It
is the process of starting new loop iterations while previous
iterations have not yet finished, allowing to achieve higher
throughput with the same amount of compute resources.
The number of cycles between the start of two subsequent

iterations is called the Initiation Interval (II). A loop with a
constant II, N iterations, and a latency of L will execute in
L+(N−1)×II cycles, which for N ≫ L can be approximated
as N × II . Thus, a low loop II is crucial to achieving good
performance in HLS.

Most HLS tools use modulo scheduling to perform loop
pipelining [2]–[4] (such tools are often called static HLS).
Modulo scheduling maps operations for a single loop iteration
to discrete clock cycles at compile time and then repeats
this schedule for all loop iterations. One of the first steps
in modulo scheduling is determining the minimal number of
cycles that need to pass between the start of subsequent loop
iterations such that any data dependencies across iterations are
honored. Such data dependencies form recurrences in the Data
Dependence Graph (DDG) of the input code. Modulo schedul-
ing finds the maximum recurrence-constrained II across all
recurrences for a given loop:

recII = maxi⌈delayi/distancei⌉,

where delay is the number of cycles needed to traverse the
recurrence path, and distance is the number of iterations
between the definition of a recurrence value and its use.

Static HLS tools rely on an accurate memory dependency
analysis to discover the dependence distance of DDG recur-
rence through memory. Memory dependency analysis from
software compilers, such as the polyhedral model, are directly
applicable in this case [5]–[7]. However, there is a large class
of codes where the calculation of the dependence distance
is fundamentally impossible due to limited compile time
information. Take the code in fig. 1 as an example. The code
contains data-dependent memory reads and writes that form
a recurrence in the DDG. For such codes, the dependence
distance cannot be obtained and has to be conservatively set
to one, i.e. every iteration needs to wait for all previous
iterations to finish, resulting in the final II being equal to the
loop delay and eliminating any possibility for loop pipelining.
In our example, the execution of loop iterations would be
sequentialized by static HLS tools, as seen in fig. 1b.

An alternative approach to achieve loop pipelining is to use
dynamic scheduling. Dynamic HLS uses dataflow scheduling
to trigger the execution of operations at runtime based on the
availability of data, rather than a static compile-time schedule.
Dynamatic [8], the most recent example of a dynamic HLS
tool, has shown that this approach can successfully accelerate

// idx = 0, 1, 1, 2, 2, ...
for (int i = 0; i < N; ++i) {
 int x = data[idx[i]];
 data[idx[i]] = f(x);
}

read-after-write
data hazard

(a) Motivating source code with a data hazard.

0

1

2

ld f(x) st
ld f(x) st

ld
II=3

II=3

(b) A static schedule: a new iteration started every 3 cycles for all iterations.

0

1

2

3

ld f(x) st
ld f(x) st

ld f(x) st
ld f(x)

II=3
II=1

II=1

(c) An ideal schedule: a new iteration started every 1.5 cycles on average.

Fig. 1. A motivating example of code with a data hazard. Current static HLS
tools need to create a worst case schedule at compile time (b). HLS with
dynamically scheduled memory operations can achieve the schedule in (c).

codes where compile-time information needed by modulo
scheduling is lacking. For our example code from fig. 1a,
dynamic HLS can achieve the ideal schedule in fig. 1c. How-
ever, dynamic HLS incurs non-trivial resource and critical path
overheads [8]. On codes that require dynamically scheduled
memory operations, the highest overhead comes from load-
store queue (LSQ) structures. The low frequencies achievable
by circuits using LSQs often nullify any throughout advantage
over static HLS [9]. Recent work has shown the possibility
of intelligently combining static and dynamic scheduling to
achieve the high throughput of dynamic scheduling with the
low critical path of static HLS [10]. However, whenever an
LSQ is needed by the dynamic part of such a combined
circuit, the critical path and area overheads return. Thus, to
unleash the full potential of circuits combining dynamic and
static scheduling, there is a clear need for a runtime memory
disambiguation mechanism with a faster critical path, lower
area overhead, and better scalability than previous work. We
make the following contributions toward this goal:

• A novel load-store queue (LSQ) design for HLS ex-
ploiting the unique features of a spatial architecture and
the possibility of aggressively specializing to the target
code (sec. IV) We show how an LSQ can be used in
static HLS to achieve dynamically scheduled memory
operations without sacrificing frequency (sec. V). Our
LSQ design supports both on-chip and off-chip memory.

• An extension to our LSQ and compiler that enables spec-
ulative address allocations. We show that this extension
enables out-of-order loads on more codes than previous
work at no added cost (sec. V-B).

• An evaluation of our work against static HLS (Vivado
HLS, Intel HLS), and against Dynamic HLS using a
state-of-the art LSQ for spatial computing. We show that

our approach achieves both better speedups and lower
area overheads than Dynamatic (sec. VI). We achieve an
up to 10× speedup on average against Intel HLS, while
Dynamatic achieves a maximum speedup of 2.4× against
Vivado. We also show that our LSQ can accelerate codes
using off-chip multi-cycle memory.

II. BACKGROUND & RELATED WORK

A. Dynamically Scheduled High-Level Synthesis

Dynamically scheduled circuits rely on the theory of
latency-insensitive design formalized by Carloni et al. [11] and
simplified by Cortadella et al. for synchronous circuits [12].
In latency-insensitive designs, the communication between
modules is decoupled from their cycle behavior, allowing
for dataflow scheduling of compute circuits [8], [13]–[16].
The most recent fully dynamically scheduled HLS tool is
Dynamatic proposed by Josipović et al. [8]. Dynamatic is
based on the LLVM compiler framework [17] translating its
Control and Data Flow Graph (CDFG) SSA representation
into a dataflow circuit. By using more resources to defer
scheduling to runtime, dataflow circuits can achieve perfect
throughput on codes with unpredictable inter-iteration depen-
dencies. The disadvantage of dataflow circuits mapped to
FPGA technology is firstly their significantly higher critical
path, and secondly their higher area usage. The higher area
usage is often acceptable, but a higher critical path means
that the final design synthesized on FPGA hardware is not
able to achieve the frequencies achievable by static HLS.
The critical path increase is due to using LSQs, and due to
using buffers with a zero cycle write-to-read latency (called
transparent buffers in Dynamatic [8]) where static HLS can
use a simple wire. Several works have tackled the critical
path overhead of Dynamatic. Josipović et al. formalized the
problem of buffer sizing in dataflow circuits as a mixed-integer
linear programming in order to minimize the buffer sizes
and decrease the critical path. Xu et al. used linear temporal
logic to prove that certain dataflow signals are not needed at
all and can be removed. These approaches make incremental
improvements to the final quality of results.

