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Simple Summary: This systematic review evaluates the potential of magnetic resonance imaging
(MRI) to predict tumor biology in primary squamous cell carcinoma of the head and neck (HNSCC).
Fifty-eight articles were analyzed, examining the relationship between MRI parameters and biological
features. Most studies focused on HPV status associations, revealing that HPV-positive tumors
consistently exhibited lower diffusion-weighted metrics. Moreover, lower diffusion values were
also with a high Ki-67 proliferation index, indicating high cellularity. Several perfusion parameters
describing the vascularity were significantly associated with HIF-1α. Analysis results of other
biological factors (VEGF, EGFR, tumor cell count, p53, and MVD) were inconclusive. Larger datasets
are needed to develop and validate radiomic-based prediction models, which already show promising
results in capturing diverse tumor biology features. Overall, MRI holds potential for non-invasive and
rapid tumor biology characterization, enhancing future clinical outcome predictions and personalized
patient management for HNSCC.

Abstract: Magnetic resonance imaging (MRI) is an indispensable, routine technique that provides
morphological and functional imaging sequences. MRI can potentially capture tumor biology
and allow for longitudinal evaluation of head and neck squamous cell carcinoma (HNSCC). This
systematic review and meta-analysis evaluates the ability of MRI to predict tumor biology in primary
HNSCC. Studies were screened, selected, and assessed for quality using appropriate tools according
to the PRISMA criteria. Fifty-eight articles were analyzed, examining the relationship between
(functional) MRI parameters and biological features and genetics. Most studies focused on HPV
status associations, revealing that HPV-positive tumors consistently exhibited lower ADCmean (SMD:
0.82; p < 0.001) and ADCminimum (SMD: 0.56; p < 0.001) values. On average, lower ADCmean values are
associated with high Ki-67 levels, linking this diffusion restriction to high cellularity. Several perfusion
parameters of the vascular compartment were significantly associated with HIF-1α. Analysis of other
biological factors (VEGF, EGFR, tumor cell count, p53, and MVD) yielded inconclusive results. Larger
datasets with homogenous acquisition are required to develop and test radiomic-based prediction
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models capable of capturing different aspects of the underlying tumor biology. Overall, our study
shows that rapid and non-invasive characterization of tumor biology via MRI is feasible and could
enhance clinical outcome predictions and personalized patient management for HNSCC.

Keywords: HNSCC; radiogenomics; MRI; HPV status; Ki-67 proliferation marker; HIF-1α; DWI; DCE

1. Introduction

Over the years, magnetic resonance imaging (MRI) has steadily improved in rapid
acquisition, image quality, and functional imaging capabilities, rendering it indispensable for
the diagnostics and follow-up of the anatomically complex and biologically heterogenous head
and neck squamous cell carcinomas (HNSCCs) [1,2]. As a non-invasive and routinely used
imaging technique with additional functional sequences, MRI presents a valuable modality to
capture this biological heterogeneity and enable longitudinal evaluation of HNSCC [1].

In HNSCC research, biological tumor characteristics have been a frequent topic, with
a notable emphasis on subtype entities based on human papillomavirus (HPV) status and
tumor components like vascularization and proliferation.

HPV-positive (HPV+) tumors are predominantly found in the oropharynx and are
caused by the HPV-16 subtype. They are characterized by the presence of the viral pro-
teinases E6 and E7, which ultimately leads to the degradation of p53 (tumor suppressor
protein 53) and retinoblastoma 1 protein (Rb) [3,4]. In contrast, nearly all HPV-negative
(HPV−) tumors deactivate the p53 tumor suppressor pathway via TP53 gene mutations [4].
HPV-negative tumors are associated with worse recurrence rates, metastasis, and overall
worse clinical outcomes than HPV-positive tumors [3,4].

Providing vascular support for tumor growth and angiogenesis is another critical
factor that also influences the efficacy of radiotherapy and chemotherapy [5]. Vascular
endothelial growth factor (VEGF), microvessel density (MVD), and hypoxia-inducible
factor-1 alpha (HIF-1α) are histopathological markers that are used to estimate the ex-
tent of angiogenesis and to deduct the presence of hypoxia [6,7]. Furthermore, tumor
cell proliferation, measured using the Ki-67 proliferation index and frequently driven by
the epidermal growth factor receptor (EGFR), links those markers to tumor growth [8].
Higher tumor growth, proliferation, and angiogenesis rates are associated with increased
metastatic potential, and larger tumors show worse outcomes [5,9]. On a genetic level,
signatures such as epithelial-to-mesenchymal transition (EMT), tumor lymphocyte infil-
tration, and DNA repair deficits, are also known to affect outcomes [10]. To date, complex
immunohistochemical (IHC) assays, gene expression analysis, DNA sequencing, and/or
transcriptional profiling are required to identify such biological characteristics for outcome
prediction or treatment optimization.

MRI offers the means to monitor various biological processes within tumors. No-
tably, functional techniques like diffusion-weighted imaging (DWI) and dynamic contrast-
enhanced (DCE) imaging excel in unveiling tissue microstructures, perfusion patterns,
and vascular attributes [1,11]. However, morphological sequences like T1-weighted (T1W)
or T2-weighted (T2W) imaging remain indispensable as these functional techniques may
distort or suppress the extraction of the exact anatomical location [1].

Multi-sequence data can be combined for quantitative image analysis in the emerging
field of radiomics. Radiomics may be deployed to predict important outcomes by defining
biological or genomic factors in studies that are often referred to as radiogenomics [12,13].
Radiogenomics has been increasingly investigated, primarily using computed tomogra-
phy (CT) images [14]. In HNSCC, however, the superior soft tissue depiction of MRI in
combination with functional imaging is expected to provide a better representation.

This systematic review and meta-analysis aims to assess the current level of evi-
dence of biological feature prediction using quantitative MRI analysis. For this purpose,
it evaluates the diagnostic accuracy of both stand-alone functional (diffusion and perfu-
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sion) and anatomical (T1W, T2W) MRI parameters, along with the utility of multi-feature
radiomics models.

2. Materials and Methods

This systematic review (PROSPERO registration: 392509) was performed following the
Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria [15].

2.1. Search Strategy

A comprehensive search was conducted in PubMed (MEDLINE), Embase, and Scopus
for original articles published until 28 July 2023. The search query consisted of “Head and
neck squamous cell carcinoma” combined with “MRI”, along with either “Genes”, “HNSCC
tumor Biomarkers”, or “radiogenomics”, along with their synonyms or adjacent terms.

The literature search is explained in Supplementary Material S1, Appendix S1, and
the full search for the different databases is provided in Supplementary Material S1,
Appendix S2. Two researchers (BLINDED and BLINDED) independently screened the
results for relevant publications using the Rayyan web application [16]. The reviewers
discussed and resolved discrepancies during multiple consensus meetings following the
screening of the same subset of items.

2.2. Study Selection

The following selection criteria were applied by the reviewers: (1) human subjects
were examined; (2) only original research was considered; (3) the research included MRI
parameters of the primary tumor; (4) the study compared quantitative MRI parameters with
genetics/histopathology markers; (5) the study solely included HNSCCs at any age, gender,
and stage; (6) the study was not a case report; (7) and it was written in the English language.

2.3. Quality Assessment

An optimized version of the Quality Assessment of Diagnostic Accuracy Studies 2
(QUADAS-2) tool [17] was used to assess the “applicability concerns” and “risk of bias” in
the remaining eligible articles (see Supplementary Material S1, Appendix S3). The various
biological features were assessed separately to take into account the varying measurement
characteristics, often necessitating multiple independent assessments of the same article.

