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Abstract

Counterfactual Explanations (CEs) have received increasing interest as a major method-
ology for explaining neural network classifiers. Usually, CEs for an input-output pair are
defined as data points with minimum distance to the input that are classified with a differ-
ent label than the output. To tackle the established problem that CEs are easily invalidated
when model parameters are updated (e.g. retrained), studies have proposed ways to certify
the robustness of CEs under model parameter changes bounded by a norm ball. However,
existing methods targeting this form of robustness are not sound or complete, and they
may generate implausible CEs, i.e., outliers wrt the training dataset. In fact, no existing
method simultaneously optimises for proximity and plausibility while preserving robustness
guarantees. In this work, we propose Provably RObust and PLAusible Counterfactual Ex-
planations (PROPLACE)1, a method leveraging on robust optimisation techniques to ad-
dress the aforementioned limitations in the literature. We formulate an iterative algorithm
to compute provably robust CEs and prove its convergence, soundness and completeness.
Through a comparative experiment involving six baselines, five of which target robustness,
we show that PROPLACE achieves state-of-the-art performances against metrics on three
evaluation aspects.

Keywords: Explainable AI; Counterfactual Explanations; Robustness of Explanations

1. Introduction

Counterfactual Explanations (CEs) have become a major methodology to explain NNs due
to their simplicity, compliance with the regulations (Wachter et al., 2017), and alignment
with human thinking (Celar and Byrne, 2023). Given an input point to a classifier, a CE is
a modified input classified with another, often more desirable, label. Consider a customer
that is denied a loan by the machine learning system of a bank. A CE the bank provided
for this customer could be, the loan application would have been approved, had you raised
your annual salary by $6000. Several desired properties of CEs have been identified in

1. The implementation is available at https://github.com/junqi-jiang/proplace
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the literature, the most fundamental of which is validity, requiring that the CE needs to
be correctly classified with a specified label (Tolomei et al., 2017). Proximity refers to
the closeness between the CE and the input measured by some distance metric, which
translates to a measure of the effort the end user has to make to achieve the prescribed
changes (Wachter et al., 2017). The CEs should also lie on the data manifold of the training
dataset and not be an outlier, which is assessed via plausibility (Poyiadzi et al., 2020).
Most recently, the robustness of CEs, amounting to their validity under various types of
uncertainty, has drawn increasing attention due to its real-world importance. In this work,
we consider robustness to the model parameter changes occurring in the classifier on which
the CE was generated. Continuing the loan example, assume the bank’s machine learning
model is retrained with new data, while, in the meantime, the customer has achieved a
raise in salary (as prescribed by the CE). The customer may then return to the bank only
to find that the previously specified CE is now invalidated by the new model. In this case,
the bank could be seen as being responsible by the user and could potentially be legally
liable, risking financial and reputational damage to the organisation. The quality of such
unreliable CE is also questionable: Rawal et al. (2020); Dutta et al. (2022) have shown
that CEs found by existing non-robust methods are prone to such invalidation due to their
closeness to the decision boundary.

Various methods have been proposed to tackle this issue. Nguyen et al. (2022); Dutta
et al. (2022); Hamman et al. (2023) focus on building heuristic methods using model con-
fidence, Lipschitz continuity, and quantities related to the data distribution. Upadhyay
et al. (2021); Black et al. (2022); Jiang et al. (2023) consider optimising the validity of CEs
under bounded model parameter changes, which are also empirically shown to be robust
to the unbounded parameter changes scenarios. Among the existing methods, only Jiang
et al. (2023) provides robustness guarantees in a formal approach, which are known to be
lacking in the explainable AI (XAI) literature in general, aside from some notable exam-
ples, e.g. as introduced in Marques-Silva and Ignatiev (2022). Their method generates such
provably robust CEs via iteratively tuning the hyperparameters of an arbitrary non-robust
CEs method and testing for robustness. However, this method cannot always guarantee
soundness and is not complete, which is also the case for the method in Upadhyay et al.
(2021). Another limitation in the current literature is that the methods targeting this form
of robustness guarantee do not find plausible CEs, limiting their practical applicability.

