7.48 [95% CI, 5.62-9.75] per million; P = .18) or females (3.38 [95% CI, 2.21-4.95] to 5.20 [95% CI, 3.84-6.90] per million;
P = .07).

Jointpoint analysis revealed a significant increase in crude incidence for males (AAPC, 2.9; 95% CI, 2.3-3.6; P < .001) and females (AAPC, 3.5; 95% CI, 2.2-4.7; P < .001) overall. The crude incidence decreased after age adjustment but remained significant for both sexes (AAPC: males, 0.8 [95% CI, 0.1-1.5; P = .02]; females, 1.9 [95% CI, 0.6-3.2; P = .005]). Males aged 55 to 64 years were the only male age group with a significant increase, but females showed a significant increase in all age cohorts (Table).

Discussion | Our findings indicate the reported incidence of CJD has risen considerably, disproportionately affecting older and female individuals. These trends align with data from Japan and could be influenced by changing demographics. However, our findings may also reflect improved detection of CJD with new diagnostic tools, such as magnetic resonance imaging and real-time quaking-induced conversion testing.

This study is limited by a reliance on death certificate data for estimating CJD incidence. While research supports this approach, such data may be subject to miscoding or misdiagnosis. Results from both neuropathologic and genetic testing may complement death certificate data and enhance surveillance. The findings underscore the changing landscape of CJD and suggest a need for monitoring among the aging US population.

Matthew A. Crane, BS
Sameer Nair-Desai, BS
Alison Gemmill, PhD
John A. Romley, PhD
John C. Probasco, MD

Author Affiliations: Johns Hopkins University School of Medicine, Baltimore, Maryland (Crane); Department of Economics, Stanford University, Stanford, California (Nair-Desai); Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (Gemmill); Leonard D. Schaeffer Center for Health Policy and Economics, University of Southern California, Los Angeles, California (Romley); Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland (Probasco).

Accepted for Publication: October 9, 2023.

Published Online: December 11, 2023. doi:10.1001/jamaneurol.2023.4678

Corresponding Author: Matthew A. Crane, BS, Johns Hopkins University School of Medicine, 733 N Broadway, Edward D. Miller Research Bldg, Ste 137, Baltimore, MD 21205-2196 (crane@jhu.edu).

Author Contributions: Mr Crane had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Crane, Nair-Desai, Probasco.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Crane, Nair-Desai, Probasco.

Critical review of the manuscript for important intellectual content: All authors.

Statistical analysis: Crane, Nair-Desai, Romley.

Supervision: Nair-Desai, Probasco.

Conflict of Interest Disclosures: None reported.

Disclaimer: This article reflects the views of the authors and should not be construed to represent the views or policies of the US Food and Drug Administration, the Department of Health and Human Services, or the US government.

Data Sharing Statement: See Supplement 2.

Effect of Neprilysin Inhibition on Alzheimer Disease Plasma Biomarkers: A Secondary Analysis of a Randomized Clinical Trial

Amyloid-β (Aβ) accumulation is critical in Alzheimer disease (AD), and neprilysin is involved in physiologically clearing Aβ. Concerns exist regarding long-term use of sacubitril/valsartan, a neprilysin inhibitor and angiotensin receptor blocker used for heart failure, and its potential to increase AD risk. We evaluated neprilysin inhibition’s effect on AD blood biomarkers in patients with coronary heart disease.

Methods | In a post hoc exploratory analysis of a 52-week randomized clinical trial (NCT03552575), we examined the effect of sacubitril/valsartan vs valsartan (ie, neprilysin inhibition) on AD blood biomarkers in patients with asymptomatic left ventricular systolic dysfunction late after myocardial infarction (eFigure and eMethods in Supplement 2). The primary analysis showed no significant results. Patients needed to be cognitively capable of independently adhering to the protocol throughout the study. The protocol was approved by the East of Scotland Research Ethics Committee. Patients provided informed consent. This study followed the CONSORT reporting guideline.

A 2-sided P < .05 was considered significant. Analyses were exploratory and not corrected for multiple testing. Participants were recruited between July 2018 and June 2019, with follow-up until June 2020. This data analysis was performed from November to December 2022 using R, version 4.1.1 (R Foundation for Statistical Computing).