Articles reporting radiomic models were additionally scored using the radiomics
quality score (RQS) to evaluate the quality, design, and generalizability of the model [18].

2.4. Data Extraction and Analyses

Data were extracted using a custom-built standardized extraction form by one re-
viewer (BLINDED). Collected data included study characteristics (e.g., study design),
patient characteristics (e.g., gender and cancer subsite), methods used for biological feature
evaluation (e.g., DNA polymerase chain reaction (PCR), immunohistochemistry (IHC), and
the number of observers for IHC methods), techniques and its properties used for imaging
evaluation (e.g., MRI field strength, use of diffusion-weighted and/or perfusion-weighted
imaging, and delineation procedure and characteristics), and statistical methods adopted
to compare the MRI features with the biological endpoints.

The results from biological factors analyzed in a reasonable number of studies, de-
termined as four or more studies, are compared and summarized in the main text of this
review. Survey results of those with fewer studies are listed in the Supplementary Materials.

When comparable data were available for a considerable number of studies, a set
of four or more studies, a meta-analysis was conducted. For this reason, either the stan-
dardized mean difference (SMD, Cohen’s d [19]) or the correlation [20] with their 95%
confidence intervals (95%CI) were calculated for each study and visualized in a forest
plot. If a mean value of the imaging parameter was not provided but a median value was
reported, we estimated the mean value using the formulas from Lou et al. and Wan et al.
after confirming that the data were not too skewed [21–24]. Supplementary Material S1,



Cancers 2023, 15, 5077 4 of 25

Appendix S4, outlines all the statistical formulas used in this study. If data were unsuitable
for meta-analyses, a narrative summarization of the available data was provided. In all
analysis, p-values < 0.05 were considered as statically significant.

3. Results
3.1. Literature Search

A literature search was conducted to find studies reporting biological and MRI feature
associations and produced a total of 5396 unique entries. Most studies were excluded
based on title (n = 5173, 95.5%) or abstract (n = 173, 3.2%) evaluation. Full-text evaluation
was performed for 70 entries (1.2%), of which 12 were excluded (17% of 70). Figure 1
provides a flow diagram of the study selection and exclusion process, detailing the reasons
for exclusion. Finally, a total of 58 studies [25–82] satisfied all inclusion criteria.
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Figure 1. Flow diagram of the study selection and exclusion process. No radiogenomics: Studies
without analyses of biological features compared with MRI features. Combined PET/MRI: Studies
focusing on combined PET/MRI parameters rather than stand-alone MRI parameters. Intra-patient
analyses: Studies are limited to analyzing multiple biopsies within the same patient. * Studies can be
excluded for more than one reason.

Two articles compared genetics and radiomic features, aligning with the research
objectives [76,77]. Regarding individual biological endpoints, HPV status, Ki-67, tumor cell
count, HIF-1α, VEGF, EGFR, p53, and MVD were each covered by at least four original
articles, which together constituted a total of 51 articles. These data provided sufficient
material for data analysis, as defined in Section 2, and are evaluated in detail below. The
five remaining articles focused on the Epstein–Barr virus (EBV) [78], proliferating cell
nuclear antigen (PCNA) [79], carbonic anhydrase 9 (CAIX) [80], tumor–stroma ratio [81,82],
or tumor-infiltrating lymphocytes [82]. Supplementary Material S2, Appendix S4, provides
an overview of all identified biological endpoints along with the amount of significant
correlations or differences reported in these studies.



Cancers 2023, 15, 5077 5 of 25

3.2. Quality Assessment

Quality assessment and applicability analyses were performed using the QUADAS-2
tool [17] and are shown in Supplementary Material S2, Appendices S1 and S2. Across all
studies, “reference standard” applicability concerns were most frequently recorded, while
“patient selection” and “index test” were acceptable in most studies. Applicability concerns
derived from mismatched research questions (i.e., studies including nodal metastasis, radio-
genomics not being the main research question, or use of cut-off values for biological factor
analyses). Concerns for bias were related to “flow and timing” issues, with discrepancies
in MRI-to-biopsy timelines or varied MRI protocols applied. In the “reference standard”
category, potential bias could arise from single IHC reviewer use or whether a continuous
or cut-off value was used when reporting a biological factor. Table 1 and Table 4 display the
results from the RQS evaluation [18] for all radiomic model studies, revealing deficiencies
in open science practices, validation approaches, and clinical utility.

3.3. Study Outcome Assessment

The reported MRI and biological feature association study results were structured into
HNSCC tumor biology categories. Meta-analyses were performed where applicable. The
majority of the MRI-based radiomic studies in HNSCC were focused on links with HPV
status, allowing for more extensive cross-study comparisons. Analysis of associations with
proliferation, vasculature, and perfusion-related markers was the focus of the assessment
of the remainder of the studies.

3.3.1. Human Papilloma Virus (HPV)

HPV status plays a pivotal role in HNSCC staging and outcome prediction. Twenty-
nine studies [25–30,34–38,43–49,52–59,69,70,74] involving 2122 patients tested whether
HPV status can be deducted using quantitative imaging analysis.

HPV: Independent T1W and T2W Texture Parameters and Radiomic Models

As a standalone parameter, tumor volume was analyzed for associations with HPV sta-
tus in five studies [35,38,45,56,69] (Table 1). None of these studies observed significant dif-
ferences in tumor volumes between HPV+ and HPV− tumors (Supplementary Material S2,
Appendix S3 (A3.1)).

Only one (Giannitto et al. [37]) out of four studies [37,43,49,55] reported a significant
association between T1W and T2W MRI stand-alone histogram features and HPV status.
Analyzing 1286 radiomics features, Giannitto et al. [37] suggested that HPV− tumors had
a more varied texture than HPV+ oropharyngeal HNSCC, providing the basis for the
observed association with stand-alone histogram parameters [37].

MRI radiomic-based prediction models for HPV status were built in eight studies
[26–28,46,53,58,59,74] (Table 1). These studies based their analysis exclusively on oropharyngeal
SCC of different stages. Marzi et al. [46] constructed a model with three DWI or intravoxel
incoherent motion (IVIM) features out of the 157 extracted features to predict HPV. However, its
diagnostic performance decreased after internal validation (AUC 0.91 to 0.66) [46]. A model
starting with 498 native 2D T1W features [26] and trained on images from 249 patients achieved
a 5- and 10-fold cross-validation AUC of 0.79 in its training set, yet no validation was conducted.
Three studies [27,28,53] employed 3D T1W imaging with gadolinium-based contrast, yielding
in-hospital validation AUCs of 0.76 to 0.83 in their respective test sets. In both Sohn et al. and
Li et al.’s studies, feature selection of the six most relevant contrast-enhanced T1W and T2W
features yielded models with an AUC of 0.74 in their respective test sets [58,74]. Additionally,
another multi-sequence model, incorporating potentially native T1W, contrast-enhanced T1W,
T2W, and apparent diffusion coefficient (ADC) features, resulted in similar AUC values of
0.76 [59]. Among the combined features, six ADC histogram features and one native T1 feature
were identified as the best combination within these analyzed data [59]. None of the models
were tested in independent validation or external data sets.
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Table 1. Characteristics of studies focused on HPV status associations with shape, stand-alone histogram T1W and T2W parameters, or radiomic features.

