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Abstract—With the rapid rise of digital technology, artificial 
intelligence driven by big data has entered the fast lane of 
development, but it has also given rise to many problems, such as 
data silos and user privacy. A solution to solve these problems is 
federated learning. However, this framework also faces many 
challenges, with high communication costs in the first place. Non-
orthogonal multiple access (NOMA) can be applied to alleviate the 
problem. In this paper, we focus on this issue and investigate 
multiple access technology based on federated learning. We build 
a NOMA-based federated learning system to improve the 
communication efficiency of federated learning. Then we propose 
a NOMA dynamic power allocation algorithm based on the real-
time channel state at the edge user to improve the performance of 
the system. Experimental results show that the proposed 
algorithm can improve the training accuracy of the system model 
and reduce the energy consumption for uploading parameters.  
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I. INTRODUCTION  
With the rapid innovation of digital technology, big data and 

artificial intelligence have brought many changes in the fields of 
computer vision, speech recognition, text classification, natural 
language processing, and so on. At the same time, artificial 
intelligence has also been rapidly applied in wireless 
communication networks, which is called a major innovation to 
realize intelligent communication networks. However, in the 
process of achieving efficient access to data generated by a large 
number of mobile terminals, the artificial intelligence 
technology driven by big data has encountered many challenges, 
such as the data silos problem, which means it is difficult to 
integrate data from different places, and the user privacy, which 
is difficult to avoid in data mining. 

One approach to solving the data silos problem and the user 
privacy problem involves the use of federated learning. The 
concept of federated learning was originally proposed by 
Google[1]. This paper published by McMahan et al. made the 
first formal elaboration on the definition, application scenarios, 
and other characteristics of federated learning, and proposed the 
FedAvg algorithm to solve the problem of the high 
communication cost of federated learning. Later, leading 
companies in various fields started to promote the development 
of this machine learning framework. Up to now, there are many 
mature and widely used federated learning frameworks both in 
domestic and overseas, such as FATE proposed by WeBank[2], 

Paddle FL proposed by Baidu[3], and TensorFlow Federated 
proposed by Google[4]. However, federated learning has 
encountered many challenges in the process of development, 
such as high communication costs, increasing privacy and 
security protection requirements, in addition to system 
heterogeneity and statistical heterogeneity at the edge user. To 
solve these problems, a large number of experts and scholars 
have proposed many optimization solutions. In this paper, we 
focus on the problem of high communication cost of federated 
learning, and improve the communication efficiency of 
federated learning by optimizing the multi-access technology in 
the federated learning framework, so as to achieve the goal of 
reducing the communication cost of federated learning. 

Currently, the prevailing multiple access techniques used in 
the federated learning framework are orthogonal multiple access 
(OMA). These classical OMA techniques allocate the edge users 
in the federated learning framework to orthogonal resources in 
the frequency, time, and code domains to achieve multiplexing 
of signals, thus avoiding or alleviating the interference among 
these edge users. Hu et al. proposed a device scheduling for 
energy-efficient federated learning based on time-division 
multiple access (TDMA) to optimize energy consumption[5].  
Yang et al. proposed a bisection-based algorithm to minimize 
the energy consumption in frequency-division multiple access 
(FDMA) -based federated learning systems[6]. With the fast 
development of non-orthogonal multiple access (NOMA) 
technology, wireless resources have been applied more 
efficiently. The main idea of  NOMA technology is to use power 
domain multiplexing or code domain multiplexing for several 
different users to achieve the sharing of time and frequency 
resources within the same spatial hierarchy [7]. Liu et al. fully 
compared the OMA technique with the NOMA technique from 
multiple perspectives and demonstrated the greater performance 
advantage of the NOMA technique [8]. Sun et al. proposed an 
adaptive gradient quantization and sparsification approach to 
implementing gradient updates for uplinks in a federated 
learning framework and further investigated the approach in 
NOMA [9]. Ma et al. transformed the edge user scheduling 
problem of federated learning under NOMA into a maximum 
weight independent set problem that can be solved by graph 
theory to improve communication efficiency while enhancing 
edge user testing accuracy [10]. Thus, the aim of the work in this 
paper is to build a NOMA-based federated learning system to 
improve the communication efficiency of federated learning and 



to analyze and optimize its model performance. The main 
contributions of this paper are summarized as follows: 

• Firstly, we build a NOMA-based federated learning system. 
Each edge user can simultaneously upload the parameters 
to the parameter server for aggregation, which improves the 
communication efficiency of federated learning. 

• Secondly, we propose a NOMA dynamic power allocation 
algorithm based on the real-time channel state at the edge 
user to improve the performance of the NOMA-based 
federated learning system. The algorithm can make full use 
of the real-time channel state information at the edge user 
to find the optimal power allocation scheme. 

• Finally, we conduct experiments on the proposed algorithm. 
Then we adjust and analyze the parameters in the algorithm 
to find appropriate parameters to optimize the performance 
of the system model. The simulation results show that the 
algorithm can improve the training accuracy of the system 
model and reduce the energy consumption for uploading 
parameters. 

II. SYSTEM MODEL 
At first, we build a federated learning system consisting of 

a parameter server and a set { }1,2,..., K= of K  edge users. 
Edge users finish the training of machine learning models using 
local data respectively. The training task for edge user k ∈
in round t is to find the mapping relationship between the 
features t

kx  and the labels t
ky in the dataset. The model 

parameter t
kw  is used to describe the mapping relationship and 

the loss function ( , ; )t t t
k k kf x y w  is used to describe the mapping 

error, then the main problem solved by this task can be 
described as: 
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where | |k is denoted as the cardinality of the data sample used 
by edge user k in the training process of the machine learning 
model. 

