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A B S T R A C T   

This study proposes a hybrid static economic dispatch (HSED) model that incorporates multiple constraints 
specific to power systems to enhance the economic efficiency of power dispatch following the integration of wind 
energy. Wind energy integration in power systems can effectively reduce operational costs and energy con-
sumption. However, the significant influx of renewable energy sources can introduce system instability and 
complicate power dispatch procedures. An improved pathfinder algorithm (IPFA) is proposed to address the cost 
minimization problem associated with power dispatch involving wind energy. The HSED model contains con-
straints related to wind energy penetration rate, operating area limitations, and slope rate, thereby ensuring its 
applicability in real-world power dispatch scenarios. The IPFA incorporates three measures such as Kent mapping 
initialization, nonlinear adaptation factor, and following correction strategy. The result indicates that the IPFA 
achieves a reduction of up to 95.86($/h) and 606.24($/h) in operating costs compared to alternative methods 
when wind energy is not considered. The IPFA reduces operating costs by up to 9.3% and 7.5% compared to 
scenarios without wind energy when wind energy is integrated. The proposed model and method contribute to 
enhance renewable energy utilization while simultaneously ensuring the power system economic feasibility and 
stability.   

1. Introduction 

The complex calculations and high computational costs associated 
with solving static economic dispatch (SED) models pose challenge for 
enhancing the effective utilization of fossil fuels and other non- 
renewable energy with the depletion of these resources (Liang et al., 
2021; Sun et al., 2022; Jadhav and Roy, 2013; Basu, 2016). The power 
supply of power plants primarily relies on thermal power generation, 
utilizing fossil fuels and other non-renewable energy sources. This study 
is important to study the SED models’ optimization to minimize oper-
ational costs while complying with various constraints. Additionally, the 
rapid development of clean energy, such as wind energy, offers advan-
tages such as pollution-free generation, low cost, easy accessibility, and 

recyclability. The integration of renewable energy, including wind en-
ergy, introduces additional considerations and impacts on the tradi-
tional economic dispatch problem (Van Hoorebeeck et al., 2022; Liu 
et al., 2023). Moreover, the hybrid static economic dispatch problem 
(HSED) arises to require the optimization efforts to minimize opera-
tional costs for the integration of wind energy. In light of these factors, 
this study focuses on addressing the HSED problem, which involves 
wind energy and aims to optimize the power system’s operational costs. 

In establishing the HSED model, it is essential to consider various 
constraints, including the power balance equality constraint, output 
power boundary constraint, ramp rate constraint between different pe-
riods, prohibited operation area constraint, and valve point effect 
(Nahas et al., 2020; El-Sayed et al., 2020; Al-Betar et al., 2018; Liu et al., 
2021). In addition, L.L. Li et al. (2020); X. Li et al. (2020) and Zhao et al. 
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(2020) have explored HSED to optimize power system operational costs 
and improve grid benefits. Oryani et al. (2021) and Xu et al. (2019) 
argued that the penetration rate of renewable energy also needs to be 
considered in the model. Traditional mathematical methods such as 
quadratic programming and gradient-based methods are commonly 
employed to solve SED models (Kumar and Pant, 2014a, 2014b; 
Shafie-khah et al., 2011). However, these methods have limitations in 
terms of optimization capability and convergence speed. This study is 
crucial to find an optimized function that effectively satisfies all relevant 
constraints in practical scenarios when dealing with the traditional 
power system HSED model incorporating wind energy. 

The computational complexity of HSED problems increases signifi-
cantly with the problem dimension. However, metaheuristic algorithms 
are not limited by the optimization objective’s dimension and can solve 
nonlinear and non-differentiable optimization problems, compensating 
for the shortcomings of traditional mathematical methods (Li et al., 
2019). Many studies have successfully applied metaheuristic algorithms 
to economic dispatch problems, such as genetic algorithm (), particle 
swarm algorithm (PSO), gray wolf algorithm, and firefly algorithm 
(Al-Betar et al., 2019; Basu, 2015; Chen and Ding, 2014; Griffiths et al., 
2022). Wind energy does not consume fuel during power generation, 
requiring only minimal maintenance costs, thereby reducing the overall 
operation cost of the system (Li et al., 2021a,2021b,2021c; Jin et al., 
2021). This study introduces wind power into the HSED model to 
explore the impact of new energy power generation on the system. 
Additionally, this study ensures the stability of system operation 
through the incorporation of wind energy permeability limits. 

The pathfinder algorithm (PFA) was proposed in 2019, drawing 
inspiration from group movements in nature to identify the best food 
area. PFA consists of a leader and multiple followers, with each follower 
updating its position based on the positions of other followers and the 
movement of the leader. This diversifies the solution search space within 
PFA. A significant feature of PFA is the separate update and optimization 
of the leader and followers. This distinctive update method gives PFA 
certain advantages when applied to design and engineering problems 
(Yapici and Cetinkaya, 2019). Building upon the original PFA, the 
improved pathfinder algorithm (IPFA) improves the accuracy and 
convergence speed of the algorithm. It incorporates three measures: 
Kent mapping initialization, nonlinear adaptation factor, and following 
correction strategy. These measures enhance the initialization and up-
date processes of the algorithm, resulting in improved convergence 
speed and solution accuracy. 

To improve the economy of power dispatch after the incorporation of 
wind energy, this paper proposes an HSED model and the IPFA for power 
systems, considering wind energy and various constraints such as wind 
energy permeability constraints, prohibited operation area constraints, 
and slope constraints. The proposed model and improved algorithm are 
utilized to minimize the operational costs of power dispatch, taking into 
account wind energy. The contributions of this study are as follows.  

• The proposal of a novel HSED model that incorporates wind-fire co- 
generation and considers various constraints such as the power 
balance equation, output power boundaries, ramp rate limitations 
across different time periods, prohibited operation areas, and wind 
energy penetration rate constraints. This model ensures the stable 
operation of the system in the presence of wind energy variability.  

• The introduction of the IPFA for addressing the complexities arising 
from the constraints in the HSED model. The IPFA incorporates three 
enhancements: Kent mapping initialization, nonlinear adaptation 
factor, and following correction strategy. These improvements lead 
to enhanced convergence speed, solution accuracy, and stability.  

• The evaluation of the proposed scheduling model and method 
through two illustrative examples. The proposed model and method 
effectively address the HSED problem, enhancing the efficiency of 
renewable energy utilization. 

This study provides valuable insights into enhancing the economic 
dispatch of power systems by introducing the HSED model, incorpo-
rating wind-fire co-generation and considering multiple constraints, 
along with the introduction of the IPFA for efficient optimization. The 
proposed approach facilitates the effective integration of wind energy 
and contributes to the stability and economy of power system opera-
tions. The findings have practical implications for various stakeholders, 
including grid management centers, energy storage system operators, 
and power generation companies. 

The remaining sections of the paper are outlined as follows: Section 2 
provides an overview of this study status on economic dispatch, dis-
cussing the research findings and limitations highlighted in related 
literature. In Section 3, the proposed decision analytical HSED model, 
considering wind energy, is comprehensively described. The specific 
process of the IPFA is presented in Section 4. Section 5 presents the 
analysis results derived from two case studies conducted to evaluate the 
proposed model and method. Section 6 summarizes the research find-
ings and conclusions drawn from the study. Finally, Section 7 outlines 

Nomenclature 

Fi
g(Pgi) the generation cost of the ith thermal unit 

Fj
w(Pwj) the generation cost of the jth wind farm 

Fobj the objective function 
HSED hybrid static economic dispatch 
IPFA improved pathfinder algorithm 
Lij, Li0, L00 the transmission loss coefficients 
Pgi,j

l the lower boundaries of the jth no operation area of the ith 
generating unit 

Pgi,j
u the upper boundaries of the jth no operation area of the ith 

generating unit 
Pgi the output power of the ith thermal power unit 
Pgi

0 the output power of the ith generating unit at the last time 
PLoad the power system load 
Pgi

DR the minimum boundaries of the output power fluctuation 
PLoss the transmission loss 
Pgi

max the upper limits of the output power of the ith thermal 
power unit 

Pgi
min the lower limits of the output power of 

Pgi
UR the maximum boundaries of the output power 

PW
max the maximum available power of the wind farm 

SED static economic dispatch 
Tmax the maximum number of iterations 
XFi

t the position of the i-th follower in the t-th iteration 
XFj

t the position of the jth follower in the t-th iteration 
Xi,j the value of the jth dimension in the i-th individual 
Xj

L the lower boundaries of the jth dimension in each 
individual 

Xj
U the upper boundaries of the jth dimension in each 

individual 
XP

t the position of the pathfinder in the t iteration 
XP

t+1 the position of pathfinder in the t + 1 iteration 
XP

t− 1 the position of pathfinder in the t-1 iteration 
γi, φi, ηi the generation cost coefficient of the generating unit 
θ the interaction coefficient between the followers 
λ the attraction coefficient of the pathfinder to the followers 
μj the generation cost coefficient of wind farm 
σ a nonlinear adaptive factor  
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future research directions and areas for further investigation. 