Study, Year Location
Inclusion Center

Study
Design

Inc.
(N)

Age
(mean) Male (%) Tumor Subside Tumor

Stage
HPV

Testing
HPV+

(n)
HPV−

(n)

Independent shape parameters Sequence Method

Driessen, 2016 [35] Utrecht, NED R 73 61.6 64.4 OC, OP, HP, LA T2-T4 p16+PCR 6 67 b0 Volume

Han, 2018 [38] Suwon, KOR R 41 62.9 † 73.2 OC, OP All Hybrid cap 16 25 T1c Volume

Kawaguchi, 2020 [43] Gifu, JAP R 37 61.5 81.1 NA All p16 3 34 T1 or T2 Diameter

Martens, 2019 [45] Amsterdam, NED R 89

Cancers 2023, 15, x FOR PEER REVIEW 8 of 29 
 

 

Boot, 2023 [26] Amsterdam, 
NED 

249 - 61 68.7 OP All p16+PCR 91 158 T1 498 8 1/−2/6/3/−1/0 

Bos, 2021 [27] Amsterdam, 
NED 

91 62 61 63 OP All p16+p53 76 77 3DT1c 1184 14 2/5/4/3/4/0 

Bos, 2022 [28] Amsterdam, 
NED 

91 62 61 63 OP All p16+p53 76 77 3DT1c 1184 14 2/5/4/3/4/0 

Li, 2023 [74] Shanghai, 
CHN 

116 25 58 † 85.8 OP All p16 78 63 T1c, T2 2092 11 2/5/3/1/4/0 

Marzi, 2022 [46] Rome, ITA 95 49 64.4 82.6 OP All p16+PCR 100 44 DWI, 
IVIM 

157 14 2/5/4/3/4/0 
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64.6 75.2 OC, OP, HP, LA All p16+PCR 33 56 T1 GTV

Samolyk-Kogaczewska,
2020 [56] Bialystok, POL P 21 60 † - OC, OP, HP All p16 and p16+PCR 4 17 PET-MR Volume, diameter

Vidiri, 2019 [69] Rome, ITA P 73 62.7 80.8 OP All p16+PCR 54 19 b800 Volume

Stand-alone Histogram T1W and T2W parameters Sequence #Features

Giannitto, 2020 [37] Milan, ITA R 32 60 † 81.3 OP Tis-T4 p16+PCR 20 ‡ 9 ‡ 3DT1c 1286

Meyer, 2019 [49] Leipzig, DEU P 34 56.7 73.5 OC, OP, HP, LA, NA All p16 - - T1, T2 24

Ravanelli, 2018 [55] Brescia, ITA R 59 64.9 72.9 OP T2-T4 HC2 DNA 28 31 3DT1c, T2,
DWI 60

Kawaguchi, 2020 [43] Gifu, JAP R 37 61.5 81.1 NA All p16 3 34 T1, T2, DWI 5

Radiomic models HPV

Train
(N)

Test
(N)

Age
(mean)

Male
(%)

Tumor
Subside Tumor Stage HPV

Testing
HPV+

(n)
HPV−

(n) Modality #Features Total
RQS

Domains: IM/
FR/VA/PI/LE/OS

Boot, 2023 [26] Amsterdam, NED 249 - 61 68.7 OP All p16+PCR 91 158 T1 498 8 1/−2/6/3/−1/0

Bos, 2021 [27] Amsterdam, NED 91 62 61 63 OP All p16+p53 76 77 3DT1c 1184 14 2/5/4/3/4/0

Bos, 2022 [28] Amsterdam, NED 91 62 61 63 OP All p16+p53 76 77 3DT1c 1184 14 2/5/4/3/4/0

Li, 2023 [74] Shanghai, CHN 116 25 58 † 85.8 OP All p16 78 63 T1c, T2 2092 11 2/5/3/1/4/0

Marzi, 2022 [46] Rome, ITA 95 49 64.4 82.6 OP All p16+PCR 100 44 DWI, IVIM 157 14 2/5/4/3/4/0

Park, 2022 [53] Seoul, KOR 108 47 58.3 83.9 OP All p16 136 19 T1c 140 10 2/5/1/2/2/0

Sohn, 2020 [58] Seoul, KOR 43 19 59.3 85.5 OP - p16 52 10 3DT1c, T2 170 11 2/5/1/3/2/0

Suh, 2020 [59] Seoul, KOR 40 20 59 † 83.3 OP T0-T4 p16+PCR 48 12 T1(c), T2,
DWI 1618 11 1/5/1/4/2/0

The table lists study patient population characteristics of all studies reporting stand-alone MRI parameter associations with HPV status, HPV status determination method, and used
MRI parameter settings, as well as all radiomic models used to predict HPV and the radiomic quality score of these articles (RQS). Abbreviations: P = prospective study design;
R = retrospective study design; Inc. = number of analyzed patients; Train = number of patients analyzed in the training cohort; Test = number of patients analyzed in the test cohort;
#Features = number of features collected; OC = oral cavity; OP = oropharynx; HP = hypopharynx; LA = larynx; NA = nasopharynx; - = not available; Hybrid cap = hybrid capture assay
kits; H2C DNA = HC2 high-risk HPV DNA test; GTV = gross tumor volume; RQS = radiomics quality score; RSQ domains = IM: image protocol and feature reproducibility; FR = feature
reduction and validation; VA = biologic/clinical validation and utility; PI = performance index; LE = level of evidence; and OS = open science. Notes: † Median value; ‡ 3 patients did
not have HPV status available; and
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Forest plots of standard mean differences (SMDs) in mean ADC values of HPV-positive
and HPV-negative tumors were grouped according to HPV determination methodology.
Conventional HPV diagnostics using p16 IHC combined with PCR were used in seven
studies. One single assay was used in the remainder (p16 IHC, HC2 High-risk HPV DNA
test, or hybrid capture assay kits). In studies that provided median values, standard
mean differences were calculated using estimated means as indicated (and as described in
Section 2 and Supplementary Material S1, Appendix S4).

HPV: Diffusion-Weighted Imaging

DWI features in relation to HPV status were analyzed in sixteen studies
[29,34–36,38,43–47,52,54,55,57,69,70], encompassing a total of 897 patients (range n: 20–105),
predominantly with oropharyngeal SCC (78.4%) and with a similar average age of 63.
Twelve of the articles reported on retrospectively collected data. ADC mapping was
acquired using b0 and b1000 in eight of the sixteen studies. Table 2 highlights the key
characteristics of the included studies.

From all analyzed DWI parameters, and with fifteen and seven studies, respectively,
ADCmean and ADCmininum were the most reported. ADCmean and ADCmininum standardized
mean differences between HPV+ and HPV− as reported or as deduced from estimated
mean values (Supplementary Material S1, Appendix S4) are displayed in Forest plots in
Figures 2 and 3. Standard mean difference (SMD) analyses are grouped according to HPV
determination accuracy (Table 2) as HPV detection accuracy increases when applying
combined p16-IHC and HPV16 and HPV18 DNA or E6/7 RNA PCR tests [83].
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Table 2. Characteristics of MRI diffusion and perfusion parameter association studies with HPV status.

Study, Year Location
Inclusion Center Study Design Inc.