B. Combining Static and Dynamic Scheduling

Cheng et al. extended Dynamatic with the DASS method-
ology (Dynamic and Static Scheduling) [10], [18], which
identifies static islands in an otherwise dynamically scheduled
circuit. This improves the resource usage of the final circuits
but the critical path stays often the same.

Szafarczyk et al. extended modulo-scheduled HLS tools
with support for selective dynamic scheduling by breaking up
the DDG of an input code into multiple modulo-scheduling
instances based on compiler analysis that determines where
dynamic scheduling is beneficial [19]. The separate mod-
ulo scheduling instances communicate via latency-insensitive
channels – a construct available in most static HLS tools. Their
approach achieves virtually the same frequency as static HLS
on codes that don’t require an LSQ. If an LSQ is required,
the frequency of their approach matches that of Dynamatic.

Since most codes amenable to dynamic scheduling do have
unpredictable memory accesses that do require an LSQ, their
approach is of limited value without an LSQ that can provide
a low critical path. In this work, we combine their scheduling
methodology with a novel LSQ design that is able to achieve
such low critical paths.

C. Runtime Memory Disambiguation in HLS

To avoid pipeline stalls due to unpredictable memory ac-
cesses, a circuit can use additional logic to handle memory
accesses at runtime [20]. If proven safe to do so, the logic
should allow loads from later loop iterations to be executed
without waiting for stores from earlier iterations to commit.
There are two main approaches to enable such out-of-order
loads: address-based approaches compare addresses of loads
and stores; value-based approaches speculatively execute loads
and replay the datapath on misspeculation.

Value-based disambiguation: Thielmann et al. investigated
the use of load speculation in reconfigurable hardware [21].
In their framework, if a speculated load value turned out to
be incorrect, then only the computation depending on the
load had to be repeated, not the whole pipeline. Nonetheless,
codes with loop-carried dependencies, which are the focus
of our work, had a high misprediction penalty that was
a problem. Dai et al. [22] also used value speculation to
enable pipelining of loops with irregular memory accesses.
They proposed a source-to-source transformation that replaces
hazardous accesses with virtualized accesses to an independent
array. These independent array accesses are then handled by a
custom Hazard Resolution Unit which speculatively executes
loads, performs store-load forwarding, and sends misprediction
signals to the datapath. Value-based, compared to address-
based, disambiguation is better able to pipeline loops where
the store operation is control-dependent on a load [21]. We use
an address-based approach to avoid costly replays needed for
misspeculated values. However, we use the idea of speculation
to speculatively produce address allocations for a load-store
queue in codes where the address generation cannot otherwise
run ahead of memory accesses.

Address-based memory disambiguation compares the ad-
dresses of loads and stores out-of-order with the actual
load/store operations, allowing non-conflicting loads to ex-
ecute even if earlier stores have not yet committed. Such
functionality is most often implemented as a load-store queue
(LSQ). Most LSQs aimed at HLS use a content-addressable
memory (CAM) structure to implement the load and store
queue [20], [23], with a similar operating principle as LSQs
used in out-of-order CPUs [24]. CAMs map poorly to FPGA
technology resulting in a high critical path and resource usage
overhead [20], [25]. Our LSQ design is fundamentally differ-
ent from previous LSQs in that we use shift registers instead
of CAMs. Our shift-register based queues bare resemblance
to hazard resolution units used in many sparse matrix-vector
FPGA architectures [26] or in source-to-source approaches
to loop pipelining [27]. We generalize these approaches into
an LSQ to support out-of-order loads. We also recognize

that the LSQs used in HLS don’t have to be as general as
CPU LSQs, allowing for aggressive specialization to the target
code. Another difference in our approach is the support for
speculative address allocation, which increases the size of
the out-of-order loads window in codes where the address
generation would otherwise be impossible.

The central question in any LSQ design aimed at spatial
computing is how to recover program order of memory re-
quests without a program counter. Josipović et al. proposed to
allocate LSQ addresses from a single basic block in parallel
and sequentialize the execution of basic blocks. Memory
operations within a single basic block can be disambiguated
statically, while the semantics of their dataflow circuits guar-
anteed the sequential execution of basic blocks in program
order. Our compiler doesn’t guarantee the sequential execution
of basic blocks. Instead, we tag each memory request with
a unique integer representing the state of memory at that
time, allowing us to use our LSQ in static HLS where the
order of basic block execution is not guaranteed. Our tags are
similar to the work by Elakhras et al. [28] who addressed the
sequentialized block allocation problem of the Dynamatic LSQ
by introducing virtual data dependencies between blocks with
LSQ accesses. However, in addition to ordering the allocation
of addresses, we also use the actual tag values in our LSQ.

III. THE MEMORY DISAMBIGUATION PROBLEM

We define an LSQ allocation as an (address, tag) tuple.
The tag is an integer indicating the state of memory expected
by the allocation. We define memory states as a sequence σ =
{0, 1, 2, ...}, where each i ∈ σ corresponds to the memory
state of the original sequential program after the ith store,
with the state at i = 0 representing the initial memory state.

The inputs to our LSQ are: a sequence of load allocations;
a sequence of store allocations; a sequence of store values
where each stV aluei corresponds to the stAllocationi: The
LSQ outputs a sequence of load values, which correspond to
the sequence of previously made load requests.

