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I examine strategic behavior for a duopoly in a noisy environment. Firms attempt to learn the 
value of the rival’s privately observed demand shocks via a noisy signal of price, and at the same 
time firms attempt to obfuscate that signal by producing excess output on the publicly observable 
signals, that is, they signal jam.

In a dynamic setting firms also distort the intertemporal structure of output keyed to the publicly 
observable demand shock process in order to disguise their private shocks. The net outcome 
is to radically increase the persistence of elements of output over their full-information value, 
but also to reduce the persistence of price over its full-information value; this latter effect is 
“inconspicuousness.”

1. Introduction

Firms are continually buffeted over time by shocks to demand, some of which they learn about through direct common obser-

vation, some through private observation, and some of which they attempt to extract from information in price signals indirectly 
from their rivals’ private knowledge. In this paper I examine what happens in a dynamic setting where firms keep learning over time 
about past shocks, and internalize how their actions affect a rival’s information and future actions. I thus take on a longstanding 
challenge set by Mirman and Urbano (1993) who observe that “the most appropriate model [is] an infinite horizon model in which 
the parameters of demand curves are subject to continual shocks. Firms are then repeatedly forced to draw inferences about unknown 
demand curves and to consider the effects of their actions on their rival’s beliefs.”

The structure of the model is as follows. There are two firms. Demand evolves according to a stationary and persistent autoregres-

sive stochastic process with three independent components: a publicly-observed component, and two additional components each of 
which is observed privately by each of the two firms in the duopoly.2 The firms also observe price, but only via a noisy signal, with 
the noise shock process common to both firms. Each firm combines the information extracted from the history of price signals with 
that in the history of its privately- and publicly-observed demand shocks to determine how much to produce, separately for each 
demand shock. A key element of the model is that the underlying persistence of the public and privately observed demand shocks 
(as indexed by the autoregressive parameters) can be different.

Because the fundamental demand shock processes are stationary, the equilibrium output strategies are stationary linear functions 
of the history of private signals and prices. The solution determines these functions and the resulting output processes by character-
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izing their coefficients, i.e., the weights put on shocks and prices. These linear functions are then the focus of the analysis: each firm’s 
profit maximisation problem can be expressed as a variational problem in the so-called frequency domain, in which the firms choose 
these linear functions. The game between the firms can then be re-posed in the space of these functions, with the equilibrium a fixed 
point in the space.

The resulting equilibrium stochastic processes of output and price can have persistence properties that are radically different from 
the exogenous demand shock processes, due entirely to the strategic incentives to interfere with the information extraction of the 
rival firms, that is, to signal jam.

1.1. Related literature

The analysis of oligopolistic competition in supply schedules with demand uncertainty dates back to Klemperer and Meyer (1989). 
They argue that competition in supply schedules better describes strategic competition between firms than competition in prices or 
quantities, because it more realistically allows firms to adjust to market conditions. In particular, in a supply schedule equilibrium, 
firms adjust to market conditions in an optimal manner given their rival’s behavior—given knowledge of the market-clearing price, 
they have no incentive to adjust outputs. In contrast, with stochastic Bertrand or Cournot competition, firms would want to alter 
their actions after learning something about demand.

Bernhardt and Taub (2015) analyze the static counterpart to the dynamic model in this paper. That model is related to Vives 
(2011). In this static setting, firms receive private noisy signals about costs, and costs are correlated across firms, so one firm’s signal 
is relevant for a rival. Firms compete in supply schedules and there is no demand uncertainty. As a result, the market-clearing price 
is privately fully revealing: in equilibrium, a firm’s own cost signal and price yield the same forecast of its costs as when a firm also 
sees its rival’s cost signal.3

An early signal-jamming literature explores belief manipulation in two-date models, where firms are symmetrically uninformed 
about demand or costs and learn from prices (Riordan (1985), Aghion et al. (1991, 1993), Mirman and Urbano (1993), Caminal 
and Vives (2017), Harrington (1986a), Alepuz and Urbano (2005)). Firms condition date-2 output on date-1 price, inducing firms to 
over-produce at date 1 to lower price to try to persuade rivals that the market is less profitable. With no private information, firms 
perfectly learn in equilibrium at date 2.4

Keller and Rady (1999) analyze symmetric learning in a continuous-time duopoly setting in which demand evolves according 
to a two-state Markov process and a firm perfectly observes its rival’s actions.5 By contrast, in this setting, the learning process is 
entangled with the strategic efforts of firms to manipulate the beliefs of rivals. Bergin and Bernhardt (2008) analytically characterize 
the stationary entry and exit dynamics of a competitive industry when both common value demand and individual firm costs evolve 
according to Markov processes.

A large literature analyzes collusion with imperfect monitoring and common unobserved public shocks (e.g., Green and Porter 
(1984), Abreu et al. (1986), Sannikov (2007), Hackbarth and Taub (2022)). In these dynamic models, actions by rivals are unob-

served, but are perfectly inferred in equilibrium because firms have the incentive to follow equilibrium “recommended” actions, and 
this means that punishments can be exacted for the failure to implement the recommended actions; this threat structure then supports 
the equilibrium. Similarly, with privately-observed costs, Athey and Bagwell (2008) analyze collusion in a procurement auction game 
in which a firm’s costs evolve according to a two-state Markov process, and firms make cheap-talk announcements about costs before 
bidding. Histories matter for incentives, but, with cheap talk, are not used to glean information about fundamentals. In contrast, in 
the model of this paper, inferences about a rival’s privately-observed fundamentals are obscured by noise; because actions cannot be 
directly inferred it is not possible to threaten direct punishments. The equilibrium therefore rests on the strategic interaction between 
learning about primitives from prices and belief manipulation.

The model shares similarities of information and equilibrium structure with the financial speculation models descended from the 
model of Kyle (1989) and Kyle (1985). In these models, informed traders interact with uninformed market makers who observe a 
noisy signal of the informed trades. The market makers extract information from that signal using Kalman filtering to determine 
price; the informed trader understands this and shades his trades accordingly to husband his information. In Kyle (1989), the 
informed trader understands the net impact of his trades on price—he submits a demand schedule—and the market maker similarly 
understands that the price determination is simultaneous with this.

Similarly, the model here assumes that the firms possess private information about a fraction of the demand shocks and choose 
their output simultaneously with that observation. But in addition, just as in the Kyle model, they understand the impact of their 
output on price and therefore net out that impact from the noisy signal of price; thus there is no delay between the observation of 
price and the determination of output in response to the net information in price; all actions and observations are simultaneous.

This approach is also used by Bonatti et al. (2017). In their continuous-time, finite-horizon model, firms receive private-value 
cost shocks at the outset, Brownian motion demand shocks shift the equilibrium price, and firms learn about a rival’s costs via price 
histories. As in this model, firms strategically manipulate price signals by overproducing.

3 Bergemann et al. (2015) also analyze a static model with learning in which agents learn from private signals and prices.
4 There is also a literature in which firms have private information about demand or costs, and take actions (e.g., limit price) to signal it. See Harrington (1986a,b), 

Caminal (2017), Bagwell and Ramey (1991), or Mailath (1989).
5 Foundational papers on learning and experimentation by a monopolist include McLennan (1984), Aghion et al. (1991), Harrington (1995), Rustichini and 
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A key feature of Kyle’s model and its descendants is that informed traders disguise their trades so that when their trading orders are 
combined with the those of the noise traders, the resulting total flow of trade is indistiguishable from the noise trade with a higher 
variance, thus preventing market makers from inverting the total order flow to infer the informed traders’ private information; this 
is known as “inconspicuousness.” In the Kyle model this is achieved by structuring trades as functions of the forecast error of the 
uninformed market makers; here, as was demonstrated in the static model of Bernhardt and Taub (2015), firms structure output 
based on the rival’s forecast error on the privately observed shocks. Consequently, even though demand shocks are highly serially 
correlated, price is not serially correlated at all. This is in stark contrast to the behavior of a full information model, in which output 
and price will have identical serial correlation.

1.2. Frequency-domain methods

In the usual time-domain approach, each period, given the history of signals, a firm’s period output function maximizes expected 
profits given correct beliefs about a rival’s past and future optimization. Due to the model’s linear-quadratic, Gaussian, time-separable, 
stationary structure, optimal policy rules are linear weightings of information histories. Along an equilibrium path these weights do 
not change: they are independent of the realized shock history, and hence remain optimal in the future: along an equilibrium path, 
optimal strategies are stationary. Frequency-domain methods provide an algebraic approach to determine these strategies.

1.2.1. Frequency domain applications in the literature

Hansen and Sargent (1980) noted that the first-order conditions stemming from models in which expectation of future endogenous 
variables could be 𝑧-transformed, i.e., mapped to the frequency domain, and solved; the idea is akin to Fourier transforming a 
function. Whiteman (1985), building on the work of Davenport and Root (1958), saw that the optimization problem itself could be 
𝑧-transformed and the optimization expressed as a variational problem and solved in the frequency domain. Appendix A sets out 
these techniques and also validates the equivalence of the method with conventional time-domain optimization.

This paper also relates to research on the “forecasting the forecasts of others” endogenous information problem. Several papers 
attack the problem using frequency domain methods. Kasa (2000) uses frequency-domain methods to show that the forecasting 
problem alone, which arises in rational expectations models with atomistic agents, simplifies in the frequency domain, as the infinite 
regress that would appear in the time domain collapses to a single function in the frequency domain. Kasa et al. (2014) also model 
information heterogeneity in an infinite-horizon, infinite history setting, taking advantage of the ability of frequency domain method 
to handle this complication. Rondina and Walker (2021) model an endogenous information equilibrium problem, characterizing the 
equilibrium signals as a non-invertible reduced-form matrix of functions in the frequency domain. Makarov and Rytchkov (1989)

study a model with small, risk-averse investors who behave competitively, showing there is no finite representation of the equi-

librium. Huo and Takayama (2023) also find that if information is endogenous, an infinite regress problem develops and no finite 
representation is possible. These results echo similar findings in Seiler and Taub (2008) who also demonstrate an infinite regress 
result.

Nimark (2017) looks at endogenous information aggregation in a linear rational expectations model. He iterates on the Euler 
equation from a representative agent’s optimization problem in a setting with endogenous variables such as prices, accounting for 
the dependence of those variables on the solution to the Euler equation. Using Hilbert space methods, he derives a contraction 
property to obtain the equilibrium. Seiler and Taub (2008) and Bernhardt et al. (2010) carry out an analogous iteration in the 
frequency domain, leading to a contraction property.

1.3. Plan of the paper

In Section 2, I set up the dynamic model and provide the solutions for equilibrium firm behavior. I then characterise the dynamic 
behavior of output and prices in the dynamic setting in Section 3. In Section 4, I illustrate the characterisations with numerical 
simulations for three canonical examples.

Following the conclusion there are five appendices. Two of these appendices are pedagogical in nature: Appendix A describes the 
frequency-domain methods used here in greater detail, and Appendix E describes the state-space numerical methods that must be 
used to simulate the model. The other appendices, Appendices B-D, contain derivations and proofs for the substantive elements of 
the paper; existence is demonstrated using a fixed point argument for the appropriate space of functions in Appendix C.

2. The dynamic model

The dynamic model builds on the static model of Bernhardt and Taub (2015): there are two firms facing a demand curve for a 
homogeneous good that has a fixed and unitary slope, but a stochastic intercept. The intercept shock process has three independent 
elements: a common shock process 𝐵(𝐿)𝑎𝑡 that is observable by both firms, a shock process 𝐴1(𝐿)𝑎1𝑡 that is observed privately by 
firm 1 but not by firm 2, and a shock process 𝐴2(𝐿)𝑎2𝑡 that is observed privately by firm 2 but not by firm 1. Each firm also observes 
a noisy signal of the price confounded by a noise shock 𝑒𝑡 common to both firms. The underlying fundamental shocks {𝑎𝑖𝑡, 𝑎𝑡, 𝑒𝑡}, 
𝑡 ∈ (… , −1, 0, 1, … ), 𝑖 ∈ {1, 2}, are mutually independent, serially-uncorrelated, zero-mean Gaussian processes, with variances 𝜎2

𝑎
, 𝜎2
𝑎

and 𝜎2
𝑒
, respectively.

Here, 𝐿 denotes the lag operator, i.e., 𝐿𝑥𝑡 = 𝑥𝑡−1, and the functions 𝐴𝑖(⋅), 𝐵(⋅) and so on denote linear functions of the lag 
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∑∞
𝑗=0 𝑐𝑗𝑎𝑖,𝑡−𝑗 , where 𝑐𝑗 is the linear weight. It will be especially convenient to focus on processes that take 
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first-order autoregressive form, that is, 𝐴𝑖(𝐿)𝑎𝑖𝑡 =
∑∞
𝑗=0 𝜌

𝑗𝑎𝑖,𝑡−𝑗 , so that 𝐴𝑖(𝐿) =
1

1−𝜌𝐿 , as the parameter 𝜌 expresses the persistence of 
the process: a higher 𝜌 results in a higher degree of persistence. Another way to refer to this persistence is to identify it with the 
autoregressive structure of the process, as the process 𝐴𝑖(𝐿)𝑎𝑖𝑡 =

1
1−𝜌𝐿 𝑎𝑖𝑡 is an autoregression (or AR process) whose characteristics—the 

persistence—are entirely determined by 𝜌.
The frequency-domain approach recognizes that the fundamental characteristics of a process like 𝐴𝑖(𝐿)𝑎𝑖𝑡 are determined by 

the function 𝐴𝑖(𝐿) alone, and maps that function into the set of functions of a complex variable. One is concerned with points in 
the complex plane at which such functions take on the value zero or infinity. These points are referred to as either zeroes or poles, 
respectively. From this point of view, 1

𝜌
is a pole. The inverse of the pole thus is simply the persistence, so characterising the pole is 

equivalent to characterising the persistence, and in this paper these terms will be used interchangeably.

Firms have a common discount factor 𝜂, and the exogenous functions of the lag operator such as 1
1−𝜌𝐿 are assumed to satisfy |𝜌| < 𝜂−1∕2 so that expected discounted sums such as 𝐸[∑∞

𝑠=0 𝜂
𝑠(𝐴𝑖(𝐿)𝑎𝑖,𝑡+𝑠)2] converge. I assume that there are no costs of production 

in order to reduce the complexity of the model.

In addition to observing the publicly observable demand shock 𝐵(𝐿)𝑎𝑡 and their privately observable shock 𝐴𝑖(𝐿)𝑎𝑖𝑡, the firms 
simultaneously observe a noisy signal of the price, 𝑝𝑡+ 𝑒𝑡, with the noise shock 𝑒𝑡 common to both firms, which they use to determine 
their output, whilst at the same time influencing the price with their output. The firms are aware of their influence on price, and 
they net out the influence of their own output on price and then react to the net information in the price signal to determine output. 
Thus, output decisions and their effect on the price are partially decoupled, just as they would be if price were observable with a lag. 
The model can therefore be viewed as allowing firms to obtain a noisy signal of the rival’s privately observed demand shock via the 
noisy price signal.6,7

The firms compete in supply schedules. Denoting the vector of driving processes as 𝑋𝑡 ≡ {𝐴1(𝐿)𝑎1𝑡, 𝐴2(𝐿)𝑎2𝑡, 𝐵(𝐿)𝑎𝑡, 𝑒𝑡}, a supply 
schedule for firm 𝑖 is a differentiable function 𝑄𝑖

𝑡
∶ (𝑝𝑡 + 𝑒𝑡; 𝑋𝑡

𝑖
, 𝑞𝑡−1
𝑖

) ↦ ℝ that maps each period 𝑡 the price signal, and histories of 
shocks observed by firm 𝑖, prices and past outputs into an output level. A price function 𝜋 ∶ (𝑞1, 𝑞2, 𝑋𝑡) ↦ℝ is market clearing if it is 
consistent with the supply schedules:

𝑞1𝑡 =𝑄1
𝑡
(𝑝𝑡 + 𝑒𝑡;𝑋𝑡1, 𝑞

𝑡−1
1 ), 𝑞2𝑡 =𝑄2

𝑡
(𝑝𝑡 + 𝑒𝑡;𝑋𝑡2, 𝑞

𝑡−1
2 ), (1)

and

𝑝𝑡 = 𝜋(𝑞1𝑡, 𝑞2𝑡,𝑋𝑡) =𝐴1(𝐿)𝑎1𝑡 +𝐴2(𝐿)𝑎2𝑡 +𝐵(𝐿)𝑎𝑡 − (𝑞1𝑡 + 𝑞2𝑡). (2)

This implicitly defines a fixed point problem in the space of functions containing 𝜋, 𝑄1, and 𝑄2.

I solve for an equilibrium in which the supply functions are linear and stationary,8 taking the form

𝑄𝑖(𝑝𝑡 + 𝑒𝑡,𝑋𝑡
𝑖
) = 𝛼𝑖(𝐿)𝐴𝑖(𝐿)𝑎𝑖𝑡 + 𝛽𝑖(𝐿)𝐵(𝐿)𝑎𝑡 + 𝛿𝑖(𝐿)(𝑝𝑡 + 𝑒𝑡) (3)

Definition 1. A stationary linear equilibrium is a pair of supply functions 𝑄𝑖∗(⋅; ⋅) with linear weighting functions (𝛼𝑖(𝐿), 𝛽𝑖(𝐿), 𝛿𝑖(𝐿))
satisfying (3) for 𝑖 ∈ {1, 2}, and a market-clearing price function 𝜋∗(⋅, ⋅, ⋅) such that for each current price 𝑝𝑡 and history (𝑋𝑡, 𝑋𝑡1, 𝑋

𝑡
2)

and price signal history 𝑝𝑡 + 𝑒𝑡: 𝑄𝑖(𝑝𝑡 + 𝑒𝑡; 𝑋𝑡
𝑖
) maximizes firm 𝑖’s expected profit given 𝑝𝑡, and 𝑋𝑡

𝑖
; and prices and output are market 

clearing, satisfying (1)- (2) for all 𝑡 =… , −1, 0, 1, … .

2.1. Solution procedure

To find the linear equilibrium I first conjecture that firm 𝑖’s rival’s output is a linear function of its information history and 
substitute the rival’s posited linear output functions into the price function, which is therefore also linear in the history of the 
fundamental processes. Firm 𝑖’s optimization problem inherits the linearity of the price function, preserving the linear-quadratic 
structure of its objective. I then show that firm 𝑖’s best response is linear in its information history.

I then optimize over the supply function itself,9 which in this linear setting translates into optimizing over linear functions of the 
histories of observed public and private shock realizations and of the history of the price signal.10 I then translate the optimisation 
problem to the frequency domain and solve.

To begin, I verify the linearity of the output functions.

6 Thus, as discussed in the introduction, the information structure is similar to that in the papers of Kyle (1989) and Bonatti et al. (2017).
7 I assume that current and past realized profit do not result in any improvement in the signal of price. For example, ongoing inflation can add noise to the value 

of money in the calculation of profit.
8 I only characterize stationary equilibrium path outcomes. With Gaussian shocks, all possible price histories are consistent with some equilibrium path because the 

Gaussian shocks have support over the entire real line, so there are no off-equilibrium beliefs to specify. For a related discussion see Foster and Viswanathan (1996), 
p. 1446.

9 I establish that this is equivalent to conventional time-domain optimization in Appendix A.
10 Because the functions that are being chosen explicitly act on information processes, including endogenous signals, beliefs are automatically taken into account. 
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Lemma 1. Let (i) firm −𝑖’s supply function 𝑄−𝑖(⋅; ⋅) be a linear and stationary functional of the history 𝑋𝑡−𝑖, the history of prices 𝑝𝑡, and (ii) 
let firm 𝑖’s best response in future periods 𝑡 +1, 𝑡 +2, … be a stationary linear functional of its information history 𝑋𝑡+𝑠

𝑖
, 𝑠 = 0, 1, … Then firm 

𝑖’s optimal output is a stationary linear functional of 𝑋𝑡
𝑖

and 𝑝𝑡.