Such limitations have motivated this work. After discussing relevant studies in Section 2,
we introduce the robust optimisation problem for computing CEs with proximity property
as the objective, and robustness and plausibility properties as constraints (Section 3). In
Section 4, we then present Provably RObust and PLAusible CEs (PROPLACE), a method
leveraging on robust optimisation techniques to address the limitation in the literature
that no method optimises for proximity and plausibility while providing formal robustness
guarantees. We show the (conditional) soundness and completeness of our method, and
give a bi-level optimisation procedure that will converge and terminate. Finally, in our
experiments, we compare PROPLACE with six existing CE methods, five of which target
robustness, on four benchmark datasets. The results show that our method achieves the
best robustness and plausibility, while demonstrating superior proximity among the most
robust baselines.
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2. Related Work

As increasing interest has been focused on XAI, a plethora of CE generation methods have
been proposed (see Guidotti (2022) for a recent overview). Given our focus on neural
networks, we cover those explaining the outputs of these models. Wachter et al. (2017) pro-
posed a gradient-based optimisation method targeting the validity and proximity of CEs.
Similarly, using the mixed integer programming (MILP) representation of neural networks,
Mohammadi et al. (2021) formulated the CEs search into a constrained optimisation prob-
lem such that the resulting CEs are guaranteed to be valid. Mothilal et al. (2020) advocated
generating a diverse set of CEs for each input to enrich the information provided to the
explainee. Several works also addressed actionability constraints (Ustun et al., 2019; Verma
et al., 2022; Vo et al., 2023), only allowing changes in the actionable features of real users.
Poyiadzi et al. (2020) proposed a graph-based method to find a path of CEs that are all
lying within the data manifold. Several other works have proposed to use (variational) auto-
encoders or nearest neighbours to induce plausibility (Dhurandhar et al., 2018; Pawelczyk
et al., 2020b; Van Looveren and Klaise, 2021). Among these properties, actionability and
plausibility are two orthogonal considerations which make the CEs realistic in practice, and
trade-offs have been identified between plausibility and proximity (Pawelczyk et al., 2020a).

In this work, our focus is on the property of robustness to changes in the model pa-
rameters, i.e. weights and biases in the underlying classifier. Several studies looked at CEs
under bounded model parameter changes of a neural network: Upadhyay et al. (2021) for-
mulated a novel loss function and solved using gradient-based methods. Black et al. (2022)
proposed a heuristic based on the classifier’s Lipschitz constant and the model confidence
to search for robust CEs. Jiang et al. (2023) used interval abstractions (Prabhakar and
Afzal, 2019) to certify the robustness against bounded parameter changes, and embed the
certification process into existing CE methods. Differently to our approach, these methods
do not generate plausible CEs or guarantee that provably robust CEs are found. Other rel-
evant works place their focus on the robustness of CEs against unbounded model changes.
Ferrario and Loi (2022) took the approach of augmenting the training data with previously
generated CEs. Nguyen et al. (2022) focused on the data distribution and formulated the
problem as posterior probability ratio minimisation to generate robust and plausible CEs.
By using first- and second-moment information, Bui et al. (2022) proposed lower and upper
bounds on the CEs’ validity under random parameter updates and generated robust CEs
using gradient descent. Dutta et al. (2022) defined a novel robustness measure based on
the model confidences over the neighbourhood of the CE, and used dataset points that
satisfy some robustness test to find close and plausible CEs. Their notion is then further
re-calibrated for neural networks with probabilistic robustness guarantees in Hamman et al.
(2023). Trade-offs between robustness and proximity were discussed by Pawelczyk et al.
(2022) and Upadhyay et al. (2021).

Other forms of CEs’ robustness have also been investigated, for example, robustness
against: input perturbations (Alvarez-Melis and Jaakkola, 2018; Sharma et al., 2020; Bajaj
et al., 2021; Dominguez-Olmedo et al., 2022; Huai et al., 2022; Virgolin and Fracaros, 2023;
Zhang et al., 2023); noise in the execution of CEs (Pawelczyk et al., 2022; Leofante and
Lomuscio, 2023a,b; Maragno et al., 2023); and model multiplicity (Pawelczyk et al., 2020a;
Leofante et al., 2023).
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3. Preliminaries and Problem Statement

Notation. Given an integer k, we use [k] to denote the set {1, . . . , k}. We use |S| to
denote the cardinality of a set S.

Neural Network (NN). We denote a NN as MΘ : X ⊆ Rd → Y ⊆ N, where the
inputs are d-dimensional vectors and the outputs are discrete class labels. Θ represents the
collection of parameters that characterise the NN. Throughout the paper, we will illustrate
our method using the binary classification case (i.e. Y = {0, 1}), though the method is
readily applicable to multi-class classification. LetMΘ(x) also (with an abuse of notation)
refer to the pre-sigmoid (logit) value in the NN. Then, for an input x ∈ X , we say MΘ

classifies x as class 1 ifMΘ(x) ≥ 0, otherwiseMΘ classifies x as class 0.