The tag of a load allocation indicates which memory state
is expected by the load; the tag of a store allocation represents
the new memory state after the store. Given any pair of
ldAllocationi and stAllocationk, if the two conditions hold:

ldAllocationi.address = stAllocationk.address,

ldAllocationi.tag ≥ stAllocationk.tag,
(1)

then ldAllocationi cannot be served before observing the
side-effect of stAllocationk.

IV. LOAD-STORE QUEUE DESIGN

We now present the design of our load-store queue (LSQ).
We describe how load and store allocations are handled, and
how our design can support speculative address allocations.
We also discuss how our design scales to multi-cycled and
multi-ported memories.

ld allocations

st allocations

ld alloc tag <
last st alloc tag

Check st
commits

st port

ld port

Issue store

store latency

Load /
Forward

load
values

Short circuit
on first hit

 load ordering
. .

 .
load

allocations
. .

 .

store
values

. .
 .

. .
 .Check st

allocations

Eq. 1

Program
order

muxes

Latency-
insensitive

buffers

Shift-register
based queuesst commits

Ensure preceding st
allocations arrived

store
allocations

With optional
poison bit

(a) Execution of loads and stores in our load-store queue design.

Address Generation
Loop CFG

Load
Store
Queue

load
allocations

store
allocations

A

B

D

Main Loop CFG

A

C

D

B

load
values

store
values

C

(b) The generation of addresses is decoupled into a separate
modulo-scheduling instance capable of running out-of-order
w.r.t. the actual memory operations.

Fig. 2. Our load-store queue design (a), and how it is used to enable out-of-order dynamically scheduled loads in static HLS (b).

A. Load and Store Execution

An overview of our LSQ design is shown in fig. 2a. Queues
are implemented as shift registers in FIFO order. Load and
store allocations are shifted through the entire allocation queue
before being processed. The store queue is broken up into two
separate queues: one for allocations and one for commits. The
commit queue holds stores from for the duration between store
execution and commit – its size is equal to the maximum store
latency and is shifted on every cycle.

Load execution: Our LSQ accepts one load allocation per
cycle for every available load port to memory. All load
requests proceed in parallel. If there are more unique load
allocation sequences than load ports to memory, then the
sequences are multiplexed according to program order. Once
a load allocation reaches the end of the load allocation queue,
we check all preceding store allocations in program order for
conflicts using eq. 1. If not all previous store allocations in
program order have arrived, then we wait – this check amounts
to comparing the load allocation tag to the tag of the last
accepted store allocation. If there are no conflicts within the
store allocation queue, then we check the store commit queue
next. If there is a conflict here, then we simply forward the
value from the store commit. Selecting the youngest such value
in case of multiple hits in the commit queue is trivial because
of the FIFO order in the commit queue. If there is no hit in
the commit queue, we can safely load the value from memory.
The loaded/forwarded value is returned to the datapath using
a non-blocking latency-insensitive channel.

Store execution: Multiple store allocation sequences are
always multiplexed in program order, regardless of the amount
of memory store ports available. This restriction protects
against write-after-write hazards by construction. Once the
store allocation reaches the end of its allocation queue, it waits
for its corresponding store value to arrive. Multiple store value
sequences are multiplexed in the same order as store requests.
On the arrival of the awaited store value, a store is immediately
issued and the store allocation moves to the store commit
queue together with the store value. The store commit queue

holds on to the address, tag, and store value until the store is
committed to memory. Our LSQ can support speculative store
allocations by extending each store value with a poison bit
that, when set, would cause the store allocation to be discarded
without issuing a store.

B. Multi-Port and Multi-Cycle Memory

Our LSQ design extends to multi-ported and multi-cycled
memories, e.g. DRAM. When protecting DRAM, our LSQ
will have as many load allocation queues as requested by the
compiler (typically as many loads can be issued in the same
cycle). We do not support reusing load values from other load
queues. There will still be only one store port to simplify the
handling of write-after-write hazards.

To support multi-cycle memory we grow the size of store
commit queue to cover the maximum store latency. To avoid
stalls in the LSQ when issuing a multi-cycle variable-latency
memory operation, we decouple the load and store ports from
the LSQ pipeline and connect them using latency-insensitive
buffers with a deterministic write-to-read latency. To preserve
the correctness of memory disambiguation, we grow the store
commit queue by this latency.

V. COMPILER INTEGRATION

In this section, we detail how an HLS compiler can use our
LSQ to enable dynamically scheduled loads in static HLS. We
show how parts of the LSQ can be specialized based on the
target code, and how the target code can be transformed to
enable speculative address allocations to the LSQ.

A. Dynamically Scheduled Memory in Static HLS

We follow the method presented by Szafarczyk et. al. to
enable dynamically scheduled loads in static HLS [19], using
existing compiler analysis to determine which base memory
addresses require an LSQ [29]. Each selected base address
will use its own LSQ. All memory operations using the base
address will be transformed into read/writes from/to latency-
insensitive channels connected to our LSQ. The throughput of
circuits using an LSQ depends on the number of addresses

that can be disambiguated ahead of their actual memory
operation execution. In dataflow circuits, the generation of
memory addresses is naturally decoupled from the memory
operation and can run ahead. To achieve the same effect in
static HLS, Szafarczyk et al. suggest decoupling the generation
of memory addresses from the main kernel datapath into a sep-
arate modulo-scheduling instance, similar to the principle in
decoupled access/execute architectures [30] or the decoupled
supply-compute approach used in compilers to attack memory
latency bottlenecks [31], [32]. Fig. 2b illustrates the resulting
communication pattern. The address-generating loop will only
contain basic blocks and instructions needed to generate the
addresses (these can be obtained using the DDG).

Our LSQ design uses integer tags to recover the order of
memory operations. Each address-generating unit has a tag
corresponding to a single LSQ. The tag will be initially set
to zero and is carried through the pipeline. Store allocations
increment the tag before using it; load allocations use the tag
directly. The tags create a data dependency between a store
allocation and any other LSQ allocation following that store
allocation in program order, thus ensuring the correct order of
the store allocation sequence.