Results | Ninety-two patients (46 per group; mean [SD] age, 61.0 [10.3] years; 84 men [91.3%]; 8 women [8.7%]; 2 [2.8%] self-reporting as South Asian and 90 [97.8%] as White) were examined. At 26 weeks, the sacubitril/valsartan vs valsartan group showed significant increases from baseline in plasma Aβ42 and Aβ40, persisting at 52 weeks (Aβ42, 30.7% [95% CI, 23.7%-38.0%; P < .001]; Aβ40, 93.0% [95% CI, 81.3%-105.5%; P < .001]); plasma Aβ42/Aβ40 ratio significantly decreased at 26 weeks, persisting...
at 52 weeks (−31.7%; 95% CI, −34.1% to −29.1%; \(P < .001 \)) (Figure 1). Notably, 3 female participants randomized to sacubitril/valsartan also experienced reductions in plasma Aβ42/Aβ40.

No significant differences were observed for biomarkers of phosphorylated tau at threonine 217 (p-tau217) and 181, glial fibrillary acidic protein (GFAP), or neurofilament light (Figure 2).

Plasma biomarker values were log10-transformed, with error bars indicating the SE of the adjusted between-group difference for each biomarker at each time point. Dotted lines represent the baseline as a reference. Relative differences in the sacubitril/valsartan group compared with the valsartan group was 31% for Aβ42, 93% for Aβ, and 32% for the ratio of Aβ42 to Aβ40 (all \(P < .001 \)). LSM indicates least squares mean.
These treatment-related increases in plasma Aβ42 and Aβ40 likely reflect reduced peripheral neprilysin activity because sacubitril effectively inhibits neprilysin without substantially crossing the blood-brain barrier.2 This pattern of Aβ42/Aβ40 reduction (increases in both peptides) differs from AD, wherein Aβ42/Aβ40 is reduced, reflecting pathologic decreases of Aβ42 and unchanged Aβ40 levels.3 Our findings align with a pharmacokinetic study showing that sacubitril/valsartan did not alter cerebrospinal fluid Aβ42 or Aβ40 levels in healthy volunteers but consistently increased plasma Aβ40 levels with a less sensitive immunoassay.2

Plasma p-tau biomarkers, particularly p-tau217, are known to associate with Aβ and tau pathologies and predict cognitive decline, while plasma GFAP associates with Aβ pathology, and neurofilament light with neuronal injury. While the absence of changes in these biomarkers (observed within a time frame in which p-tau217 and GFAP were already changed by anti-Aβ treatments3) is reassuring, treatment that substantially affected plasma Aβ did not affect other biomarkers.

Our study highlights sacubitril/valsartan's potential to confound plasma Aβ42/Aβ40 tests for AD. In AD, this ratio is only reduced by 8% to 14%,3 while sacubitril/valsartan reduces it by approximately 30%. Given the frequent co-occurrence of heart disease and cognitive impairment and increasing clinical availability of plasma Aβ42/Aβ40 tests,5 results for patients receiving sacubitril/valsartan should be interpreted cautiously; treatment-related Aβ42/Aβ40 reductions may lead to false-positive results and misclassification of Aβ positivity as being AD. This drug interaction contraindication for an AD blood test underscores the importance of considering potential confounders, especially in patients with comorbidities, such as p-tau and kidney disease,4 and suggests that a multibiomarker assessment may better control for factors affecting individual biomarker classes.

Limitations include the absence of cerebrospinal fluid and positron emission tomography biomarkers, which have been previously explored.2 Further studies with racial and ethnic diversity and between-sex balance are warranted. While not directly tested here, we do not consider sacubitril/valsartan-related increases in plasma Aβ to be concerning given sacubitril/valsartan’s successful clinical implementation over almost a decade.
Clinical Trial Partners Ltd outside the submitted work. Prof Blennow reported having served as a consultant and on advisory boards for Acumen, ALZPath, BioArctic, Biogen, Eisai, Eli Lilly, Moleac Pte Ltd, Novartis, Ono Pharma, Prothena, Roche Diagnostics, and Siemens Healthineers; having served on data monitoring committees for Julius Clinical and Novartis; lecture fees, production of educational materials, and participation in educational programs for AC Immune, Biogen, Celdara Medical, Eisai, and Roche Diagnostics; and cofounding Brain Biomarker Solutions in Gothenburg AB, which is a part of the GU Ventures Incubator Program, outside the work. No other disclosures were reported.