Proof. The proof of this lemma and other propositions is in Appendix B. □

The first-order condition for the time-domain objective is difficult to solve due to the infinitely many future values 𝑞𝑖,𝑡+𝑠 appearing 
in the first-order condition, interacting quadratically with terms at other lags. To proceed, I exploit the equivalence of firms’ opti-

mization over the functions in the time domain and their optimization in the frequency domain when the optimal supply functions 
are linear. In the frequency domain these functions are called filters, and can be manipulated as algebraic objects.11 The conditional 
expected profit objective in the time domain maps into an inner product that is a function of these filters. A firm’s expected profit 
maximization problem is then a variational problem that is solved by the optimal filter, where firms compete in these filters directly.

Reduced form. To transform the model to the frequency domain, the first step is to derive the reduced forms for output and price; 
first, apply Lemma 1 to firm 𝑖, that is, conjecture that the rival’s output intensity process is determined by linear functions of the 
lag operator 𝛼−𝑖, 𝛽−𝑖 and 𝛿−𝑖, then substitute the linear output function of firm 𝑖 as a function of its information and the conjectured 
linear form of its rival (see Appendix B, equation (B.1)) into the price function to obtain its linear structure

𝑝𝑡 = 𝜋(𝑞1𝑡, 𝑞2𝑡;𝑋𝑡) = (1 + 𝛿1(𝐿) + 𝛿2(𝐿))−1
(
(1 − 𝛼1(𝐿))𝐴1(𝐿)𝑎1𝑡 + (1 − 𝛼2(𝐿))𝐴2(𝐿)𝑎2𝑡 + (1 − 𝛽1(𝐿) − 𝛽2(𝐿))𝐵(𝐿)𝑎𝑡 + 𝑒𝑡

)
. (4)

Next, substitute both the conjectured output strategy for firm −𝑖 and firm 𝑖’s best response into price. Substituting this solution for 
price into firm 𝑖’s output function yields its output as a linear function of the history,

𝑞𝑖𝑡 = 𝛼𝑖(𝐿)𝐴𝑖(𝐿)𝑎𝑖𝑡 + 𝛽𝑖(𝐿)𝐵(𝐿)𝑎𝑡

+ 𝛿𝑖(𝐿)(1 + 𝛿1(𝐿) + 𝛿2(𝐿))−1
(
(1 − 𝛼1(𝐿))𝐴1(𝐿)𝑎1𝑡 + (1 − 𝛼2(𝐿))𝐴2(𝐿)𝑎2𝑡

+ (1 − 𝛽1(𝐿) − 𝛽2(𝐿))𝐵(𝐿)𝑎𝑡 + 𝑒𝑡
)
. (5)

2.2. Economic interpretation of the price and output functions

The output function, (5), has two components. The first component, 𝛼𝑖(𝐿)𝐴𝑖(𝐿)𝑎𝑖𝑡 + 𝛽𝑖(𝐿)𝐵(𝐿)𝑎𝑡, expresses the direct effect of 
the intensity filters 𝛼𝑖(𝐿) and 𝛽𝑖(𝐿) on each firm’s privately observed shock 𝐴𝑖(𝐿)𝑎𝑖𝑡 and public shock 𝐵(𝐿)𝑎𝑡 respectively. In a full-

information model these intensities would simply be scalar constants, equal to the full-information monopoly value of 12 and the 
duopoly value of 13 respectively. Due to strategic effects however these intensity filters will not be scalars. As a result there will be 
strategic effects on the “direct” intensities 𝛼 and 𝛽.

The second intensity component of the output function, 𝛿𝑖(𝐿), filters the noisy signal of price in equation (4). Because output is 
determined by this signal, when output is aggregated across firms to determine price, the effect of output on price is additionally 
influenced by the term (1 + 𝛿1(𝐿) + 𝛿2(𝐿))−1.

Examining equation (4), it is evident that there is feedback from both the direct intensities on private shocks, 𝛼𝑖(𝐿)𝐴𝑖(𝐿)𝑎𝑖𝑡, and 
from the direct intensities on the public shock, 𝛽𝑖(𝐿)𝐵(𝐿)𝑎𝑡, via the price, that is, there are indirect intensities on both public and 
private shocks. Each firm is able to extract these feedback effects for the shocks they directly observe, their own private shock and 
the public shock, with the net result that the rival firm’s private output process, 𝛼−𝑖(𝐿)𝐴−𝑖(𝐿)𝑎𝑖−𝑡, is observed with noise via the price 
signal. The rival firm understands this and will therefore adjust its direct intensity on private information, 𝛼−𝑖(𝐿), as well as via its 
intensity on publicly observable demand, 𝛽−𝑖(𝐿), which also affects the price, to influence this signal; this is signal jamming. Firm 𝑖
understands this and will in turn adjust its own output intensity in response.

2.3. Mapping to the frequency domain

I next transform the objective to the frequency domain using these linear expressions. Each firm’s objective is the sum of its 
discounted expected profit; in each period the discounted time-𝑡 expected profit term 𝐸[𝑝𝑡𝑞𝑖𝑡] appears (omitting conditioning and 
discounting). Each of the terms 𝑝𝑡 and 𝑞𝑖𝑡 is the sum of functions operating on the fundamentals 𝑎1𝑡, 𝑎2𝑡, 𝑎𝑡, 𝑒𝑡 and so on, using 
equations (4) and (5). For example, 𝑝𝑡 contains the term

(1 + 𝛿1(𝐿) + 𝛿2(𝐿))−1(1 − 𝛼𝑖(𝐿))𝐴𝑖(𝐿)𝑎𝑖𝑡, (6)

operating on 𝑎𝑖𝑡 in equation (4), which is cross-multiplied by

11 This algebraic character of the frequency domain is analogous to the algebraic character of the Laplace transform methods used to solve differential equations. In 
engineering control systems the frequency-domain functions would be called transfer functions, with the term filter reserved for the physical implementation of the 
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𝛼𝑖(𝐿)𝐴𝑖(𝐿)𝑎𝑖𝑡 + 𝛿𝑖(𝐿)(1 + 𝛿1(𝐿) + 𝛿2(𝐿))−1(1 − 𝛼𝑖(𝐿))𝐴𝑖(𝐿)𝑎𝑖𝑡 (7)

from firm 𝑖’s output 𝑞1𝑡 in equation (5), also operating on 𝑎𝑖𝑡. The cross-products of these elements with all other terms are zero 
because the underlying stochastic processes are uncorrelated, that is, the expectation operator passes through the products, yielding 
terms like 𝐸[𝑎𝑖𝑡]𝐸[𝑎𝑡], which are zero. After carrying out the complicated multiplications of the functions 𝛼𝑖(𝐿), 𝐴𝑖(𝐿) and 𝛿𝑖(𝐿), 
there will be a summation of terms that can be abstractly represented as

𝐸

[(
𝐻𝑗𝐿

𝑗𝑎𝑖,𝑡+𝑠
)(
𝐺𝑘𝐿

𝑘𝑎𝑖,𝑡+𝜏
) |||||(𝑎𝑖𝑡, 𝑎𝑡, 𝑝𝑡 + 𝑒𝑡)

]
(8)

Applying the lag operator and bringing the expectation operator inside then yields

𝐻𝑗𝐺𝑘𝐸

[
𝑎𝑖,𝑡+𝑠−𝑗𝑎𝑖,𝑡+𝜏−𝑘

|||||(𝑎𝑖𝑡, 𝑎𝑡, 𝑝𝑡 + 𝑒𝑡)
]

(9)

where 𝐻𝑗 and 𝐺𝑘 abstractly represent the complicated products of the coefficient terms in the functions 𝛼𝑖(𝐿), 𝐴𝑖(𝐿) and 𝛿𝑖(𝐿). As 
long as 𝑠 − 𝑗 = 𝜏 − 𝑘 > 0 this reduces to 𝐻𝑗𝐺𝑘, otherwise it is zero, as the fundamental innovations 𝑎𝑖𝑡 are i.i.d., that is,

𝐸
[
𝑎𝑖,𝑡+𝑠−𝑗𝑎𝑖,𝑡+𝜏−𝑘

]
=

{
0, 𝑠− 𝑗 ≠ 𝜏 − 𝑘
𝜎2
𝑎
, 𝑠− 𝑗 = 𝜏 − 𝑘.

(10)

Importantly, the conditioning is irrelevant because the innovation processes, which, again, are i.i.d., cannot be predicted from the 
current and past values of the realised shocks and noisy signals.

The remaining task is to determine whether there is a usable structure in the remaining terms of the objective. To generate this 
structure the following equivalence holds:

𝐸
[
𝑎𝑖,𝑡+𝑠𝑎𝑖,𝑡+𝜏

]
∼ 𝜎2
𝑎

1
2𝜋𝑖 ∮ 𝑧𝑠𝑧−𝜏

𝑑𝑧

𝑧
=

{
0, 𝑠 ≠ 𝜏
𝜎2
𝑎
, 𝑠 = 𝜏,

(11)

where the integral is a contour integral around the unit circle in the complex plane. The intuition of the contour integral and 
why the equivalence holds is presented in Appendix A, but the main conclusion is that the conventional time-domain objective—

the conditional expectation of a complicated summation of future quadratic terms—is exactly equivalent to a contour integral. 
Furthermore, the contour integral is of a specific type: it is a convolution, which defines an inner product, involving the functions 
comprising the firms’ supply functions and the price process.

These two terms in (6) and (7) thus interact as an inner product, appearing as the convolution integral

1
2𝜋𝑖 ∮ 𝐷(1 − 𝛼𝑖)(𝛼∗𝑖 + 𝛿∗𝑖 𝐷∗(1 − 𝛼∗

𝑖
))𝐴𝑖𝐴∗𝑖 𝜎

2
𝑎

𝑑𝑧

𝑧
, (12)

using the definition

𝐷(𝑧) ≡ (1 + 𝛿1(𝑧) + 𝛿2(𝑧))−1, (13)

and where the “∗” notation denotes the conjugate function, which has negative powers of 𝑧,

𝐷∗ ≡𝐷(𝜂𝑧−1) (14)

and so on for the other functions.12

Because the fundamental innovations 𝑎𝑖𝑡, 𝑎−𝑖𝑡, 𝑎𝑡, and 𝑒𝑡 are uncorrelated, the frequency domain formulation of the objective 
cleaves into four parts attached to the variance of each of the four mutually independent innovation processes 𝑎1𝑡, 𝑎2𝑡, 𝑎𝑡 and 𝑒𝑡. 
Following the same procedure used to obtain (12), one obtains the frequency-domain version of firm 𝑖’s objective:

max
𝛼𝑖,𝛽𝑖,𝛿𝑖

1
2𝜋𝑖 ∮

(
𝐷(1 − 𝛼𝑖)(𝛼∗𝑖 + 𝛿

∗
𝑖
𝐷∗(1 − 𝛼∗

𝑖
))𝐴𝑖𝐴∗𝑖 𝜎

2
𝑎

+𝐷(1 − 𝛼−𝑖)𝛿∗𝑖 𝐷
∗(1 − 𝛼∗−𝑖)𝐴−𝑖𝐴

∗
−𝑖𝜎

2
𝑎

+𝐷(1 − 𝛽𝑖 − 𝛽−𝑖)
(
𝛽∗
𝑖
+ 𝛿∗
𝑖
𝐷∗(1 − 𝛽∗

𝑖
− 𝛽∗−𝑖)

)
𝐵𝐵∗𝜎2

𝑎

+ (𝐷 − 1)𝛿∗
𝑖
𝐷∗𝜎2

𝑒

)
𝑑𝑧

𝑧
,

(15)

and symmetrically for firm −𝑖. See Appendix B for the details of this derivation.

12 The coefficients in 𝐷∗ are also the complex conjugates of the coefficients in 𝐷(𝑧), however due to the factorization property discussed later it is not necessary to 
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The optimization in (15) is over the intensity functions 𝛼𝑖, 𝛽𝑖, and 𝛿𝑖—that is, it is a variational problem—taking as given the rival’s 
intensity functions 𝛼−𝑖, 𝛽−𝑖, and 𝛿−𝑖. This approach is equivalent to the time-domain approach in which output is chosen directly 
rather than via the intensity functions; the general equivalence of frequency-domain and time-domain optimisation is established 
and discussed in more detail in Appendix A.4.13

Variational derivatives. I set out the detailed variational derivatives—the Euler equations—of the frequency-domain objective 
(15) in Appendix B, equations (B.8) and (B.9). These equations are asymmetric, reflecting the ability of firms to weight histories of 
signals, but not future realizations of the signals; Euler equations of this type are called Wiener-Hopf equations. The variational first-

order condition nominally resembles the first-order condition for a static quadratic optimization problem, which might be abstractly 
represented as an equation

𝑀𝑦 = 𝐵𝑥,

where the objective is to solve for 𝑦. This would be conventionally done by inverting the 𝑀 matrix. However, in the frequency 
domain, this inversion cannot be done because it implicitly requires putting weights on future realizations of the history, which are 
inherently unobservable.

To circumvent this inversion problem, one follows four steps: (i) factor the 𝑀 matrix (keeping in mind that the 𝑀 matrix is a 
matrix of functions) into the product 𝐹 ∗ 𝐹 of two matrices, 𝐹 and 𝐹 ∗, where 𝐹 corresponds to the weighting of histories, and 𝐹 ∗, 
the conjugate transpose of 𝐹 , corresponds to the (infeasible) weighting of future realizations; (ii) multiply both sides by the inverse 
of 𝐹 ∗; (iii) apply a projection to the resulting right-hand side—the [⋅]+ operator that eliminates terms that weight future histories14; 
and finally (iv) multiply both sides by the inverse of 𝐹 ; importantly, the inverse of 𝐹 only weights past and present but not future 
realizations. The resulting formula is equivalent to constructing a linear least squares projection—a regression—on the history.15

2.4. Solution of a firm’s variational optimization problem and equilibrium

It is useful to gather terms by implicitly defining two auxiliary functions, 𝐹 and 𝐽 , which solve

𝐹 ∗𝐹 ≡𝐷(1 − 𝛿∗1𝐷∗) +𝐷∗(1 − 𝛿1𝐷) (16)

𝐽 ∗𝐽 ≡ (1 − 𝛼∗2 )(1 − 𝛼2)𝐴2𝐴
∗
2𝜎

2
𝑎
+ 𝜎2
𝑒
, (17)

which have, as discussed above, factorizations 𝐹 and 𝐽 . The function 𝐹 is the projection coefficient structure corresponding to the 
net information in the noisy price signal after a firm has extracted information from the price signal. The function 𝐽 is the filter 
characterizing the information process from firm 1’s observation of the price signals.

Taking the variational derivatives and exploiting symmetry to solve for the Wiener-Hopf equations, yields the optimal filters:

Proposition 1. In a symmetric equilibrium firm 𝑖’s filters on its direct information sources, 𝑎𝑖 and �̄� are given by

𝛼 = 1 − 𝐹−1𝐴−1
[
𝐹 ∗−1𝐷∗𝐴

]
+

1 − 𝛽 = 1
2
+ 1

2
𝐹−1𝐵−1

[
𝐹 ∗−1(1 − 𝛽)𝐷∗𝐵

]
+

(18)

Output weights on price signals satisfy the recursive system

𝐽 ∗𝐽 = 𝐹−1
[
𝐹 ∗−1𝐷∗𝐴

]
+

[
𝐹 ∗−1𝐷∗𝐴

]∗
+
𝐹 ∗−1 + 𝜎2

𝑒
(19)

𝐷 = 1
2
𝐽−1

[
𝐽 ∗−1𝜎2

𝑒

]
+
+ 1

2
𝐽−1

[
𝐽
𝐷 +𝐷∗

1 +𝐷∗

]
+
. (20)

Lemma 2. If analytic functions {𝛼, 𝛽, 𝛿} in 𝐻2[𝜂] satisfy (18), (13), (19), (20), then the time-domain version of 𝑄𝑖,𝑡 defined in (3) is a 
stationary linear equilibrium.

Proof. The result is immediate using the equivalence of frequency-domain optimization with time-domain optimization, as consis-

tency is also satisfied. □

13 The frequency-domain approach limits the controls to stationary linear strategies, in the sense that the same choice of the linear filters 𝛼𝑖, 𝛽𝑖 , and 𝛿𝑖 is applied in 
each period when mapped into the time domain, representing a fixed point of the time-domain first-order condition (B.7). Thus, if there are also “bubble” solutions 
for the output process, i.e., equilibria in which the 𝛼𝑖, 𝛽𝑖 , and 𝛿𝑖 functions are linear but time varying, the approach will not find them. It is also implicit that the 
solutions are dynamically consistent, that is, the frequency-domain solution finds the linear filter that would be replicated in every period, conditional on its future 
structure, in a time-domain approach; this is a quotidian result for additively separable systems like the one here.
14 The projection or “annihilator” operator, [⋅]+ , eliminates terms with negative powers of 𝑧 from the Laurent expansion of a function: if 𝑓 (𝑧) =⋯ + 𝑏−2𝑧−2 + 𝑏−1𝑧−1 +
𝑏0 + 𝑏1𝑧1 + 𝑏2𝑧2 + … , then [𝑓 ]+ = 𝑏0 + 𝑏1𝑧1 + 𝑏2𝑧2 + … . The annihilator operator accounts for the fact that firms can weight histories of observed signals in their 
strategies, but not the yet-to-be-observed future realizations of signals.
15 It is an important detail that the factorisation step, step (i) above, is guaranteed to have a solution 𝐹 that is (a) analytic on the domain of interest, (b) is also 

invertible on that domain, and (c) has real coefficients; this is explained in greater detail in Appendix A. Thus, the inversion that takes place in steps (ii) and (iv) can 
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always be carried out. This result is due to a theorem of Rozanov (1967).
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Proposition 2. A stationary linear equilibrium exists.

The proof is in Appendix C. The fixed point argument uses the recursive system (19)–(20). Denoting the right-hand side of (20)

by 𝑆(𝐷), write the recursion as

𝐷 = 𝑆(𝐷),

defining a recursion in 𝐷 (equation (19) is ancillary). I show that 𝑆(𝐷), which is a continuous mapping, is bounded by a function 
𝑇 (𝐷); and that this bounding function 𝑇 (𝐷) is itself a contraction on the unit disk and as such has a unique fixed point. It follows that 
𝑆 has a fixed point. I then use the Szegö form of the function to establish that the fixed point is not at 𝐷 = 0. I believe this approach 
to demonstrating the existence of a fixed point to be original.

3. Characterization of dynamic signal jamming and learning

In this section I characterise the behavior of the dynamic model. There are some initial building blocks. As a first step, I show 
that even though the firms engage in signal jamming on public information, neither the public-information fundamental shocks, nor 
the outputs driven by those shocks, affect the behavior of the firms toward their privately observed shocks. The converse is not true 
however: signal jamming on public information is fully shaped by the nature of the private shocks.

As a related point I demonstrate that the intensities 𝛼 and 𝛽 are not scalars, that is, the equilibrium intensity filters alter the 
underlying autoregressive structure of the fundamental demand processes to determine output.

The public component of the demand process, 𝐵(𝐿)𝑎𝑡, can be netted out of price directly, leaving the net information in price 
independent of 𝐵(𝐿)𝑎𝑡. It follows that 𝐵(𝐿)𝑎𝑡, does not affect optimal output weights on prices, and thus does not enter the equilibrium 
functions 𝐹 , 𝐽 or 𝐷. The following is immediate.

Corollary 1. The public information component of demand affects neither the filtering of the price process by firms, nor firm output weights 
on private information.

The proofs of this and other propositions from this section are in Appendix D.

The converse to Corollary 1 is not true—the private information components of demand affect output weights on publicly-known 
demand both directly, and indirectly via the output weights on privately-observed demand, via the functions 𝐷 and 𝐹 that appear 
in the solution for 𝛽—this is signal jamming. Corollary 1 also implies that one could have added any deterministic component to 
demand, and solved for the equilibrium: this deterministic component would have no effects on the portions of output that reflect 
private information or information contained in prices.

I next establish that the equilibrium direct intensity filters are not scalar constants, and have high-order autoregressive structure, 
with smaller autoregressive parameters than those of the fundamental demand shock processes, indicating that the autoregressive 
structure of output is fundamentally altered.