B. Loss of Decoupling and Speculative Allocations

In some cases, the decoupling of address generation cannot
result in the run-ahead of address allocations. Such situations,
called “loss of decoupling” [31], arise when the address
generation for a given base address depends on a value loaded
from the same base address. Formally, given a set of address-
generating instructions G for a given base address, and a set
of memory access instructions A using addresses generated by
instructions in G, there is a loss of decoupling if:

∃i ∈ G, such that i depends on an instruction j ∈ A, i.e.
there is a path from i to j in the DDG.

We do not perform address decoupling in such cases, because
the address allocations and their memory operations need to
be in effect synchronized. This is not a drawback of using
static HLS since a fully dynamically scheduled circuit would
also have the two sequences synchronized.

We treat control dependencies as a special case. A memory
operation using a given base address can be control-dependent
on a branch condition that itself is data-dependent on a value
loaded from the same base address. This is the case for the
code in fig. 3a. Here, the execution of the stores to v is
control dependent on the if-condition which uses values loaded
from v. Under the execution semantics of both static and
dynamic HLS, there is no possibility for out-of-order address
allocations. In the next paragraphs, we introduce the concept
of speculative address allocations to relax this restriction.

Consider the code in fig. 3a again. Although the store
execution is control-dependent, the store addresses have no
data dependency on values loaded from v. The address-
generating instructions can run ahead in an address-generating
loop by hoisting them out of the if condition, as illustrated in
fig. 3b. Dually, in the main loop CFG, whenever speculative
store address allocations are not needed (basic block C ′ in

for (int j = 0; j < num_edges; ++j) {
 int s = e[j].src;
 int d = e[j].dst;
 if (v[s] < 0 && v[d] < 0){
 v[s] = d;
 v[d] = s;
 }
}

control-dependent
stores

A

B

D

C
st v[s]
st v[d]

ld v[s]
ld v[d]

(a) Maximal Matching code and its control-flow graph (CFG).

A

B

D

C

read ldValue0
read ldValue1

C' write stValue0
write stValue1

write POISON
write POISON

Address Generating Loop CFG Main Loop CFG

Load
Store

Queue

A

B

D

C

alloc ld v+s
alloc ld v+d
alloc st v+s
alloc st v+d

(b) Speculative address allocations (left), coupled with poisoned store
values on misspeculation (right).

Fig. 3. Speculative store address allocations in the maximal matching code.

fig. 3b), we set a poison bit in the store value supplied to the
LSQ that will cause the speculative address allocation to be
discarded (sec. IV-A). As a result, we can achieve a higher
degree of out-of-order loads on these types of codes than
previous address-based memory disambiguation works [23],
without having to suffer the cost of expensive misspeculation
replays common in value-based approaches [21].

We now generalize the above transformation to arbitrary
reducible loop CFGs. The key question is how to preserve the
relative order between speculative address allocations made
in the address-generating loop and the poison read/writes in
the main computation loop. We define a “special control-
dependency” to mean a control-dependency whose branch
instruction uses values loaded from a given base address thus
causing loss of decoupling. Let B be the set of basic blocks
with memory operations selected to be routed through an LSQ,
such that each B ∈ B has a special control dependency. Let Ba

be the set of all address allocations for a given block B ∈ B.
In the address-generating loop, we iteratively move up the
address allocations Ba for every B ∈ B to its special control-
dependency source block. If a B ∈ B block has multiple such
source blocks, then we pick one at random. Every special
control-dependency source block keeps a stack of address
allocations moved to it. We first push on the stack allocations
moved from the left sub-graph, then the right (the choice
between left and right is arbitrary but has to be consistent).
When there are no more basic blocks with LSQ allocations that
have a special control-dependency, then we stop. At this point,
each block in the CFG that contains speculative allocations
will also have a stack exactly representing the order of these
allocations. Take the CFG in fig. 4a as an example, with blocks
C, F , and E containing LSQ address allocations. There will
be two iterations of hoisting on this CFG. On the first iteration,
Fa moves to C, Ea moves to D, and Ca moves to B. On the

A

D

EF

G

Allocation
stack:

C

B

(a) Iterative hoisting of address al-
locations (green blocks).

A

B

C

D

E

F

G

C'

F'

F'
E'

Poison
reads/writes
for

E'

(b) Insertion of poisonous read/writes
to remove misspeculated allocations.

Fig. 4. A visualization of speculative LSQ address allocations in an address
generating loop (left), and poisonous read/writes inserted in the main loop
CFG to deallocate misspeculated addresses.

second iterations, Fa (now in block C) moves to B, and Ea

(now in block D) moves to B.
The second part of the transformation inserts poison

read/writes in the main loop CFG that will cause the LSQ to
deallocate a misspeculated address allocation. Alg. 1. details
the steps needed to achieve this. It takes the basic block Bspec

with speculative address allocations as input, together with the
stack L of speculative address allocations hoisted to Bspec. For
each block in the main loop CFG that is dominated by Bspec,
we check if a given speculative address allocation Ba in the
stack of Bspec is no longer possible at this point in the CFG
and if it was not used or poisoned already on the currently
evaluated CFG path. If Ba was neither used nor poisoned
on the current path (Cond1), and there is no possibility to
encounter block B on the current path anymore (Cond2), then
we insert a new block at that point in the CFG that contains
poisonous read/writes to the LSQ (block B′). A poisonous read
simply discards the loaded value; a poisonous store supplies a
poison bit that is recognized by our LSQ design (sec. IV). Fig.
4b shows how poisonous basic blocks would be inserted given
the address generation loop from fig. 4a. The transformation
has practically no misspeculation overhead. Any superfluous
basic blocks can be removed using existing CFG simplification
algorithms. The size of the store allocation queue might have
to be increased to still guarantee perfect throughput, but this
is not a requirement (sec. V-C).

The number of required poison read/writes can be decreased
if two speculative address allocations in symmetrical branches
use the same address and the same memory operation. At each
control-dependency source block, we check allocations hoisted
from the left and right sub-graph. Each pair of allocations
that has the same memory operation and the same address
expression is merged into one speculative allocation.