(N)
Age

(mean) Male (%) Tumor
Subside

Tumor
Stage

HPV
Testing

HPV+

(n)
HPV−

(n)

Diffusion parameters b-values (s/mm2)

Chan, 2016 [29] Toronto, CAN R 40 59.2 82.5 OP All p16 28 12 0, 1000
De Perrot, 2017 [34] Geneva, CHE R 105 64 71.4 OC, OP All p16+PCR 21 84 0, 1000

Driessen, 2016 [35] Utrecht, NED R 73 61.6 64.4 OC, OP, HP,
LA T2-T4 p16+PCR 6 67 0, 150, 800

Freihat, 2021 [36] Pécs, HUN R 33 61.4 69.7 OP All p16 16 17 0, 800, 1000
Han, 2018 [38] Suwon, KOR R 41 62.9 † 73.2 OC, OP All Hybrid cap 16 25 0, 1000

Kawaguchi, 2020 [43] Gifu, JAP R 37 61.5 81.1 NA All p16 3 34 0, 1000
Lenoir, 2022 [44] Geneva, CHE R 34 62.0 † 61.8 OP All p16+PCR 11 23 0, 50, 100, 500, 750, 1000

Martens, 2019 [45] Amsterdam, NED R 89
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Ahn, 2021 [25] Seoul, KOR P 58 59.5 82.8 OP All p16+PCR 45 13 Arterial Spin Labeling
Choi, 2016 [30] Seoul, KOR R 22 61.6 86.4 OC, OP - p16 15 7 Tofts and Brix
Han, 2018 [38] Suwon, KOR R 41 62.9 † 73.2 OC, OP All Hybrid cap 16 25 Extended Tofts
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Piludu, 2021 [54] Rome, ITA P 100 65.7 82.0 OP T0-T4 p16+PCR 69 31 IVIM, Tofts, and Brix
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The Forest plot analyses (Figure 2) revealed that HPV+ HNSCC has a lower average
ADCmean value compared with HPV− subtypes, with an overall SMD of 0.81 (95%CI
0.64–0.99; p < 0.001). Notably, and consistent with an increased specificity, this difference
was more pronounced when HPV status was ascertained by using two different HPV
determination methods (SMD: 1.05, 95%CI 0.76–1.34; p < 0.001). However, the difference
and association were weaker when relying on a single HPV detection method (SMD: 0.66,
95%CI 0.18–1.14; p = 0.007) or on estimated means that generally show smaller SMDs.

Forest plots of standard mean differences in minimal ADC values of HPV-positive
and HPV-negative tumors were produced and grouped according to HPV determination
methodology. Conventional HPV diagnostics using p16 IHC combined with PCR were
used in three studies. One single assay was used in the remainder (either p16 IHC or hybrid
capture assay kits). In studies that provided median values, standard mean differences
were calculated using estimated means as indicated (and as described in Section 2 and
Supplementary Material S1, Appendix S4).
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The overall random effect model of all studies that used ADCminimum to predict HPV sta-
tus resulted in a statistically significant SMD of 0.56 (95%CI 0.32–0.80; p < 0.001) (Figure 3).
The ADCminimum SMD values for HPV determined with two different HPV determina-
tion methods showed a lower effect compared with the overall values, with an SMD of
0.45 (95%CI 0.13–0.77; p = 0.006) for studies that provided means, and an SMD of 0.21
(95%CI −0.38–0.81) for the study that provided medians (of which we estimated means).
ADCminimum with only one measurement of HPV showed a higher SMD of 1.22 (95%CI
0.53–1.92; p < 0.001) for the study that provided a mean, and an SMD of 0.86 (95%CI
0.20–1.52) for studies with an estimated mean.

Three studies [46,54,69] that also evaluated IVIM parameters found significantly lower
true diffusion coefficient (Dt) values in HPV+ patients compared with HPV− patients when
using higher b-values (b300–b800). This association exhibited overall lower p-values than
their reported ADCmean analyses (p <0.001–0.001).
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Among the other frequently reported ADC metrics, the histogram-based features
of skewness and kurtosis were analyzed in five studies [34,44,45,47,55]. Only two stud-
ies [34,44] reported significant differences and higher skewness and kurtosis values for
HPV+ tumors. These and other associations can be found in Supplementary Material S2,
Appendix S3 (A3.2).

HPV: Perfusion-Based Imaging

The mean values of the DCE parameters, Ktrans, Kep, and Ve were reported by four
studies [30,38,48,54]. However, the findings comparing HPV status between groups were
inconsistent across these studies. Significant differences in these parameter values were
reported in only one study by Choi et al. [30], who reported a significantly higher mean
Ktrans for HPV+ tumors compared with HPV−. This finding, however, contrasts with the
other studies [38,54] that show (non-significantly) lower Ktrans values in HPV+ tumors.

In addition to mean DCE parameter values, Choi et al. and Meyer et al. also analyzed
histogram parameters of Ktrans, Kep, and Ve as 25th, 50th, and 75th percentiles (P), skewness,
and kurtosis [30,48]. Significantly higher values for the P25, P50, and P75 of the Ktrans

and the P25 of the Kep were found for p16 IHC-positive compared with p16 IHC-negative
tumors in Choi et al. These findings were not replicated by Meyer et al. Additional reported
associations can be found in Supplementary Material S2, Appendix S3 (A3.3).

3.3.2. Tumor Cell Proliferation and Cellularity Markers: Ki-67, EGFR, Tumor Cell Count,
and p53

MRI parameter associations with tumor cell proliferation or density-related markers
were discussed in 19 studies, including Ki-67, EGFR, tumor cell count, and p53.

Ki-67 Proliferation Index

The Ki-67 proliferation marker is a reliable IHC method for determining tumor cell
proliferation. Associations between the Ki-67 proliferation marker and MRI parameters
were assessed in fifteen studies (Table 3).

The associations between the Ki-67 proliferation index and the DWI-metric ADCmean
were examined in six studies [60,61,63,65,71,72]. Four studies [60,61,63,65] directly in-
vestigated the correlation and found a significant inverse association (partial correlation
r = −0.253 to r = −0.728; p < 0.001–0.024). In contrast, Wu et al. [71] reported a positive but
non-significant correlation between ADCmean and Ki-67 (r = 0.238; p = 0.163). An overall
effect of COR (−0.37, 95%CI −0.65–0.00; p = 0.051) was calculated; see Figure 4 for the
forest plot. Additionally, Shima et al. [72] reported lower ADCmean values for a higher Ki-67
index (p = 0.012).

ADCmaximum values also significantly correlated with Ki-67 (ρ = −0.46 to ρ = −0.640;
p = 0.0079 to 0.036) in two studies [61,63], while the correlation with ADCminimum was
significant in just one [63] of the three [61,63,71] reporting articles (ρ = −0.58; p = 0.0005).
Two studies utilized the diffusion kurtosis imaging (DKI) technique, reporting different
outcome parameters, but both highlighted the potential value of DKI in evaluating Ki-67
expression [72,73]. Further details on these associations can be found in Supplementary
Material S2, Appendix S3 (A3.3).

Out of the five articles [40,41,60,62,64] that analyzed the correlation of Ki-67 with the
DCE parameter mean Ktrans, only one study by Surov et al. [62] found significant correlation
with Ki-67 (r = −0.62, p = 0.041). The four reporting articles found no significant correlation
with Ki-67 for the mean Kep and mean Ve [40,41,62,64]. IVIM parameter analysis also did
not reveal significant associations with the Ki-67 proliferation index [71].