Proposition 3. The equilibrium output intensity filters 𝛼𝑖 and 𝛽𝑖 are not scalar-valued, that is, output intensities are not just direct amplifi-

cations of the dynamic shock processes. This autoregressive structure of 𝛼𝑖 and 𝛽𝑖 therefore reflects strategic behavior and is not just the result 
of signal extraction alone.

The non-scalar nature of output responses is not just due to the fact that the firms filter the price signals via signal extraction, 
i.e., construct estimates of the exogenous driving processes using information from a noisy signal, as they would in a competitive 
noisy rational expectations equilibrium economy with informationally-small firms. Firms also internalize the fact that they are 
informationally large, actively signal jamming to influence a rival’s inferences. This alters the time series structure of output in ways 
that signal extraction alone does not. In particular, I prove that were firms solely engaging in signal extraction from prices, then 
the autoregressive coefficients of the output processes would equal those of the exogenous demand processes. I then prove that the 
autoregressive coefficients of these two processes differ and that any equilibrium output process is of infinite autoregressive order.16

3.1. Theoretical results on dynamic signal jamming

I next carry out a couple of thought experiments in which I vary the dynamic character of the fundamental shock processes, 
specifically the public shock process 𝐵(𝐿)𝑎𝑡 and the privately observable shocks 𝐴𝑖(𝐿)𝑎𝑖𝑡.

In the first experiment, posit that the privately observable shocks are i.i.d, that is, that the function 𝐴(𝑧) is a scalar constant. From 
Corollary 1, the public information process does not affect the output intensity on private information, and therefore it is possible 
to characterise the output intensity on the private shock processes using only the characteristics of the private side. Applying the 
“annihilator” lemma, Lemma 6 from Appendix A, it is immediate that the private output intensity 𝛼(𝐿) will be a scalar constant 
as well, and also that the function 𝐽 will be a scalar constant. (See equations (18) and (19).) This in turn implies that 𝛿 and 𝐷
903

16 That is, the filter is of the form ∑∞
0

𝑐𝑖

1−𝜌𝑖𝑧
, |𝜌0| > |𝜌1| >… .
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will be scalar constants, and then finally that 𝐹 is a scalar constant. (See equations (16) and (20).) Examining the formula for 𝛽 in 
Proposition 1, we see that all terms on the right hand side are then scalar constants with the exception of the filter 𝐵(𝑧). As a result, 
the annihilator formula becomes the identity, and we have

𝛽 = 𝐹−1𝐵−1
[
𝐹 ∗−1(1 − 𝛽)

(
𝐷(1 − 𝛿∗𝐷∗) −𝐷∗𝛿𝐷

)
𝐵

]
+

= 𝐹−1𝐵−1𝐹−1(1 − 𝛽) (𝐷(1 − 𝛿𝐷) −𝐷𝛿𝐷)𝐵

= 𝐹−1𝐹−1(1 − 𝛽) (𝐷(1 − 𝛿𝐷) −𝐷𝛿𝐷)

(21)

which is a scalar constant. Thus, we have

Proposition 4. Let the private demand shock process 𝐴(𝐿)𝑎𝑖𝑡 be i.i.d., that is, 𝐴(𝐿) is a scalar constant, and let the public demand shock 
process 𝐵(𝐿)𝑎𝑡 be serially correlated. Then the intensity on the public shock 𝛽(𝐿)𝐵(𝐿)𝑎𝑡 will be a scalar constant.

The intensity on the public shocks reflects conventional static reasoning: firms react only to the current realization of the public 
shock to determine output on that shock, even if the shock is serially correlated.

The second experiment reverses the situation: let the privately observable shocks be serially correlated, for example 𝐴(𝑧) = 1
1−𝑎𝑧 , 

but the publicly observable shocks are i.i.d., that is, 𝐵(𝑧) is a scalar constant. In that case the endogenous functions 𝛼, 𝐽 , 𝛿, 𝐷 and 𝐹
will all have a nontrivial structure; from other theorems, they have infinitely many poles for example. On the other hand the intensity 
on the public process, 𝛽, would, if there were no further influences, remain a scalar constant. That scalar constant might exceed the 
full-information value of 13 due to signal jamming, however this is not a solution. Examining the formula for 𝛽 in Proposition 2, 
we see that the functions 𝛿, 𝐷 and 𝐹 enter the formula, and they do not cancel as they are not scalars. We can assert that 𝛽 must 
therefore have at least one pole determined by the 𝛿 process. Thus, we have the following proposition:

Proposition 5. Let the public demand shock process 𝐵(𝐿)𝑎𝑡 be i.i.d., that is, 𝐵(𝐿) is a scalar constant, and let the private demand shock 
process 𝐴(𝐿)𝑎𝑖𝑡 be serially correlated. Then direct output on the public shock 𝛽(𝐿)𝐵(𝐿)𝑎𝑡 will be serially correlated.

This is dynamic signal jamming: even though the underlying public demand shock is i.i.d., the dynamic structure of the output

on the public shock is driven by the structure of the private shock process. The reason for this is that each firm wants to disguise its 
output on its private process by making the signal of the output process on the public shock via the price indistinguishable from the 
signal of the output on the private process.

This echoes the inconspicuousness findings of the literature on informed trading on private information in stock markets as in the 
model of Kyle (1989).

4. Numerical examples

In this section I explore three basic numerical examples. In the first example I suppose that the noise variance is so high that 
the signal from price is very noisy, leaving little scope for signal jamming and learning. In the second and third examples I reduce 
the noise so as to make the price signal usable and then explore how learning occurs and the consequence of signal jamming on the 
dynamics of output. In the first of these latter two examples I suppose that the publicly observed demand shock process is highly 
persistent whilst the privately observable shocks are not, echoing the setting in Proposition 4; in the final example I reverse the 
situation, echoing Proposition 5.

To characterise the results I analyse the endogenous poles that emerge from the numerical estimate of the equilibrium output 
intensity filters. The key properties of the model are then determined by the dominant poles. In addition to the pole characterization 
I illustrate how the firms dynamically re-weight the past realizations of the demand shocks as learning takes place, and illustrate this 
re-weighting with plots. Finally, I carry out a Monte Carlo experiment in which I generate a time series of demand shock innovations 
and measure the first-order serial correlation of the output and price constituents of the model, demonstrating how signal jamming 
modifies the serial correlation relative to a full-information model, and demonstrate the inconspicuousness result.

In order to numerically estimate the model I use so-called state-space methods, adapted from engineering control theory to 
simulate and iterate the recursion in equation (20). These methods suppose that the stochastic processes can be represented as

𝑥𝑡 =𝐴𝑥𝑡−1 +𝐵𝑢𝑡, (22)

where 𝑥𝑡 and 𝑢𝑡 can be vector processes, and 𝐴 and 𝐵 are appropriately conformable matrices. In engineering settings, 𝑥𝑡 is the state 
process, and the 𝑢𝑡 process is a serially uncorrelated and i.i.d. process, i.e., white noise. When 𝑥𝑡 and 𝑢𝑡 are scalar-valued and 𝐴 and 
𝐵 are scalar constants, this is just a first-order autoregressive process, that is, a process whose underlying filter is of the form 1

1−𝜌𝑧 .

To analyze the dynamics of output, one could find the fixed point of the recursion in (20), use this to calculate the functions 𝛼, 𝛽, 
and 𝛾 , and then use those formulas to calculate the equilibrium weights on the input processes. These properties would be embodied 
in the poles—the eigenvalues of the 𝐴-matrix—of the state space versions of the functions. The proof of Proposition 3 establishes 
that there are infinitely many such poles, and to establish the pattern of the eigenvalues of the equilibrium 𝐴-matrix for 𝛿, one must 
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establish how the eigenvalues are affected by the recursion in (20).
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To numerically approximate the equilibrium requires imposing an algorithm that trims quantitatively unimportant terms after 
each iteration of (20). I use methods developed in the engineering literature for such approximations. This literature also establishes 
error bounds for the approximations. These methods are described in greater detail in Appendix E.

4.1. Example 1: maximum noise

As the first example I examine the case in which the noise process has an extremely large variance relative to the variances of 
the fundamentals of the demand shock processes. When noise is large, there will be no useful information in price (therefore 𝛿(𝑧)
will be approximately zero), so there will be no signal jamming. As a result the firms will treat their private shocks as monopolists, 
choosing output intensity filter as simply the scalar 𝛼(𝑧) = 1

2 , so that the output process filter is 𝛼(𝑧)𝐴(𝑧) = 1
2𝐴(𝑧). Because there will 

be no signal jamming, the output intensity on the public shocks will be the scalar from the static duopoly equilibrium, 𝛽(𝑧) = 1
3 , and 

the resulting direct output process will be 𝛽(𝑧)𝐵(𝑧) = 1
3𝐵(𝑧) for each firm.

I confirm these assertions in the simulations. To begin I choose tolerances for the state space operations in the simulations, 
presented in Table 1, and use the parameterization in Table 2.

The numerically calculated output intensity functions are presented in Table 3. Even though the private demand shock process is 
highly serially correlated (autoregressive parameter 0.5), with high noise, there is essentially no signal jamming: the intensity on 𝐴 is 
close to the static monopoly value of 12 with very little serial correlation, and the intensity on 𝐵 is close to the static full-information 
duopoly value of 13 , again with very little serial correlation.

4.2. Example 2: persistent public demand shocks and low-persistence private shocks

For the second example I assume that the private shocks have very low persistence and that the public shocks have high innate 
persistence, and also that the noise variance is reduced by a factor of 10; as a result, there is potentially useful information in the 
price signal (see Table 4). Because the private shocks have low persistence, as established in Proposition 4 there is no need for firms 
to engage in dynamic signal jamming in the sense of altering the dynamic structure of the 𝐵(𝐿)𝑎𝑡 process. Table 5 shows that there is 
very little deviation of the output intensity on the public demand shock from its full-information static Cournot value of 13 .

4.3. Example 3: persistent 𝐴(𝐿)𝑎𝑡 process, low-persistence 𝐵(𝐿)𝑎𝑡 process

For the third example I examine the result of Proposition 5 numerically using the parameterization in Table 6. Thus, the privately-

observed demand shock processes 𝐴(𝐿)𝑎𝑖𝑡 are moderately positively serially correlated, while the publicly observable demand shocks 
𝐵(𝐿)𝑎𝑡 are much less serially correlated, just as in the first example, and again the noise variance is reduced by a factor of 10 relative 
to the first example; as a result, there is useful information in the price signal. (The serial correlation of the public shock process is 
not reduced to zero in order to avoid numerical instabilities.) The noise is also set at a moderate level—small enough so that there is 
some incentive for signal jamming.

The results are displayed in Table 7. A key result is that the leading constant term in the intensity filter for the publicly observable 
shock 𝐵(𝐿)𝑎𝑡 is .34, and the constant term for the privately observable shock 𝐴(𝐿)𝑎𝑖𝑡 is .53, essentially no different from the full-

information duopoly and monopoly values of 13 and 12 respectively. If these were the only intensities the firms would simply amplify 
the public and private demand shocks, and there would be no difference between the autoregressive structure of the input processes 
and the output processes.

The main prediction of Proposition 5 is that the firms will produce output on the publicly observable shocks that is much more 
serially correlated than the shock process itself, and that the pattern of output will resemble output on the private shocks. This is 
because if there is a difference in the serial correlation pattern of output on the two shocks separately, then signal extraction can 
extract the private shock more effectively, and the rival firm will wish to prevent this.

These effects are evident in the filters for output on the public shock in Table 7. The private direct intensity filter 𝛼(𝑧) has main 
pole 2.19 expressing high persistence; the pole of the fundamental; the direct intensity 𝛽(𝑧) for the public shock also has a nontrivial 
term with the same pole. Thus, the output on the public shock has persistent elements even though the underlying shock, 𝐵(𝐿)𝑎𝑡, 
has low intrinsic persistence.

The direct intensities are ultimately of less interest than the total output that combines the direct intensities with the indirect 
intensities from price, including the rival’s output on a firm’s private shocks operating through price. There we see a direct component 
that is driven by the same pole, 2.19.

It is also evident that there is significant serially correlated output on the noise alone, even though the noise process 𝑒𝑡 is itself 
serially uncorrelated.

4.4. Learning and signal jamming effects

As the firms observe the noisy price signal over time, they are able to learn about the rival’s past realizations of its private demand 
shock process. At longer lags the precision with which a firm sees its rival’s private demand shock innovation becomes sharper and 
sharper. The learned part of the shock is then equivalent to public information, and so the firm then signal jams on it.

To highlight this effect I calculated the weights on the innovations for the private and public output processes for ten lags, but 
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normalized them using the weights of the underlying demand shock process. Thus, for example, I calculated the weights on the direct 
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intensity filter 𝛼(𝑧) for the private shock, applied to the demand shock process filter 𝐴(𝑧), but then normalized by the inverses of the 
weights of 𝐴(𝑧). Thus, if the normalization is applied to 𝐴(𝑧), which has lag coefficients

1, 1
2
,
1
4
,…

then the normalized lag coefficients are

1,1,1,…

and a plot of the lag weights would result in a horizontal line. Thus all lag weights are made comparable with this normalization. 
Under the normalization, if an output process filter such as the direct output filter 𝛼(𝑧)𝐴(𝑧) has less persistence than the fundamental 
demand shock process as expressed by 𝐴(𝑧), then the normalized weights will be decreasing, whereas if it has greater persistence 
then they will be increasing.

A key feature of classical signal jamming is that firms increase output on publicly observable demand in order to mask their output 
on privately observable demand. Operationally this translates into firms reducing their direct output intensity on public shocks so 
that the output signal in price increases; examining equation (4), the effect on price enters via the (1 − 𝛽1(𝐿) − 𝛽2(𝐿))𝐵(𝐿) term, 
which increases as 𝛽(𝐿) decreases. Thus, a prediction of the model is that the direct intensity on public shocks will decrease as signal 
jamming increases.

In Example 3, the learned innovations result in highly persistent shocks, and the rival therefore has an incentive to magnify its sig-

nal jamming intensity on that shock. Thus, the indirect intensity on private shocks actually increases with longer lags, asymptotically 
approaching a number larger than the 23 value that would hold under full information; see Fig. 1.

Meanwhile, the total intensity on the actual public shock shrinks with longer lags; this happens because the value of signal 
jamming at long lags shrinks because the shock is not persistent. Thus, there are two effects: the first effect increases the persistence 
of the output response on public shocks due to the desire to camouflage the public shock, as noted in Proposition 5; the second 
effect shrinks the intensity at long lags nevertheless (when measured using the private shock process decay rate). Thus, in the primary 
example, most of the signal jamming in the sense of increased intensity takes place on the learned private shock, not the public shock, 
with the effect working through the 𝛿

1+2𝛿 coefficient (see equation (5)), which also takes on the persistence of the private shock—see 
the numerical estimate of 𝛿 in Table 7.

Expanding on this point, the signal jamming effect on the public shock takes place via the price component, that is, the indirect 
output on the public shock. As is evident from Fig. 2, the indirect output on the public shock, when normalized by the weights from 
the private shock process for the example with persistent private but non-persistent public demand shocks, the indirect component 
of output on public shocks closely matches the persistence of the private process: the normalized indirect output intensities are flat 
(even though their magnitude is small), indicating high persistence, whereas the direct intensity falls essentially to zero after the 
first lag, reflecting that the underlying public shocks are close to serially uncorrelated, and so the intensity is close to the pure static 
intensity, with no induced serial correlation. This reflects the desire to disguise output on the public process.

4.5. Inconspicuousness

The intuition so far is that the desire to disguise the output from the public process as if it were output on the private process adds 
persistence to the public output process. This can be verified via Monte Carlo simulations: in the main numerical experiment (Example 
3, see Table 6), I generated appropriate time series examples with 1,000 pseudorandom innovations for each of the two private paths, 
the public demand shocks, and the noise paths. I then calculated the serial correlation via the first-order autoregressive coefficient 
for each of the constituent time series in the output and price equations (5) and (4), numerically approximating the intensity filters 
in Table 7, via a moving average approximation with a lag length of 10. The results are in Table 8.

The first observation is that the serial correlation of the indirect output on the private shock process is .78, much higher than the 
intrinsic serial correlation of .5 of the fundamental shock; this reflects signal jamming on learned information. Despite this magnified 
serial correlation of the indirect term, the direct output serial correlation, .41, is much lower than the intrinsic serial correlation of 
the shocks; this reflects the stepping back of the firm on direct output as the rival learns and signal jamming takes over. The net 
result is that total output has serial correlation basically identical to the serial correlation of the underlying demand shock process.

The output on the public shocks is similar: the serial correlation of the total output on the public shock process is .14, much 
higher than the intrinsic serial correlation of .1 of the fundamental shock; this reflects the signal jamming that is taking place via 
the indirect output on the public shock, which has a serial correlation of .55—much closer to the serial correlation of the private

shock process. However, the noisy signal comes through price, and so it is important to assess the serial correlation of price; this 
correlation is only .21. For comparison, if the firms operated without price feedback they would choose static output intensities of 12
on the private shocks and 13 on the public shocks, and there would be no noise component of output or price. In this case, with the 
parameterization of the main example (Table 6), the serial correlation from Monte Carlo simulations is .48, reflecting the influence 
of the serially correlated private demand shocks dominating the less serially correlated public shocks. Thus, in the noisy price signal 
model the serial correlation of price is lower than in the no-feedback case.

The explanation is related to a similar phenomenon in the Kyle (1985) model of financial market microstructure. In that model, 
the informed trader trades in such a way that his trades are driven by the fundamental value of the underlying asset, but in such a 
way that the market makers cannot observe it—it is based on the forecast error of the market makers. As a result, the information 
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in the price signal observed by the market makers cannot be distinguished from the noise stemming from the trades of uninformed 
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traders. Similarly here, the firms attempt to structure the price process so that it has no characteristics that would allow the firms 
to invert the signal to impute the rival’s private process. Thus, the price process resembles only the public process, which has no 
dynamic structure that is usable to infer the rival’s private process. This point was emphasized in Bernhardt and Taub (2015): each 
firm bases its output on its privately observed process on the forecast error of the rival firm.17

The firms do not see price directly, but rather a noisy signal of price; each firm knows the effect of its own output on price and 
also the effect of the public output on price, so these can be netted out. In the Monte Carlo simulations, the serial correlation of the 
net information in the noisy price signal is .04, that is, very close to the zero correlation of pure noise.

5. Conclusion

There are three phenomena. The first is signal jamming, in which firms raise output keyed to publicly observable demand shocks 
in order to mask their privately observed demand shocks. This effect is expressed in the firms’ indirect output intensities on the public 
demand shock, that is, the part of output that influences price: the firms do not just increase the output intensity on those shocks, 
they also increase the serial correlation of the output relative to the fundamental serial correlation of the demand shock itself.

The second phenomenon concerns learning. The firms also learn about their rival’s private shocks via the noisy price history. The 
learned information is then public, and firms then signal jam on the learned output. Concomitantly, each firm cuts back output direct 
output on its own private demand shocks as the rival learns, and in the long run the signal jamming takes over completely.

Finally, these strategic interactions have a significant impact on the behavior of price: due to the desire of firms to hide their 
private information, that is to be inconspicuous, even though demand shocks are highly serially correlated, price is not serially 
correlated at all. This is in stark contrast to the behavior of a full information model, in which output and price will have identical 
serial correlation.
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Appendix A. Frequency-domain methods

This is an augmented version of a similar appendix that appeared in Seiler and Taub (2008), which in turn built on the appendix 
in Whiteman (1985).

Consider a serially-correlated discrete-time stochastic process 𝑎𝑡 that can be expressed as a weighted sum of i.i.d. innovations:

𝑎𝑡 =
∞∑
𝑘=0
𝐴𝑘𝑒𝑡−𝑘. (A.1)

While the innovations change through time, the weights 𝐴𝑘 remain fixed. The stochastic process can therefore be written succinctly 
as a function of the lag operator, 𝐿: 𝑎𝑡 = 𝐴(𝐿)𝑒𝑡. The list of weights {𝐴𝑘} can be viewed as a sequence, and by the Riesz-Fischer 
theorem (see Rudin, 1974, pp. 86-90), are equivalent to functions of a complex variable 𝑧. The function of the lag operator 𝐴(𝐿)
is then mathematically equivalent to a function 𝐴(𝑧) of a complex variable 𝑧. The function 𝐴(𝑧) can be analyzed with the rules of 
complex analysis, and this, in turn, fully characterizes the stochastic process 𝑎𝑡.