Algorithm 1 Insertion Of Poison Basic Blocks
Input: loop CFG; basic block Bspec; allocation stack L
for Bpred, Bsucc ∈ cfg traversal(Bspec) do

for B ∈ L do
if B = Bsucc then break
Cond1 ← no Bspec → Bpred path containing B or B′

Cond2 ← no Bsucc → loopLatch path containing B
if Cond1 and Cond2 then

create poison block B′ between Bpred → Bsucc

Theorem. Alg. 1 transforms the main loop CFG such that
on every Bspec → loopLatch path the speculated address
allocations are used or poisoned in the order in which they
were allocated in the address-generating CFG.

Proof. The correctness of alg. 1 follows from its construc-
tion. Alg. 1 visits every block dominated by Bspec in control-
flow order. At every such block, it goes over all blocks in
B ∈ L in their allocation order, deciding if B′ should be
inserted at that point in the CFG. Cond1 guarantees that on
every path there will be only one use or one poisoning of a
given speculation, but never both. Thus, the speculated address
allocations will be used or poisoned in the allocation order on
every path through the CFG. ■

C. Store Allocation Queue Size

The optimal size of our store allocation queue depends on
the target loop initiation interval (II). Assume a target II of 1,
and a loop datapath as presented in our motivating example
in fig. 1a. Assume f(x) has a latency of L and that there
are no true data hazards, so an actual II of 1 is possible at
runtime. To achieve this II, at iteration N our LSQ should
be able to disambiguate a load address for iteration N + L.
This requires the LSQ to be able to hold L store allocations
to cover all store addresses for the [N,N +L] iteration range.
Thus, the optimal store allocation queue size is equal to the
maximum dependence distance between a load and a store –
for most codes, this will be equal to the recurrence constrained
II discussed in the introduction. The optimal size will increase
if there are multiple stores before a given load in program
order. All of the above information is static, allowing us to
find an optimal store allocation queue size at compile time:

maxLoadToStoreDelay

targetII
× numStoresBeforeLoad

VI. EVALUATION

In this section, we evaluate our work against the commercial
Intel HLS compiler and against a dynamically scheduled
academic HLS compiler that uses a state-of-the-art LSQ. We
also evaluate how our LSQ design scales to DRAM.

A. Methodology

We integrated our compiler passes and LSQ with the Intel
SYCL HLS compiler and have made our implementation
publicly available1. We evaluate our work against the dynamic

1https://github.com/robertszafa/elastic-sycl-hls

https://github.com/robertszafa/elastic-sycl-hls

TABLE I
A COMPARISON OF OUR WORK AGAINST VIVADO, DYNAMATIC [28], AND INTEL HLS. ALL CODES USE ON-CHIP BRAM.

Benchmark Cycles (thousands) Freq. (MHz) Execution time (µs) Area (Slices / ALMs)
V D I O V D I O V D D/V I O O/I V D D/V I O O/I

histogram 2 1–3 2.1 1-2 379 155 379 337 5.3 6.5-19.4 1.23–3.68 5.6 3–6 0.55–1.08 129 5582 43.3 407 1535 3.8
getTanh 68 2.5–79 56.2 1.1–57 266 89 377 261 256 28.1–888 0.11–3.47 149 4.3–219 0.03–1.47 572 22399 39.2 433 6490 15
getTanhDouble 14 1–19 13.2 1.1–15.7 304 96 330 297 46.1 10.7–198 0.23–4.3 39.9 3.9–53 0.1–1.33 245 22103 90.2 616 3145 5.1
vecTrans 30 1.5–31 30.1 1.1–32 304 97 365 291 98.7 15.9–320 0.16–3.24 82.6 3.8–110 0.05–1.33 125 22997 184 412 4997 12.1
spmv 2.3 0.8–2.7 3.6 0.8–2.8 263 152 317 288 8.7 5.2–17.6 0.6–2.02 11.3 2.9–9.7 0.26–0.85 494 5628 11.4 1028 7730 7.5
chaosNCG 72 37–74 74.3 2.1–76 308 155 335 237 234 239–477 1.02–2.04 222 8.9–321 0.04–1.45 779 2017 2.6 1042 16447 15.8
BNN 20 15–30 20.7 10.5–21.6 258 116 362 293 77.5 129–259 1.67–3.34 57.3 35.8–73.8 0.62–1.29 1214 7466 6.2 998 4846 4.9
histogramIf 2 5–6 2.1 1-2 388 117 379 338 5.15 42.7-51.3 8.29–8.3 5.5 3–6 0.54–1.08 155 5395 34.8 496 1576 3.2
matching 6 6–8 7.1 2.1–8.1 404 110 234 273 14.9 54.6–72.7 3.67–4.9 30.5 7.7–29.7 0.25–0.97 141 3778 26.8 1901 4542 2.4
floydWarshall 6.2 7–11 6.3 3.1–3.2 366 90 229 225 16.9 77.8–122 4.59–7.2 27.3 13.8–14.2 0.5–0.52 255 2226 8.7 729 4505 6.2
Harmonic mean 0.14–1.4 0.07–0.92 0.35 0.86 0.41–3.53 0.1–1.04 11.3 4.9
V – Vivado HLS D – Dynamatic I – Intel HLS O – Our work

histogramgetTanhgetTanhDoublevecTransspmvchaosNCGBNNhistogramIfmatchingfloydWarshall

0.25
0.5
1
2
4
8

16
32
64

Sp
ee

du
p

(l
og

)

Dynamatic This Work

hist
ogram

getT
an

h

getT
an

hDouble

vec
Tran

s
spmv

ch
ao

sN
CG

BNN

hist
ogram

If

matc
hing

floydWars
hall

1
2
4
8

16
32
64

128
256

A
re

a
ov

er
he

ad
(l

og
)

Fig. 5. Speedup and area overhead of our work and Dynamatic [28] compared
to their static HLS baselines (Intel HLS and Vivado, respectively). The range
bars represent the speedup range, with a value below 1 indicating a slowdown.