2. Literature review 

2.1. Hybrid static economic dispatch problem 

HSED is an optimization problem and aims at minimizing the oper-
ation cost, while considering a series of constraints in the solving process 
(Kumar and Pant, 2014a, 2014b; Liu and Li, 2020; Sun et al., 2022). 
Different methods have been devised to address these complex con-
straints (Berahmandpour et al., 2022). For example, Bulbul et al. (2018) 
developed a heuristic algorithm that combines the krill swarm algorithm 
with the opposition learning method. The forbidden operation 
constraint, transmission loss, and slope rate constraint are analyzed 
during the process of solving economic load distribution. The effec-
tiveness of the method is verified by experiments, but Bulbul et al. 
(2018) ignored to analyze solution accuracy. In addition, Jayakumar 
et al. (2016) devised a gray wolf optimizer to solve the cogeneration 
dispatch problem, which considered the ramp rate constraint, valve 
point effect, and rotation reserve constraint. The performance of the 
proposed method was tested by the standard test system, but Jayakumar 
et al. (2016) lacked to consider the forbidden operation area constraint 
when solving the problem. Chen et al. (2019) presented a two-stage 
strategy using the artificial bee colony algorithm to address equality 
constraints in economic dispatch problems. In this solving method, two 
groups of bees were used for searching feasible solutions meeting the 
constraints, and a novel searching strategy was introduced to make the 
feasible solutions have dynamic boundaries. However, Chen et al. 
(2019) lacked to deal with inequality constraints. Li et al. (2021) devised 
a new constraint mechanism for the SED model with the valve point 
effect, and used differential evolution algorithm to verify the improved 
SED model. 

The integration of renewable energy into economic dispatch holds 
significant economic benefits for the power system (Esen et al., 2016). 
For instance, Khan et al. (2015) developed a joint economic dispatch 
model that incorporates multiple photovoltaic power stations. Two case 
studies were conducted to demonstrate the feasibility of the model. The 
model considered constraints such as output power limits, ramp rates, 
and power balance. However, it is worth noting that Khan et al. (2015) 
did not analyze the forbidden operation area constraint. In another 
study, Jin et al. (2021) proposed a stochastic model for wind power 
reliability, which transformed the uncertain performance of wind power 
into a deterministic form. Building upon this, a stochastic model based 
on similarity ranking of ideal solutions, and made notable contributions 
to energy conservation, emission reduction, and improvement of power 
generation efficiency. In sum, these studies exemplify the potential 
benefits and advancements achieved through the integration of renew-
able energy sources in economic dispatch models by considering various 
constraints and introducing innovative approaches. 

Additionally, various metaheuristic algorithms have been presented 
to reduce the computational complexity of complex constraints in the 
HSED model (Jebaraj et al., 2017; Zhao et al., 2020). For example, 
Selvakumar and Thanushkodi (2007) devised a new classical PSO al-
gorithm, which combines the splitting method of cognitive behavior and 
local random search method. Three experimental systems with 
non-convex solution space are employed to prove the feasibility of the 
presented method. However, Selvakumar and Thanushkodi (2007) 
ignored the accuracy and convergence rate. To improve the solution 
effect of SED model, Pothiya et al. (2008) adopted an enhanced emer-
gency search algorithm, which introduced initialization, adaptive 
search, multiple searches, crossover, and restart technologies, but the 
stability and convergence accuracy of the method are not ideal. Suresh 
et al. (2018) used probabilistic technology and dragonfly algorithm to 
solve the static economic scheduling problem of renewable energy re-
sources and FACTS equipment, effectively reducing the operating costs 
and power losses of the system. Chen (2020) proposed a new 

dual-population adaptive differential evolution algorithm, considering 
multi-fuel selection and valve point effects; moreover, the experimental 
verification shows that algorithm has advantages in solution accuracy 
and convergence speed using the maintenance method to deal with 
optimization constraints. Fu and Liu (2021) proposed a unique distrib-
uted cross optimization to fully involve most of the constraints in a 
completely decentralized optimization way to solve the economic 
scheduling problem. Chen and Tang (2022) proposed an improved 
competitive swarm optimization algorithm to solve the SED problems. 
The accuracy and speed of solving the SED problems were further 
improved compared with other algorithms. The efficiency of the algo-
rithm was improved by using a cross operation strategy and parameter 
automation strategy and to improve the dependence of the original al-
gorithm on the bacterial count. 

The presented approach has demonstrated remarkable efficacy 
through extensive testing across a range of complex scenarios, yielding 
exceptional results. Notably, Niu et al. (2014) proposed an innovative 
hybrid harmony search algorithm that accelerates convergence speed by 
incorporating arithmetic crossover operations and enhances solution 
diversity through the use of an opposition learning strategy. However, it 
is important to acknowledge that Niu et al. (2014) did not comprehen-
sively consider the impact of transmission losses in their solution of the 
SED problem. In the pursuit of optimizing the SED problem, Nawaz et al. 
(2017) developed a groundbreaking global constrained Nelder-Mead 
algorithm that incorporates variable probability distributions to 
enable both local and global search capabilities. Similarly, Xu et al. 
(2019) devised a novel gray wolf optimization algorithm to address the 
constraints associated with ramp rates and forbidden operation areas in 
economic load distribution problems. Nonetheless, it is worth noting 
that Xu et al. (2019) did not fully account for the stability and accuracy 
limitations inherent in their method. To further enhance the solving 
speed of the SED model, Guo et al. (2021) proposed an accelerated 
distributed gradient algorithm that introduces a momentum term. It is 
important to emphasize that different metaheuristic approaches exhibit 
varying levels of effectiveness when applied to economic dispatch 
problems with complex constraints, each showcasing unique advantages 
in solving SED problems and offering valuable insights to the field. 

2.2. Improved pathfinder optimization algorithm 

PFA is a novel metaheuristic algorithm, which has certain advan-
tages in dealing with constraint problems and engineering design 
(Yapici and Cetinkaya, 2019). For the high-dimensional and non-linear 
optimal power dispatching problem, scholars have improved the PFA. 
For example, Miyombo et al. (2022) proposed a PFA based on an 
adaptive policy that allows the PFA to optimize according to their own 
state and achieve the minimum path. At an earlier time, Yapici (2020) 
presented an IPFA to address the reactive power optimization problem 
of the power system. In this method, the researchers modified the update 
parameters of the PFA to update the algorithm in a small step. At the 
same time, numerical analysis was carried out in two system examples to 
illustrate the performance of this method in solving the reactive power 
optimization dispatch problem. To address the premature convergence 
of the original PFA, Bai and Jermsittiparsert (2020) introduced Levy 
flight strategy and chaos theory, and proved its the feasibility of using 
different cases. However, Bai and Jermsittiparsert (2020) ignored to 
analyze the complexity of the IPFA. Qi et al. (2020) proposed a hybrid 
PFA, which introduced the mutation operator of differential mutation 
algorithm into PFA, improved the searchability of the algorithm, and 
proved that the method has certain competitiveness by dividing clus-
tering, constraint problem, and engineering design problem. Those 
studies shows that the optimized PFA has certain advantages in dealing 
with the optimal dispatching problem. 