An important aspect of complex analysis is that the properties of a function are characterized by the domain over which they 
are specified. The unit disk, or sets that are topologically equivalent to the unit disk, are often the domains of interest. If a complex 
function on the disk can be expressed as a Taylor expansion—an infinite series where the powers of the independent variable, 𝑧, 
range from zero to infinity—then the function is said to be analytic on the disk. However, some functions, termed meromorphic 
functions, when expressed as a generalized Taylor expansion—a Laurent expansion—have both positive and negative powers of 𝑧, 
defined in an annular region containing the unit circle. This implies that they correspond to functions containing negative powers 
of the lag operator, which means that they operate on future values of a variable. If a variable is stochastic, this is not permissible, 
as it would mean that the future is predictable, contradicting its stochastic aspect. In particular, solutions to an agent’s optimization 
problem cannot be forward-looking.

The negative powers of 𝑧 in meromorphic functions arise from poles. The sum of the negative powers is the principal part.18 To 
eliminate negative powers of 𝑧 in a posited solution to an agent’s optimization problem, we use the annihilator operator, [⋅]+. The 

17 See equation (11) and the surrounding discussion in Bernhardt and Taub (2015).
18 More precisely, a pole is a singularity located inside a region in the complex plane. Poles are only one possible type of singularity: there are also so-called essential 

singularities. Moreover, singularities need not be isolated points. In this paper the discussion focuses on rational functions, which are characterized by poles alone. 
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Engineering terminology also refers to a function that is analytic as “causal”, and the presence of poles makes it non-causal.
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annihilator operator sets the coefficients of negative powers of 𝑧 in the Laurent expansion to zero, while preserving all coefficients 
on non-negative powers of 𝑧. This leaves a permissible, backward-looking solution to an agent’s optimization problem. A function 
with both backward- and forward-looking parts is converted to one with only backward-looking parts by the application of the 
annihilator.19

A second property of a function concerns its invertibility.20 If a serially-correlated stochastic process can be represented by an 
invertible operator, the innovations of the process can be completely and exactly recovered by observing the history of the process. 
That is, the inverse of the operator applied to the vector of realizations of the process yields the vector of innovations, exactly 
as it would if a finite vector of innovations were converted into a finite vector of realizations by an invertible matrix. A function 
is invertible on its domain if it does not take on a value of zero at any point inside the domain, and its inverse is then analytic. 
If, instead, an analytic function takes on a value of zero at a point inside the domain, then it is noninvertible. The inverse of a 
noninvertible function is not analytic. Hence, one cannot recover the vector of innovations by observing the vector of realizations, 
because inverting a function with a zero results in a function with negative powers of 𝑧. Recovery of the innovations would then 
depend on knowledge of future realizations. The factorization theorem of Rozanov (1967) ensures that any process described by a 𝑧-
transform with either negative powers of 𝑧 or zeroes can be converted into an observationally-equivalent process that is characterized 
by an operator that is invertible and has only non-negative powers of 𝑧, so that it is backward-looking.

As an elementary example of these issues, reconsider the process in (A.1); if 𝐴(𝐿) ≡ 1 − 𝜌𝐿, then the inverse operator is simply 
(1 − 𝜌𝐿)−1, which in principle could be represented by the geometric series

∞∑
𝑘=0
𝜌𝑘𝐿𝑘

but the magnitude of 𝜌 matters for determining whether this series is convergent. When the operator 𝐴(𝐿) is translated to the 
frequency domain it has an equivalent representation 1 − 𝜌𝑧, and in that setting convergence then becomes attached to a domain: 
in the example, if |𝜌| < 1, then 1 − 𝜌𝑧 is invertible on the unit disk domain because the corresponding power series for the inverse 
(1 − 𝜌𝑧)−1, namely ∑∞

𝑘=0 𝜌
𝑘𝑧𝑘, converges for any 𝑧 inside the unit disk, but this does not hold outside of the unit disk. Equivalently, 

the pole of (1 − 𝜌𝑧)−1 is 𝜌−1, and therefore the function does not have a zero inside the unit disk and is therefore analytic there.

To illustrate the variational method, I present a simple consumer optimization problem. Consider an individual whose earnings 
evolve stochastically according to 𝑦𝑡 = 𝐴(𝐿)𝑒𝑡, where 𝑒𝑡 is an i.i.d., zero mean, “white noise” period innovation to earnings. The 
consumer’s problem is to adjust bond holdings {𝑏𝑡}∞𝑡=0 to maximize quadratic utility of consumption,

max
𝐵(⋅)

−𝐸

[ ∞∑
𝑡=0
𝛽𝑡𝑐2
𝑡

]
, (A.2)

subject to the budget constraint,

𝑐𝑡 = 𝑦𝑡 + 𝑟𝑏𝑡−1 − 𝑏𝑡 (A.3)

It is possible to formulate this problem by formalising the constraint with Lagrange multipliers, but to keep the initial exposition 
simple, substitute the budget constraint into the objective, leaving the modified problem,

max
{𝑏𝑡}

−𝐸
∞∑
𝑡=0
𝛽𝑡(𝑦𝑡 + 𝑟𝑏𝑡−1 − 𝑏𝑡)2, (A.4)

where 𝑟 is the gross interest rate satisfying 𝛽𝑟 > 1.21 The decision problem is to choose not just the initial value of 𝑏𝑡, but the entire 
sequence {𝑏𝑡}∞𝑡=0. This problem implicitly requires the choice of functions that react to current and possibly past states. Stationarity 
results in the same function applying each period.

The stochastic component of a quadratic utility function is essentially a conditional variance. If innovations are i.i.d., then the 
expectation of cross-products of random variables yields the sum of variances. For white-noise innovations, for 𝑘 > 𝑠, 𝑘 > 𝑟,

𝐸𝑡−𝑘
[
𝑒𝑡−𝑟𝑒𝑡−𝑠

]
=

{
0, 𝑟 ≠ 𝑠
𝜎2
𝑒
, 𝑟 = 𝑠,

(A.5)

because of the independence of the innovations. Expressed in lag operator notation, this is

𝐸𝑡−𝑘
[
(𝐿𝑟𝑒𝑡)(𝐿𝑠𝑒𝑡)

]
=

{
0, 𝑟 ≠ 𝑠
𝜎2
𝑒
, 𝑟 = 𝑠.

(A.6)

Notice that the “action” is in the exponents of the lag operators. From Cauchy’s theorem (Conway, 1985), it is equivalent to write

19 For domain 𝐷 it would be more appropriate to refer to [⋅]+ as the projection operator from 𝐿2(𝐷) to 𝐻2(𝐷), but the term is in widespread use.
20 In engineering parlance a function that is analytic and invertible is called minimum phase.
21 To make this problem well-defined a (small) adjustment cost must also be included, but we suppress it here because the net effect of the adjustment cost is just 
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to make the solution stationary. Alternatively, one could simply impose the requirement that any solution be stationary.
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𝜎2
𝑒

1
2𝜋𝑖 ∮ 𝑧𝑟𝑧−𝑠

𝑑𝑧

𝑧
=

{
0, 𝑟 ≠ 𝑠
𝜎2
𝑒
, 𝑟 = 𝑠,

(A.7)

where the integration is counterclockwise around the unit circle. In Cauchy’s theorem, 𝑧, which is a complex number with unit 
radius (it is on the boundary of the disk), is represented in polar form: 𝑧 = 𝑒−𝑖𝜃 . Now a more conventional integral can be undertaken, 
integrating over 𝜃 ∈ [0, 2𝜋]. Using Euler’s theorem, which represents complex numbers in trigonometric form, 𝑒−𝑖𝜃 = cos𝜃 − 𝑖 sin𝜃, 
gives 𝜃 the interpretation of a frequency, so that 𝑧 and functions of 𝑧 are in the frequency domain.

The equivalence of (A.6) and (A.7) is crucial but might not be particularly intuitive. To see the equivalence, begin by calculating 
the following integral:

∮|𝑧|=1
1
𝑧
𝑑𝑧

where the integration is around the unit circle, that is, the contour integral. The following steps demonstrate the fundamental 
equivalence.

∮|𝑧|=1
1
𝑧
𝑑𝑧 = ∮|𝑧|=1

1
𝑒𝑖𝜃
𝑑𝑒𝑖𝜃

=

2𝜋

∫
0

1
𝑒𝑖𝜃
𝑖𝑒𝑖𝜃𝑑𝜃

=

2𝜋

∫
0

𝑖𝑑𝜃

= 𝑖

2𝜋

∫
0

𝑑𝜃

= 𝑖2𝜋

(As an aside, notice that the direction of integration around the unit-circle contour is counter-clockwise, hence it is proper to have 
the equivalent limits of integration in the second line as zero and 2𝜋; clockwise integration would reverse the sign of the integral.) 
One can generalize this to functions of the form 𝑧𝑘; if 𝑘 ≠ −1,

∮|𝑧|=1
𝑧𝑘𝑑𝑧 = ∮|𝑧|=1

𝑒𝑖𝑘𝜃𝑑𝑒𝑖𝜃

= 𝑖

2𝜋

∫
0

𝑒𝑖(𝑘+1)𝜃𝑑𝜃

= 𝑖
(
𝑒𝑖(𝑘+1)2𝜋 − 𝑒𝑖(𝑘+1)0

)
= 𝑖(1 − 1)

= 0

Thus, defining 𝑘 = 𝑟 − 𝑠, this validates the equivalence of (A.6) and (A.7).

Whiteman (1985) showed that a discounted conditional covariance involving complicated lags can be succinctly expressed as a 
convolution. Consider two serially-correlated processes, 𝑎𝑡 and 𝑏𝑡, where

𝑎𝑡 =
∞∑
𝑘=0
𝐴𝑘𝑒𝑡−𝑘 and 𝑏𝑡 =

∞∑
𝑘=0
𝐵𝑘𝑒𝑡−𝑘.

The discounted conditional covariance as of time 𝑡, setting realized innovations to zero, is

𝐸𝑡

[ ∞∑
𝑠=1
𝛽𝑠𝑎𝑡+𝑠𝑏𝑡+𝑠

]
=𝐸𝑡

[ ∞∑
𝑠=1
𝛽𝑠

( ∞∑
𝑘=0
𝐴𝑘𝑒𝑡+𝑠−𝑘

)( ∞∑
𝑘=0
𝐵𝑘𝑒𝑡+𝑠−𝑘

)]
. (A.8)

Because cross-product terms drop out, coefficients of like lags of 𝑒𝑡 can be grouped:

𝛽[𝐴0𝐵0+𝛽𝐴1𝐵1 + 𝛽2𝐴2𝐵2 +…]𝐸𝑡[𝑒2𝑡+1]

+𝛽2[𝐴0𝐵0 + 𝛽𝐴1𝐵1 + 𝛽2𝐴2𝐵2 +…]𝐸𝑡[𝑒2𝑡+2] +…
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= 𝛽[𝐴0𝐵0+𝛽𝐴1𝐵1 + 𝛽2𝐴2𝐵2 +…]𝜎2
𝑒
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+𝛽2[𝐴0𝐵0 + 𝛽𝐴1𝐵1 + 𝛽2𝐴2𝐵2 +…]𝜎2
𝑒
+…

=
𝛽𝜎2
𝑒

1 − 𝛽

∞∑
𝑠=0
𝛽𝑘𝐴𝑘𝐵𝑘 =

𝛽𝜎2
𝑒

1 − 𝛽
1
2𝜋𝑖 ∮ 𝐴(𝑧)𝐵(𝛽𝑧−1)

𝑑𝑧

𝑧
. (A.9)

This is a useful transformation because the integrand is a product. Because the optimal policy for an optimization problem in which 
the objective is an expected value like that in (A.8), the representation in (A.9) permits a direct variational approach. Equation 
(A.9) is an instance of Parseval’s formula, which states that the inner product of analytic functions is the sum of the products of the 
coefficients of their power series expansions.

A.1. Optimization in the frequency domain

I now apply these insights to a canonical example, the consumer’s optimization problem. Hansen and Sargent (1980) showed 
that the first-order conditions of linear-quadratic stochastic optimization problems could be expressed in lag-operator notation, 𝑧-
transformed, and solved. Whiteman noticed that the 𝑧-transformation could be performed on the objective function itself, skipping 
the step of finding the time-domain version of the Euler condition.22 The objective is then a functional, i.e., a mapping of functions 
into the real line. One can then use the calculus of variations to find the optimal policy function.

The first step is to conjecture that the solution to the agent’s optimization problem must be an analytic function of the fundamental 
process 𝑒𝑡:

𝑏𝑡 = 𝐵(𝐿)𝑒𝑡.

The agent’s objective (A.4) can then be restated in terms of the functions 𝐴 and 𝐵, and the innovations:

max
𝐵(⋅)

−𝐸
[ ∞∑
𝑡=0
𝛽𝑡
(
(𝐴(𝐿) − (1 − 𝑟𝐿)𝐵(𝐿))𝑒𝑡

)2]
.

Expressing the objective in frequency-domain form, using the equivalence established in (A.9), the agent’s objective can be written 
as

max
𝐵(⋅)

−
𝛽𝜎2
𝑒

1 − 𝛽
1
2𝜋𝑖 ∮ (𝐴(𝑧) − (1 − 𝑟𝑧)𝐵(𝑧))(𝐴(𝛽𝑧−1) − (1 − 𝑟𝛽𝑧−1)𝐵(𝛽𝑧−1))𝑑𝑧

𝑧
. (A.10)

It is immediate that a solution exists using standard methods from functional analysis.23

A.2. The variational method

Let 𝜁 (𝑧) be an arbitrary analytic function on the domain {𝑧 ∶ |𝑧| ≤ 𝛽 1
2 }, and let 𝑎 be a real number. Let 𝐵(𝑧) be the agent’s optimal 

choice. His objective can be restated as

𝐽 (𝑎) = max
𝑎

−
𝛽𝜎2
𝑒

1 − 𝛽
1
2𝜋𝑖 ∮ (𝐴(𝑧) − (1 − 𝑟𝑧)(𝐵(𝑧) + 𝑎𝜁 (𝑧)))(𝐴(𝛽𝑧−1) − (1 − 𝑟𝛽𝑧−1)𝐵(𝛽𝑧−1) + 𝑎𝜁 (𝛽𝑧−1)))𝑑𝑧

𝑧
.

This is a conventional problem. Differentiating with respect to 𝑎 and setting 𝑎 = 0 yields the first-order condition describing the 
agent’s optimal choice of 𝐵(⋅):

𝐽 ′(0) = 0 = −
𝛽𝜎2
𝑒

1 − 𝛽
1
2𝜋𝑖 ∮ 𝜁 (𝑧)(1 − 𝑟𝑧)(𝐴(𝛽𝑧−1) − (1 − 𝑟𝛽𝑧−1)𝐵(𝛽𝑧−1))𝑑𝑧

𝑧

−
𝛽𝜎2
𝑒

1 − 𝛽
1
2𝜋𝑖 ∮ 𝜁 (𝛽𝑧−1)(1 − 𝑟𝛽𝑧−1)(𝐴(𝑧) − (1 − 𝑟𝑧)𝐵(𝑧))𝑑𝑧

𝑧
.

Observe the symmetry between the two integrals—everywhere 𝛽𝑧−1 appears in the first integral, 𝑧 appears in the second, and 
conversely. Whiteman establishes that the two integrals are in fact equal; we refer to this property as “𝛽-symmetry”. Therefore, the 
first-order condition simplifies to

0 = − 1
2𝜋𝑖 ∮ (𝐴(𝑧) − (1 − 𝑟𝑧)𝐵(𝑧))(1 − 𝑟𝛽𝑧−1)𝜁 (𝛽𝑧−1)𝑑𝑧

𝑧
, (A.11)

where I have dropped the leading constant 𝛽𝜎
2
𝑒

1−𝛽 .

22 A similar variational approach in continuous time can be found in Davenport and Root (1958), p. 223.
23 By reformulating the problem, the Szegö-Kolmogorov-Krein theorem (Hoffman, 1962, p. 49) can be applied. The first step in this application is to re-write the 

argument of the integral as |1 − (1 − 𝑟𝑧)𝐵𝐴−1|2|𝐴|2 , and then re-interpret |𝐴|2 as the positive measure 𝜇 in the theorem. The second step is to transform the objective 
with a conformal mapping so that the transformed version of (1 − 𝑟𝑧) has a zero at 0 instead of at 𝑟−1 ; the modification of the control function (1 − 𝑟𝑧)𝐵𝐴−1 then is 
an element of 𝐴0 , the analytic functions with a zero at 0. The Szegö-Kolmogorov-Krein theorem also provides a method for computing the value of the optimized 
objective, but we use a more direct approach here because we are interested in characterizing the controls themselves. I am grateful to Joe Ball for suggesting and 
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discussing the application of this theorem with me.
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The integral in first-order condition (A.11) must be zero for arbitrary analytic functions 𝜁 . By Cauchy’s integral theorem, a contour 
integral around a meromorphic function with all its singularities inside the domain—a function of 𝑧 that has no component that can 
be represented as a convergent power series expansion within the domain—is zero. Thus, all that is needed to make the integral 
in (A.11) zero is to make the integrand singular inside the disk, and to have no singularities outside the disk. The assertion is an 
indirect way of stating that the contour of integration is treating the outside of the circle (including ∞) as the domain over which 
the meromorphic function has no poles so that it is analytic there: Cauchy’s theorem asserts that the integral in this sense is zero.

Recall that a solution to the agent’s optimization problem must be an analytic function. The next step in the solution is to separate 
the forward-looking components in (A.11) from the backward-looking components, so that we can then eliminate the non-analytic 
portion from our solution. Examining equation (A.11), note that by construction 𝜁 is analytic, so that it can be represented as a power 
series,

𝜁 (𝑧) =
∞∑
𝑗=0
𝜁𝑗𝑧
𝑗 .

This means that 𝜁 (𝛽𝑧−1) has an expansion of the form

𝜁 (𝛽𝑧−1) =
∞∑
𝑗=0
𝜁𝑗𝛽
𝑗𝑧−𝑗 ,

which has only nonpositive powers of 𝑧. The negative powers of 𝑧—all but the first term—define singularities at 𝑧 = 0, which is 
an element of the unit disk. However, the rest of the integrand in (A.11), (1 − 𝑟𝛽𝑧−1)(𝐴(𝑧) − (1 − 𝑟𝑧)𝐵(𝑧)), can have both positive 
and negative powers of 𝑧 in its power series expansion. If it were possible to guarantee that only negative powers of 𝑧 appeared in 
(1 − 𝑟𝛽𝑧−1)(𝐴(𝑧) − (1 − 𝑟𝑧)𝐵(𝑧)), then its expansion would take the form

(1 − 𝑟𝛽𝑧−1)(𝐴(𝑧) − (1 − 𝑟𝑧)𝐵(𝑧)) =
∞∑
𝑗=1
𝑓𝑗𝛽

𝑗𝑧−𝑗 ,

for some {𝑓𝑗}, and the product of this with 𝜁 (𝛽𝑧−1) would take the form

𝜁 (𝛽𝑧−1)(1 − 𝑟𝛽𝑧−1)(𝐴(𝑧) − (1 − 𝑟𝑧)𝐵(𝑧)) =
∞∑
𝑗=1
𝑔𝑗𝛽
𝑗𝑧−𝑗 ,

for some {𝑔𝑗}. Every term in the sum is a singularity, and the integral of the sum is therefore zero.

The first-order condition (A.11) can now be broken out of the integral and stated as follows:

(1 − 𝑟𝛽𝑧−1)(𝐴(𝑧) − (1 − 𝑟𝑧)𝐵(𝑧)) =
−1∑
−∞
, (A.12)

where ∑−1
−∞ is shorthand for an arbitrary function that has only negative powers of 𝑧, and hence cannot be part of the solution to the 

agent’s optimization problem. This type of equation is known as a Wiener-Hopf equation.