Counterfactual Explanation (CE). For an input x ∈ X that is classified to the un-
wanted class 0 (assumed throughout the paper), a CE x′ ∈ X is some other data point
“similar” to the input, e.g. by some distance measure, but classified to the desired class 1.

Definition 1 (CE) Given a NNMΘ, an input x ∈ X such thatMΘ(x) < 0, and a distance
metric dist : Rd × Rd → R+, a CE x′ ∈ X is such that:

argmin
x′

dist(x, x′)

subject to MΘ(x
′) ≥ 0

The minimum distance objective targets the minimum effort by the end user to achieve
a change, which corresponds to the basic requirement of proximity mentioned in Section 1.
In the literature, normalised L1 distance is often adopted as the distance metric because it
induces changes in fewer features in the CE (Wachter et al., 2017). However, methods that
find such plain CEs usually result in unrealistic combinations of features, or outliers to the
underlying data distribution of the training dataset. A plausible CE avoids these issues and
is formally defined as follows:

Definition 2 (Plausible CE) Given a NNMΘ and an input x ∈ X such thatMΘ(x) < 0,
a distance metric dist : Rd × Rd → R+ and some plausible region Xplaus ⊆ Rd, a plausible
CE is an x′ such that:

argmin
x′

dist(x, x′)

subject to MΘ(x
′) ≥ 0, x′ ∈ Xplaus

The plausible region Xplaus may be used to eliminate any unrealistic feature values
(e.g. a value of 0.95 for a discrete feature), or to indicate a densely populated region that
is close to the data manifold of the training dataset. Additionally, it may also include
some actionability considerations, such as restricting immutable attributes (e.g. avoiding
suggesting changes in gender) or specifying some relations between input features (e.g.
obtaining a doctoral degree should also cost the user at least 4 years).
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Robustness of Counterfactual Explanations. Studies have shown that CEs found
by the above formulations are readily invalidated when small changes occur in the model
parameters of the NNs. We formalise this in the following and begin by introducing a
distance measure between two NNs and a definition of model shift. Note that Definitions 3
to 7 are adapted from Jiang et al. (2023).

Definition 3 (Distance between two NNs) Consider two NNs MΘ, MΘ′ of the same ar-
chitecture characterised by parameters Θ and Θ′. For 0 ≤ p ≤ ∞, the p-distance between
MΘ andMΘ′ is dp(MΘ,MΘ′) = ∥Θ−Θ′∥p.

Definition 4 (Bounded model shifts) Given a NN MΘ, δ ∈ R>0 and 0 ≤ p ≤ ∞, the set
of bounded model shifts is defined as ∆ = {MΘ′ | dp(MΘ,MΘ′) ≤ δ}.

Certifying Robustness. Having presented the definitions required to formalise the opti-
misation problem for finding provably robust and plausible CEs, we now introduce another
relevant technique that uses interval abstractions to certify the robustness of CEs. We refer
to the certification process as the ∆-robustness test; this will be used for parts of our method
and also as an evaluation metric in the experiments. We assume p =∞ for bounded model
shifts ∆ throughout the paper.

Definition 5 (Interval abstraction of NN) Consider a NNMΘ with Θ = [θ0, . . . , θd]. Given
a set of bounded model shifts ∆, we define the interval abstraction ofMΘ under ∆ as the
model I(Θ,∆) : X → I(R) (for I(R) the set of all closed intervals over R) such that:

• MΘ and I(Θ,∆) have the same architecture;

• I(Θ,∆) is parameterised by an interval-valued vector Θ= [θ0,. . . ,θd] such that, for
i ∈ {0, . . . , d}, θi = [θi − δ, θi + δ], where δ is the bound in ∆.

When p = ∞, θi encodes the range of possible model parameter changes by the ap-
plication of ∆ to MΘ. Given a fixed input, by propagating the weight and bias intervals,
the output range of I(Θ,∆) exactly represents the possible output range for the input by
applying ∆ toMΘ (Jiang et al., 2023).

Definition 6 (Interval abstraction of NN classification) Let I(Θ,∆) be the interval abstrac-
tion of a NNMΘ under ∆. Given an input x ∈ X , let I(Θ,∆)(x) = [l, u]. Then, we say that
I(Θ,∆) classifies x as class 1 if l ≥ 0 (denoted, with an abuse of notation, I(Θ,∆)(x) ≥ 0),
and as class 0 if u < 0 (denoted, with an abuse of notation, I(Θ,∆)(x) < 0).