The basic PFA has been widely employed to address nonlinear and 
non-differentiable mixed static economic dispatch problems due to its 
simplicity and flexibility. However, the original PFA encounters certain 
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limitations in data processing as the complexity of the problem and data 
dimension increase, such as low accuracy and slow convergence speed. 
It becomes necessary to enhance the original PFA when addressing 
mixed static economic dispatch problems. In this study, an IPFA is 
proposed, aiming to overcome the aforementioned limitations. The IPFA 
introduces several improvements to enhance the algorithm’s perfor-
mance. Firstly, the initialization stage is improved by incorporating Kent 
map initialization, which leads to better initial solutions. Additionally, 
the search ability and diversity of the algorithm are enhanced through 
the utilization of a nonlinear adaptation factor and a follow-up correc-
tion strategy. Consequently, the IPFA exhibits competitive advantages in 
solving complex mixed static economic dispatch problems. By 
improving the initialization process, enhancing search capabilities, and 
increasing search diversity, the IPFA addresses the limitations of the 
original PFA, making it a promising approach for solving complex mixed 
static economic dispatch problems. 

A HSED model combining wind farms with thermal power units is 
proposed, meanwhile considering output power boundary constraint, 
power balance equality constraint, ramp rate constraint, forbidden 
operation area constraint, and wind energy permeability constraint. An 
IPFA is proposed. Kent map initialization, nonlinear adaptation factor, 
and following correction strategy are introduced, which improves the 
speed and accuracy of the algorithm and increases the stability. Two 
examples are employed to prove the constructed model and solving 
method, while comparing with the existing research and methods. 

3. Hybrid static economic dispatch problem model 

3.1. HSED model’s objective function 

Solving HSED model aims to minimize the operation cost on the 
premise of meeting the power system demand and generator operation 
constraints. In this study, Fobj indicates the objective function of HSED 
model, containing the generation cost of thermal power units and the 
generation cost of wind farms, as follows: 

Fobj =
∑NG

i=1
Fg

i
(
Pgi
)
+
∑NW

j=1
Fw

j

(
Pwj
)

(1)  

where Pgi and Pwj indicate the output of the ith thermal unit and the jth 
wind unit respectively. NG and NW indicate the numbers of thermal units 
and wind farms. Fi

g(Pgi) and Fj
w(Pwj) indicate the generation cost of the ith 

thermal power unit and the jth wind farm respectively.The system 
operation cost is calculated as follows: 

Fg
i
(
Pgi
)
= γi

(
Pgi
)2

+ϕi
(
Pgi
)
+ ηi (2)  

where γi, φi and ηi represent the generation cost coefficients. The gen-
eration cost of wind farm is expressed as follows: 

Fw
j

(
Pwj
)
= μj × Pwj (3)  

where μj indicates the generation cost coefficient of wind farm, which is 
linearly related to the power output of the wind farm. 

3.2. Constraints of hybrid static economic dispatch model 

In the development of a HSED model for power systems incorpo-
rating wind energy, it is imperative to give due consideration to various 
constraints pertaining to the system’s generation units. These con-
straints serve as crucial factors that cannot be disregarded, as they 
contribute to aligning the static economic dispatch model with the 
actual operational characteristics of the generation units within the 
system. Noteworthy constraints encompass the power balance equation, 
output power boundaries, ramp rate limitations across different time 
periods, and prohibited operation areas, among others. Moreover, when 

incorporating renewable wind energy into the HSED model, it becomes 
essential to account for the wind power penetration rate. This consid-
eration is vital for mitigating the potential adverse effects stemming 
from the inherent randomness associated with renewable energy sour-
ces. By appropriately addressing the wind power penetration rate within 
the HSED model, unnecessary impacts on system operation stability can 
be minimized, ensuring more reliable and efficient power system 
management.  

(1) Equality constraints 
The power balance equation constraint that is closely related to 

the reliability of power system operation is expressed as the sum 
of the total output of wind farms and thermal units equals the sum 
of transmission loss and system load, as follows: 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑NG

i=1
Pgi +

∑NW

j=1
Pwj = PLoad + PLoss

PLoss =
∑NG

i=1

∑NG

j=1
PgiLijPgj +

∑NG

i=1
Li0Pgi + L00

(4)  

where Pgi is the output power of the ith thermal power unit and Pwj 
is the output power of the jth wind turbine; NG is the number of 
thermal power units in the microgrid system; NW is the number of 
wind farms in the microgrid system; PLoad represents the power 
system load, PLoss is the transmission loss, Lij, Li0 and L00 are called 
transmission loss coefficients.  

(2) Output power boundary constraints 
The necessary condition for the safe operation of the system is 

that the units’ output must be limited to a certain working range. 
The boundary function expression of generator output power is as 
follows: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Pmin
gi ≤ Pgi ≤ Pmax

gi

0 ≤
∑NW

j=1
Pwj ≤ Pmax

W

Pmax
W = χPLoad

(5)  

where m is the number of prohibited operating areas for the ith 
generator set, j = 2,3,.,m, Pgi

max and Pgi
min indicate the lower limit 

and upper limit of the output of the ith thermal unit, PW
max is the 

maximum output of the wind farm, and χ represents the perme-
ability of wind energy.  

(3) Slope rate constraint 
The variation of the generator set output is limite in a period d, 

that is, the increase of the generator set output cannot exceed the 
upper limit of the threshold, and the decrease of the output power 
cannot exceed the lower limit of the threshold. The specific 
functional expression is as follows: 
⎧
⎨

⎩

Pgi − P0
gi ≤ PUR

gi

P0
gi − Pgi ≤ PDR

gi

(6)  

where Pgi is the output of the ith generator set, Pgi
0 indicates the 

output power at the last time, Pgi
DR and Pgi

UR represent the 
maximum and minimum boundaries of the output fluctuation.  

(4) Forbidden operation area constraint 

The forbidden operation area is caused by the vibration of unit 
bearing or related auxiliary equipment, such as feedwater pump, boiler, 
etc., which should be avoided when the power system is running. The 
forbidden operation area function expression is as follows: 
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Pmin
gi ≤ Pgi ≤ Pl

gi,1

Pu
gi,j− 1 ≤ Pgi ≤ Pl

gi,j

Pu
gi,m ≤ Pgi ≤ Pmax

gi

(7)  

where, m indicates the number of prohibited operation areas, j = 2, 3,., 
m. Pgi,j

u and Pgi,j
l represent the upper and lower boundaries. 

4. Pathfinder algorithm and its improvement 

4.1. Pathfinder algorithm 

PFA divides the individuals into two parts: pathfinder and follower 
(Yapici and Cetinkaya, 2019). The pathfinder is called the leader of the 
team, which guides the global search direction of the algorithm, while 
the follower who moves along the pathfinder’s direction is called the 
follower. The optimization is realized through the communication be-
tween the pathfinder and the follower.  

(1) Population initialization 
The population initialization equation of PFA is as follows. 

Xi,j = XL
j +R

(
XU

j − XL
j

)
(8)  

where, Xi,j is the value of the jth dimension in the ith individual, 
and Xj

U and Xj
L are the upper and lower limits. R indicates a 

random value in [0,1]. 
The objective function of the HSED problem is taken as the 

fitness function Fobj of the PFA to solve the individual fitness. The 
individuals are divided into Pathfinders and followers according 
to the fitness values. The individual with the minimum fitness is 
taken as Pathfinder and the rest as a follower.  

(2) Pathfinding stage 
Pathfinder plays a leading role in the optimization of the IPFA. 