A.3. Factorization

To solve the Wiener-Hopf equation of a stochastic linear-quadratic optimization problem, we must factor the equation to separate 
the nonanalytic parts from the analytic parts. The factorization problem is a generalization of the problem of solving a quadratic 
equation, but there is no general formula for the solution. However, if a candidate factorization can be found, then even if it is not 
analytic and invertible, there is a general formula for converting that solution into an analytic and invertible factorization (Ball et 
al., 1990).

The Wiener-Hopf equation (A.12) can be restated as:

(1 − 𝑟𝛽𝑧−1)(1 − 𝑟𝑧)𝐵(𝑧) = (1 − 𝑟𝛽𝑧−1)𝐴(𝑧) +
−1∑
−∞
. (A.13)

At this point it should be emphasized that the solution will be a Wiener filter, as opposed to a Kalman filter. A Kalman filter 
recursively reacts to information from the previous period and converges as the history of information evolves after its initiation. A 
Wiener filter explicitly treats history as infinite and therefore a starting date in the infinite past; the stationarity of the model dictates 
the use of the Wiener approach.

It is tempting to solve for 𝐵(𝑧) by dividing the left-hand side by the coefficient of 𝐵(𝑧), (1 − 𝑟𝛽𝑧−1)(1 − 𝑟𝑧). However, this would 
multiply the ∑−1

−∞ term by positive powers of 𝑧, making it impossible to establish the coefficients of the positive powers of 𝑧 in the 
solution.

The correct procedure is first to factor the coefficient of 𝐵(𝑧) into the product of analytic and non-analytic functions:
911

(1 − 𝑟𝛽𝑧−1)(1 − 𝑟𝑧) = 𝛽𝑟2(1 − (𝛽𝑟)−1𝛽𝑧−1)(1 − (𝛽𝑟)−1𝑧).
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Because by assumption 1
𝑟
< 𝛽1∕2, the first factor on the right-hand side, (1 − (𝛽𝑟)−1𝛽𝑧−1), when inverted has a convergent power 

series (on the disk defined by {𝑧||||𝑧| ≤ 𝛽1∕2})) in negative powers of 𝑧. Hence, we can divide through by this factor to rewrite the 
Wiener-Hopf equation as

𝛽𝑟2(1 − (𝛽𝑟)−1𝑧)𝐵(𝑧) = (1 − 𝑟𝛽𝑧−1)
1 − (𝛽𝑟)−1𝛽𝑧−1

𝐴(𝑧) +
−1∑
−∞
, (A.14)

where we use the fact that

1
(1 − (𝛽𝑟)−1𝛽𝑧−1

−1∑
−∞

has only negative powers of 𝑧. Because the left-hand side of (A.14) is the product of analytic functions, applying the annihilator to 
(A.14) yields

𝛽𝑟2(1 − (𝛽𝑟)−1𝑧)𝐵(𝑧) =
[

(1 − 𝑟𝛽𝑧−1)
(1 − (𝛽𝑟)−1𝛽𝑧−1)

𝐴(𝑧)
]
+
.

Because (𝛽1∕2𝑟)−1 < 1, it follows that the inverse of (1 − (𝛽𝑟)−1𝑧) is also analytic, so that we can divide by (1 − (𝛽𝑟)−1𝑧) to solve for the 
optimal 𝐵(𝑧),

𝐵(𝑧) =

[
(1 − (𝛽𝑟)−1𝛽𝑧−1)−1(1 − 𝑟𝛽𝑧−1)𝐴(𝑧)

]
+

[(𝛽𝑟2)(1 − (𝛽𝑟)−1𝑧)]
.

A more explicit solution for 𝐵(𝑧) obtains if the endowment process is AR(1), so that

𝐴(𝑧) = 1
1 − 𝜌𝑧

.

Proposition 6 establishes a key result that is used repeatedly: the annihilate when there is an AR(1) construct can be simply 
calculated—if 𝐴(𝑧) is an AR(1), then 

[
𝑓 (𝛽𝑧−1)𝐴(𝑧)

]
+ = 𝑓 (𝛽𝜌)𝐴(𝑧).

Proposition 6. (“Annihilator” lemma) If 𝑓 is analytic on 𝛽−1∕2 and 𝜌 < 𝛽−1∕2, then[
𝑓 ∗(1 − 𝜌𝑧)−1

]
+ = 𝑓 (𝛽𝜌)(1 − 𝜌𝑧)−1.

Proof. Direct computation. See also Seiler and Taub (2008). □

Proposition 7 shows that the proposition about annihilates of first-order AR functions must be used with caution. If there is a 
zero in the annihiland, the proposition changes.

Proposition 7. Let 𝑎 < 𝛽−1∕2. Then 
[
𝑓 ∗

1− 1
𝑎
𝑧−1

1−𝑎𝑧

]
+
= 0.

Proof.⎡⎢⎢⎣𝑓 ∗
1 − 1

𝑎
𝑧−1

1 − 𝑎𝑧

⎤⎥⎥⎦+ = 1
𝑎

[
𝑧−1𝑓 ∗

𝑎𝑧− 1
1 − 𝑎𝑧

]
+
= 1
𝑎

[
−𝑓 ∗𝑧−1

]
+ = 0. □

Using Proposition 6, it follows that

𝐵(𝑧) = (1 − 𝑟𝛽)𝐴(𝑧)
[(𝛽𝑟2)(1 − (𝛽𝑟)−1𝛽𝜌)(1 − (𝛽𝑟)−1𝑧)]

.

This formula has a simple “permanent income” interpretation: the agent applies the filter

1 − 𝑟𝛽
[(𝛽𝑟2)(1 − (𝛽𝑟)−1𝛽𝜌)(1 − (𝛽𝑟)−1𝐿)]

to the endowment process 𝐴(𝐿)𝑒𝑡 in order to smooth consumption.

A.4. Equivalence of time domain and frequency domain approaches

Our focus has been on generating the Wiener-Hopf equation in the frequency domain and solving it there. We now illustrate in 
our consumer optimization problem the general result that the time domain approach is equivalent, but less convenient.

Going back to the time domain objective in equation (A.4),

∞∑
𝑡 2
912

max
{𝑏𝑡}

−𝐸
𝑡=0
𝛽 (𝑦𝑡 + 𝑟𝑏𝑡−1 − 𝑏𝑡) , (A.15)
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we can calculate the first order condition at time 𝑡:

0 = −(𝑦𝑡 + 𝑟𝑏𝑡−1 − 𝑏𝑡) + 𝑟𝛽𝐸𝑡[(𝑦𝑡+1 + 𝑟𝑏𝑡 − 𝑏𝑡+1)].

This is an Euler equation in which the future value of the choice variable, 𝑏𝑡+1, appears, with the expectation of that future variable 
conditional on time 𝑡 information. This makes the equation non-trivial in general.

The technical challenge is to calculate the expectation of the future value of the choice variable, 𝑏𝑡+1. The solution is to posit that 
𝑏𝑡 has a fixed and stationary structure, described by a filter. First recall that 𝑦𝑡 is a serially correlated stationary process described by

𝑦𝑡 =𝐴(𝐿)𝑒𝑡.

Posit that the choice variable has the stationary structure

𝑏𝑡 = 𝐵(𝐿)𝑒𝑡, (A.16)

for all 𝑡. Because the conjectured structure applies to future values of the choice variable 𝑏𝑡, the expectation can be calculated. Note 
also that we made this conjecture in the development of the frequency domain approach, but before the optimization step.

For the conjecture to be correct, we must show that if the future and past values of 𝑏, 𝑏𝑡+1 and 𝑏𝑡−1, take this form, then it is also 
optimal for 𝑏𝑡 to take the same form.

Substituting the structure of 𝑦𝑡 and the conjectured form of 𝑏𝑡 into the Euler equation yields

0 = −(𝐴(𝐿)𝑒𝑡 + 𝑟𝐵(𝐿)𝑒𝑡−1 −𝐵(𝐿)𝑒𝑡) + 𝑟𝛽𝐸𝑡[(𝐴(𝐿)𝑒𝑡+1 + 𝑟𝐵(𝐿)𝑒𝑡 −𝐵(𝐿)𝑒𝑡+1)].

Consolidate this further by expressing the future and lagged values of the functions using lag operators:

(1 − 𝑟𝐿)𝐵(𝐿)𝑒𝑡 + 𝑟2𝛽𝐵(𝐿)𝑒𝑡 − 𝑟𝛽𝐸𝑡[𝐵(𝐿)𝐿−1𝑒𝑡] =𝐴(𝐿)𝑒𝑡 − 𝑟𝛽𝐸𝑡[(𝐴(𝐿)𝐿−1𝑒𝑡].

The next step is key. One can use the linearity of the expectation operator, and the fact that the expected value of the conditioning 
information is an identity, to yield

𝐸𝑡[(1 − 𝑟𝐿+ 𝑟2𝛽 − 𝑟𝛽𝐿−1)𝐵(𝐿)𝑒𝑡] =𝐸𝑡[(1 − 𝑟𝛽𝐿−1)𝐴(𝐿)𝑒𝑡]

Carrying out some algebra yields

𝐸𝑡[(1 − 𝑟𝐿)(1 − 𝑟𝛽𝐿−1)𝐵(𝐿)𝑒𝑡] =𝐸𝑡[(1 − 𝑟𝛽𝐿−1)𝐴(𝐿)𝑒𝑡]. (A.17)

What remains is to solve this equation for 𝐵.

We have yet to specify any structure on 𝐵. However, we know that 𝐵 cannot weigh future realizations of the innovations 𝑒𝑡: 
by construction they are hidden from view. However, it is possible that the general solution for 𝐵 in equation (A.17) contains such 
terms. So let us posit that 𝐵 has two parts, �̂�, which weights only current and past values of 𝑒𝑡, and �̃�, which weights only future 
values of 𝑒𝑡, pretending for the moment that this is allowed. Substituting into (A.17) then yields

𝐸𝑡[(1 − 𝑟𝐿)(1 − 𝑟𝛽𝐿−1)(�̂�(𝐿) + �̃�(𝐿−1))𝑒𝑡] =𝐸𝑡[(1 − 𝑟𝛽𝐿−1)𝐴(𝐿)𝑒𝑡].

We can isolate the �̃� term:

𝐸𝑡[(1 − 𝑟𝐿)(1 − 𝑟𝛽𝐿−1)�̂�(𝐿)𝑒𝑡] =𝐸𝑡[(1 − 𝑟𝛽𝐿−1)𝐴(𝐿)𝑒𝑡] +𝐸𝑡[(1 − 𝑟𝐿)(1 − 𝑟𝛽𝐿−1)�̃�(𝐿−1)𝑒𝑡].

The part on the right hand side will now be zeroed out by the expectation operator because it entails only future, unrealized and 
unobservable innovations. We write it suggestively as

𝐸𝑡[(1 − 𝑟𝐿)(1 − 𝑟𝛽𝐿−1)�̂�𝑒𝑡] =𝐸𝑡[(1 − 𝑟𝛽𝐿−1)𝐴(𝐿)𝑒𝑡] +𝐸𝑡[𝑓 (𝐿−1)𝑒𝑡],

where all we care about is that 𝑓 only has terms involving 𝐿−1, 𝐿−2, and so on. Thus, when the expectation is taken, the result is 
zero; 𝑓 can otherwise be arbitrary.

Removing the expectation yields

(1 − 𝑟𝐿)(1 − 𝑟𝛽𝐿−1) = (1 − 𝑟𝛽𝐿−1) + 𝑓 (𝐿−1).

Formally, the additional step of 𝑧-transforming the equation can now be undertaken, yielding equation (A.13), the same Wiener-Hopf 
equation obtained by taking the variational first order condition of the 𝑧-transformed objective, except that here we use the notation 
𝑓 (𝐿−1) instead of ∑−1

−∞.

As shown in the solution procedure for the frequency domain version of equation (A.13), this equation has a solution, validating 
the conjecture expressed in equation (A.16) that a stationary solution to the Euler equation exists. Thus, we have validated our 
assertion that the frequency-domain methods yield the same results as the time domain methods, that is, optimizing over optimal 
913

quantities in the time domain is equivalent to optimizing over functions in the frequency domain due to stationarity.
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While the focus here has been on the familiar example of optimal consumption, all of the steps in the proof generalize: for a 
general problem with a quadratic objective and linear constraints, driven by stationary stochastic processes, one can complete the 
square of the objective, yielding a general objective of the form (A.10); it is helpful to express it in the equivalent form

max
{𝐵(⋅)}

−‖𝐴−𝑅𝐵‖22 (A.18)

in which 𝑅 is generically a non-invertible function. This problem is known as a model-matching problem in the engineering literature 
and can be solved via the generalization of the Wiener-Hopf method outlined above.

Appendix B. Dynamic model basic derivations and proofs

B.1. Proof of Lemma 1

Proof. Conjecture that firm −𝑖’s output process is a stationary linear function of its information:

𝑞−𝑖𝑡 =𝑄−𝑖(𝑝𝑡 + 𝑒𝑡;𝑋𝑡𝑖 ) = 𝛼−𝑖(𝐿)𝐴−𝑖(𝐿)𝑎−𝑖𝑡 + 𝛽−𝑖(𝐿)𝐵(𝐿)𝑎𝑡 + 𝛿−𝑖(𝐿)(𝑝𝑡 + 𝑒𝑡). (B.1)

Substituting into price in (2) yields

𝜋𝑃 (𝑞1𝑡, 𝑞2𝑡,𝑋𝑡) = (1 + 𝛿−𝑖(𝐿))−1
[
𝐴1(𝐿)𝑎1𝑡 + (1 − 𝛼−𝑖(𝐿))𝐴−𝑖(𝐿)𝑎−𝑖𝑡 +(1 − 𝛽−𝑖(𝐿))𝐵(𝐿)𝑎𝑡 − 𝛿−𝑖(𝐿)𝑒𝑃𝑡 − 𝑞𝑖𝑡

]
. (B.2)

To solve firm 𝑖’s profit maximization problem, take the conjectured linear filters of firm −𝑖 and the implied linear structure of prices 
and then optimize, solving

max
𝑞𝑖𝑡
𝐸

[ ∞∑
𝑠=0
𝜂𝑡+𝑠

(
(1 + 𝛿−𝑖(𝐿))−1

(
𝐴𝑖(𝐿)𝑎𝑖,𝑡+𝑠 + (1 − 𝛼−𝑖(𝐿))𝐴−𝑖(𝐿)𝑎−𝑖,𝑡+𝑠

+(1 − 𝛽−𝑖(𝐿))𝐵(𝐿)𝑎𝑡+𝑠 − 𝛿−𝑖(𝐿)𝑒𝑃𝑡+𝑠 − 𝑞𝑖,𝑡+𝑠
))
𝑞𝑖,𝑡+𝑠

||||𝑝𝑡 + 𝑒𝑡,𝑋𝑡𝑖
]
, (B.3)

using the structure of price from equation (B.2) (but leaving the price function in the conditioning information abstract to conserve 
notation).

Define

𝜅(𝐿) ≡ (1 + 𝛿−𝑖(𝐿))−1 =
∞∑
𝑠=0
𝜅𝑠𝐿

𝑠, (B.4)

where I assume that (1 + 𝛿−𝑖(𝐿)) is invertible,24 and define the linear function

𝑥𝑖𝑡 ≡𝐴𝑖(𝐿)𝑎𝑖𝑡 + (1 − 𝛼−𝑖(𝐿))𝐴−𝑖(𝐿)𝑎−𝑖𝑡 + (1 − 𝛽−𝑖(𝐿))𝐵(𝐿)𝑎𝑡 − 𝛿−𝑖(𝐿)𝑒𝑡. (B.5)

Then firm 𝑖’s objective can be written compactly as

max
𝑞𝑖𝑡
𝐸

[ ∞∑
𝑠=0
𝜂𝑡+𝑠

(
𝜅(𝐿)(𝑥𝑖,𝑡+𝑠 − 𝑞𝑖,𝑡+𝑠)

)
𝑞𝑖,𝑡+𝑠

||||𝑝𝑡 + 𝑒𝑡,𝑋𝑡𝑖
]
. (B.6)

The first-order condition describing firm 𝑖’s best response to its rival’s conjectured stationary linear strategy is

0 =𝐸
[
𝜅(𝐿)(𝑥𝑖𝑡 − 𝑞𝑖𝑡) −

∞∑
𝑠=0
𝜂𝑠𝜅𝑠𝑞𝑖,𝑡+𝑠

||||𝑝𝑡 + 𝑒𝑡,𝑋𝑡𝑖]. (B.7)

The final summation captures 𝑞𝑖𝑡 ’s impact on future payoffs via the term (1 + 𝛿−𝑖(𝐿))−1.
The linear structure of price, given the conjecture that the rival’s strategy is linear, means that the price function is linear. 

Therefore, the conditional forecast of the net information in price in the first-order condition (B.7) is a linear projection on the history 
of (linear) prices. Thus, firm 𝑖’s best response is also linear, mirroring the conjectured form for firm −𝑖. Stationarity is immediate: the 
rival’s conjectured linear strategy was not time-indexed; so the resulting linear strategy for firm 𝑖 is also not time-indexed. □

Proof of Proposition 1. The variational first-order conditions,25 for 𝛼1 and 𝛽1 with respect to the objective (15) are:

𝛼 ∶ 𝛼1
(
𝐷(1 − 𝛿∗1𝐷

∗) +𝐷∗(1 − 𝛿1𝐷)
)
𝐴∗𝐴𝜎2

𝑎
= (𝐷 − (𝛿1 + 𝛿∗1 )𝐷

∗𝐷)𝐴∗𝐴𝜎2
𝑎
+

−1∑
−∞

24 That is, the power series expansion of 1
1+𝛿−𝑖 (𝐿)

has roots inside the disk {𝑧||||𝑧| < 𝜂−1∕2} and thus is convergent. In the frequency-domain this assumption is not 
needed: one can manipulate objects that lack this convergence property—specifically, the zeroes of a function can lie outside the disk, but convergence is ultimately 
imposed by the solution procedure, specifically, the factorization step.
914

25 In this setting these equations are Wiener-Hopf equations.
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𝛽 ∶ 𝛽1
(
𝐷(1 − 𝛿∗1𝐷

∗) +𝐷∗(1 − 𝛿1𝐷)
)
𝐵∗𝐵𝜎2

𝑎
= (1 − 𝛽2)

(
𝐷(1 − 𝛿∗1𝐷

∗) −𝐷∗𝛿1𝐷
)
𝐵∗𝐵𝜎2

𝑎
+

−1∑
−∞

Rewrite these Wiener-Hopf equations as

𝛼1𝐹
∗𝐹𝐴∗𝐴𝜎2

𝑎
= (𝐷 − (𝛿1 + 𝛿∗1 )𝐷

∗𝐷)𝐴∗𝐴𝜎2
𝑎
+

−1∑
−∞

(B.8)

𝛽1𝐹
∗𝐹𝐵∗𝐵𝜎2

𝑎
= (1 − 𝛽2)

(
𝐷(1 − 𝛿∗1𝐷

∗) −𝐷∗𝛿1𝐷
)
𝐵∗𝐵𝜎2

𝑎
+

−1∑
−∞

(B.9)

Inverting the ∗ terms on the left-hand side, applying the [⋅]+ operator, and inverting the remaining left-hand side coefficients yields 
the formulas for 𝛼 and 𝛽 in Proposition 1.

Derivation of the 𝛿 recursion. The next step involves developing a recursion in 𝛿. That equation will form the initial recursion 
that will be developed into the recursion (20).