HLS tool Dynamatic using a research artifact from their
most recent paper [28]. We do not evaluate against DASS
[10] since it uses the same LSQ as Dynamatic. Dynamatic
uses Vivado for synthesis, while we use Intel tools. This
makes a direct comparison in absolute terms difficult. Instead,
we compare the normalized speedup and area overhead of
Dynamatic and our approach against their respective static
HLS baseline. For Dynamatic we used Vivado 2019.2 and
the Xilinx xc7k160tfbg484 FPGA. For our approach, we used
Quartus 19.2 and the Altera 10AX115S FPGA. When com-
paring against Dynamatic, we only consider on-chip memory
(we were unable to use off-chip memory in Dynamatic).

We applied our approach to ten benchmarks with data
hazards used in previous work [8], [10], [33]. We plan to make
the benchmark codes and results for all approaches available

as a public artifact upon publication [34]. The addresses in the
first seven benchmarks can be decoupled without speculation:

1) histogram is the code from fig. 1a (loop II=2).
2) getTanh performs a tanh(x) approximation on a sparse

array (loop IIs=56,1,1).
3) getTanhDouble is similar but uses only one loop, not

three (loop II=13).
4) vecTrans applies a polynomial expression on elements

of a sparse array (loop II=30).
5) spmv is a sparse matrix-vector multiply (loop IIs=1,9).
6) chaosNCG is a function from a chaos engine with data-

dependent loads and stores (loop II=74).
7) BNN is a binarized neural network (loop IIs=1,2,2).

The remaining benchmarks have control-dependent stores,
making our speculated address allocation approach applicable:

8) histogramIf is similar to histogram, but the store is
control dependent on the load value (loop II=2).

9) matching is the code example from fig. 3a (loop II=7).
10) floydMarshall finds shortest paths in a weighted digraph

(loop IIs=1,1,6).
We report worst- and best-case performance, which depends
on the data distribution. We choose our store allocation queue
sizes according sec. V-C. For Dynamatic, we choose the
smallest queue size that enables perfect pipelining in the case
of no data hazards, following their approach [25].

B. BRAM Results

Fig. 5 shows that our approach achieves a higher speedup
than Dynamatic when comparing each tool to their respective
static HLS baseline, and we do so at a lower area overhead. On
most codes, the higher speedup is due to the higher frequency
achievable by our shift-register-based LSQ, compared to the
CAM-based LSQ used in Dynamatic. Tab. I shows detailed
benchmark results. On average, designs with our LSQ achieve
86% of the frequency achieved by Intel HLS, whereas Dy-
namatic LSQ designs achieve a frequency of 35% compared
to Vivado. We also see that the Dynamatic LSQ results in

TABLE II
SCALABILITY OF OUR STORE ALLOCATION QUEUE COMPARED TO THE
STORE QUEUE IN DYNAMATIC [28] ON THE HISTOGRAM BENCHMARK.

Queue
Size

Freq (MHz) Area (Slices / ALMs)
Dyn × Ours × Dyn × Ours ×

No LSQ 379 1 379 1 129 1 407 1
2 173 0.46 331 0.87 409 3.2 1416 3.5
4 178 0.47 337 0.89 684 5.3 1535 3.8
8 163 0.43 314 0.83 1554 12 1799 4.4
16 155 0.41 315 0.83 5582 43.3 2157 5.3
32 92 0.24 300 0.79 22580 175 3162 7.8
64 - - 252 0.66 - - 4269 10.5

128 - - 224 0.59 - - 7419 18.2
256 - - 194 0.51 - - 17228 42.3

throughput overhead when the data distribution favors static
scheduling, i.e. when most iterations have a true data haz-
ard. In such cases, the Dynamatic designs need on average
1.4× more cycles to finish than the Vivado designs, rising
to 3.5× more execution time due to their lower frequency.
In contrast, our approach has on average no overhead in
execution time compared to its Intel HLS baseline, even when
the data distribution favors static scheduling. The last three
codes benefit from our speculative address allocation scheme,
allowing for non-trivial speedups compared to static HLS,
where the Dynamatic LSQ is not able to increase throughput
at all resulting in an effective execution time slowdown.

Our LSQ has a lower area overhead than Dynamatic. For
example, Dynamatic uses a queue size of 32 for getTanhDou-
ble resulting in an area overhead of 90×. We use the same
size of 32 for the store allocation queue, but suffer an area
overhead of only 5×. On average, our LSQ results an 4.9×
area overhead compared to 11.3 for Dynamatic, and that is
despite the fact that for several codes we use a larger queue
size than Dynamatic. Our largest overhead of 15.8× is on
chaosNCG which uses a store allocation queue with 78 entries.

Store queue size scalability: Some benchmarks require
a large out-of-order address allocation window for perfect
pipelining. We could not synthesize designs with a Dynamatic
LSQ of more than 32 store entries because of resource
constraints. As a result, some benchmarks that require a large
out-of-order address window were not able to achieve perfect
throughput when using the Dynamatic LSQ (e.g. getTanh).
CAM based LSQs, including the Dynamatic LSQ, are noto-
rious for their poor scalability [20], [25]. Our shift-register-
based queues scale better, allowing for hundreds of entries.
Tab. II shows how the frequency and area usage changes with
the size of our store allocation queue. There is a correlation
between the required size of our store allocation queue, and the
potential throughout increase of using our LSQ – the potential
throughput increase from using dynamic scheduling is higher
for larger store allocation queues (sec. V-C).

C. DRAM Results

Tab. III shows the speedups over static HLS that are possible
when using our LSQ to protect DRAM. In this experiment, we

TABLE III
PERFORMANCE OF OUR LSQ ON CODES USING DRAM.