Compared with followers, pathfinder’s position is updated first as 
follows: 
{

Xt+1
P = Xt

P + 2rand1
(
Xt

P − Xt− 1
P

)
+ Q

Q = v1exp( − 2t/Tmax)
(9)  

where t is the current iterations, Tmax is the max-epoch, XP
t rep-

resents the position of pathfinder in the t iteration, rand1 and v1 
are randomly generated in [0,1].  

(3) Following stage 
The follower updates according to the pathfinder’s position 

after the pathfinder is updated. The update equation of the fol-
lower is as follows: 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Xt+1
Fi = Xt

Fi + R1

(
Xt

Fj − Xt
Fi

)
+ R2

(
Xt

P − Xt
Fi

)
+ δ

R1 = θr2,R2 = λr3

δ =
(
1 − t/Tmax

)
v2Dij

Dij =

⃦
⃦
⃦Xt

Fi − Xt
Fj

⃦
⃦
⃦

(10)  

where XFi
t is the position of the ith follower and XFj

t is the position 
of the jth follower. θ represents the interaction coefficient be-
tween the followers, and λ represents the attraction coefficient of 
the Pathfinder to the followers, which are uniformly distributed 
in [1,2]. v2, r2 and r3 are all random values in [0,1].  

(4) Optimization stage 

The fitness is recalculated after the Pathfinder and the follower are 
updated. When the fitness of the follower is lower than that of the 
pathfinder, the follower becomes a novel pathfinder and make the next 
exploration. The function is as follows: 

Xt
P = Xt

Fi⋯if ⋯Fobj
(
Xt

Fi

)
< Fobj

(
Xt

P

)
(11)  

where XP
t indicate pathfinder’s position. 

4.2. Improved Pathfinder algorithm 

The unimproved PFA has the advantages of simple process, easy 
operation and fast computation, and can solve most optimization 
problems in engineering in lower dimensions. However, if the PFA is 
further used to analyze and solve high-dimensional and complex engi-
neering problems, it is inevitable that the PFA has problems such as 
decreasing accuracy, increasing convergence time, and falling into local 
optimum solutions during the iterative solution process. To address 
these problems, this study chooses to improve the PFA in terms of 
initialization, search capability and search diversity, using the Kent map 
initialization, nonlinear adaptation factor and follow correction strategy 
methods.  

(1) Kent map initialization 
In the metaheuristic algorithm, researchers use chaotic map to 

generate the initial position of the population during population 
initialization in order to improve the population diversity of the 
algorithm. Compared with the randomly generated population in 
the original algorithm, the population generated by chaotic map 
has better ergodicity and randomness, and can better achieve the 
statistical equilibrium state. The Kent map, which has better 
uniformity and randomness than the chaotic map, is chosen to 
initialize the algorithm population. The Kent mapping expression 
is as follows: 

an+1 =

{
an/τ an ∈ [0, τ)

(1 − an)/(1/τ) an ∈ [τ, 1] (12)  

where, 0 < τ < 1, and the initial value of the initialization pro-
cess cannot be equal to τ. Also, for a longer period of chaotic it-
erations, τ ‡ 0.5.  

(2) Nonlinear adaptive factor 
The introduction of the nonlinear adaptive factor in the IPFA 

enhances the global and local search abilities by incorporating it 
into the update positions of pathfinders and followers. This 
enhancement results in improved convergence speed of the al-
gorithm. The equations for the pathfinder and follower with the 
nonlinear convergence factor are as follows: 

The iterative process of the PFA in addressing multidimen-
sional problems often leads to an imbalance between global and 
local search performance. This imbalance adversely affects the 
search speed and overall algorithm performance. To address this 
issue, our study introduces a nonlinear adaptation factor (σ) into 
the update equations for pathfinders and followers within the 
PFA. This factor adjusts the impact of pathfinder and follower 
positions on updated positions before each update. The nonlinear 
adaptation factor (σ) decreases in a nonlinear manner as the 
number of evolutionary iterations increases. At the beginning of 
each algorithm iteration, when the span of pathfinder and fol-
lower position updates is large, the decay of σ is low. This 
effectively improves the global search speed of the algorithm. 
Conversely, towards the end of each iteration, σ has a higher 
value, increasing the search accuracy of the algorithm. By 
introducing the nonlinear adaptation factor, our approach ach-
ieves a balance between global and local search performance, 
thereby shortening the overall search time of the algorithm. The 
improved update equations for pathfinders and followers are as 
follows: 
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(

σmax − σmin

)
(13)  

where, σ is a nonlinear adaptive factor, σmax and σmin is the upper 
and lower limit of nonlinear adaptation factor, σmax= 0.9, 
σmin= 0.4. A higher value of σmax allows for more exploration, 
enabling the algorithm to search a larger solution space. 
Conversely, a lower value of σmin encourages exploitation, 
focusing on promising solutions. 

Through experimentation and analysis, it was found that the 
selected range of σmax = 0.9 and σmin = 0.4 produced satisfactory 
convergence speed and solution quality in the specific problem 

domain of the study. These values were determined after con-
ducting a series of preliminary experiments and considering the 
trade-off between exploration and exploitation.  

(3) Follow correction strategy 

The PFA in the middle and later stages of the local search for supe-
riority, if the pathfinder and follower position distance is far away to 
reduce the local search ability of the algorithm, for which the distance 
between the pathfinder and the follower should be dynamically 
adjusted. The study optimized the follower position update equation by 
using the follow correction strategy, and the follower update equation 
was selected by random number comparison, where the probability of 
selecting Eq. (13) and selecting Eq. (14) were both 50%, and the fol-
lower position update equation using the follow correction strategy was 

Fig. 1. Flow chart of IPFA.  
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as follows: 

Xt+1
Fi = σXt

Fi +
(
Xt

P − Xt
Fi

)
× exp

( (
Fobj
(
Xt

P

)
− Fobj

(
Xt

Fi

))
× rand

)
(14) 

The specific process of the IPFA is as follows. 

(1) Parameter setting, such as the number of PFA population, pop-
ulation dimension, the maximum number of iterations, and other 
related parameters.  

(2) Initialization. The initialization equation after Kent mapping is 
used to initialize the PFA. The initial fitness values of the popu-
lation are calculated by the objective function. The pathfinder 
and follower in the PFA are divided, meanwhile the global 
optimal fitness and position are selected.  

(3) Pathfinding stage. The pathfinder updating Eq. (13) with a 
nonlinear adaptive factor is used to update the pathfinder.  

(4) Following stage, update Eq. (13) is used to update the follower, 
when Rand < 0.5, and the follower is updated with a follow 
correction strategy, while Rand ≥ 0.5.  

(5) The updated solutions of Pathfinder and follower are checked by 
constraints to prevent the solutions of the two populations from 
exceeding the limit. 

(6) Calculate the fitness of the pathfinder and follower after the up-
date, the novel pathfinder and follower are selected according to 
the fitness, and the global optimal individual is updated.  

(7) Determine whether to terminate the program, return to step (3) if 
current iteration does not reach the max-epoch, otherwise 
terminate the program and output the optimal solution. 

Fig. 1 presents the optimization process of the IPFA. 

4.3. Performance Test of IPFA 

Three unimodal and two multimodal test functions are applied to 
prove the performance of the IPFA. There is only one optimal solution of 
the unimodal test function, which aims to verify the global optimization 
performance. The unimodal test functions are F1, F2, and F3 respectively. 
The multimodal test functions F4 and F5 with plenty of locally optimal 
solutions are used to test whether the algorithm can avoid the local 
optimal solution. The test function information is listed in Table 1. 

The results obtained by squirrel optimization algorithm (SSA), PSO 
algorithm, original PFA, and IPFA are compared. To ensure the objec-
tivity of the test results, the population size, maximum iteration and test 
dimension of each algorithm are set to 50, 1000 and 30 respectively. In 
the squirrel algorithm, the probability of occurrence of natural enemies 
Pdp is set to 0.1, and the flight altitude reduction hg is set to 8. The 
learning factor and weight in PSO are set as follows: CI=C2 = 2, 
w= 0.729. The algorithms are tested on the same platform, meanwhile 
Intel (R) Celeron (R) CPU 1005 m @ 1.90 GHz, Windows10 operating 
system and MATLAB R2018a are employed. The test results of the four 
algorithms under the conditions of five test functions are revealed in  
Table 2. 