The 𝛿1 Wiener-Hopf equation is

𝐷(1 − 𝛼1)((1 + 𝛿∗2 )𝐷
∗2(1 − 𝛼∗1 ))𝐴1𝐴

∗
1𝜎

2
𝑎
+𝐷(1 − 𝛼2)(1 + 𝛿∗2 )𝐷

∗2(1 − 𝛼∗2 )𝐴2𝐴
∗
2𝜎

2
𝑎

+𝐷(1 − 𝛽1 − 𝛽2)
(
(1 + 𝛿∗2 )𝐷

∗2(1 − 𝛽∗1 − 𝛽
∗
2 )
)
𝐵𝐵∗𝜎2

𝑎

+ (𝐷 − 1)(1 + 𝛿∗2 )𝐷
∗2𝜎2
𝑒

−𝐷∗2(1 − 𝛼∗1 )(𝛼1 + 𝛿1𝐷(1 − 𝛼1))𝐴1𝐴
∗
1𝜎

2
𝑎
−𝐷∗2(1 − 𝛼∗2 )𝛿1𝐷(1 − 𝛼2)𝐴2𝐴

∗
2𝜎

2
𝑎

−𝐷∗2(1 − 𝛽∗1 − 𝛽
∗
2 )
(
𝛽1 + 𝛿1𝐷(1 − 𝛽1 − 𝛽2)

)
𝐵𝐵∗𝜎2

𝑎

−𝐷∗2𝛿1𝐷𝜎
2
𝑒
=

−1∑
−∞
,

where I have used the fact that

𝜕

𝜕𝛿𝑖
𝛿𝑖𝐷 = (1 + 𝛿−𝑖)𝐷2.

This equation is fairly complicated, but significant simplification is possible because a version of the envelope theorem holds: the 
Wiener-Hopf equations for both 𝛼 and 𝛽 are embedded in the 𝛿 equation and therefore will drop out. To establish this, first divide 
out 𝐷∗ and bring out the factor (1 + 𝛿∗2 ) to obtain:(

𝐷(1 − 𝛼1)𝐷∗(1 − 𝛼∗1 ))𝐴1𝐴
∗
1𝜎

2
𝑎
+𝐷(1 − 𝛼2)𝐷∗(1 − 𝛼∗2 )𝐴2𝐴

∗
2𝜎

2
𝑎

+𝐷(1 − 𝛽1 − 𝛽2)𝐷∗(1 − 𝛽∗1 − 𝛽
∗
2 )𝐵𝐵

∗𝜎2
𝑎

)
(1 + 𝛿∗2 )

+ (𝐷 − 1)(1 + 𝛿∗2 )𝐷
∗𝜎2
𝑒

−𝐷∗(1 − 𝛼∗1 )(𝛼1 + 𝛿1𝐷(1 − 𝛼1))𝐴1𝐴
∗
1𝜎

2
𝑎
−𝐷∗(1 − 𝛼∗2 )𝛿1𝐷(1 − 𝛼2)𝐴2𝐴

∗
2𝜎

2
𝑎

−𝐷∗(1 − 𝛽∗1 − 𝛽
∗
2 )
(
𝛽1 + 𝛿1𝐷(1 − 𝛽1 − 𝛽2)

)
𝐵𝐵∗𝜎2

𝑎

−𝐷∗𝛿1𝐷𝜎
2
𝑒
=

−1∑
−∞
.

Define 𝐻 by

𝐻∗𝐻 ≡ (1 − 𝛼∗1 )(1 − 𝛼1)𝐴1𝐴
∗
1𝜎

2
𝑎
+ (1 − 𝛼∗2 )(1 − 𝛼2)𝐴2𝐴

∗
2𝜎

2
𝑎

+ (1 − 𝛽∗1 − 𝛽
∗
2 )(1 − 𝛽1 − 𝛽2)𝐵𝐵

∗𝜎2
𝑎
+ 𝜎2
𝑒
,

and rewrite the Wiener-Hopf equation as

𝐷∗𝐷𝐻∗𝐻𝛿1 =𝐷∗𝐷𝐻∗𝐻(1 + 𝛿∗2 ) − (𝐷∗𝜎2
𝑒
)(1 + 𝛿∗2 )

− 𝛼1𝐷∗(1 − 𝛼∗1 )𝐴1𝐴
∗
1𝜎

2
𝑎
− 𝛽1𝐷∗(1 − 𝛽∗1 − 𝛽

∗
2 )𝐵𝐵

∗𝜎2
𝑎
+

−1∑
−∞

with solution

𝛿1 =𝐻−1𝐷−1
[
𝐷𝐻(1 + 𝛿∗2 ) −𝐻

∗−1
(
𝜎2
𝑒
(1 + 𝛿∗2 ) + 𝛼1(1 − 𝛼

∗
1 )𝐴1𝐴

∗
1𝜎

2
𝑎
+ 𝛽1(1 − 𝛽∗1 − 𝛽

∗
2 )𝐵𝐵

∗𝜎2
𝑎

)]
+

(B.10)
915

To isolate the 𝛼 and 𝛽 equations, begin by rearranging the Wiener-Hopf equation for 𝛼, equation (B.8) as:
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(1 − 𝛼1)
(
𝐷(1 − 𝛿∗1𝐷

∗) +𝐷∗(1 − 𝛿1𝐷)
)
𝐴∗𝐴𝜎2

𝑎
=𝐷∗𝐴∗𝐴𝜎2

𝑎
+

−1∑
−∞
.

Substituting for 𝐷 = (1 + 2𝛿)−1 and 𝐷∗ = (1 + 2𝛿∗)−1 this simplifies to:

(1 − 𝛼1)𝐷∗𝐷
(
2 + 𝛿∗1 + 𝛿1)

)
𝐴∗𝐴𝜎2

𝑎
=𝐷∗𝐴∗𝐴𝜎2

𝑎
+

−1∑
−∞
. (B.11)

Dividing out 𝐷∗ and grouping terms yields

𝐷

(
1 + 𝛿∗2 − 𝛿1 − 𝛼1(2 + 𝛿2 + 𝛿

∗
2 ))

)
𝐴∗𝐴𝜎2

𝑎
=

−1∑
−∞
. (B.12)

Next, examine the 𝛼1 elements in the 𝛿1 Wiener-Hopf equation:(
𝐷∗𝐷(1 − 𝛼∗1 )(1 − 𝛼1)(𝛿1 − 𝛿

∗
2 − 1) +𝐷∗(1 − 𝛼∗1 )𝛼1

)
𝐴∗1𝐴1𝜎

2
𝑎
.

Dividing out the 𝐷∗ term (it appears in all of the non-𝛼1 terms as well) and then bringing out the common factor 𝐷 yields

𝐷(1 − 𝛼∗1 )
(
(1 − 𝛼1)(𝛿1 − 𝛿∗2 − 1) +𝐷−1𝛼1

)
𝐴∗𝐴𝜎2

𝑎
.

The inner terms can be rearranged to yield

−𝐷(1 − 𝛼∗1 )
(
1 + 𝛿∗2 − 𝛿1 − 𝛼1(2 + 𝛿2 + 𝛿

∗
2 )
)
𝐴∗𝐴𝜎2

𝑎
=

−1∑
−∞
,

with the last equality following from the Wiener-Hopf equation (B.8). Thus, these terms all drop out of the 𝛿1 Wiener-Hopf equation 
(B.10).

The 𝛽1 Wiener-Hopf equation is(
(1 − 𝛽1 − 𝛽2)𝐷∗𝐷(2 + 𝛿2 + 𝛿∗2 ) −𝐷

∗(1 − 𝛽2)
)
𝐵∗𝐵𝜎2

𝑎
=

−1∑
−∞
. (B.13)

The 𝛽 terms from the 𝛿1 Wiener-Hopf equation are(
𝐷∗𝐷(1 − 𝛽∗1 − 𝛽

∗
2 )(1 − 𝛽1 − 𝛽2)(𝛿1 − 𝛿

∗
2 − 1) +𝐷∗𝛽1(1 − 𝛽∗1 − 𝛽

∗
2 )
)
𝐵∗𝐵𝜎2

𝑎
.

Consolidating terms yields

𝐷∗(1 − 𝛽∗1 − 𝛽
∗
2 )
(
𝐷(1 − 𝛽1 − 𝛽2)(𝛿1 − 𝛿∗2 − 1) + 𝛽1.

)
𝐵∗𝐵𝜎2

𝑎
.

Adding and subtracting 1 − 𝛽2 yields

𝐷∗(1 − 𝛽∗1 − 𝛽
∗
2 )
(
𝐷(1 − 𝛽1 − 𝛽2)(𝛿1 − 𝛿∗2 − 1) − (1 − 𝛽1 − 𝛽2) + (1 − 𝛽2)

)
𝐵∗𝐵𝜎2

𝑎
.

Consolidating yields

𝐷∗(1 − 𝛽∗1 − 𝛽
∗
2 )
(
𝐷(1 − 𝛽1 − 𝛽2)(−2 − 𝛿2 − 𝛿∗2 ) + (1 − 𝛽2)

)
𝐵∗𝐵𝜎2

𝑎
=

−1∑
−∞
,

with the last equality following from (B.13). Thus, the 𝛽 elements also drop out of the 𝛿1 equation (B.10).

With the extraneous terms eliminated, the 𝛿1 Wiener-Hopf equation (B.10) reduces to

𝐷∗𝐷
(
(1 − 𝛼∗2 )(1 − 𝛼2)𝐴2𝐴

∗
2𝜎

2
𝑎
+ 𝜎2
𝑒

)
(1 + 𝛿∗2 − 𝛿1) =𝐷

∗𝜎2
𝑒
(1 + 𝛿∗2 ) +

−1∑
−∞
. (B.14)

Next, substitute the definition of 𝐽 from (17) in the main text, into equation (B.14) to obtain

𝐷∗𝐷𝐽 ∗𝐽 (1 + 𝛿∗2 − 𝛿1) =𝐷
∗𝜎2
𝑒
(1 + 𝛿∗2 ) +

−1∑
−∞
.

Grouping the terms above yields:

𝐷𝐽 ∗𝐽𝛿1 = (𝐷𝐽 ∗𝐽 − 𝜎2
𝑒
)(1 + 𝛿∗2 ) +

−1∑
−∞
.

Solving yields [ ]

916

𝛿1 =𝐷−1𝐽−1 (𝐷𝐽 − 𝐽 ∗−1𝜎2
𝑒
)(1 + 𝛿∗2 ) +

. (B.15)
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To attempt a stable recursion, further manipulation is required. We have

−1∑
−∞

=𝐷𝐽 ∗𝐽 (1 + 𝛿∗2 − 𝛿1) − 𝜎
2
𝑒
(1 + 𝛿∗2 )

=𝐷
(
𝐽 ∗𝐽 (1 −

𝛿1
1 + 𝛿∗2

) −𝐷−1𝜎2
𝑒

)
=𝐷

(
𝐽 ∗𝐽 (1 −

𝛿1
1 + 𝛿∗2

) − (1 + 𝛿1 + 𝛿2)𝜎2𝑒
)

=𝐷
(
𝐽 ∗𝐽 (1 −

𝛿1
1 + 𝛿∗2

) − (1 + 𝛿1 + 𝛿2)𝜎2𝑒
)
.

Now apply the annihilator operator:

(𝛿1 + 𝛿2)𝐷 =

[
−𝐷 +𝐷 1

𝜎2
𝑒

𝐽 ∗𝐽 (1 −
𝛿1

1 + 𝛿∗2
)

]
+

.

Using symmetry and dividing by 2𝐷 yields

𝛿 = −1
2
+ 𝐷

−1

2𝜎2
𝑒

[
𝐷𝐽 ∗𝐽 (1 − 𝛿

1 + 𝛿∗
)
]
+
. (B.16)

The static form of this equation exactly mirrors the static 𝛿 recursion in Bernhardt and Taub (2015).

B.2. Derivation of the recursion in 𝐷

Manipulating the definition of 𝐷 in equation (B.16) yields

1 + 2𝛿 = 1 + 2𝛿
𝜎2
𝑒

[
𝐷𝐽 ∗𝐽

(
1 − 𝛿

1 + 𝛿∗
)]

+
.

Dividing out 1 + 2𝛿 yields

𝜎2
𝑒
=
[
𝐷𝐽 ∗𝐽

(
1 − 𝛿

1 + 𝛿∗
)]

+
. (B.17)

Next undo the annihilator operator and write

(1 + 𝛿∗)𝜎2
𝑒
+

−1∑
−∞

= 𝐽 ∗𝐽 1 + 𝛿
∗ − 𝛿

1 + 2𝛿
. (B.18)

Now substitute

𝛿 = −1
2
(𝐷−1 − 1) and 1 + 𝛿 = 1 +𝐷

2𝐷
into the first-order condition for 𝛿, equation (B.18), to obtain

𝐽 ∗𝐽

(
1 + 𝐷

∗−1 − 1 − (𝐷−1 − 1)
2

)
𝐷 = 1 +𝐷∗

2𝐷∗ 𝜎
2
𝑒
+

−1∑
−∞
, (B.19)

which reduces to

𝐽 ∗𝐽

(
𝐷∗𝐷 + 𝐷

2
− 𝐷

∗

2

)
= 1 +𝐷∗

2
𝜎2
𝑒
+

−1∑
−∞
. (B.20)

Starting with equation (B.20) we derive a new recursion in 𝐷. We first multiply equation (B.20) by 2:

𝐽 ∗𝐽
(
2𝐷∗𝐷 +𝐷 −𝐷∗) = (1 +𝐷∗)𝜎2

𝑒
+

−1∑
−∞
. (B.21)

Next, add and subtract 𝐷:

𝐽 ∗𝐽
(
2𝐷∗𝐷 + 2𝐷 − (𝐷∗ +𝐷)

)
= (1 +𝐷∗)𝜎2

𝑒
+

−1∑
−∞

(B.22)

and then rearrange to obtain

∗ ( ∗) ∗ 2 ∗ ∗
−1∑
917

2𝐽 𝐽𝐷 1 +𝐷 = (1 +𝐷 )𝜎
𝑒
+ 𝐽 𝐽 (𝐷 +𝐷) +

−∞
. (B.23)
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Divide by 2(1 +𝐷∗):

𝐽 ∗𝐽𝐷 = 1
2
𝜎2
𝑒
+ 1

2
𝐽 ∗𝐽
𝐷∗ +𝐷
1 +𝐷∗ +

−1∑
−∞
. (B.24)

We have isolated 𝐷 on the left-hand side and the 𝐷∗ terms on the right-hand side, and the 𝐽 terms are the compound term 𝐽 ∗𝐽 . 
After dividing by 𝐽 ∗, we impose the annihilator projection operator and divide by 𝐽 to obtain the new recursion

𝐷 = 1
2
𝐽−1

[
𝐽 ∗−1𝜎2

𝑒

]
+
+ 1

2
𝐽−1

[
𝐽
𝐷∗ +𝐷
1 +𝐷∗

]
+
. (B.25)

The next step is to express the 𝐽 ∗𝐽 terms in terms of 𝐷 (equivalently 𝛿).
Expressing 𝐽 in terms of 𝐷. First, impose symmetry on equations (16) and (17) to obtain

𝐹 ∗𝐹 ≡𝐷(1 − 𝛿∗𝐷∗) +𝐷∗(1 − 𝛿𝐷) (B.26)

𝐽 ∗𝐽 ≡ (1 − 𝛼∗)(1 − 𝛼)𝐴𝐴∗𝜎2
𝑎
+ 𝛾∗𝛾𝐶𝐶∗𝜎2

𝑐
+ 𝜎2
𝑒
. (B.27)

In the existence proof in Appendix C, we will assume that 𝜎2
𝑐
= 0, yielding

𝐽 ∗𝐽 ≡ (1 − 𝛼∗)(1 − 𝛼)𝐴𝐴∗𝜎2
𝑎
+ 𝜎2
𝑒
. (B.28)

To elaborate on the structure of 𝐽 , it is helpful to re-express the solution for 𝛼:

𝛼 = 𝐹−1𝐴−1
[
𝐹 ∗−1(𝐷(1 − 𝛿∗𝐷∗) −𝐷𝛿𝐷∗)𝐴

]
+
.

The first step is to convert this to an expression in 1 − 𝛼. Write

𝐹 ∗𝐹𝛼 = (𝐷(1 − 𝛿∗𝐷) −𝐷∗𝐷𝛿)𝐴+
−1∑
−∞
.

Substitution from equation (B.26) and further manipulation yields

(
𝐷(1 − 𝛿∗𝐷∗) +𝐷∗(1 − 𝛿𝐷)

)
𝐴𝛼 =

(
𝐷(1 − 𝛿∗𝐷∗) +𝐷∗(1 − 𝛿𝐷)

)
𝐴−𝐷∗𝐴+

−1∑
−∞
.

Bringing the common term over to the left-hand side and factoring yields:

(1 − 𝛼)
(
𝐷(1 − 𝛿∗𝐷∗) +𝐷∗(1 − 𝛿𝐷)

)
𝐴 =𝐷∗𝐴+

−1∑
−∞
.

Solving yields

(1 − 𝛼) =𝐴−1𝐹−1
[
𝐹 ∗−1𝐷∗𝐴

]
+
.

Notice that if 𝐴 is a single-pole function, we can apply the annihilator lemma, Lemma 6. The annihilator term will then have the 
structure of 𝐴, multiplied by a constant. The leading 𝐴−1 term will cancel the 𝐴 term inside the annihilator and thus (1 − 𝛼) takes the 
form

(1 − 𝛼) = 𝑐𝐹−1, (B.29)

where 𝑐 is a constant. Thus,

(1 − 𝛼)𝐴𝐴∗(1 − 𝛼∗) = 𝐹−1
[
𝐹 ∗−1𝐷∗𝐴

]
+

[
𝐹 ∗−1𝐷∗𝐴

]∗
+
𝐹 ∗−1, (B.30)

the left-hand side of which appears in equation (B.28).

Again applying the annihilator lemma, assuming that 𝐴 is of single-pole form, this expression becomes

(1 − 𝛼)𝐴𝐴∗(1 − 𝛼∗) = 𝑓 (𝜂𝑎)2𝐴𝐴∗𝐹−1𝐹 ∗−1

where 𝑓 (𝜂𝑎) is 𝐹 (𝜂𝑎)−1𝐷(𝜂𝑎), reflecting the result of the annihilator lemma. To complete the derivation we need to characterize 𝐹 ∗𝐹

in order to characterize 𝐽 ∗𝐽 . We have

(1 − 𝛿𝐷) = 1 + 𝛿
1 + 2𝛿

= 1
2
𝐷(1 +𝐷−1) = 1

2
(1 +𝐷).

Therefore,

∗ ( ∗ ∗ ∗ ) 1 ∗ ∗
918

𝐹 𝐹 = 𝐷(1 − 𝛿 𝐷 ) +𝐷 (1 − 𝛿𝐷) =
2
(𝐷 +𝐷 + 2𝐷 𝐷). (B.31)
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Thus,

𝐽 ∗𝐽 = 𝐹−1
[
𝐹 ∗−1𝐷∗𝐴

]
+

[
𝐹 ∗−1𝐷∗𝐴

]∗
+
𝐹 ∗−1 + 𝜎2

𝑒
(B.32)

Equations (B.25), (B.31) and (B.32) and comprise a system in the functions 𝐷, 𝐹 and 𝐽 . These equations can then be iterated to 
establish many of the subsequent results. □

Appendix C. Existence of equilibrium in the dynamic model

To establish existence of equilibrium in our dynamic setting, I use the recursive system in 𝐷 in equation (B.25), showing that 
the associated mapping is bounded by a function that is, itself, a contraction. In our static existence argument, we assumed that 
cost shocks were zero, i.e., 𝜎2

𝑐
= 0, and we developed a recursion in 𝜆, proving that it was a contraction on the unit interval. If a 

wider domain for the recursion is allowed, the geometric approach in Bernhardt and Taub (2015) shows that fixed points of the 
recursion can exist outside the unit interval, but the output associated with the first-order conditions evaluated at those fixed points 
is suboptimal for the firms. Also, the contraction property in the unit interval breaks down if the cost shock variance is too high.

As in the static model, existence fails in the dynamic model when cost shocks are too volatile, leading us to establish existence of 
equilibrium in the dynamic model when the cost shocks are zero. We also note that our recursion captures the restriction to the unit 
interval via the factorization operation: when a spectral density is factored—the generalization of taking a square root—the smaller 
root is automatically chosen, so that the function in question has roots inside the unit disk.

Expressing the contraction property via a variational derivative. One would like to prove that the recursion in (B.25) is a 
contraction, just as in the scalar model. In a functional recursion such as (B.25), a mapping 𝜇 is a contraction if there exists a positive 
constant Δ < 1 such that‖‖𝜇(𝐷1) − 𝜇(𝐷2)‖‖‖‖𝐷1 −𝐷2‖‖ <Δ.