Epidermal Growth Factor Receptor (EGFR)

Cellular signaling from the epidermal growth factor receptor (EGFR) induces cell
proliferation and is frequently overexpressed or mutated in HNSCC [84]. Seven ar-
ticles [30,40,47–49,60,67] assessed associations between histopathologically determined
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EGFR expression and MRI parameters, but no consistent results were found (See Table 3
for study characteristics).
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No significant relationship was found between the EGFR and T1W or T2W imag-
ing [49], ADCmean [47,60,67], or any other histogram parameter of the ADC map [47].

Mean Ktrans results were inconsistent in the four publications [30,40,48,60] examining
associations between EGFR and DCE parameters. One study [40] reported a significantly
higher mean Ktrans value in the EGFR overexpressing tumor group (p < 0.0001), while
another study [30] found this to be significantly lower (p = 0.047). The remaining two
papers [48,60] found no significant association between mean Ktrans and EGFR overexpres-
sion status. Similar inconsistencies were seen for Kep; Choi et al. [30] reported a negative
association with significantly lower Kep values for EGFR overexpression (p = 0.004), while
Huang et al. [40] reported non-significant but higher Kep values for high EGFR expression.

Tumor Cell Count

Six studies [49,60–64] investigated potential associations between pathologically as-
sessed tumor cell count and MRI parameters with moderate success. MRI perfusion studies
did not reveal any significant correlations between mean Ktrans or mean Kep and Ve and
tumor cell counts [60,62,64]. Only one [63] of the three MR diffusion studies [60,61,63]
showed a significant moderate inverse correlation between ADCmean and tumor cell count
(ρ = −0.56; p = 0.0009). ADCminimum also exhibited a significant positive correlation with
cell count in the same study (ρ = −0.60; p = 0.0003) [63]. See Supplementary Material S2,
Appendix S3, for all non-significant tested associations.

Tumor Suppressor Protein p53

Tumor suppressor protein p53 regulates cell cycle progression, and its expression is
either affected by HPV in HPV+ HNSCC or by TP53 mutations exclusively found in HPV−

HNSCC [3,4].
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Table 3. Characteristics of MRI parameter association studies with other biological endpoints.

Study, Year Location
Inclusion Center Study Design Inc.

(N)
Age

(mean) Male (%) Tumor
Subside Tumor Stage Testing Method Biological Feature

Diffusion parameters b-values (s/mm2)

Chen Y., 2023 [75] Beijing, CHN R 21 61.3 85.7 OC, LA All IHC EGFR 0, 800
Dang, 2015 [32] Calgary, CAN P 16 56.0 87.5 OP T2-T4 IHC p53 -
Meyer, 2018 [47] Leipzig, DEU P 34 56.7 73.5 All HSNCC All IHC p53, HIF-1α, VGEF, EGFR 0, 800
Meyer, 2019 [51] Leipzig, DEU R 34 56.7 73.5 All HNSCC All IHC MVD (CD105) 0, 800

Rasmussen, 2020 [60] Copenhagen, DNK P 28 63 † 57.1 All HNSCC All IHC p53, HIF-1α, VGEF, EGFR,
Ki-67 0, 800

Shima, 2023 [72] Sapporo, JPN P 24 68 † 50 OC All IHC Ki-67 0, 500, 1000, 1500, 2000, 2500,
DKI

Surov, 2016 [61] Leipzig, DEU P 11 56.0 81.8 All HNSCC All IHC Ki-67, CC 0, 800

Surov, 2018 [63] Leipzig, DEU P 32 56.5 75.0 OC, OP, HP,
LA All IHC Ki-67, CC 0, 800

Swartz, 2018 [65] Utrecht, NED R 20 61.4 55.0 OP T2-T4 IHC HIF-1α, Ki-67 0, 150, 800
Tse, 2010 [67] Shatin, HKG P 45 - - HNSCC - IHC VGEF, EGFR 0, 100, 200, 300, 400, 500

Wu W., 2021 [71] Foshan, CHN P 36 47.3 77.8 NA T2-T4 IHC Ki-67 0, 10, 20, 40. 60, 100, 120, 160,
200, 400, 600, 800, 1000, IVIM

Wu Y., 2023 [73] Kanton, CHN R 25 58.9 64 NA - IHC Ki-67 0, 1000, 2000

Perfusion parameters Model

Chen Y., 2023 [75] Beijing, CHN R 21 61.3 85.7 OC, LA All IHC EGFR 1compartment NOS
Choi, 2016 [30] Seoul, KOR R 22 61.6 86.4 OC, OP - IHC EGFR Tofts and Brix

Donaldson, 2015 [33] Manchester, GBR P 7 62.0 100 OC, HP, LA All PCR VGEF 2CXM
Hu, 2018 [39] Changsha, CHN P 94 - 69.1 NA All IHC HIF-1α, VGEF, MVD (CD34) 2compartment NOS

Huang, 2021 [40] Hainan, CHN R 87(70) * 49
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Five studies [32,47–49,60] attempted to link MRI parameters with p53 status in HNSCC.
Dang et al. [32] used DWI and contrast-enhanced T1W and T2W features of the oropharyn-
geal SCC (OPSCC) and classified p53-positive (p53+) and p53-negative (p53−) HNSCC with
81.3% accuracy. Rasmussen et al. analyzed perfusion (mean Ktrans) and diffusion (ADCmean)
parameters in a mixed HNSCC group that included 14.3% OPSCC and 24% lymph nodes and
observed positive correlations between the p53 percentage values in both Ktrans (partial corre-
lation: 0.193; p = 0.015) and ADCmean (partial correlation r = 0.190; p = 0.010) [60]. However,
these findings for Ktrans and ADCmean were not replicated by Meyer et al. [47,82]. Considering
HPV status, as determined using p16 IHC, Meyer et al. published three articles [47,49,82]
on p53 status prediction, each using a different MRI modality: T1W or T2W [49], DWI [47],
and DCE [48]. In the p53− and thus the HPV−-enriched subgroup of Meyer et al., signifi-
cant negative correlations were observed between lower ADCmaximum, ADC-P75, ADC-P90,
ADC-SD [47], Vemax [82] and a larger positively stained p53 expression (ρ = −0.827; p = 0.002,
ρ = −0.763; p = 0.01, ρ = −0.836; p = 0.001, ρ = −0.70; p = 0.016, ρ = −0.80; and p = 0.009,
respectively). Additionally, T2Wmax (ρ = 0.736; p = 0.015), T2W-P90 (ρ = 0.68; p = 0.028),
and T2W-SD (ρ = 0.760; p = 0.011) [49] positively correlated with the stained p53 expression.
Within the p16 positive and thus likely HPV-positive oropharyngeal subgroup, higher T2W-
mean, T2W-P25, T2W-P75, T2W-median, and T2W-mode [49] were positively associated with
higher p53 staining (ρ = 0.569; p = 0.007, ρ = 0.508; p = 0.019, ρ = 0.479; p = 0.028, ρ = 0.555;
p = 0.009, ρ = 0.468; p = 0.033, respectively). Lower ADC-kurtosis (ρ = −0.446; p = 0.029) [47]
and T1W-entropy (ρ = −0.648; p = 0.001) [49] demonstrated a negative association with highly
stained p53 expression.

None of the included studies counted the complete absence of p53 expression as
a mutation.