Table 2 shows the results obtained by running the algorithm 50 times 

independently. For the unimodal test function, the optimal value of the 
SSA algorithm was better than PFA and PSO algorithms, but standard 
deviation and average values obtained by the SSA algorithm were 
higher, indicating that the stability of the SSA algorithm was worse than 
PSO and PFA. The three indexes of the IPFA were smaller than the other 
three algorithms, showing that optimization ability of the IPFA was 
strong. In addition, the minimum standard deviation reached 8.68e-69, 
reflecting that the stability of the IPFA was better. 

For multimodal testing functions F4 and F5, the convergence results 
of the SSA algorithm were better compared to the PSO and PFA, espe-
cially for F4, SSA converged to 0. However, the standard deviation of the 
SSA was larger than that of the PSO for multimodal test function F5, 
indicating that the optimization stability of the SSA was slightly worse. 
The IPFA converged to the optimum value for F4, and the standard de-
viation was the smallest for F5, showing that the convergence stability 
and accuracy of the IPFA were more competitive than existing 
algorithms. 

Although the IPFA algorithm does not exhibit significant competi-
tiveness in terms of average running time, its performance in terms of 
mean and standard deviation is noticeably superior to other algorithms. 
This represents a trade-off between computational speed and better 
optimization results, as achieving improved optimization results 
without significantly reducing computation speed is acceptable for the 
model. 

5. Application of IPFA and example test 

5.1. Static economic dispatch problem solving for power systems 
containing wind energy 

Since the static economic dispatch problem of a power system con-
taining wind energy is a high-latitude, highly nonlinear and non- 
minimizable optimal dispatch problem, the IPFA proposed in Section 
4 is used to solve this dispatch problem in this subsection. The process of 
solving the static economic dispatch problem for power systems con-
taining wind energy is as follows.  

(1) Establish a static economic dispatch model of the power system 
containing wind energy, which includes establishing the objec-
tive function and constraints for static economic dispatch of the 
power system containing wind energy.  

(2) Establish the fitness function F of the IPFA, which is the objective 
function Fobj of the static economic dispatch of the power system 
with wind energy, and the expression of the fitness function of the 
IPFA is 

F = Fobj
(
Pgi,Pwj

)
(15)    

(3) Perform algorithm parameter setting, determine the number of 
populations, population dimension, maximum number of itera-
tions and other related parameters, and then initialize the algo-
rithm by adding the initialization formula of Kent mapping; enter 
the exploration phase, update the pathfinder by using the path-
finder update formula (13) after adding the nonlinear adaptation 
factor; enter the following phase, judge the size of the random 
value Rand, and update the strategy according to the size of Rand 
After that, we calculate the adaptation degree of the updated 
pathfinder and follower, select the new pathfinder and follower 
according to the adaptation degree, record and save the global 
optimal solution; finally, we judge whether the PFA reaches the 
maximum number of iterations, and if the maximum number of 
iterations is not reached, we continue to enter the exploration 
phase. However, if the maximum iteration count is reached, we 
calculate the average and standard deviation of the last 100 it-
erations. If both the average and standard deviation are within an 

Table 1 
Information of test functions.  

Function Dim Bounds Fmin 

F1(z) =
∑m

i=1z2
i  30 [− 100,100]  0 

F2(z) =
∑m

i=1 |zi| +
∏m

i=1
|zi|

30 [− 10,10]  0 

F3(z) = maxi{|zi|,1 ≤ i ≤ m} 30 [− 100,100]  0 
F4(z) =

∑m
i=1(z2

i − 10× cos(2π × zi) + 10) 30 [− 5.12,5.12]  0 

F5(z) = − 20× exp

(

− 0.2×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
30
∑m

i=1
z2

i

√ )

−

exp(
1
30

cos(2π × z2
i )) + 20 + e   

30 [− 32,32]  0  
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acceptable range (less than 1.0e-40), we output the optimal so-
lution of the PFA. If the results of the average and standard de-
viation are not acceptable, we restart the iteration process.  

(4) Using the constraints of the static economic dispatch model of the 
power system with wind energy to perform an out-of-bounds 
check on the output allocation values of the updated generating 
units to ensure that all solutions satisfy the constraints of the 
generating units. 

(5) Calculate the fitness values of pathfinders and followers accord-
ing to the fitness function of the IPFA, rank and select the solution 
with the lowest fitness value, record it and update the global 
optimal solution of the IPFA, which is the solution with the best 
value of the objective function among all solutions of the power 
output allocation of generating units obtained by this iteration of 
the algorithm. 

5.2. Case Test 

Constructed HSED model and proposed IPFA were proved through 
two test cases. Test Case 1 contains 6 thermal power units, test Case 2 
contains 15 thermal power units, and wind energy is added to the two 
cases. Each case considers slope, output power boundary, transmission 
loss and power balance constraints. At the same time, the SSA algorithm, 
PFA, IPFA, and previous research results were compared in two cases. 
The setting parameters of each algorithm are the same as those in Sec-
tion 4.3. The permeability of wind energy was set to 10% when intro-
ducing wind energy, and the value of wind farm power generation cost 
factor is 2 ($/MW). It should be pointed out that in practical applica-
tions, appropriate power generation cost coefficients need to be deter-
mined based on specific locations and circumstances. Operation cost, 
convergence speed, and convergence stability is used as three indicators 
to prove the performance of the IPFA. 

5.3. Case 1- Thermal power units with a quadratic cost curve, and the 
power demand 

Case 1 uses the traditional IEEE-6 units thermal power system for 
testing, including 6 thermal power units with a quadratic cost curve. The 
power demand for test Case 1 is 1263 MW. Table 3 listed the thermal 
unit parameters for Case 1, and Table 4 revealed the transmission loss 
coefficients. In order to ensure comparability and provide meaningful 
reference among the data obtained from the 50 rounds of testing, the 
cost coefficients for each thermal power unit and wind farm remain 
constant throughout the cyclic testing. 

Fig. 2 presented the comparison of 50 operation costs of HSED 
problems solved by SSA, PFA, and IPFA with or without wind power. 
The average, maximum and minimum values of 50 running costs were 
revealed in Table 5. Table 6 listed the allocation scheme of each algo-
rithm for the HSED model. 

To highlight the superior performance of the IPFA algorithm 
compared to other algorithms in terms of details, the results of the 
underperforming PSO algorithm were not included in Fig. 2. Fig. 2(a) 
presented the comparison of operating costs of the SSA, PFA, and IPFA 
for solving HSED without considering wind energy. Fig. 2(b) revealed 

Table 2 
results of algorithm tests.  

Function Algorithm Best Worst Average Std Time (s) 

F1 SSA 1.04e-15 0.101201641 0.002852 0.014252  0.0712 
PSO 4.19e-14 2.14e-09 7.96e-11 3.16e-10  0.0624 
PFA 6.70e-05 1.38e-03 4.43e-04 3.24e-04  0.0214 
IPFA 8.60e-85 4.87e-68 1.77e-69 8.68e-69  0.1535 

F2 SSA 1.63e-09 0.075277 0.010132 0.016464  0.0720 
PSO 1.34e-07 2.12e-04 1.58e-05 3.64e-05  0.0642 
PFA 0.029719 2.835688 0.214838 0.412831  0.0224 
IPFA 4.93e-43 7.01e-34 1.41e-35 9.81e-35  0.1537 

F3 SSA 1.06e-10 0.0694 0.006681 0.012073  0.1218 
PSO 0.203 0.672 0.422074 0.102279  0.3145 
PFA 0.189189 4.347275 1.720656 0.881263  0.0724 
IPFA 3.10e-45 7.09e-37 2.58e-38 1.01e-37  0.5155 

F4 SSA 0 0.023045 0.001301 0.003808  0.0743 
PSO 17.6055 65.66733 38.99839 10.68038  0.0745 
PFA 8.22e-05 54.90277 5.625225 11.54377  0.0272 
IPFA 0 0 0 0  0.1607 

F5 SSA 2.19e-09 0.051674 0.00396 0.009032  0.0752 
PSO 5.84e-08 1.79e-05 2.13e-06 3.74e-06  0.0761 
PFA 0.003333 4.584975 2.475472 1.013678  0.0322 
IPFA 8.88e-16 4.44e-15 2.95e-15 1.75e-15  0.1624  

Table 3 
Thermal unit parameters for Case 1.  