When 𝜇 is a differentiable function, we can write

‖‖𝜇(𝐷1) − 𝜇(𝐷2)‖‖‖‖𝐷1 −𝐷2‖‖ ≤
‖‖‖‖ 𝜇(𝐷1)−𝜇(𝐷2)‖‖𝐷1−𝐷2‖‖

‖‖‖‖‖‖𝐷1 −𝐷2‖‖‖‖𝐷1 −𝐷2‖‖ =
‖‖‖‖‖𝜇(𝐷1) − 𝜇(𝐷2)‖‖𝐷1 −𝐷2‖‖

‖‖‖‖‖ ∼ ‖‖‖‖ 𝜕𝜕𝐷𝜇(𝐷)‖‖‖‖ ,
where the derivative is the variational derivative. The result is the norm of the derivative, not the derivative of the norm. To develop 
intuition, we verify that this condition holds in a simplified quasi-scalar version of the model, using a conventional derivative rather 
than a variational derivative.

Intuition from scalar case. The dynamic model reduces to the scalar model when the persistence parameters 𝑏 and 𝜌 are zero. 
Intuition about the contraction property can be gleaned by considering the ordinary derivative of a scalar version of (B.25). Then, 
𝐷, 𝐹 and 𝐽 become ordinary real variables, not functions of 𝑧, so the annihilator operator becomes the identity, 𝐷∗ =𝐷, etc.

We first analyze the second term in the 𝐷 recursion (B.25): in the scalar version of 𝐽−1
[
𝐽
𝐷∗

1+𝐷∗

]
+

, the annihilator operator is not 

present, leaving 12
2𝐷
1+𝐷 = 𝐷

1+𝐷 . The derivative is

𝑑

𝑑𝐷

𝐷

1 +𝐷
= 1

(1 +𝐷)2
< 1,

as long as 𝐷 is strictly positive.

Now consider the first term in (B.25). In a scalar setting, substituting from (B.31), equation (B.30) becomes

(1 − 𝛼)𝐴𝐴∗(1 − 𝛼∗) = 𝐹−1
[
𝐹 ∗−1𝐷∗𝐴

]
+

[
𝐹 ∗−1𝐷∗𝐴

]∗
+
𝐹 ∗−1

∼ (𝐷∗𝐷)(𝐹 ∗ 𝐹 )−2 1
(1 − 𝑎)2

∼
𝐷2
𝑛

( 12 (2𝐷 + 2𝐷2))2
1

(1 − 𝑎)2

= 𝐷2

1
4 (2𝐷 + 2𝐷2)2

1
(1 − 𝑎)2

= 1
(1 +𝐷)2

1
(1 − 𝑎)2

(C.1)

where we arbitrarily write the scalar value of 𝐴 as 1
1−𝑎 . The recursion equations (B.32) and (B.25) then become a difference equation 

system,

2 1 1 2 2
919

𝐽
𝑛+1 = (1 +𝐷𝑛)2 (1 − 𝑎)2

𝜎
𝑎
+ 𝜎
𝑒

(C.2)
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and

𝐷𝑛+1 =
1
2

1
𝐽 2
𝑛

𝜎2
𝑒
+
𝐷𝑛

1 +𝐷𝑛
. (C.3)

Notice from the definition of 𝐽 in equation (17) that the first term is bounded, i.e.,

1
2

1
𝐽 2
𝑛

𝜎2
𝑒
≤ 1

2
,

and 𝐽 (0) ≠ 0, implying that it is not a fixed point.

We can analyze the nonlinear system (C.2) and (C.3) for stability. For large values of 𝐷𝑛, 𝐽𝑛+1 is approximately 𝜎𝑒, so that 𝐷𝑛+1 is 
driven to approximately 12 + 1. For very small values of 𝐷𝑛, 𝐽𝑛 approaches a constant, and therefore 𝐷𝑛+1 also approaches a constant. 
Moreover, this fixed point is stable, as (setting 𝜎2

𝑎
to one and 𝑎 to zero for simplicity) the derivative

𝑑

𝑑𝐷𝑛

1
2

1
𝐽 2
𝑛

𝜎2
𝑒
= 𝜎2
𝑒

1
(1+𝐷𝑛)3(
1

(1+𝐷𝑛)2
+ 𝜎2
𝑒

)2 =
1

(1+𝐷𝑛)2(
1

(1+𝐷𝑛)2
+ 𝜎2
𝑒

) 𝜎2
𝑒(

1
(1+𝐷𝑛)2

+ 𝜎2
𝑒

) 1
(1 +𝐷𝑛)

is obviously a fraction if 𝐷𝑛 is positive. Thus, if the initial value of 𝐷𝑛 is positive, this (scalar) recursion is stable and has a positive 
fractional fixed point.

C.1. Existence proof for the dynamic model

The main recursion, equation (B.25), is complicated by the presence of the annihilator operator. Were the annihilator operator 
not there, we could execute a direct proof of the contraction property. However, the annihilator operator necessitates an indirect 
approach. The indirect approach entails finding an ancillary mapping 𝑇 that (1) bounds the mapping 𝑆 implicitly defined by the 
right hand side of (B.25), and (2) is itself bounded and a contraction. The ancillary mapping is tractable, so it is straightforward to 
characterize the domain over which it is a contraction. We show that 𝑆 also maps this domain into itself and is continuous. It then 
follows that a fixed point of 𝑆 exists.

Lemma 3. Let 𝑋 be a Banach space. Let 𝑇 ∶𝑋→𝑋 and 𝑆 ∶𝑋→𝑋 be mappings such that

(i) 𝑇 is bounded and a contraction;

(ii) 𝑆 is continuous with ‖𝑆‖ ≤ ‖𝑇 ‖ on a compact and convex subset 𝑋 of 𝑋 that includes the fixed point of 𝑇 .

Then a fixed point of 𝑆 exists in 𝑋.

The space 𝑋 in our setting is a Hardy space 𝐻2[𝜂], that is, the space of square integrable functions on the 𝜂 disk, i.e., the elements 
𝑧 in the complex plane such that {𝑧

|||| |𝑧| ≤ 𝜂−1∕2}. The function 𝐷, which is our object of interest, is an element of 𝑋. The space 𝐻2[𝜂]

is a Hilbert space, and as such is a complete normed vector space, and as such is a Banach space.26 Because it is a Banach space we 
can establish that there is a fixed point by invoking Schauder’s fixed point theorem.

Lemma 3 does not deliver uniqueness of the fixed point. However, we conjecture that the fixed point and associated equilibrium 
are, in fact, unique (given sufficiently little uncertainty about private values).

Proof. The sole issue is to identify the compact subset 𝑋. We define the set using the contraction property. Let 𝑥∗ be the fixed point 
of 𝑇 . Let

𝑋0 ≡ {
𝑥 ∶ 0 ≤ |𝑥| ≤ ||𝑥∗||} .

This set is closed and bounded. The upper bound of ||𝑇 [𝑋0]|| is finite due to the contraction property. The upper bound of 𝑇 [𝑇 [𝑋0]]
is also finite, and by the contraction property must be closer to the fixed point |𝑥∗|; and this holds for all iterations 𝑇 [… 𝑇 [𝑇 [𝑥]] … ]. 
Define

𝑋 ≡ {
𝑥 ∶ 0 ≤ |𝑥| ≤ sup ||𝑇 [𝑋0]||} ,

which is a closed and bounded (compact) set and trivially convex. Because ‖𝑆‖ < ‖𝑇 ‖, and because 𝑇 [𝑋] ⊆ 𝑋 by the contraction 
property, 𝑆[𝑋] ⊆𝑋. Because 𝑆 is a continuous mapping, we can apply Schauder’s fixed point theorem to establish that a fixed point 
of 𝑆 exists. □
920

26 See Seiler and Taub (2008), Appendix C for properties of 𝐻2[𝜂].
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To apply Lemma 3, we first show that our recursion satisfies its key inequality, i.e., there is a bounding mapping 𝑇 that is a 
contraction. Viewing 𝐷 as an element of 𝐻2[𝜂], define the mapping:

𝑇 [𝐷] ≡ 1
2
+ 𝐷

1 +𝐷
. (C.4)

Also define the mapping associated in the recursion in (B.25) by 𝑆. We begin with:

Lemma 4.

|𝐷| = |𝑆[𝐷]| = ||||| 12𝐽−1
[
𝐽 ∗−1𝜎2

𝑒

]
+
+ 1

2
𝐽−1

[
𝐽
2Re[𝐷∗]
1 +𝐷∗

]
+

||||| ≤ 1
2
+
|||| 𝐷1 +𝐷 |||| . (C.5)

That is, |𝑆| ≤ |𝑇 |.
Proof. The first term is easy. The absolute value (and therefore the norm) passes through the annihilator operator (see the appendix 
of Seiler and Taub, 2008):|||| 12𝐽−1 [𝐽 ∗−1𝜎2𝑒 ]+|||| ≤ 1

2
|||𝐽−1|||2 𝜎2𝑒 = 1

2
|||𝐽−1𝐽 ∗−1|||𝜎2𝑒 ≤ 1

by the construction of 𝐽 . For the second term, we have

1
2

|||||𝐽−1
[
𝐽
𝐷 +𝐷∗

1 +𝐷∗

]
+

||||| ≤ 1
2
|||𝐽−1||| |𝐽 | ||||𝐷 +𝐷∗

1 +𝐷∗
||||

≤ 1
2
||||𝐷 +𝐷∗

1 +𝐷∗
||||

≤ 1
2

|||||||
𝐷∗

(
1 + 𝐷

𝐷∗

)
1 +𝐷∗

||||||| ≤
1
2
|||| 𝐷∗

1 +𝐷∗
|||| ||||(1 + 𝐷𝐷∗

)||||
≤ |||| 𝐷∗

1 +𝐷∗
|||| ≤ |||| 𝐷1 +𝐷 |||| . □

Note that the cancellation of 𝐽 and 𝐽−1 would not necessarily work were we calculating the sup norm instead of the absolute 
value at the same value of 𝑧.

The next lemma establishes that the bound mapping 𝑇 is contractive.

Lemma 5. If the domain of 𝑇 is such that |1 +𝐷| > 1, then 𝑇 is a contraction and 𝑇 is bounded.

Proof. The final term of 𝑇 becomes contractive: the variational derivative is|||| 𝜕𝜕𝐷 𝐷∗

1 +𝐷∗
|||| = |||| 1

(1 +𝐷∗)2
|||| < 1, when |1 +𝐷| > 1. □

To establish boundedness, we must prove that |1 +𝐷| > 1 in the vicinity of the fixed point. We do this in Proposition 2.

Lemma 6. 𝑆 is a continuous mapping.

Proof. Because the recursion is nonlinear, we establish continuity component by component: the elements of 𝑆 include inversion 
(𝐽−1), the annihilator operator ([⋅]+), factorization (𝐽 ), and the construction of 𝐽 , which involves 𝐷 nonlinearly. We must show that 
each of these elements preserves continuity. To show that 𝐽 is a continuous function of 𝐷, we use the Szegö factorization. The Szegö 
factorization is the generalization of representing a function in exponential-log form: for a function 𝑓 (𝑥), we can write 𝑒ln𝑓 (𝑥). If the 
function 𝑓 is a function of a complex variable and is two sided, i.e., 𝑓 (𝑧) = 𝐴(𝑧)𝐴(𝑧−1), then the Szegö form allows one to effectively 
take the square root and recover 𝐴(𝑧). One can then indirectly demonstrate properties of the function 𝐴(𝑧).27

Using the Szegö form for the 𝐽 function, we can write

𝐽 (𝛼) = 𝑒
1
2

1
2𝜋𝑖 ∮ 𝜁+𝛼𝜁−𝛼 ln

(
𝐽∗(𝜁)𝐽 (𝜁)

) 𝑑𝜁
𝜁 .

Because the exponential function is continuous, we just need to show that 𝐽∗𝐽 is continuous in 𝐷.

The annihilator operator can be expressed with the Szegö form,[
𝐽 ∗−1

]
+
= 𝐽 (0)−1 = 𝑒

1
2

1
2𝜋𝑖 ∮ ln

(
𝐽∗−1𝐽−1

)
𝑑𝜁

𝜁 ,
921

27 See Taub (1990) for a more thorough discussion of the Szegö form.
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as can the inverse 𝐽 (𝑧)−1,

𝐽−1(𝑧) = 𝑒
1
2

1
2𝜋𝑖 ∮ 𝜁+𝑧𝜁−𝑧 ln

(
𝐽∗(𝜁)−1𝐽 (𝜁)−1

)
𝑑𝜁

𝜁 .

However, because |𝑧| = 1 and in the Szegö factorization, |𝛼| < 1, this expression holds in the limit.

Recalling equations (B.31) and (B.32),

𝐽 ∗𝐽 = 2
[
𝐹 ∗−1𝐷∗𝐴

]
+

[
𝐹 ∗−1𝐷∗𝐴

]∗
+
(𝐷∗ +𝐷 + 2𝐷∗𝐷)−1𝜎2

𝑎
+ 𝜎2
𝑒

(C.6)

and we just need to establish continuity for this object. (𝐷∗ +𝐷 + 2𝐷∗𝐷)−1 is continuous in 𝐷 for 𝐷 > 0. We can also establish that [
𝐹 ∗−1𝐷∗𝐴

]
+

is continuous in 𝐷 by using the Szegö factorization, but because of the annihilator lemma we calculate it at 𝑎 (recall 

that 𝐴 = 1
1−𝑎𝑧 ):[
𝐹 ∗−1𝐷∗𝐴

]
+
= 𝐹 (𝑎)−1𝐷(𝑎)𝐴(𝑧) = 𝑒−

1
2

1
2𝜋𝑖 ∮ 𝜁+𝑎𝜁−𝑎 ln

(
𝐷∗𝐷(𝐷∗+𝐷+2𝐷∗𝐷)−1

) 𝑑𝜁
𝜁 𝐴(𝑧) (C.7)

which is continuous due to the continuity of the product, exponential, and (𝐷∗ +𝐷 + 2𝐷∗𝐷)−1. □

To apply Lemma 3 we show that 𝐷 = 0 is not a fixed point of the recursion 𝑆.

Lemma 7. 𝐽 (0) ≠∞.

Proof. Use the Szegö factorization to write

𝐹−1
[
𝐹 ∗−1𝐷∗𝐴

]
+
= 𝑒−

1
2

1
2𝜋𝑖 ∮ 𝜁+𝑎𝜁−𝑎 ln

(
𝐷∗𝐷(𝐷∗+𝐷+2𝐷∗𝐷)−2

) 𝑑𝜁
𝜁 𝐴(𝑧). (C.8)

The inner term can be written as

𝐷∗𝐷(𝐷∗ +𝐷 + 2𝐷∗𝐷)−2 = 𝐷

( 𝐷
𝐷∗ + 1 + 2𝐷)

1
(𝐷∗ +𝐷 + 2𝐷∗𝐷)

= 1
( 𝐷
𝐷∗ + 1 + 2𝐷)

1
(𝐷

∗

𝐷
+ 1 + 2𝐷∗)

.

𝐷

𝐷∗ and 𝐷
∗

𝐷
are bounded away from zero (to see this, express 𝐷 in polar form). Therefore, the whole denominator is bounded away 

from zero at 𝐷 = 0. Thus, 𝐽 (0) is finite. □

Lemma 8. 𝐷 = 0 is not a fixed point of the bounding function 𝑇 .

Proof. Substitution yields 𝑇 [0] = 1
2 . □

To complete the argument, we find a positive lower bound for the mapping 𝑆, i.e., a bound 𝐷 such that if ||𝐷1|| > 𝐷 then ||𝑆[𝐷1]|| >𝐷, so that any fixed point is then bounded away from zero.

Lemma 9. There exists a lower bound 𝐷 such that |𝑆[𝐷]| >𝐷 for all 𝐷.

Proof. From Lemma 7, we have 
|||| 12𝐽−1 [𝐽 ∗−1𝜎2𝑒 ]+|||| ≥ 1

2
𝜎2𝑒
𝜎2𝑒

= 1
2 . □

Having determined a lower bound we can combine this with the upper bound induced by the mapping 𝑇 , leading to the following 
corollary:

Corollary 2. There is a 𝜉 > 0 with

𝑋𝜉 ≡ {𝐷 ∶ 𝜉|𝐷| < 1}

such that for 𝐷 ∈𝑋,

𝑆[𝐷] ∈𝑋𝜉.

We now have the ingredients to assert
922

Proposition 8. A fixed point of 𝑆 exists.
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Proof. The contraction property for 𝑇 requires |1 +𝐷| > 1:

(1 +𝐷)(1 +𝐷) = 1 + 2Re(𝐷) + |𝐷|2 > 1,

so

Re(𝐷) > − |𝐷|2
2
,

which is satisfied by Re(𝐷) > 0. If we define 𝑋0 as the smaller set

𝑋0 ≡ {𝐷 ∶ Re(𝐷) > 0}

we satisfy this requirement. Then we just need to show that if Re(𝐷) > 0, then Re(𝑇 [𝐷]) > 0, i.e.,

1
2
+Re

𝐷

1 +𝐷
> 0.

This follows because the denominator of 𝐷1+𝐷 has a larger real part than the numerator, but the same imaginary part. This means that 
if we represent 𝐷 in polar form, 𝐷 =𝐷0𝑒

𝑖𝜃 , then 1 +𝐷 will have the form �̃�0𝑒
𝑖𝜃 , where ||𝜃|| < |𝜃| and �̃�0 > 𝐷0. In expressing this in 

geometric form it is evident that Re 𝐷

1+𝐷 > 0 and therefore that 12 + Re 𝐷

1+𝐷 > 0. Thus, 𝑇 maps 𝑋0 into 𝑋0, and in addition |1 +𝐷| > 1
and the contraction property holds for 𝑇 as defined in equation (C.4). The properties listed in Lemma 3 are satisfied for 𝑆 and 𝑇 by 
Lemmas 4, 5, 6.

It remains to verify that the fixed point reflects an optimum, i.e., that the associated solutions of the Wiener-Hopf equations for 
𝛼, 𝛽, and 𝛿 are optimal. Consider 𝛼. Inspection of the objective (15) and the variational first-order condition (B.8), reveals that the 
variational second-order condition for 𝛼 is

−∮ 𝐹 ∗𝐹𝐴∗𝐴𝜎2
𝑎

𝑑𝑧

𝑧
= −‖𝐹𝐴‖22 < 0.

Thus, the solution for 𝛼 in equation (18) represents an optimum. The optimality of 𝛽 and 𝛿 follow similarly. □

Proposition 2 in the main text follows.

Appendix D. Proofs of the characterisation results

Before proving Proposition 3 I begin with a series of preliminary lemmas. The first lemma establishes a basic property of signal 
extraction. I then prove that this property is violated in equilibrium. Finally, I prove that outputs are not just scalar amplifications of 
the input shocks.

Consider a first-order autoregressive (AR) process

𝑥𝑡 =𝐴(𝐿)𝑒𝑡 =
1

1 − 𝜌𝐿
𝑒𝑡.

Because I will treat the problem in terms of poles, write this as

− 𝜌−1

𝐿− 𝜌−1
𝑒𝑡,

where 𝜌−1 is the pole. I suppose that this process cannot be observed directly, but that there is an observable signal process

𝑦𝑡 =𝐴(𝐿)𝑒𝑡 + 𝑢𝑡,

where 𝑢𝑡 is a white noise process, uncorrelated with 𝑒𝑡.
The signal extraction problem is to construct a filter 𝐹 (⋅) that optimally extracts information from this noisy signal, producing an 

output process 𝐹 (𝐿)(𝐴(𝐿)𝑒𝑡 + 𝑢𝑡)28:

Lemma 10. The poles of the signal extraction output process are the same as the poles of the input process. Signal extraction is expressed 
entirely in the moving average part of the filtered process.