Indeed, for an input, if the lower bound l of pre-sigmoid output node interval [l, u] of
I(Θ,∆) satisfies l ≥ 0, then it means all shifted models in ∆ would predict the input with a
pre-sigmoid value that is greater than or equal to 0, all resulting in predicted label 1. We
apply this intuition to the CE context:

Definition 7 (∆-robust CE) Consider an input x ∈ X and a modelMΘ such thatMΘ(x) <
0. Let I(Θ,∆) be the interval abstraction ofMΘ under ∆. We say that a CE x′ is ∆-robust
iff I(Θ,∆)(x

′) ≥ 0.

Checking whether a CE x′ is ∆-robust requires the calculation of the lower bound l
of the pre-sigmoid output node interval [l, u] of I(Θ,∆). This process can be encoded as a
MILP program (see Appendix B in Jiang et al. (2023)).
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Optimising for Robustness and Plausibility. Now we introduce the targeted prov-
ably robust and plausible optimisation problem based on Definitions 2 and 7, by taking
inspiration from the robust optimisation technique (Ben-Tal et al., 2009).

Definition 8 (Provably robust and plausible CE) Given a NN MΘ, an input x ∈ X
such that MΘ(x) < 0, a distance metric dist : Rd × Rd → R+ and some plausible region
Xplaus ⊆ Rd, let I(Θ,∆) be the interval abstraction of MΘ under the bounded model shifts
∆. Then, a provably robust and plausible CE x′ ∈ X is such that:

argmin
x′

dist(x, x′) (1a)

subject to I(Θ,∆)(x
′) ≥ 0, (1b)

x′ ∈ Xplaus (1c)

The optimisation problem (1) can be equivalently rewritten as follows:

argmin
x′

dist(x, x′) (2a)

subject to max
MΘ′∈∆

[−MΘ′(x′)] ≤ 0, (2b)

x′ ∈ Xplaus (2c)

We show next a novel approach for solving this robust optimisation problem (2).

4. PROPLACE

The procedure for computing robust and plausible CEs, solving the optimisation problem
(2) , is summarised in Algorithm 1. We will first introduce how the plausible region Xplaus is
constructed in Section 4.1 (corresponding to Line 3, Algorithm 1). Then, in Section 4.2 we
will present the bi-level optimisation method (corresponding to Lines 4-5, Algorithm 1) to

Algorithm 1 PROPLACE

Require: input x, modelMΘ,
1: training dataset D = {(x1, y1), . . . , (xn, yn)},
2: set of bounded model shifts ∆,
3: plausible region to be used as CEs search space Xplaus.
4: Init: x′ ← ∅; ∆′ ← {MΘ}

repeat
x′ ← Outer minimisation(MΘ, x,Xplaus,∆

′)
MΘ′ ← Inner maximisation(x′,∆′,∆)
∆′ ← ∆′ ∪ {MΘ′}

until (−MΘ′(x′)) ≤ 0;
5: return x′
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solve the robust optimisation problem (2). In Section 4.2 we will also instantiate the com-
plete bi-level optimisation formulations (in MILP form) of our method for NNs with ReLU
activation functions. Finally, in Section 4.3 we discuss the soundness and completeness of
Algorithm 1 and prove its convergence.

4.1. Identifying Search Space Xplaus

As mentioned in Section 2, points from the training dataset (especially k-nearest-neighbours)
are frequently utilised in the literature to induce plausibility. In this work, we propose to
use a more specialised kind of dataset point, k ∆-robust nearest-neighbours, to construct
the search space for CEs that is both plausible and robust.

Definition 9 (k ∆-robust nearest-neighbours) Given a NNMΘ and an input x ∈ X such
thatMΘ(x) < 0, a distance metric dist : Rd×Rd → R+, a dataset D ⊆ Rd on whichMΘ is
trained, and a set of bounded model shifts of interest ∆, let I(Θ,∆) be the interval abstraction
of MΘ under ∆. Then, the k ∆-robust nearest-neighbours of x is a set Sk,∆ ⊆ D with
cardinality |Sk,∆| = k such that:

• ∀x′ ∈ Sk,∆, x
′ is ∆-robust, i.e. I(Θ,∆)(x

′) ≥ 0,

• ∀x′′ ∈ D \ Sk,∆, if x
′′
is ∆-robust, dist(x, x

′′
) ≥ max

x′∈Sk,∆

dist(x, x′).