Funding/Support: This trial on which this exploratory analysis is based was funded by grant PG/17/23/32850 from the British Heart Foundation. This study was supported by grant RE/18/6/34217 from the British Heart Foundation Centre of Research Excellence Grant (Dr McMurray); grants 2022-01018 and 2019-02397 from the Swedish Research Council, grant 101053962 from the European Union’s Horizon Europe Research and Innovation Programme, grant ALFGBG-71020 from Swedish State Support for Clinical Research, grant 201809-2016862 from the Alzheimer Drug Discovery Foundation USA, grants ADSF-21-831376-C, ADSF-21-831381-C, and ADSF-21-831377-C from the Alzheimer’s Disease Strategic Fund and Alzheimer’s Association, the Bluefield Project, the Olav Thon Foundation, the Erling-Person Family Foundation, grant F02022-O270O from the Stiftelsen für Gamla Tjänarinnor, Marie Sklodowska-Curie grant agreement 860197 from the European Union’s Horizon 2020 Research and Innovation Programme, grant JPDN2021-00694 from the European Union Joint Programme—Neurodegenerative Disease Research, and grant UKDRI-1OG3 from the UK Dementia Research Institute at University College London (Dr Zetterberg); grant 2022-00775s from the Swedish Research Council; grant ERAPERMED2021-184 from ERA PerMed, grant 2017-0383 from the Knut and Alice Wallenberg Foundation, the Strategic Research Area MultiPark (Multidisciplinary Research in Parkinson’s disease) at Lund University, grant AF-980907 from the Swedish Alzheimer Foundation, grant FO2021-02934 from the Swedish Brain Foundation, grant 1412/22 from the Parkinson Foundation of Sweden, the Cure Alzheimer’s Fund, the Konung Gustaf V:s och Drottning Victorias Frimurarestiftelse, grant 2020-0000282 from the Skåne University Hospital Foundation, grant 2022-1259 from the Swedish Development Cooperation, and grant 2022 Projekto808 from the Swedish federal government under the ALF agreement (Lund University); grants 8B8875372371/2019-00 and 8B887596742/2020-00 from CAPES and the Stiftelsen for Gamla Tjänarinnor (Mr Brum); and grants 2017-00915 from the Swedish Research Council, RDPAPB180109-2016615 from the Alzheimer’s Drug Discovery Foundation, AF-742881 from the Swedish Alzheimer Foundation, FO2017-0243 from Hjälmorden, Sweden, ALFGBG-715986 from the Swedish state under agreement between the Swedish government and the County Councils, the Avtal om Lillaarbitrdling och Forskningsavtal, JPN2019-466-236 from the European Union Joint Programme for Neurodegenerative Disorders, and IR01AG068398-01 from the National Institutes of Health (Prof Blennow).

Role of the Funder/Sponsor: Trial medication and funding for trial drug packaging, labeling, distribution, storage, and destruction were supplied by Novartis Pharmaceuticals UK Limited, who had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation of the article; or decision to submit the article for publication.

Trial Registration: ClinicalTrials.gov Identifier: NCT03552575

Data Sharing Statement: See the Supplement 3.

Additional Contributions: The authors thank Pardeep S. Jhund, MD, PhD, and Mark C. Petrie, MD, PhD, from the University of Glasgow for participating as investigators in the trial and Shorenna Janelidze, PhD, from Lund University for participating in plasma biomarker analyses for this study. Drs Jhund, Petrie, and Janelidze were not compensated for their contributions.

CORRECTION

Addition of Nonauthor Collaborators and a Supplement: In the Original Investigation titled “Efficacy and Safety of XEN1101, a Novel Potassium Channel Opener, in Adults With Focal Epilepsy: A Phase 2b Randomized Clinical Trial,”1 published online October 9, 2023, and in the November 2023 issue, a group author name “for the X-TOLE Study Group” has been added to the byline and the Article Information, and a list of Nonauthor Collaborators has been added in a new Supplement. This article has been corrected.1

Change to Open Access Status: The Original Investigation titled “Thrombectomy With the pRESET vs Solitaire Stent Retrievers as First-Line Large Vessel Occlusion Stroke Treatment: A Randomized Clinical Trial,”1 published online January 2, 2024, was changed to open access status under a CC-BY-NC-ND license. This article was corrected online.