Benchmark Exec. Time (µs) Freq. (MHz) Area (ALMs)
I O O/I I O O/I I O O/I

histogram 397 35–63.5 0.09–0.16 273 267 0.98 6001 10895 1.8
getTanh 587 41.8–144 0.07–0.25 281 233 0.83 11384 22106 1.9
getTanhDouble 425 39.9–128 0.09–0.3 281 241 0.86 8208 13023 1.6
vecTrans 459 43.3–199 0.09–0.43 305 221 0.72 6229 11106 1.8
spmv 179 16–32.6 0.09–0.18 287 282 0.98 3654 10307 2.8
chaosNCG 746 61.8–429 0.08–0.58 270 191 0.71 7111 26076 3.7
BNN 463 42.3–64.1 0.09–0.14 264 268 1.02 4824 10401 2.2
histogramIf 396 35.9–67.8 0.09–0.17 274 267 0.97 6029 13191 2.2
matching 515 56.1–165 0.11–0.32 289 229 0.79 3799 10450 2.8
floydWarshall 381 57.6–58.4 0.15–0.15 257 243 0.95 8911 19248 2.2
Harmonic mean 0.09–0.22 0.87 2.2
I – Intel HLS O – Our work

report execution time when running in hardware on the Intel
PAC Arria 10 GX FPGA board using DDR3 DRAM. On aver-
age, using our LSQ results in an 4.5–11× speedup compared
to static HLS. There are a number of interesting points to make
when comparing the performance of our LSQ on BRAM and
DRAM. Firstly, and most interestingly, the increased size of
the store commit queue needed to cover the maximum store
latency to DRAM has a cache-like effect. A dependent load
can use the value from the commit queue, rather than waiting
for a load from memory. As a result, our LSQ still offers
a significant speedup even if most of the iterations have a
true data hazard. Secondly, using DRAM rather than BRAM
results in a lower achievable circuit frequency for the evaluated
benchmarks. This in itself is not surprising, and has been noted
by previous authors [35], [36], but it means that the critical
path overhead of our LSQ is less noticeable. Similarly, codes
using DRAM use more resources, making the resource usage
of our LSQ less noticeable (2.2× vs. 4.9×).

VII. CONCLUSION

We have presented a novel load-store queue (LSQ) design
adapted to spatial architectures and tightly coupled with an
HLS compiler that can specialize parts of the LSQ to a given
target code. Our design achieves a higher frequency compared
to previous LSQs used in HLS, resulting in an average speedup
of up 11× compared to static HLS and up to 4.5× compared
to dynamic HLS. Our design is scalable, supporting both low
latency on-chip and long variable, latency off-chip memories,
and allowing store queues with hundreds of entries. Finally,
we have presented how the novel concept of speculative LSQ
address allocations can enable dynamically scheduled loads on
more codes than previous work at no added cost.

ACKNOWLEDGMENT

For the purpose of open access, the author(s) has applied a
Creative Commons Attribution (CC BY) licence to any Author
Accepted Manuscript version arising from this submission.

REFERENCES

[1] M. Pellauer, A. Parashar, M. Adler, B. Ahsan, R. Allmon, N. Crago,
K. Fleming, M. Gambhir, A. Jaleel, T. Krishna, D. Lustig, S. Maresh,
V. Pavlov, R. Rayess, A. Zhai, and J. Emer, “Efficient control and com-
munication paradigms for coarse-grained spatial architectures,” ACM
Trans. Comput. Syst., 2015.

[2] B. R. Rau, “Iterative modulo scheduling: An algorithm for software
pipelining loops,” in Proceedings of the 27th Annual International
Symposium on Microarchitecture, 1994.

[3] A. Canis, S. D. Brown, and J. H. Anderson, “Modulo sdc scheduling
with recurrence minimization in high-level synthesis,” in 2014 24th In-
ternational Conference on Field Programmable Logic and Applications
(FPL), 2014, pp. 1–8.

[4] J. Oppermann, A. Koch, M. Reuter-Oppermann, and O. Sinnen,
“Ilp-based modulo scheduling for high-level synthesis,” in Proceedings
of the International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, ser. CASES ’16. New York, NY,
USA: Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/2968455.2968512

[5] A. Morvan, S. Derrien, and P. Quinton, “Efficient nested loop pipelining
in high level synthesis using polyhedral bubble insertion,” in 2011
International Conference on Field-Programmable Technology, 2011.

[6] J. Liu, J. Wickerson, S. Bayliss, and G. A. Constantinides, “Polyhedral-
based dynamic loop pipelining for high-level synthesis,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 37, no. 9, pp. 1802–1815, 2018.

[7] J. Cheng, J. Wickerson, and G. A. Constantinides, “Exploiting the
correlation between dependence distance and latency in loop pipelining
for hls,” in 2021 31st International Conference on Field-Programmable
Logic and Applications (FPL), 2021, pp. 341–346.

[8] L. Josipović, A. Guerrieri, and P. Ienne, “From c/c++ code to high-
performance dataflow circuits,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2022.

[9] J. Cheng, L. Josipović, G. A. Constantinides, and J. Wickerson, “Dy-
namic inter-block scheduling for hls,” in 2022 32nd International Con-
ference on Field-Programmable Logic and Applications (FPL), 2022,
pp. 243–252.

[10] J. Cheng, L. Josipović, G. A. Constantinides, P. Ienne, and J. Wick-
erson, “Dass: Combining dynamic amp; static scheduling in high-level
synthesis,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2022.

[11] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli, “Theory
of latency-insensitive design,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2001.

[12] J. Cortadella, M. Kishinevsky, and B. Grundmann, “Synthesis of
synchronous elastic architectures,” in 2006 43rd ACM/IEEE Design
Automation Conference, 2006.

[13] T. Kam, M. Kishinevsky, J. Cortadella, and M. Galceran-Oms, “Correct-
by-construction microarchitectural pipelining,” in 2008 IEEE/ACM In-
ternational Conference on Computer-Aided Design, 2008, pp. 434–441.

[14] Y. Huang, P. Ienne, O. Temam, Y. Chen, and C. Wu, “Elastic cgras,”
in Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, ser. FPGA ’13, 2013.

[15] M. Tan, G. Liu, R. Zhao, S. Dai, and Z. Zhang, “Elasticflow: A
complexity-effective approach for pipelining irregular loop nests,” in
2015 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2015, pp. 78–85.