The first constraint enforces the ∆-robustness, and the second states that the points
contained in the set are the k nearest points to the input x amongst all the ∆-robust
dataset points. In practice, in order to compute the k ∆-robust nearest-neighbours, we fit a
k-d tree on the dataset points that are classified to the desired class, then iteratively query
the k-d tree for the nearest neighbour of an input, until the result satisfies the ∆-robustness
test (Definition 7).

Restricting the CE search space within the convex hull of these robust neighbours will
likely induce high plausibility (and robustness). However, because these points are deep
within parts of the training dataset that are classified to another class, they may be far
from the model’s decision boundary, therefore resulting in large distances to the inputs. In
fact, Dutta et al. (2022); Hamman et al. (2023) adopted similar robust nearest neighbours
(using other notions of robustness tests) as the final CEs, and poor proximity was observed
in their experiment results. They have also shown that finding CEs using line search between
proximal CEs and these robust neighbours can slightly improve proximity.

In our case, since the validity of the CEs can be guaranteed from the optimisation pro-
cedures (Section 4.2), we expand the plausible search space across the decision boundary by
taking the input into consideration, which is assumed to also be inside the data distribution.

Definition 10 (Plausible region) Given an input x ∈ Rd and its k ∆-robust nearest neigh-
bours Sk,∆, the plausible region Xplaus is the convex hull of Sk,∆ ∪ {x}.

By restricting the CE search space to such convex hull, the method has the flexibility to
find close CEs (with x as a vertex), or robust and plausible CEs (with the robust neighbours
as other vertices). This Xplaus ensures the soundness and completeness of our method
(Section 4.3).
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4.2. Bi-level Optimisation Method with MILP

4.2.1. Outer and Inner Optimisation problems

We separate the robust optimisation problem (2) to solve into outer minimisation and inner
maximisation problems, as specified in Definitions 11 and 12.

Definition 11 Given a NN MΘ and an input x ∈ X such that MΘ(x) < 0, a distance
metric dist : Rd×Rd → R+ and some plausible region Xplaus ⊆ Rd, let ∆′ be a set of shifted
models. Then, the outer minimisation problem finds a CE x′ such that:

argmin
x′

dist(x, x′) (3a)

subject to −MΘ′(x′) ≤ 0, for eachMΘ′ ∈ ∆′, (3b)

x′ ∈ Xplaus (3c)

Definition 12 Given a CE x′ ∈ X found by the outer minimisation problem, the set of
bounded model shifts ∆, the inner maximisation problem finds a shifted model MΘ′ such
that:

arg max
MΘ′

−MΘ′(x′) (4a)

subject to MΘ′ ∈ ∆ (4b)

The outer minimisation problem relaxes the constraint that a CE should be robust to
all possible model shifts in the set ∆; instead, it requires robustness wrt a subset of the
model changes ∆′ ⊂ ∆. ∆′ is initialised with the original classification modelMΘ. At the
first execution, the outer minimisation finds the closest CE x′ valid for that model. Then,
x′ is passed to the inner maximisation problem to compute the model shift S(MΘ) that
produces the lowest model output score. This model shift is considered to be the worst-
case perturbation on the model parameters in the set ∆, and is added to ∆′. In the next
iterations, x′ is updated to the closest CE valid for all the models in ∆′ (outer), which is
being expanded (inner), until convergence.

4.2.2. MILP Formulations

The proposed bi-level optimisation method in Section 4.2.1 is independent of specific NN
structures. In this section, we take NNs with ReLU activation functions as an example
to further elaborate the method. We denote the total number of hidden layers in an NN
MΘ as h. We call N0, Nh+1, and Ni the sets of input, output, and hidden layer nodes
for i ∈ [h], and their node values are V0, Vh+1, and Vi. For hidden layer nodes Vi =
ReLU(WiVi−1 + Bi), and for output layer nodes Vh+1 = Wh+1Vh + Bh+1, where Wi is the
weight matrix connecting nodes at layers i− 1 and i, and Bi is the bias vector of nodes Ni.
We instantiate the formulations using normalised L1, while our method PROPLACE can
accommodate arbitrary distance metrics.
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The outer minimisation problem is equivalent to the following MILP program, where
the superscripts j on weight matrices and bias vectors indicate they are model parameters
of the j-th modelMj