3.3.3. Tumor Vasculature: HIF-1α, VEGF, and MVD

Biological features that impact or reflect tumor vasculature, such as the microvessel
density (MVD), hypoxia markers such as HIF-1α, or angiogenesis-promoting vascular
endothelial growth factor (VEGF), are bound to affect diffusion and perfusion parameters
as determined using functional MRI and have, therefore, been the subject of “radiogenomic”
studies [5–7].

Hypoxia-Inducible Factor (HIF)-1α

The association of HIF-1α with MRI parameters was addressed in eight publica-
tions [31,39,40,42,47–49,65] (See Table 3 for all study characteristics).

One study by Chen et al. determined localized higher expression of HIF-1α in tumor
cells surrounding MRI-determined necrotic areas. A radiologist identified these areas using
gadolinium contrast-enhanced T1W and T2W MRI [31]. Meyer et al. [49] observed a significant
negative correlation between several standalone T2W imaging histogram parameters and
HIF-1α in p16-negative HNSCC (Supplementary Material S2, Appendix S3 (3A.1)).

Three studies [39,40,42] analyzed the volume and speed of the blood running through
the tissue using different metrics: fractional plasma volume (Vp) (r = 0.173; p = 0.327) [39];
tumor blood flow (TBF) (p < 0.001); fluid flow velocity (|
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blood volume (Vb) parameter measured through a two-compartment model applied by Don-
aldson et al. [33] did not replicate this. Donaldson et al. found a significant strong inverse
relationship between Fb (whole-blood perfusion) and VEGF expression using PCR-derived
VEGF mRNA measures (r = −0.82; p = 0.023) [33]. For more details on the non-significant
associations tested, refer to Supplementary Material S2, Appendix S3.

Microvessel Density (MVD)

The variability of molecular markers used for microvessel identification and assessment,
such as CD105 [41,48,51], CD34 [39,41,68], and CD31 [62,66], hampered comparisons across
the seven studies that investigated correlations between MVD and MRI parameters (Table 3).

DCE parameters (mean Ktrans, Kep, and Ve) were analyzed in four studies [39,41,50,62].
One paper by Meyer et al. [50] revealed a significant positive correlation between high
mean Kep and a higher number of CD105-derived microvessels. At the same time, another
article by Karabay et al. [41] indicated a positive correlation between mean Ktrans and the
number of CD34-derived microvessels (r = 0.346; p = 0.049) but not for the CD105-derived
count (r = 0.307; p = 0.08). No other discernable trends or correlations were observed in the
other studies [39,62]. Unetsubu et al. and Tekiki et al. examined correlations between CD34
and CD31 MVD, respectively, and contrast index (CI) parameters. Both studies observed
a significant positive correlation between MVD and CI-gain, representing the maximum
gradient during the upslope phase of the enhancement curve (r = 0.46 to r = 0.49; p = 0.00821
to p = 0.037). No significant correlation was found between MVD and CI-max, representing
the maximum amplitude of contrast enhancement [66,68].

When investigating the stained vessel area as calculated using either CD105 [50] or
CD31 [62], only Surov et al. uncovered a significant positive correlation with mean Kep
(r = 0.67; p = 0.02) [62], while Meyer et al. did find other correlations with Kep histogram
parameters [50] (see Supplementary Material S2, Appendix S3 (A3.3)).

3.3.4. Radiomics and Genomics Linkage Studies

Two articles [76,77] included broader genomic analyses. Both articles focused on
developing radiomic-based treatment outcome prediction models using datasets as outlined
in Table 4. Separate, much smaller cohorts, consisting of 9 [76] to 16 [77] patients with
gene expression data, were used to explore potential relationships with such biological
endpoints. Please note that these separate analyses strongly lack statistical power.

Table 4. Radiomic prediction model study design characteristics with their radiomics quality score.

Radiomic Models for Biological Signature

Study, Year Location
Inclusion Center

Train
(N) Test (N) Age

(mean)
Male
(%)

Tumor
Subside

Tumor
Stage Modality #Features Total

RQS
Domains: IM/

FR/VA/PI/LE/OS

Gao, 2021 [76] Hunan, CHN 237 79 47.9 69.9 NA All T1+c 530 16 8/5/6/3/6/0

Zhang, 2020 [77] Zuhai, CHN 220 44 + 44 * 47.4 † 72.7 NA All T1(c),
T2 2364 19 8/6/6/5/7/0

The table lists study design characteristics, patient numbers, and total and individual domain quality scores
of radiomics-based prediction model studies that were designed to align with biological features. Abbre-
viations: No. = number of selected patients; Train = number of patients analyzed in the training cohort;
Test = number of patients analyzed in the test cohort; #Features = number of features collected; NA = nasopharynx;
RQS = radiomics quality score; RSQ domains = IM: image protocol and feature reproducibility, FR: feature
reduction and validation, VA: biologic/clinical validation and utility, PI: performance index, LE: high level of
evidence, OS: open science. Note: † Median value; * 44 patients of an internal validation cohort and 44 in a
separate external validation cohort.

Gao et al. [76] used their newly developed radiomic signature based on T1W with
gadolinium features to predict progression-free survival (PFS) risk in a genetic data-
equipped subcohort of nine patients. The genes of patients with lower PFS risk were
compared with those with higher PFS risk. Furthermore, all genes were correlated to
the RAD score. In a similar approach, Zhang et al. [77] initially developed a radiomic
model using T1W with and without gadolinium-based agents and T2W imaging to predict



Cancers 2023, 15, 5077 15 of 25

failure-free survival (FFS) that was then reduced to twelve key radiomic features. This
model was tested against gene mutation data in 508 genes in 16 patients. While the authors
report that some texture features were associated with the chromatin remodeling pathway
and higher mutational burden, the study size was too small to appropriately adjust for
multiple testing, false positive rates, or to conduct multivariate analysis with other (clinical)
factors. In contrast to MRI, patient outcome is defined by multiple biologic factors which
likely affect the association studies in both reports.

4. Discussion

MRI, with its superior soft tissue definition and functional imaging capabilities, has
become a routine and indispensable tool in staging HNSCC [1]. This systematic review
evaluated the current investigation status and evidence for the applicability of quantitative
MRI techniques to assess the biological characteristics of primary HNSCC. Additionally,
it delved into current research examining radiomic models in this context. Key findings
include significantly lower ADCmean (SMD: 0.82; p < 0.001) and ADCminimum (SMD: 0.56;
p < 0.001) values for HPV+ HNSCC compared with HPV− tumors as described in multiple
studies. Moreover, we repeatedly reported correlations between low ADCmean values
and high levels of the proliferation marker Ki-67 (COR: −0.37; p = 0.051). Furthermore,
functional MRI perfusion parameters that depict increased blood plasma volume and flow
showed significant associations with higher HIF-1α. Figure 5 provides a visual overview of
the level of significance of all MRI parameters sorted by biological factor.

4.1. Human Papilloma Virus (HPV)

The HPV status of the tumor emerged as the most frequently investigated endpoint,
given its significant impact on prognosis and treatment decisions. Consistent with Payab-
vash et al.’s meta-analysis [85], the comprehensive analyses of the data in this review
confirm a link between DWI parameters and HPV status. DWI-derived mean and mini-
mum ADC values seem to be significantly lower in HPV+ tumors compared with HPV−

tumors. DWI is a functional MR technique that can assess the random movement of water
molecules in the tissue microstructure, with the ADC being a derived metric used to evalu-
ate it [47,65,86]. Hypercellular tissue is in general characterized by a low ADC value due to
the restrictions on water movement imposed by the cell walls. This results locally in low
water diffusivity. Conversely, local hypo-cellular tissue (e.g., tumor areas with necrosis)
has a (slightly) higher ADC value due to fewer cells per volume, allowing more water
movement [86,87].