Unit γi φi ηi Pgi
0 Pgi

UR Pgi
DR Pgi

min Pgi
max Zones 

($/MW2h) ($/MWh) ($/h) (MW) (MW) (MW) (MW) (MW) 

U1  240  7.0  0.0070  440  80  120  100  500 [210,240], [350,380] 
U2  200  10.0  0.0095  170  50  90  50  200 [90.110], [140.160] 
U3  220  8.5  0.0090  200  65  100  80  300 [150,170], [210,240] 
U4  200  11.0  0.0090  150  50  90  50  150 [80,90], [110,120] 
U5  220  10.5  0.0080  190  50  90  50  200 [90,110], [140,150] 
U6  190  12.0  0.0075  110  50  90  50  120 [75,85], [100,105]  

Table 4 
Transmission loss coefficients of thermal units for Case 1.  

L00 0.0056      

Li0 -0.3908 -0.1297 0.7047 0.0591 0.2161 -0.6635 
Lij 0.0017 0.0012 0.0007 -0.0001 -0.0005 -0.0002 

0.0012 0.0014 0.0009 0.0001 -0.0006 -0.0001 
0.0007 0.0009 0.0031 0 -0.001 -0.0006 
-0.0001 0.0001 0 0.0024 -0.0006 -0.0008 
-0.0005 -0.0006 -0.001 -0.0006 0.0129 -0.0002 
-0.0002 -0.0001 -0.0006 -0.0008 -0.0002 0.015  
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the comparison of operating costs of the SSA, PFA, and IPFA for solving 
HSED model considering wind energy. The results revealed that SSA had 
great volatility when solving HSED model, the volatility of PFA was 
smaller than SSA, but IPFA has the least volatility when, which showed 
that IPFA had good stability when solving HSED model. In addition, the 
comparison results in Fig. 2 revealed that the operation cost of the power 
system was reduced due to the addition of wind energy. 

Table 5 presents the maximum (Cmax), minimum (Cmin), and 
average (Caver) operation costs obtained from different algorithms in 

solving HSED problems. The compared algorithms include the GA al-
gorithm (Gaing et al., 2003), PSO algorithm (Gaing et al., 2003), GWO 
algorithm (Xu et al., 2019), SA algorithm (Xu et al., 2019), NPSO al-
gorithm (Selvakumar and Thanushkodi, 2007), SSA algorithm, PFA, and 
IPFA without considering wind energy. The results indicate that the 
IPFA consistently outperformed the other methods in terms of operation 
costs, demonstrating its high accuracy in solving the HSED model. 
Notably, the IPFA achieved a significantly lower average value, differing 
by 40.42 ($/h), which highlights its stability in addressing HSED prob-
lems to a considerable extent. 

Furthermore, when wind energy was considered, a comparison was 
made between the SSA algorithm, PFA, and IPFA. The results revealed 
that the IPFA consistently yielded lower minimum, maximum, and 
average operating costs compared to the other methods. The maximum 
differences observed were 18.97($/h),63.66 ($/h), and 31.4 ($/h), 
further emphasizing the optimization capability of the IPFA. Addition-
ally, the inclusion of wind energy resulted in reduced minimum, 
maximum, and average operation costs by 9.3%, 9.2%, and 9.2% 
respectively, when compared to the operation costs obtained by the 
IPFA without considering wind energy. This finding highlights the 
effectiveness of incorporating wind energy in achieving cost savings 
within the power system. 

The convergence curves of different algorithms for Case 1 are pre-
sented in Fig. 3. 

Fig. 3 presented the convergence curves of different algorithms with 
or without wind energy. The dotted lines are the convergence curves of 
different algorithms without considering wind energy, and the solid 
lines are the convergence curves of different algorithms considering 
wind energy. Without considering wind energy, the SSA algorithm 
converged at 282th iteration, the PFA converged at 130th iteration, and 
the IPFA converged at 73th iteration. When considering wind energy, the 
SSA algorithm converged gradually with the PFA at 238th, 184th itera-
tion, and the PFA was still searching for optimization after 900th, while 
the IPFA converged at 100th iteration. The data above indicates that 

Fig. 2. Comparison of operation costs of the algorithm for solving 50 HSED 
problems with or without wind energy in test Case 1. 

Table 5 
Comparison of power system operation costs when different algorithms solve 
HSED problems with or without wind energy.   

Algorithm Cmin ($/h) Cmax ($/h) Caver ($/h) 

No wind GA 15,524 15,459 15,469 
PSO 15,450 15,492 15,454 
SA 15,461 15,545.50 15,488.98 
GWO 15,450.07 15,487.14 15,453.41 
NPSO 15,450.00 15,454.00 15,452.00 
SSA 15,451.27 15,478.45 15,462.32 
PFA 15,449.49 15,453.12 15,450.34 
IPFA 15,448.13 15,449.64 15,448.56 

With wind SSA 14,030.71 14,088.13 14,052.75 
PFA 14,020.43 14,046.04 14,027.46 
IPFA 14,011.74 14,024.47 14,021.35  

Table 6 
Allocation schemes without wind power for Case 1.  

Unit GA PSO SA GWO NPSO SSA PFA IPFA 

U1(MW) 474.81 447.49 478.13 446.63 447.47 446.65 446.75 451.25 
U2(MW) 178.64 173.32 163.02 171.77 173.10 174.76 177.08 171.98 
U3(MW) 262.21 263.47 261.71 264.67 262.68 265.00 260.76 257.69 
U4(MW) 134.28 139.06 125.77 141.34 139.42 150.00 141.32 130.83 
U5(MW) 151.90 165.48 153.71 166.54 165.30 165.82 161.55 165.90 
U6(MW) 74.18 87.13 93.79 85.00 87.98 73.49 88.34 98.16 
Pall(MW) 1276.03 1276.01 1276.13 1276.32 1275.96 1275.70 1275.80 1275.80 
PLoss(MW) 13.02 12.95 13.13 13.31 12.95 12.84 12.87 13.07 
Call($/h) 15,459 15,450 15,461.10 15,450.07 15,450 15,451.27 15,449.44 15,448.35  

Fig. 3. Convergence curves of different algorithms for Case 1.  
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regardless of considering the involvement of wind energy, the IPFA al-
gorithm can converge to the optimal solution with fewer iterations. This 
demonstrates the superiority of the IPFA algorithm in both exploration 
and exploitation within the solution space, as well as its ability to escape 
local optima. However, it should be noted that the fastest convergence 
speed does not necessarily mean the least amount of time required to 
obtain the optimal solution. Tables 6 and 7 listed the allocation schemes 
for Case 1. 

Tables 6 and 7 showed the output power distribution thermal units 
for Case 1, and gives the total output power Pall, line transmission loss 
(PLoss), wind farm generation cost (Cwind) wind power (Pwind) and power 
system total cost (Call). In addition, Table 7 presented that the total 
power of thermal power units was less than that of thermal power units 
without wind energy. The transmission loss of the line was also reduced 
accordingly when considering wind power. The obtained results illus-
trated the optimization ability of the IPFA and the economy brought by 
wind energy resources to the power system. 

5.4. Case 2- Thermal power units considering slope, power output, power 
balance constraints 

Case 2 uses the traditional IEEE-15 units thermal power system for 
testing, which includes 15 thermal power units and considers limiting 
factors such as slope, power output, and power balance. The power 
demand for Test Case 2 is 2630 MW. Table 8 lists the relevant param-
eters and transmission loss coefficients of the thermal power unit in 
Condition 2. In order to ensure comparability and provide meaningful 
reference among the data obtained from the 50 rounds of testing, the 
cost coefficients for each thermal power unit and wind farm remain 
constant throughout the cyclic testing. 