[16] R. Townsend, M. A. Kim, and S. A. Edwards, “From functional
programs to pipelined dataflow circuits,” in Proceedings of the 26th
International Conference on Compiler Construction, 2017.

[17] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis and transformation,” in CGO, 2004.

[18] J. Cheng, J. Wickerson, and G. A. Constantinides, “Finding and finessing
static islands in dynamically scheduled circuits,” in Proceedings of the
2022 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 89–100. [Online]. Available:
https://doi.org/10.1145/3490422.3502362

[19] R. Szafarczyk, S. W. Nabi, and W. Vanderbauwhede, “Compiler discov-
ered dynamic scheduling of irregular code in high-level synthesis,” to
appear in 2023 33nd International Conference on Field-Programmable
Logic and Applications (FPL), 2023.

[20] H. Wong, V. Betz, and J. Rose, “Efficient methods for out-of-order
load/store execution for high-performance soft processors,” in 2013
International Conference on Field-Programmable Technology (FPT),
2013, pp. 442–445.

[21] B. Thielmann, J. Huthmann, and A. Koch, “Memory latency hiding
by load value speculation for reconfigurable computers,” ACM Trans.
Reconfigurable Technol. Syst., 2012.

[22] S. Dai, R. Zhao, G. Liu, S. Srinath, U. Gupta, C. Batten, and Z. Zhang,
“Dynamic hazard resolution for pipelining irregular loops in high-level
synthesis,” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’17. New
York, NY, USA: Association for Computing Machinery, 2017, p.
189–194. [Online]. Available: https://doi.org/10.1145/3020078.3021754

[23] L. Josipovic, P. Brisk, and P. Ienne, “An out-of-order load-store queue
for spatial computing,” ACM Transactions on Embedded Computing
Systems, 2017.

[24] J. E. Smith and G. S. Sohi, “The microarchitecture of superscalar
processors,” Proc. IEEE, vol. 83, 1995.

[25] J. Liu, C. Rizzi, and L. Josipović, “Load-store queue sizing for ef-
ficient dataflow circuits,” in 2022 International Conference on Field-
Programmable Technology (ICFPT), 2022, pp. 1–9.

[26] A. Jain, C. Ravishankar, H. Omidian, S. Kumar, M. Kulkarni, A. Tri-
pathi, and D. Gaitonde, “Modular and lean architecture with elasticity
for sparse matrix vector multiplication on fpgas,” to appear in 2023 IEEE
31st Annual International Symposium on Field-Programmable Custom
Computing Machines, 2023.

[27] M. Alle, A. Morvan, and S. Derrien, “Runtime dependency analysis for
loop pipelining in high-level synthesis,” in 2013 50th ACM/EDAC/IEEE
Design Automation Conference (DAC), 2013, pp. 1–10.

[28] A. Elakhras, R. Sawhney, A. Guerrieri, L. Josipovic, and P. Ienne,
“Straight to the queue: Fast load-store queue allocation in dataflow
circuits,” in Proceedings of the 2023 ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, ser. FPGA ’23.
New York, NY, USA: Association for Computing Machinery, 2023, p.
39–45. [Online]. Available: https://doi.org/10.1145/3543622.3573050

[29] K. Kennedy and J. R. Allen, Optimizing Compilers for Modern Archi-
tectures: A Dependence-Based Approach. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2001.

[30] J. E. Smith, “Decoupled access/execute computer architectures,” in
Proceedings of the 9th Annual Symposium on Computer Architecture,
ser. ISCA ’82. Washington, DC, USA: IEEE Computer Society Press,
1982, p. 112–119.

[31] T. J. Ham, J. L. Aragón, and M. Martonosi, “Decoupling data supply
from computation for latency-tolerant communication in heterogeneous
architectures,” ACM Trans. Archit. Code Optim., vol. 14, no. 2, jun
2017. [Online]. Available: https://doi.org/10.1145/3075620

[32] T. Chen and G. E. Suh, “Efficient data supply for hardware accelerators
with prefetching and access/execute decoupling,” in 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2016, pp. 1–12.

[33] J. Cheng, “JianyiCheng: HLS Benchmarks First Release,” Dec. 2019.
[Online]. Available: https://doi.org/10.5281/zenodo.3561115

[34] Anonymized, “Artificat to follow,” 2023.
[35] L. Guo, P. Maidee, Y. Zhou, C. Lavin, J. Wang, Y. Chi,

W. Qiao, A. Kaviani, Z. Zhang, and J. Cong, “Rapidstream: Parallel
physical implementation of fpga hls designs,” in Proceedings of the
2022 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 1–12. [Online]. Available:
https://doi.org/10.1145/3490422.3502361

[36] C.-J. Johnsen, T. D. Matteis, T. Ben-Nun, J. de Fine Licht, and
T. Hoefler, “Temporal Vectorization: A Compiler Approach to Auto-
matic Multi-Pumping,” in 2022 IEEE/ACM International Conference On
Computer Aided Design (ICCAD), 10 2022.

https://doi.org/10.1145/2968455.2968512
https://doi.org/10.1145/3490422.3502362
https://doi.org/10.1145/3020078.3021754
https://doi.org/10.1145/3543622.3573050
https://doi.org/10.1145/3075620
https://doi.org/10.5281/zenodo.3561115
https://doi.org/10.1145/3490422.3502361

	Enlighten Accepted coversheet (IEEE CC BY 4.0)
	308569
	Introduction
	Background & Related Work
	Dynamically Scheduled High-Level Synthesis
	Combining Static and Dynamic Scheduling
	Runtime Memory Disambiguation in HLS

	The Memory Disambiguation Problem
	Load-Store Queue Design
	Load and Store Execution
	Multi-Port and Multi-Cycle Memory

	Compiler Integration
	Dynamically Scheduled Memory in Static HLS
	Loss of Decoupling and Speculative Allocations
	Store Allocation Queue Size

	Evaluation
	Methodology
	BRAM Results
	DRAM Results

	Conclusion
	References