Θ ∈ ∆′:

min
x′,γ,λ

∥x− x′∥1 (5a)

s.t. V j
0 = x′, (5b)

γji ∈ {0, 1}
|Ni|, i ∈ [h], j ∈ [|∆′|] (5c)

0 ≤ V j
i ≤Mγji , i ∈ [h], j ∈ [|∆′|] (5d)

W j
i V

j
i−1 +Bj

i ≤ V j
i ≤ (W j

i V
j
i−1 +Bj

i ) +M(1− γji ), i ∈ [h], j ∈ [|∆′|] (5e)

W j
h+1V

j
h +Bj

h+1 ≥ 0, j ∈ [|∆′|] (5f)

λl ∈ [0, 1], l ∈ [|Sk,∆ ∪ {x}|],
|Sk,∆∪{x}|∑

l=1

λl = 1

x′ =

|Sk,∆∪{x}|∑
l=1

λlx
′
l, x

′
l ∈ Sk,∆ ∪ {x} (5g)

Constraints (5b) - (5f) and constraint (5g) correspond respectively to the robustness
and plausibility requirement in (3b) - (3c).

The inner maximisation program can be formulated as the following MILP program,
where the superscripts 0 on weight matrices and biases indicate they are model parameters
of the original modelMΘ, and δ is the bound of model magnitude change specified in ∆:

max
W,B,γ

Vh+1 (6a)

s.t. V0 = x′, (6b)

γi ∈ {0, 1}|Ni|, i ∈ [h] (6c)

0 ≤ Vi ≤Mγi, i ∈ [h] (6d)

WiVi−1 +Bi ≤ Vi ≤ (WiVi−1 +Bi) +M(1− γi), i ∈ [h] (6e)

Vh+1 = Wh+1Vh +Bh+1 (6f)

W 0
i − δ ≤Wi ≤W 0

i + δ, i ∈ [h+ 1] (6g)

B0
i − δ ≤ Bi ≤ B0

i + δ, i ∈ [h+ 1] (6h)

Due to the flexibility of such MILP programs, the framework accommodates continuous,
ordinal, and categorical features (Mohammadi et al., 2021). Specific requirements like
feature immutability or associations between features can also be encoded (Ustun et al.,
2019). These MILP problems can be directly solved using off-the-shelf solvers such as
Gurobi (Gurobi Optimization, LLC, 2023).

4.3. Soundness, Completeness and Convergence of Algorithm 1

We now discuss the soundness and completeness of our method by restricting the search
space for the CE to the plausible region Xplaus. From its definition, the vertices (except
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the input x) of Xplaus are ∆-robust, which thus satisfies the robustness requirement of our
target problem (Definition 8). This means that there exist at least k points in the search
space satisfying constraint (2c) that also satisfy constraint (2b), making these points feasible
solutions for the target problem. We may thus make the following remark:

Proposition 13 Algorithm 1 is sound and complete if ∃ x′ ∈ D such that x′ is ∆-robust.

Next, we adapt the method in (Mutapcic and Boyd, 2009, Section 5.2) to provide an
upper bound on the maximum number of iterations of Algorithm 1.

Proposition 14 Given the requirements of Algorithm 1, assume the classifierMΘ is Lip-
schitz continuous in x′. Then, the maximum number of iterations before Algorithm 1 ter-
minates is bounded.

Proof
Firstly, we assume two small tolerance variables σ > t > 0 and modify the robustness

constraint (2b) of Definition 8 to: max
MΘ′∈∆

[−MΘ′(x′) + σ] ≤ t, such that the correctness

of the robustness guarantee is not affected. The termination condition for Algorithm 1
therefore becomes −MΘ′(x′) + σ ≤ t.

Consider the plausible CE problem (Definition 2 with the validity constraint modified
to −MΘ(x

′)+σ ≤ t), which is the problem solved by the first execution (iteration 1) of the
outer minimisation problem in Algorithm 1. We denote its feasible region as F . Suppose
MΘ is a ReLU NN without the final (softmax or sigmoid) activation layer, then MΘ is
Lipschitz continuous. Let f(x′,MΘ) := −MΘ(x

′) + σ, then f is Lipschitz continuous in x′

over F with some Lipschitz constant L. For a distance metric dist : Rd × Rd → R+, and
any x1, x2 ∈ F , we have:

|f(x1,MΘ)− f(x2,MΘ)| ≤ L× dist(x1, x2) (7)