Fig. 4 showed the comparison of 50 operation costs of SSA algorithm, 
PFA, and IPFA for solving HSED problems with or without wind power. 

Fig. 4 presented the comparison of 50 operation costs of the SSA 
algorithm, PFA, and IPFA for solving HSED problems with or without 
wind energy. T results in Fig. 4 indicated that the volatility of IPFA was 
the smallest when solving HSED problems, and the volatility of the PFA 
was smaller than that of IPFA, while that of the SSA algorithm was the 
worst, which revealed that IPFA had a higher stability. Comparing the 
results in Fig. 4, the operating cost was reduced by introducing wind 
energy. The minimum, maximum, and average values of 50 operation 
costs were listed in Table 9. 

Table 9 revealed the maximum, minimum, and average of 50 power 
system operation costs when different algorithms were used to solve the 
HSED model with or without wind energy for Case 2. When wind energy 
was not considered, studies compared GA algorithm (Gaing et al., 2003), 
PSO algorithm (Gaing et al., 2003), SA algorithm (Pothiya et al., 2008), 
TS algorithm (Pothiya et al., 2008), NGWO algorithm (Xu et al., 2019), 
SSA algorithm, PFA, IPFA. The data presented in Table 9 illustrated that 
the IPFA had the smallest value among the three indexes: minimum, 
maximum, and average, and the highest values compared with the other 
algorithms were 415 ($/h), 606.24 ($/h), 515.11 ($/h), which 

demonstrated the high optimization ability of IPFA in solving the HSED 
problem, and the stability of IPFA was reflected by a lower average 
value. In addition, the SSA algorithm, PFA, and IPFA were compared in 
the study when considering the wind energy, and Table 9 showed that 
the minimum, maximum, and average values of the IPFA required 
operation cost were the lowest, and the highest were 237.63 ($/ h), 
496.57 ($/ h), 379.09 ($/ h) compared with the SSA algorithm, PFA, 
which verified the high solution accuracy of IPFA. The IPFA after 
considering wind energy reduced the operating cost minimum, 
maximum, and average by 7.4%, 7.4%, 7.5%, compared with those 
solved when wind energy was not considered. 

The convergence curves of the SSA algorithm, PFA, and IPFA with or 
without wind power were presented in Fig. 5. 

The solid lines in the Fig. 5 were the convergence curves of the SSA, 
PFA, and IPFA after adding wind energy, and the dotted lines were the 
convergence curves when wind energy was considered in HSED model. 
With the addition of wind energy, the SSA and PFA converged gradually 
at 522th, 314th iteration. When the wind energy was not taken into ac-
count, the IPFA converged when the number of iterations was 197th, 
while SSA and PFA converged gradually when the number of iterations 
was at 102th, 674th. Although the SSA algorithm exhibits a faster 
convergence speed compared to the IPFA algorithm, the optimal solu-
tion obtained by SSA is not competitive with that of IPFA. This indicates 
that the SSA algorithm has poorer optimization capability. Furthermore, 
regardless of considering the inclusion of wind energy, the IPFA algo-
rithm can achieve the optimal solution with fewer iterations, and the 
numerical value of the optimal solution is superior to the other two al-
gorithms. This demonstrates that the IPFA algorithm possesses stronger 
optimization capability and convergence speed. However, it should be 
noted that a faster convergence speed does not necessarily imply shorter 
computation time. 

The allocation schemes of each algorithm for HSED problems with or 
without wind power were listed in Tables 10 and 11. 

Tables 10 and 11 presented the output power distribution of each 
unit in two situations. The total output power, line transmission loss, 
wind farm generation cost, wind power, and power system total cost of 
each unit are given in Tables 10 and 11. The total power of thermal 
power units without wind power was higher than that of thermal power 
units with wind power. In addition, the transmission loss of the line 
reduced with the decrease of the total power of thermal power units, and 
the maximum difference was 16.75 MW. Table 9 showed that the 
addition of wind energy and the proposal of the IPFA reduced the 
operating cost and line loss of the power system. 

6. Discussion 

This study involves various constraints of generator operation when 
optimizing HSED model and new energy are added (Lu et al., 2021). A 
meta heuristic algorithm is employed to solve the HSED model, and the 
resulting optimal distribution scheme of output power of each generator 
can make the operating cost of the power system effectively reduced. 
The proposed model and methodology improve the utilization of clean 
energy provide a reference for economic dispatch of power systems from 
both theoretical and industrial aspects. 

Theoretically, numerous optimization methods are used to solve SED 
problems for power systems, but the considerations for the constraints 
on the generator unit are quite different, and not much is considered for 
the constraints on new energy sources in SED after the addition of new 
energy (El-Sayed et al., 2020). The various constraints of the generator 
set are essential factors to ensure that the model can simulate the actual 
operation condition of the system generator set more accurately. Con-
straints such as power boundary restraints, ramp rate restraints, power 
balance equation restraints, forbidden operation zone restraints on the 
generator unit are considered in the research proposed HSED model, and 
permeability restraints from further wind energy are incorporated. In 
this paper, an PFA is proposed, and the algorithm is optimized by Kent 

Table 7 
Allocation schemes with wind power for Case 1.  

Unit SSA PFA IPFA 

U1(MW) 398.69 418.90 397.99 
U2(MW) 177.85 165.72 165.71 
U3(MW) 265.00 249.17 256.30 
U4(MW) 101.40 121.60 126.55 
U5(MW) 130.69 130.86 132.51 
U6(MW) 73.64 61.05 67.07 
Pall(MW) 1147.30 1147.30 1146.10 
PLoss(MW) 10.94 10.66 10.53 
Cwind($/h) 252.6 252.6 252.6 
Pwind(MW) 126.3 126.3 126.3 
Call($/h) 14,030.71 14,020.43 14,011.74  
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mapping initialization, nonlinear adaptation factor and following 
correction strategy. The convergence accuracy and stability of the PFA 
are significantly improved, so that a better static economic dispatch 
scheme is given accurately and quickly, and the economic cost of power 
system economic dispatch is effectively reduced. The proposed models 
and methods provide ideas for the sustainable development of energy. 

Industrially, the addition of clean energy has resulted in improved 

economics and sustainability of traditional electrical system economic 
dispatch (Esen et al., 2007; Bhattacharya and Chattopadhyay, 2011; Li 
et al., 2020). The HSED model proposed in this study is based on 
traditional power system economic dispatch and considers the effect of 
wind energy while employing permeability constraints to reduce the 
instability problem of power system operation (Khani et al., 2021; Li 
et al., 2021a,2021b,2021c). The model is solved and a satisfactory 
scheduling scheme is given by the proposed IPFA. By comparing with 
other similar studies, this research method has reduced operation cost 
solved in both test cases, which can bring good economic benefits to the 
power system operation, and at the same time, the method achieves 
good results in solving speed and stability. For geothermal energy, 
biogas energy, solar energy and other clean energy, the utilization rate 
of power system is not high (Esen et al., 2015). Research on solving the 
HSED problem of power system provides concepts for system operators 
in dealing with operation stability and clean energy allocation and 
management, which is beneficial to wind power consumption in actual 
operation of power system and enhance the utilization rate of renewable 
energy. 

7. Concluding remarks 

The study addresses the HSED problem with the objective of mini-
mizing the operation cost of power systems while considering the con-
straints of clean energy and operational constraints of generator sets. In 
response to this problem, a novel HSED model is proposed, and the IPFA 
is employed to solve the constructed model. Two cases are applied to 

Table 8 
Relevant parameters of thermal power unit in test Case 2.  