Histopathologically, HPV+ OPSCCs are characterized by immature, ellipsoidal nuclei
with more frequent mitosis, a high nuclear-to-cytoplasmic ratio, and decreased keratiniza-
tion around the tumor periphery, possibly explaining the lower ADC values due to in-
creased cellularity with decreased water diffusivity. HPV− OPSCC typically displays better-
keratinized cells with distinct cell borders and a larger amount of cytoplasm [2,3,88,89].

In contrast to this observation, five studies [36,43,47,57,70] reported a higher mean
ADC value for HPV+ tumors but this did not reach significance. Possible reasons include
limiting the cohort to only the biologically dissimilar nasopharyngeal SCCs (NSCCs) [43], a
relatively small sample size [70], a different DWI-acquisition technique (PROPELLER), and
higher b-values for the ADC calculation applied [57]. Positive p16 IHC combined with PCR
detection of HPV-DNA or RNA increases specificity compared with stand-alone detection
methods like p16 staining [90,91]. Incorrectly classified HPV-negative patients in studies
that solely use p16 IHC in an already mixed cohort [47] may have also strongly contributed
to this discrepancy. Notably, we found that reported significance values may have been
erroneous in one study [36], likely based on the misreporting of some values (standard
deviation did not match the reported range or p-value); Freihat et al.’s Student’s t-test
results, which determined significant difference in ADCmean between HPV+ and HPV−

tumors, could not be replicated by us.
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Figure 5. Visual representation of the number of reporting studies and the level of significance of
all MRI parameters sorted by biological factor. MRI parameters are included when three or more
studies have reported on associations with the specific metric and the biological factor. The count of
studies is indicated by the blue numbers. The statistical significance as reported in the listed studies
is indicated by the red dot on the red-striped line within the bars. * As grouped for all biological
measurements defining the factor. Note: p53 lacked enough comparable studies.

In the current set of available studies, MRI perfusion parameters did not correlate with
HPV status in a reproducible and consistent manner [30,38,48,54], implying that differences
in the DCE parameters for HPV status are less likely to exist, thus suggesting similar
vascular biology. More extensive, radiomic methods to distinguish HPV status appear
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promising, especially when combined with clinical parameters as they may better reflect
the diverse biological differences between tumor classes. Importantly, however, as for now,
none of the researched radiomic models have been externally validated. Some studies
either showed a significant drop-off in AUC after an internal validation on test sets [46] or
solely relied on cross-validation values instead of internal validation using independent test
sets [26], raising concerns about the robustness of the models. Large, multicenter databases
will be needed to build and test definitive models.

In summary, when comparing HPV+ and HPV− OPSCCs, HPV+ tumors show sim-
ilar perfusion MRI parameters to HPV− but dissimilar diffusion MRI parameters with
consistently lower ADC values in DWI.

4.2. Tumor Cell Proliferation and Cellularity Markers: Ki-67, Tumor Cell Count, and EGFR

Cancer development and progression rely significantly on cellular proliferation. Cyto-
toxic drugs used in cancer therapy target highly proliferative and regenerating cells. Tumor
cell proliferation markers, such as Ki-67, tumor cell count, and the EGFR, therefore play
critical roles in cancer research, either as potential treatment effect monitors or therapeutic
targets [92–98].

The fraction of Ki-67 positive cells, as determined using IHC, is a frequently used pro-
liferation marker [96]. High Ki-67 expression has been correlated with poor prognosis and
increased risk of lymph node metastasis [92]. Being able to monitor tumor cell proliferation
through medical imaging techniques can aid in choosing and, when needed, intensifying
treatments for high-proliferating tumors.

As described in this review, the DWI parameter ADCmean is inversely correlated with
the proliferation index Ki-67 and, to a lesser extent, with tumor cell count, likely due to
reduced extracellular space [87]. However, a contradictory study by Wu et al. [71] reported
a higher ADCmean for higher Ki-67 values, albeit insignificantly. A positive correlation
between ADCmean and Ki-67 is unlikely in any tumor type, suggesting that these results may
represent an outlier [99]. Yet if assuming this deviation is significant, this discrepancy could
potentially be attributed to the different clinical behavior, epidemiology, histopathological
characteristics, and biology of nasopharyngeal tumors compared with other HNSCCs [100].
The link with the Epstein–Barr virus, similar to HPV in OPSCC, could also conceivably
impact ADC values. Rasmussen et al. identified a significant correlation using the partial
correlation metric and incorporating a random offset; our forest plot analyses did not yield
the same level of significance as we could not correct for the offset [60]. For tumor cell
count, only one of three reporting articles described significant correlations [60,61,63]. Yet a
connection between cellularity and ADC metrics aligns with DWI characteristics. As data
are limited, more extensive research is needed to understand these findings.

The EGFR plays a role in endothelial cell proliferation and can be targeted with
Cetuximab. It has gained interest due to its link to high mutational burden [8,93,97].
However, no associations have been found between EGFR and DWI parameters such
as ADCmean. There have been, however, associations observed between EGFR and DCE
parameters, although with contradicting results. It was proposed that such links could
possibly be based on the involvement of the EGFR in the promotion of angiogenesis
through the stimulation of the production of angiogenic cytokines such as VEGF [84]. Often
linked to increased tumor vascularization and aggressiveness, Ktrans represents the constant
transfer from blood plasma to extravascular extracellular space (EES), while Kep measures
the backflux exchange rate of EES to blood plasma with gadolinium contrast [101]. The
presence of necrotic areas may result in lower Ktrans and Kep values [11] and different necrotic
profiles and locations could potentially explain the divergent reported results. Higher Ktrans

and Kep with higher EGFR values were seen in the less necrotic NSCC by Huang et al. [40],
while Choi et al. [30] reported lower Ktrans and Kep values in high-expressing EGFR but large
OPSCC that are more likely to have more necrotic areas. Studies focusing on mixed HNSCC
groups [48,60] showed no significant effect, calling for further research to be categorized
based on anatomical subsites.
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In summary, low ADC values reflected high proliferation markers Ki-67 and, to some
extent, tumor cell count; this result may have clinical implications if it could accurately
guide clinicians toward more appropriate and, if required, aggressive treatment regimens.
No consistent results, however, were found for associations between imaging features and
the EGFR.

The p53 Pathway

The TP53 gene product plays a crucial role in regulating the cell cycle and trig-gering
apoptosis in response to irreparable DNA damage, making it an attractive tar-get for non-
invasive patient selection and treatment monitoring [98]. It should be not-ed that virtually
all pharyngeal and laryngeal HNSCC tumors are affected in their p53 pathway, either
through HPV E7/8 expression or in HPV-negative tumors due to TP53 gene mutations [94].
Given its degradation by HPV, TP53 mutations are absent or not biologically significant in
HPV+. In addition, p53 pathway status classification (i.e., in HPV−) can differ across the
different studies. Both high percentages of p53 expression and a complete absence of p53
expression in tumor tissue have been found to be asso-ciated with p53 pathway aberrations
and TP53 mutations [98]. Together this stresses the need for an HPV and p53 status
subgroup analysis that is, however, lacking or in-sufficiently statistically powered within
the included studies. With this in mind, some of the included articles elude to a correlation
between ADC parameters like ADCmaximum and ADCmean and p53. However, this
correlation probably arises from HPV-induced cellular variations observed within the
mixed cohorts [32,47,60].