At iteration m, we denote the CE found by the outer minimisation as x′(m), and

the shifted model found by the inner maximisation as M(m)
Θ . Then, f(x′(m),M(m)

Θ ) :=

−M(m)
Θ (x′(m)) + σ. Assume at step m the algorithm has not terminated, then

f(x′(m),M(m)
Θ ) > t (8)

For the iteration steps n > m, x′(n) is required to be valid onM(m)
Θ as specified in the

outer minimisation problem, we therefore have:

f(x′(n),M(m)
Θ ) ≤ 0 (9)

Combining (8) and (9) yields

f(x′(m),M(m)
Θ )− f(x′(n),M(m)

Θ ) > t (10)

Further combining (10) with (7), for the iteration steps n > m,

dist(x′(m), x′(n)) >
t

L
(11)
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Consider the balls Bi, i = 1, . . . ,m, of diameter t
L centred at each intermediate result

of the outer minimisation problem, x′(i). From (11), it can be concluded that for any two
intermediate x′(i), x′(j), 1 < i, j < m, dist(x′(i), x′(j)) > t

L , and x′(i) and x′(j) are the centres

of the balls B(i) and B(j). Therefore, any two circles will not intercept. The total volume
of these balls is thus m× U × ( t

L)
d, where U is the unit volume in Rd.

Consider a ball that encompasses the feasible solution region F and let R be its radius.
We know that x′i, i = 1, . . . ,m, are all within the feasible region F , therefore, the ball B
that has a radius R+ t

2L will cover the spaces of the small balls Bi, i = 1, . . . ,m. Also, the
volume of B is U × (2R+ t

L)
d and will be greater than the total volume of the small balls,

which means:

U ×
(
2R+

t

L

)d

> m× U ×
(

t

L

)d

=⇒ m <

(
2RL

t
+ 1

)d

It can be concluded that the step number at which Algorithm 1 has not terminated is
bounded above by the (2RL

t + 1)d.

5. Experiments

In this section, we demonstrate that our proposed method achieves state-of-the-art perfor-
mances compared with existing robust CEs generation methods.

Datasets and Classifiers. Our experiments use four benchmark datasets in financial
and legal contexts: the Adult Income (ADULT), COMPAS, Give Me Some Credits (GMC),
and HELOC datasets. We adopt the pre-processed versions available in the CARLA library
(Pawelczyk et al., 2021) where each dataset contains binarised categorical features and min-
max scaled continuous features. Labels 0 and 1 are the unwanted and the desired class,
respectively. We split each dataset into two halves. We use the first half for training NNs
with which the robust CEs are generated, and the second half for model retraining and
evaluating the robustness of the CEs.

For making predictions and generating CEs, the NNs contain two hidden layers with
ReLU activation functions. They are trained using the Adam optimiser with a batch size
of 32, and under the standard 80%, 20% train-test dataset split setting. The classifiers
achieved 84%, 85%, 94%, and 76% accuracies on the test set of ADULT, COMPAS, GMC,
and HELOC datasets, respectively.

The retrained models have the same hyperparameters and training procedures as the
original classifiers. Following the experimental setup in previous works (Dutta et al., 2022;
Ferrario and Loi, 2022; Nguyen et al., 2022; Black et al., 2022; Upadhyay et al., 2021),
for each dataset, we train 10 new models using both halves of the dataset to simulate the
possible retrained models after new data are collected. We also train 10 new models using
99% of the first half of the dataset (different 1% data are discarded for each training),
to simulate the leave-one-out retraining procedures. The random seed is perturbed for
retraining. These 20 retrained models are used for evaluating the robustness of CEs.
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Evaluation Metrics. The CEs are evaluated by the following metrics for their proximity,
plausibility, and robustness.

• ℓ1 measures the average L1 distance between a CE and its corresponding input.

• lof is the average 10-Local Outlier Factor (Breunig et al., 2000) of the generated CEs,
which indicates to what extent a data point is an outlier wrt its k nearest neighbours
in a specified dataset. lof values close to 1 indicate inliers, larger values (especially if
greater than 1.5) indicate outliers.

• vr, the validity of CEs on the retrained models, is defined as the average percentage
of CEs that remain valid (classified to class 1) under the retrained models.

• v∆ is the percentage of CEs that are ∆-robust. The bound of model parameter
changes δ is specified to be the same as the value used in our algorithm.