Unit γi φi ηi Pgi
0 Pgi

UR Pgi
DR Pgi

min Pgi
max Zones 

($/MW2h) ($/MWh) ($/h) (MW) (MW) (MW) (MW) (MW) 

U1  671  10.1  0.000299  400  80  120  150  455  
U2  574  10.2  0.000183  300  80  120  150  455 [185,225], [305,335], [420,450] 
U3  374  8.8  0.001126  105  130  130  20  130  
U4  374  8.8  0.001126  100  130  130  20  130  
U5  461  10.4  0.000205  90  80  120  150  470 [180,200], [305,335], [390,420] 
U6  630  10.1  0.000301  400  80  120  135  460 [230,255], [365,395], [430,455] 
U7  548  9.8  0.000364  350  80  120  135  465  
U8  227  11.2  0.000338  95  65  100  60  300  
U9  173  11.2  0.000807  105  60  100  25  162  
U10  175  10.7  0.001203  110  60  100  25  160  
U11  186  10.2  0.003586  60  80  80  20  80  
U12  230  9.9  0.005513  40  80  80  20  80 [30,40], [55,65] 
U13  225  13.1  0.000371  30  80  80  25  85  
U14  309  12.1  0.001929  20  55  55  15  55  
U15  323  12.4  0.004447  20  55  55  15  55   

Fig. 4. Comparison of operation costs of the algorithm for Case 2.  

Table 9 
Comparison of power system operation costs when different algorithms solve 
HSED problems with or without wind energy.   

Algorithm Cmin ($/h) Cmax ($/h) Caver ($/h) 

No wind GA 33,113 33,337 33,228 
PSO 32,858 33,331 33,039 
SA 32,786 33,029 32,869 
TS 32,762 32,942 32,822 
NGWO 32,830 32,712 32,752 
SSA 32,847.48 33,008.67 32,944.58 
PFA 32,718.17 32,857.89 32,752.27 
IPFA 32,698.00 32,730.76 32,712.89 

With wind SSA 30,507.32 30,792.65 30,656.52 
PFA 30,275.65 30,420.98 30,323.94 
IPFA 30,269.69 30,296.08 30,277.43  

Fig. 5. Convergence curves obtained by different algorithms for Case 2.  
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validate the proposed solving method and constructed model. The 
findings obtained from this study can be summarized as follows:  

• Enhancements to the original PFA: Kent mapping initialization is 
introduced to expand the search space, and a nonlinear adaptation 
factor is added to improve convergence speed. The combination of 
the following correction strategy and follower update equation en-
hances the optimization ability of the algorithm.  

• Consideration of wind energy permeability and various constraints: 
The HSED model incorporates the permeability constraint of wind 
energy to ensure the stability of the power system. Additional con-
straints considered in the model include power balance equality 
constraints, output power boundary constraints, ramp rate con-
straints between different periods, and prohibited operation area 
constraints.  

• Evaluation through case studies: Two cases involving 6 units and 15 
units are employed to evaluate the proposed model and method. 
Convergence speed, operation cost, and stability are used as in-
dicators to assess the results. The test results demonstrate that the 
proposed method exhibits advantages in terms of solution speed and 
stability. Without considering wind energy, the IPFA solution re-
duces operating costs by 95.86 ($/h), 606.24 ($/h) on average 
compared to other algorithms. When wind energy is further 

considered, the IPFA reduces operation costs by up to 9.3% 
compared to 7.5% for the no wind energy scenario. 

The study makes several contributions. Firstly, it proposes a novel 
HSED model that accurately represents real-world power systems by 
incorporating multiple constraints. Secondly, it introduces the IPFA as 
an advanced optimization approach for solving complex HSED prob-
lems, improving solution accuracy, convergence speed, and stability. 
Lastly, the proposed method and model contribute to ensuring the 
economy and stability of power systems while enhancing the utilization 
of renewable energy sources. 

Despite competitive dispatch results, the study has limitations. For 
instance, the model does not consider the valve point effect of the actual 
generator sets, which may lead to abnormal operation. Future research 
should address this limitation by incorporating valve point effects to 
improve model accuracy. Additionally, the HSED model can be 
expanded to other hybrid microgrids, such as photovoltaic-thermal and 
wind-photovoltaic-thermal systems. Moreover, future studies should 
consider instability in new energy sources and explore the inclusion of 
other renewable energy types. It is also important to consider energy 
losses in wind power generation when constructing the HSED model to 
enhance its accuracy and practical relevance. These limitations and 
considerations provide opportunities for further research and improve-
ments to the proposed model and method. 

CRediT authorship contribution statement 

Li-Nan Qu: Writing – original draft; Writing – review & editing, 
Bing-Xiang Ji: Writing – original draft; Writing – review & editing, 
Ming K. Lim- Writing – original draft; Writing – review & editing, Qiang 
Shen- Writing – original draft; Writing - review & editing, Ling-Ling Li - 
Writing – original draft; Writing – review & editing, Ming-Lang Tseng - 
Writing – original draft; Writing – review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data Availability 

Data will be made available on request. 

Table 10 
Allocation schemes without considering wind power for Case 2.  

Unit GA PSO SA TS NGWO SSA PFA IPFA 

U1(MW) 415.31 439.12 453.66 453.53 455.00 412.26 454.93 455.00 
U2(MW) 359.72 407.97 377.61 371.97 380.00 380.00 379.98 380.00 
U3(MW) 104.43 119.63 120.37 129.78 130.00 128.23 129.98 130.00 
U4(MW) 74.98 129.99 126.27 129.34 130.00 128.64 129.95 130.00 
U5(MW) 380.28 151.07 165.30 169.59 160.54 162.95 169.99 170.00 
U6(MW) 426.79 459.99 459.25 457.99 460.00 460.00 459.99 460.00 
U7(MW) 341.31 425.56 422.86 426.89 430.00 430.00 430.00 430.00 
U8(MW) 124.79 98.57 126.40 95.17 84.19 96.07 116.26 96.24 
U9(MW) 133.14 113.49 54.47 76.84 57.78 121.95 33.96 26.98 
U10(MW) 89.26 101.11 149.08 133.50 146.78 74.77 119.97 160.00 
U11(MW) 60.06 33.91 77.96 68.31 80.00 80.00 79.96 80.00 
U12(MW) 50.00 79.96 73.95 79.68 80.00 78.62 79.97 80.00 
U13(MW) 38.77 25.00 25.00 28.31 32.75 42.04 25.31 26.98 
U14(MW) 41.94 41.41 16.06 17.77 17.30 31.08 26.53 18.03 
U15(MW) 22.64 35.61 15.02 22.84 15.48 33.25 22.42 16.19 
Pall(MW) 2668.4 2662.4 2663.29 2661.53 2660.54 2659.80 2659.40 2659.90 
PLoss (MW) 38.28 32.43 33.27 31.41 30.01 29.75 29.36 29.92 
Call ($/h) 33,113 32,858 32,786 32,762 32,712 32,847.48 32,718.17 32,698.00  

Table 11 
Allocation schemes considering wind power for Case 2.  

Unit SSA PFA IPFA 

U1(MW) 400.88 454.99 455.00 
U2(MW) 364.46 379.99 380.00 
U3(MW) 61.56 129.99 130.00 
U4(MW) 129.51 129.99 130.00 
U5(MW) 168.16 150.00 150.00 
U6(MW) 402.75 460.00 460.00 
U7(MW) 392.91 429.99 430.00 
U8(MW) 66.57 60.00 60.00 
U9(MW) 150.29 25.00 25.00 
U10(MW) 41.95 25.00 25.00 
U11(MW) 71.45 20.61 20.00 
U12(MW) 27.66 67.84 67.95 
U13(MW) 67.38 25.00 25.00 
U14(MW) 27.74 15.00 15.00 
U15(MW) 19.21 15.00 15.00 
Pall(MW) 2392.00 2388.50 2388.50 
PLoss (MW) 24.99 21.53 21.53 
Cwind ($/h) 526.00 526.00 526.00 
Pwind (MW) 263.00 263.00 263.00 
Call ($/h) 30,507.32 30,275.65 30,269.69  
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