4.3. Tumor Angiogenesis Markers: HIF-1α, VEGF, and MVD

High HIF-1α expression is induced in response to tissue hypoxia [102]. While the HIF1
pathway can have multiple cellular effects that also promote angiogenesis, most studies
have not been able to support a simple and unifactorial relationship between increased
hypoxia, HIF1 alpha expression, and angiogenesis or tumor growth [103]. Nonetheless,
Chen et al. reported a link between the presence of MRI-determined necrotic areas in
tumors and a high HIF-1α value [31]. As within hypoxic areas, the effectivity of systematic
and radiotherapeutic treatment decreases; therefore, MRI monitoring of hypoxia can have
a prominent role in treatment evaluation and follow-up [104]. DCE-imaging can be very
useful in depicting the vascularization of tissue as Ktrans has notably been associated with
hypoxic fractions in several other tissue types [11,105]. The lack of significant associations
between the DCE parameters obtained from pharmacokinetic models and HIF-1α in the
studies of this review may be attributable to the focus on nasopharyngeal SCC in two of the
articles [39,40]. Tumors at this subsite differ biologically and may induce HIF-1α through
alternative pathways unrelated to hypoxia [40].

High tumor blood flow (TBF) and blood velocity (|
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number of CD34-derived microvessels (r = 0.346; p = 0.049) but not for the CD105-derived 
count (r = 0.307; p = 0.08). No other discernable trends or correlations were observed in the 
other studies [39,62]. Unetsubu et al. and Tekiki et al. examined correlations between 
CD34 and CD31 MVD, respectively, and contrast index (CI) parameters. Both studies ob-
served a significant positive correlation between MVD and CI-gain, representing the max-
imum gradient during the upslope phase of the enhancement curve (r = 0.46 to r = 0.49; p 
= 0.00821 to p = 0.037). No significant correlation was found between MVD and CI-max, 
representing the maximum amplitude of contrast enhancement [66,68]. 

When investigating the stained vessel area as calculated using either CD105 [50] or 
CD31 [62], only Surov et al. uncovered a significant positive correlation with mean Kep (r 
= 0.67; p = 0.02) [62], while Meyer et al. did find other correlations with Kep histogram 
parameters [50] (see Supplementary Material S2, Appendix S3 (A3.3)).  

3.3.4. Radiomics and Genomics Linkage Studies 
Two articles [76,77] included broader genomic analyses. Both articles focused on de-

veloping radiomic-based treatment outcome prediction models using datasets as outlined 
in Table 4. Separate, much smaller cohorts, consisting of 9 [76] to 16 [77] patients with gene 
expression data, were used to explore potential relationships with such biological end-
points. Please note that these separate analyses strongly lack statistical power.  

  

|) perfusion parameters were
significantly associated with high IHC HIF-1α values [40]. Similarly, increased values
of time–signal intensity curve perfusion parameters (RE, ME, and MRE) also showed a
significant correlation with high HIF-1α expression [42]. While hypoxia is a consequence
of limited tissue blood flow and permeability, the authors of these studies speculated this
correlation to be based on potential angiogenetic effects of HIF-1 in other areas. However,
due to the use of different measurement methods in the articles, it is challenging to gauge
the true effect.

Similar to HIF-1α, VEGF can be induced in response to tumor hypoxia through
the HIF pathway or directly secreted by tumor cells [102]. Higher VEGF expression is
expected in situations of low perfusion (hypoxia) or high blood flow (angiogenic tumor
growth) [33,106]. This contrast in terms of MRI-based vascular profile may hamper the
DCE analyses and align with the overall lack of correlations with mean values of Ktrans,
Kep, and Ve [33,39,60]. A higher blood plasma volume could be linked to more angiogenic
tumor growth as described by Hu et al. and Donaldson et al. However, differences in
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models and VEGF assessment methods (IHC [39] and PCR [33]) make direct comparisons
challenging [33,39].

The analysis of MVD was complicated by the use of different MVD determination
methods and the lack of consistency among studies using identical MVD parameters,
potentially obscuring the results. Only the contrast index (CI) perfusion parameter for
the maximum gradient of the upslope phase of the enhancement curve (CI gain max) was
significantly positively correlated to MVD in both reporting studies using either CD31 [66]
or CD34 [68]. This suggests that the simple contrast index curve, which considers only the
speed of uptake, may provide a better depiction of the number of microvessels compared
with the pharmacokinetic DCE parameters.

In summary, this review presents mixed results with respect to VEGF but reveals
associations between HIF-1α and several increased tissue blood flow and permeability
perfusion parameters.

4.4. Tumor Heterogeneity and Radiogenomics

As a non-invasive, 3D visualizing modality, medical imaging has some considerable
advantages over biopsy-sampling-based techniques. Spatial and temporal intratumor
heterogeneity has been shown to be extensive in multi-regional sampling studies, and
has been identified as a major cause of treatment resistance and might be related to DNA
repair deficits [107,108]. Unlike biopsy-based subtyping, imaging may better capture this
heterogeneity, advancing future targeted treatment regimens and driving interest in such
advances. In this review, both articles, however, were small in case numbers and primarily
developed radiomics-based patient outcome prediction models. Thus, strongly outcome-
biased, the articles subsequently investigated the biological differences. While this can help
to find MRI feature/biology links, such approaches require an independent assessment of
the potentially present associations with MRI features [76,77].

4.5. Limitations

While comprehensive, this review of MRI parameter associations with biological fea-
tures is limited by the large variety of methods used in the included articles for calculating
biological and MRI parameters. Some studies report on histogram parameters based just
on the lowest or highest voxel (e.g., ADCminimum or ADCmaximum), posing challenges to
reproducibility. Additionally, variations in segmentation methods for tumor delineation
(e.g., inclusion/exclusion of necrotic and cystic areas) impact overall measurements. Fur-
thermore, only a modest amount of data are available for certain biological factors such as
p53 and MVD, making it difficult to draw firm conclusions and highlighting the need for
further research.

It is also crucial to note that biological processes do not occur in isolation. Cell
proliferation and angiogenesis are intertwined through multiple cross-linked processes.
Similarly, in MRI there are interconnections between parameters such as DCE, DWI, and
even T1W and T2W parameters in visualizing the tissue. Understanding these complex
relationships can offer more comprehensive insights into the important tumor-specific
differences, paving the way for improved clinical outcome prediction and personalized
patient management in HNSCC.

5. Conclusions

In this comprehensive review, we analyzed the relationship between biological factors
and MRI in HNSCC. Across all studies, we predominantly found that HPV+ tumors showed
lower ADCmean (SMD: 0.82; p < 0.001) and ADCminimum (SMD: 0.56; p < 0.001) values than
HPV− tumors. Lower ADC values correlated with elevated Ki-67 index levels in most
studies (COR: −0.37; p = 0.051). Perfusion parameters that depict increased blood plasma
volume and flow showed some associations with HIF-1α. There is potential for radiomic
models to capture biological differences in tumors. However, diverse methodologies and
limited reports on certain investigated biological factors necessitate further research and
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larger datasets. Understanding these connections can improve clinical outcome prediction
and facilitate personalized patient management in HNSCC.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15205077/s1. Supplementary Material S1: Material and
methods; Supplementary Material S2: Results.
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