Baselines. We compare our method with six state-of-the-art methods for generating CEs,
including five which target robustness. WCE (Wachter et al., 2017) is the first method to
generate CEs for NNs, which minimises the ℓ1 distance between the CEs and the inputs.
Robust Bayesian Recourse (RBR) (Nguyen et al., 2022) addresses the proximity, robustness,
and plausibility of CEs. RobXNN (Dutta et al., 2022) is a nearest-neighbour-based method
that focuses on a different notion of robustness to model changes. Robust Algorithmic
Recourse (ROAR) (Upadhyay et al., 2021) optimises for proximity and the same ∆ notion
of robustness. Proto-R and MILP-R are the methods proposed by Jiang et al. (2023) which
embed the ∆-robustness test into the base methods of Van Looveren and Klaise (2021) and
Mohammadi et al. (2021). For all methods including ours, we tune their hyperparameters
to maximise the validity after retraining vr.

ADULT COMPAS GMC HELOC
vr↑ v∆↑ ℓ1↓ lof↓ vr↑ v∆↑ ℓ1↓ lof↓ vr↑ v∆↑ ℓ1↓ lof↓ vr↑ v∆↑ ℓ1↓ lof↓

WCE 89 78 .175 1.59 57 0 .170 1.81 84 18 .148 2.80 49 0 .045 1.16
RBR 100 0 .031 1.28 100 62 .043 1.34 90 0 .050 1.31 80 0 .038 1.10

RobXNN 100 82 .064 1.28 100 82 .050 1.11 100 96 .073 1.35 100 30 .073 1.04
ROAR 99 98 .279 1.96 98 100 .219 2.84 96 88 .188 4.22 98 98 .109 1.57

PROTO-R 98 55 .068 1.60 100 100 .084 1.36 100 100 .066 1.49 100 100 .057 1.21
MILP-R 100 100 .024 1.69 100 100 .040 1.71 100 100 .059 2.08 100 100 .044 2.48
OURS 100 100 .046 1.22 100 100 .039 1.24 100 100 .058 1.24 100 100 .057 1.04

Table 1: Evaluations of PROPLACE (OURS) and baselines on NNs. The ↑ (↓) indicates
that higher (lower) values are preferred for the evaluation metric.

Results. We randomly select 50 test points from each dataset that are classified to be the
unwanted class, then apply our method and each baseline to generate CEs for these test
points. Results are shown in Table 1.

As a non-robust baseline, the WCE method is the least robust while producing high ℓ1
costs and poor plausibility. Though RBR shows the lowest ℓ1 results on three datasets, it
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has only moderate robustness against the naturally retrained models and is not ∆-robust
on any dataset. The rest of the baselines all show strong robustness on at least three
datasets, with our method having slightly better vr and v∆ results, evaluated at 100% in
every experiment. This indicates that our method PROPLACE can not only guarantee
robustness under bounded model parameter changes but also induce reliable robustness
against unbounded model changes. In terms of plausibility, our method shows the best
lof score in most experiments. Therefore, our method has addressed the limitation in the
literature that no method optimises for guaranteed ∆-robustness and plausibility. Though
the two properties have established trade-offs with proximity (Pawelczyk et al., 2020a, 2022;
Upadhyay et al., 2021), our method still shows ℓ1 costs lower than all methods except RBR,
which is significantly less robust, and MILP-R, which finds outliers. For the COMPAS
dataset, our method has the best proximity result among all baselines.

Note that the PROTO-R baseline from the work which proposed certification for ∆-
robustness failed to find ∆-robust CEs on the ADULT dataset, as was the case in their
results (see Table 1, Jiang et al. (2023)). This is due to the fact that their method rely
heavily on a base method to find CEs, and it is not straightforward to be always able to
direct the hyperparameters search for optimising ∆-robustness. With improved soundness
and completeness (Proposition 13), PROPLACE always finds provably robust results.

6. Conclusions

We proposed a robust optimisation framework PROPLACE to generate provably robust
and plausible CEs for neural networks. The method addresses the limitation in the litera-
ture that existing methods lack formal robustness guarantees to bounded model parameter
changes and do not generate plausible CEs. We proved the soundness, completeness, and
convergence of PROPLACE. Through a comparative study, we show the efficacy of our
method, demonstrating the best robustness and plausibility results with better proximity
than the most robust baselines. Despite the specific form of robustness we target, PRO-
PLACE is also empirically robust to model retraining with unbounded parameter changes.
Future work could include investigating the properties of actionability and diversity, evalu-
ations with user studies, and investigating connections between ∆-robustness and different
notions of robustness measures.
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