Proof. I use frequency-domain methods. I solve the optimal filtering problem

min
𝐹
𝐸(𝐴(𝐿)𝑒𝑡 − 𝐹 (𝐿)(𝐴(𝐿)𝑒𝑡 + 𝑢𝑡)2 = min

𝐹

1
2𝜋𝑖 ∮

(
(𝐴− 𝐹𝐴)∗(𝐴− 𝐹𝐴)𝜎2

𝑒
+ 𝐹 ∗𝐹𝜎2

𝑢

)
𝑑𝑧

𝑧
. (D.1)

The variational first-order condition is
923

28 This result was stimulated by a personal exchange with Ken Kasa and Charles Whiteman.
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𝐴∗(𝐴− 𝐹𝐴)𝜎2
𝑒
− 𝐹𝜎2

𝑢
= 0.

The right hand side is zero instead of ∑−1
−∞ because the filter is allowed to be two-sided. The solution is

𝐹 = (𝐴∗𝐴𝜎2
𝑒
+ 𝜎2
𝑢
)−1𝐴∗𝐴

The poles of 𝐴 completely cancel, leaving an ARMA part where the poles (the denominator part) come from the MA part of the noisy 
process. When one hits the noisy process with this filter, the MA part of the noisy process cancels, but the forward-looking part of 
the filter’s poles remains.

Repeating the process with a one-sided filter, the variational first-order condition is

𝐴∗(𝐴− 𝐹𝐴)𝜎2
𝑒
− 𝐹𝜎2

𝑢
=

−1∑
−∞

or

−(𝐴∗𝐴𝜎2
𝑒
+ 𝜎2
𝑢
)𝐹 +𝐴∗𝐴𝜎2

𝑒
=

−1∑
−∞
.

Define the factor 𝐻 by

𝐻∗𝐻 =𝐴∗𝐴𝜎2
𝑒
+ 𝜎2
𝑢
.

The poles of 𝐻 are the same as the poles of 𝐴. The solution is

𝐹 =𝐻−1 [𝐻∗−1𝐴∗𝐴
]
+ .

Recall that if some function 𝐴(𝑧) is an AR(1), then by Lemma 6, [𝑓 ∗𝐴(𝑧)]+ = 𝑓 (𝜂𝜌)𝐴(𝑧). Using the assumption that 𝐴 is the sum of 
AR(1) terms—that is, that the number of poles of 𝐴 exceeds the number of zeroes, and using the linearity of the annihilator operator, 
one can apply this fact term by term, with the result that the poles of the annihilate 

[
𝐻∗−1𝐴∗𝐴

]
+ are the same as the poles of 𝐴. The 

poles of 𝐻 , which are the zeroes of 𝐻−1, then cancel the poles of the annihilate. □

When one hits the noisy process—which is characterized by 𝐻—with this filter, the 𝐻 parts cancel, leaving a sum of AR’s, but 
weighted differently from the original 𝐴 process. The numerator of the filtered process—the MA part—has the signal extraction 
information. Importantly, there are no new poles; the original poles, and only those poles, are preserved in the product 𝐹𝐻 .

Thus, were signal extraction the only force determining the output process, the poles of the input process would be preserved in 
the output process, and there would be no new poles. We are now prepared to prove Proposition 4 that equilibrium output intensity 
filters 𝛼𝑖 and 𝛽𝑖 are not scalar-valued—output intensities are not just amplifications of the dynamic shock processes.

Proof of Proposition 3. Because the exogenous shock processes are first-order autoregressive (AR(1)) processes, the frequency 
domain filters 𝐴 and 𝐵 have single poles. Suppose by way of contradiction that the intensities 𝛼𝑖 and 𝛽𝑖, and 𝛿𝑖 are all scalar. 
Then, write equation (18) (the equation for 𝛼𝑖), as

𝛼𝑖 = 𝐹−1𝐴−1
[
𝐹 ∗−1(𝐹 ∗𝐹 −𝐷∗)𝐴

]
+

= 𝐹−1𝐴−1
(
[𝐹𝐴]+ −

[
𝐹 ∗−1𝐷∗𝐴

]
+

)
.

(D.2)

The annihilator operator [⋅]+ is an identity in the first term on the right hand side. In the second term because the 𝐴(⋅) function is a 
single pole form, the projection operator [⋅]+ yields a constant multiplying 𝐴(⋅) (from the “annihilator lemma”, Lemma 6). The 𝐴(⋅)
function is then canceled by the 𝐴−1(⋅) term, leaving the right hand side as a pure scalar if 𝐹−1 is scalar. Thus, 𝛼𝑖 is a scalar if 𝐹−1 is 
a scalar. Similar reasoning applies in the 𝛽𝑖 equation.

For 𝐹−1 to be a scalar, 𝐹 must be scalar. The definition of 𝐹 in equation (16) reveals that 𝐹 is scalar only if 𝛿 and 𝐷 are scalar, 
which is true by our maintained assumption. For 𝐷 to be scalar, 𝐽 would need to be scalar. But 𝐽 cannot be scalar: in equation (19), 
a scalar 𝐹 and 𝐷 means that 𝐽 is driven by the 𝐴 filter, which is exogenously non-scalar, a contradiction. □

Appendix E. State space methods in the numerical analysis

In order to numerically simulate and iterate the recursion in equation (20), I constructed algorithms using so-called state space 
methods from the control systems engineering literature. These methods suppose that the stochastic processes in a system have 
an ARMA (autoregressive-moving average) structure, but can otherwise be arbitrary vector processes, that is, a process can be 
represented as

𝑥𝑡 =𝐴𝑥𝑡−1 +𝐵𝑢𝑡 (E.1)

where 𝑥𝑡 and 𝑢𝑡 can be vector processes, and 𝐴 and 𝐵 are appropriately conformable matrices. In engineering settings the 𝑥𝑡 process 
924

would be considered the state process, and the 𝑢𝑡 process would be a serially uncorrelated and i.i.d. process, that is, white noise. 
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When 𝑥𝑡 and 𝑢𝑡 are scalar-valued and 𝐴 and 𝐵 are scalar constants, this is simply an AR(1) process. Intuitively, for an AR(1) process 
to be stable requires that |𝐴| < 1; this stability notion generalizes: a more general vector-valued system is stable if the eigenvalues of 
𝐴 are less than one in absolute value.

There might be an output process driven by this state,

𝑦𝑡 = 𝐶𝑥𝑡 +𝐷𝑢𝑡 (E.2)

where 𝑦𝑡 can also be a vector process, and 𝐶 and 𝐷 are again appropriately conformable matrices. For example, 𝑦𝑡 might be the 
observation of a noisy state that one would want to estimate using Kalman filter methods.

We can write (E.1) using the lag operator 𝐿:

𝑥𝑡 =𝐴𝐿𝑥𝑡 + 𝑢𝑡

and if 𝐴 has the appropriate structure, namely eigenvalues less than one, we can solve:

𝑥𝑡 = (𝐼 −𝐴𝐿)−1𝑢𝑡.

Substituting into (E.2) yields

𝑦𝑡 = (𝐶(𝐼 −𝐴𝐿)−1𝐵 +𝐷)𝑢𝑡

that is, the output process is expressed entirely in terms of the underlying fundamental or driving process 𝑢𝑡. This is simply the 
generalization of an ARMA, not just an AR, process.

It is now convenient to use that fact that was developed in Appendix A, namely that the lag operator maps into an element of the 
complex plane, which we denote 𝑧, and we can represent the process 𝑦𝑡 simply by its 𝑧-transform,

𝐶(𝐼 −𝐴𝑧)−1𝐵 +𝐷 (E.3)

This expression is the generalization of a rational function.

It is convenient to re-express models of this type with the inverse of the 𝐴 matrix, that is,

𝐶(𝑧𝐼 −𝐴)−1𝐵 +𝐷 (E.4)

and the eigenvalues of 𝐴 now need to exceed one for stability to hold. This engineering convention will be used in the exposition 
from this point forward; the eigenvalues are then referred to as the poles. A process expressed in this way is a state space realization.

Importantly, the realization form in expression (E.4) is preserved when familiar algebraic operations are carried out on the 
expression. For example, the sum of two processes that are constructed from the same driving process 𝑢𝑡 can be expressed as

(𝐶1(𝑧𝐼 −𝐴1)−1𝐵1 +𝐷1) + (𝐶2(𝑧𝐼 −𝐴2)−1𝐵2 +𝐷2)

=
(
𝐶1 𝐶2

)(
𝑧𝐼 −

(
𝐴1 0
0 𝐴2

))−1(
𝐵1
𝐵2

)
+
(
𝐷1 +𝐷2

)
(E.5)

which has the same basic form as (E.4). Because the form is preserved, the engineering literature has developed a special notation 
for it: [

𝐴 𝐵

𝐶 𝐷

]
The addition operation can be expressed in this notation by

⎡⎢⎢⎣
𝐴1 0
0 𝐴2

𝐵1
𝐵2

𝐶1 𝐶2 𝐷1 +𝐷2

⎤⎥⎥⎦ .
Similarly, multiplication and inversion are expressed as

⎡⎢⎢⎣
𝐴1 𝐵1𝐶2
0 𝐴2

𝐵1𝐷2
𝐵2

𝐶1 𝐷1𝐶2 𝐷1𝐷2

⎤⎥⎥⎦ .[
𝐴−𝐵𝐷−1𝐶 𝐵𝐷−1

−𝐷−1𝐶 𝐷−1

]
The details of these and other operation can be found in Dullerud and Paganini (2000), p. 99, or in Sanchez-Pena and Sznaier (1998), 
p. 465-470. Other operations such as transposition and complex conjugation are also straightforward.

There are two other operations that can be expressed using state space methods: annihilation, that is, the annihilation operator 
[⋅]+ that was discussed in Appendix A, and spectral factorization. All of these operations—addition, multiplication, conjugation and 
925

transposition, annihilation, and spectral factorization—are used in the recursion equation (20).
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Finally, it is possible to numerically calculate norms using the realization by solving a Lyapunov equation; see p. 475 of Sanchez-

Pena and Sznaier (1998).

The realization for a system is not necessarily unique. Specifically, we can construct transformations of a realization to manipulate 
the 𝐴 matrix, that is, we can calculate

𝐶𝑇 −1(𝑧𝐼 − 𝑇𝐴𝑇 −1)−1𝑇𝐵 +𝐷 = �̃�(𝑧𝐼 − �̃�)−1�̃� +𝐷

Such transformations can usefully isolate characteristics of the system, and importantly, provide ways of it approximating the system 
with a smaller system, that is, one in which the dimension of the 𝐴 matrix is reduced: this is called balanced truncation. In balanced 
truncation, the so-called controllability and observability Gramians are calculated via solving a Lyapunov equation for each. A 
coordinate transformation is chosen so that these Gramians are identical. The singular values of the Gramians—the square roots of 
the eigenvalues—then can be ordered, with the largest corresponding to the sup norm of the system in question. The elements of the 
system associated with the smallest singular values can then be discarded, if the resulting change in the infinity norm of the resulting 
system is dominated by the chosen tolerance. This reduces the number of poles. Moreover, the error entailed in the reduction of the 
model has an analytical bound that is a linear function of the sums of the discarded singular values. We use the balanced truncation 
algorithm of Laub and Glover (see p. 319 of Sanchez-Pena and Sznaier, 1998).

There is an additional operation needed in the numerical calculations: minimal realization. A minimal realization generalizes the 
idea of canceling the poles and zeroes of a rational function if they are equal. Thus, if we are given a rational function

(1 − .2𝑧)(1 − .3𝑧)
(1 − .2𝑧)(1 − .7𝑧)

it is obviously equivalent to
(1 − .3𝑧)
(1 − .7𝑧)

but what about

(1 − .2𝑧)(1 − .3𝑧)
(1 − .2001𝑧)(1 − .7𝑧)

?

The state space approach generalizes rational functions of this sort. As a result of the other approximations that are carried out from 
operations such as inversion, spectral factorization, and balanced truncation, small numerical errors can make the coefficients in 
the numerator and denominator that should cancel slightly different; minimal realization algorithms force the cancellation if the 
coefficients satisfy a tolerance.

We use the Kung algorithm to compute the minimal realization (see p. 310 of Sanchez-Pena and Sznaier, 1998). The algorithm 
sets up a block Hankel matrix of the system and uses singular value decomposition (a generalization of diagonalization of a matrix) to 
factor the Hankel matrix. The tolerance level removes nearly zero singular values, so that the remaining system is both controllable 
and observable—which translates into pole-zero cancellation when there is numerical noise.

E.1. The algorithm

I implemented these operations using Mathematica in order to numerically approximate a fixed point of equation (20), the 
algorithm works as follows:

1. An initial conjecture of the solution of 𝐷(𝑧) is posited (not to be confused with the notation 𝐷 for the state-space realization);

2. This conjecture is used in equation (B.31) where a spectral factorization is carried out to calculate 𝐹 , using the method devised 
in Taub (2009), and in turn the calculated value of 𝐹 as well as the conjectured value of 𝐷(𝑧) is used in the spectral factorization 
in equation (B.32) to calculate 𝐽 ;

3. The resulting value of 𝐽 and the conjectured value of 𝐷 are substituted on the right hand side of the recursion (20) and the 
requisite multiplication, inversion, annihilation and addition operations are carried out, resulting in a new value of 𝐷, which 
becomes the new conjecture;

4. The iteration terminates when a Cauchy-style convergence criterion is met, that is, for iteration 𝑖, the norm of the improvement ‖𝐷𝑖 −𝐷𝑖−1‖2 falls below the chosen tolerance.

There are some further details of the algorithm that bear mention. Examining equation (20), it is apparent that there are some 
inverses in the equation, as well as some spectral factorizations. These inversions and factorizations increase the number of pole 
terms on each iteration. The balanced truncation algorithm trims the insignificant pole terms in the iteration.

The spectral factorization algorithm must cope with the arbitrary number of pole terms that arise from the proliferation of poles 
in the iteration. For this reason a more robust spectral factorization algorithm is needed, and this is provided by the algorithm in 
Taub (2009). This procedure also requires the choice of a tolerance.

There are thus four tolerances that must be chosen to run the algorithm: the spectral factorization tolerance, the balanced 
truncation tolerance, the minimal realization tolerance, and the Cauchy criterion for 𝐷. Excessively relaxing the tolerances leads to 
unstable behavior numerically. When appropriate tolerances are chosen, the system converges numerically, as is predicted by the 
926

contraction property established in Appendix C.
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Appendix F. Proof of the inconspicuousness result

Proposition 9. In equilibrium each firm sees the rival’s net information in price as noise.

Proof. The net information in price is, from equation (4),

1
1 + 2𝛿

(
(1 − 𝛼(𝐿))𝐴(𝐿)𝑎−𝑖𝑡 + 𝑒𝑡

)
(F.1)

Recalling the definition of 𝐷 from (13) and 𝐽 in (17), this expression becomes

𝐷𝐽 (F.2)

in the frequency domain formulation. Using the recursive equation for 𝐷 in (20), this becomes

𝐷𝐽 =
(
1
2
𝐽−1

[
𝐽 ∗−1𝜎2

𝑒

]
+
+ 1

2
𝐽−1

[
𝐽
𝐷 +𝐷∗

1 +𝐷∗

]
+

)
𝐽

= 1
2

[
𝐽 ∗−1𝜎2

𝑒

]
+
+ 1

2

[
𝐽
𝐷 +𝐷∗

1 +𝐷∗

]
+

(F.3)

The first term, 12
[
𝐽 ∗−1𝜎2

𝑒

]
+

, is clearly a scalar. The second term has only scalar terms because 𝐷 +𝐷 ∗ is the real part in which all 

powers of 𝑧 cancel each other, and the negative powers of 𝑧 in 1
1+𝐷∗ are cancelled by the annihilator operator [⋅]+. □

Table 1

Numerical algorithm tolerances.

Spectral factorization 1 × 10−8

Minimal realization .0001
Balanced truncation .1

Cauchy convergence 1 × 10−6

Table 2

Base Parametrization: High noise.

Discount Private Public Noise Private AR Public AR

factor variance variance variance coefficient coefficient

𝜂 𝜎2
𝑎

𝜎2
𝑎

𝜎2
𝑒

𝛼 𝑏

1 1.0 1.0 10.0 0.5 0.1

Table 3

Output filters.

Private Public

demand process 𝐴(𝑧) demand process 𝐵(𝑧)
2
𝑧−2

10
𝑧−10

Direct Direct

intensity intensity

𝛼(𝑧) 𝛽(𝑧)

0.50 + 0.018
1.𝑧−2.0

− 0.02
1.𝑧−22.

0.33 − 0.10
𝑧−4.

+ 0.05
𝑧−2.19

− 0.04
𝑧−110.

Total output Total output

on 𝐴 on 𝐵

0.05 + 0.02
𝑧−2.04

− 1.03
𝑧−2.

0.07 − 06.18
𝑧−10.0

− .35
𝑧−4.0

− 0.0003
𝑧−2.04

− 0.004
𝑧−2.00

Total output Direct intensity

on 𝑒 𝛿

0.002 − 0.05
𝑧−2.04

0.001 − 0.02
1.𝑧−2.0

Table 4

Base Parametrization: Public demand process persistent relative to private pro-

cess.

Discount Private Public Noise Private AR Public AR

factor variance variance variance coefficient coefficient

𝜂 𝜎2
𝑎

𝜎2
𝑎

𝜎2
𝑒

𝛼 𝑏
927

1 1.0 1.0 1.0 0.1 0.5
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Table 5

Output filters.

Private Public

demand process 𝐴(𝑧) demand process 𝐵(𝑧)
10
𝑧−10

2
𝑧−2

Direct Direct

intensity intensity

𝛼(𝑧) 𝛽(𝑧)

0.52 + 0.78
𝑧−10.58

− 0.02
1.𝑧−110.

0.33 + 0.30
𝑧−10.5822

− 0.12
𝑧−4.0

− 0.006
𝑧−22.

Total output Total output

on 𝐴 on 𝐵

0.05 − 4.43
𝑧−10.58

− 0.72
1.𝑧−10.

− 0.08
𝑧−12.17

0.07 + 0.03
𝑧−10.58

+ 0.16
1.𝑧−4.

− 1.6
𝑧−2.

− 0.003
1.𝑧−12.17

Total output Direct intensity

on 𝑒 𝛿

0.02 − 2.10
1.𝑧−12.17

0.008 − 1.08
𝑧−10.04

Table 6

Base Parametrization: Private demand process persistent relative to public pro-

cess.

Discount Private Public Noise Private AR Public AR

factor variance variance variance coefficient coefficient

𝜂 𝜎2
𝑎

𝜎2
𝑎

𝜎2
𝑒

𝛼 𝑏

1 1.0 1.0 1.0 0.5 0.1

Table 7

Output filters.

Private Public

demand process 𝐴(𝑧) demand process 𝐵(𝑧)
2
𝑧−2

10
𝑧−10

Direct Direct

intensity intensity

𝛼(𝑧) 𝛽(𝑧)

0.53 + 0.20
𝑧−2.19

− 0.17
𝑧−22.

0.31 − 0.007
𝑧−4.

+ 0.08
𝑧−2.19

− 3.21
𝑧−110.

Total output Total output

on 𝐴 on 𝐵

0.05 − 0.77
𝑧−2.19

− 0.31
𝑧−2.

− 0.0003
1.𝑧−2.62

0.06 − 0.035
𝑧−4.0

+ 0.0002
𝑧−3.11

− 0.065
𝑧−2.19

− 6.20
𝑧−10.0

Total output Direct intensity

on 𝑒 𝛿

0.009 − 0.56
𝑧−2.62

0.005 − 0.28
1.𝑧−2.05

Table 8

Monte Carlo serial correlation: Example 3 parameterization.

Process Output Price

Autocorrelation Autocorrelation

Direct private 0.41

Indirect private 0.78

Total private 0.52 0.50

Direct public 0.06

Indirect public 0.55

Total public 0.14 0.09

Noise process 0.36 0.17

Total if no noisy feedback from price 0.45 0.46

Total with noisy feedback 0.41 0.02
928

Net information in noisy price -0.05
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Fig. 1. Normalized intensities for private shock process 𝐴(𝐿)𝑎𝑖𝑡 .

Fig. 2. Normalized intensities for public shock process 𝐵(𝐿)𝑎𝑖𝑡 .
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