Now we temporarily hide the formulation for t , which is 
because the formula holds for all rounds of the training task, 
then the formula can be generalized as: 
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where w  is the global model parameter generated by the sub-
model parameter kw . The ultimate goal of the model is to find 
the optimal solution that minimizes the loss function ( )F w  by 
iterating the machine learning model parameters. 

Based on this, we use NOMA to optimize the federated 
learning framework on the uplink transmission of edge user 
signals, and then build a NOMA-based federated learning 
system. The NOMA-based federated learning system is showed 
in the Figure 1. In this system model, the running process can 
be divided into 3 steps. Firstly, each edge user initializes their 
respective machine learning model to be trained according to 
the parameters passed down by the parameter server. Secondly, 
each edge user accesses the local dataset to train their respective 
models and uploads the trained parameters to the parameter 

server, using power domain-non-orthogonal multiple access 
(PD-NOMA) technology in the process of uploading. Finally, 
the parameter server aggregates the model parameters uploaded 
by each edge user and then passes the aggregated new 
parameters down to each edge user to update its local machine 
learning model, which is circulated in this way. 

In particular, the elements that are continuously iterated in 
the built system model are important parameters that are trained 
by each edge user in the local machine learning model. In this 
paper, we use Convolutional Neural Network (CNN) [11] as the 
machine learning model to be trained in the NOMA-based 
federated learning system. The training task performed is image 
recognition, and the dataset trained by each edge user is MNIST. 
As shown in Figure 2, there are two convolutional layers in the 
training process of the machine learning model, corresponding 
to Convolutional Layer1 and Convolutional Layer2. The 
important parameters in the convolutional process are the 
parameters of the filters involved in the convolution, which are 
uniformly preset to w in this paper to facilitate the derivation 
of subsequent formulas. 

Furthermore, we describe the process of generating and 
updating the machine learning model parameters in the system 
model. 

 

Fig. 1.  NOMA-based federated learning system model 

 
Fig. 2.  The training process of the machine learning model 



A. Global Parameter Update 
In this paper, M is set as the global iteration count in the 

system model and N is the local iteration count, followed by 
{ }1,2,...,i M∈ as the rounds of global iterations and 
{ }1,2,...,j N∈ as the rounds of local iterations. Then ,i j

kw
denotes the model parameters updated locally by the edge user 
k at round j during the global parameter update at round i . 
Thus, for round 1i + , the model parameters of the parameter 
server and each edge user are the global iteration parameters 
after the parameter server aggregates the local iteration 
parameters at round i : 
 1,0 , .i i

kw w k+ = ∀ ∈  (3) 

B. Local Parameter Update 
In the training of the local machine learning model by edge 

user k , it needs to calculate the gradient ( )kF w∇ of the loss 
function ( )kF w . So for the local iterations of round 1j + , the 
local model parameters are the results of edge user k performing 
the following equation: 
 , 1 , ,- ( ).i j i j i j

k k k kw w α F w+ = ∇  (4) 
where α denotes the learning rate. 

C. Global Parameter Aggregation 
After k edge users upload local machine learning model 

parameters using PD-NOMA technology, the parameter server 
aggregates the model parameters ,i N

kw and then completes the 
update by averaging the aggregated parameters to obtain a new 
round of global model parameters: 
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III. PERFORMANCE OPTIMIZATION IN THE SYSTEM MODEL 
There are many factors affecting the performance of the 

NOMA-based federated learning system. In this paper, we focus 
on the optimization of NOMA power allocation in the system to 
improve the model performance. 

A. Model Performance Analysis 
The model for uploading the parameters using PD-NOMA 

in the system model is shown in Figure 3. NOMA allows 
different edge users in the system model to transmit signals 
using the same time domain and the same frequency domain. 
The key principle of PD-NOMA is to allocate power and stack 
codes on the signals of different edge users first. Then, the 
parameter server uses Successive Interference Cancellation (SIC) 
technology to detect and separate the signals of each edge user 
step by step according to the power difference of the different 
signals [12]. This is a very subtle technology. For the NOMA-
based federated learning system, we set the transmit power of 
edge user k at round t to be t

kp , the Rayleigh fading channel 
power gain from edge user k to the parameter server to be t

kh , 
and the signal sent by edge user k to be t

ks . Then the signal 
received by the parameter server is： 

 
1

.
K

t t t t t
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where tz is the complex additive Gaussian white noise,
2(0,σ )tz   . 

For the NOMA in the uplink, the signal of the edge user with 
the best channel gain has the highest power, and the parameter 
server detects and separates this signal at first. Therefore, after 
hiding the formulation for t , we assume that the channel gain 
of edge user 1 in the system model is the best and the allocated 
power of its signal is the largest: 1 2 ... Kp p p> > > . Then the 
signal received by the parameter server can be expressed as: 
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Then, the parameter server detects and separates the signals 
step by step using SIC technology. Firstly, the parameter server 
sorts the signals of each edge user according to their power 
levels ( 1 2 ... Kp p p> > > ) and then decodes them in the 
following order: 1 2, ,..., Ks s s . Specifically, the parameter server 
decodes the signal of edge user 1 at first, when the signals of 
other edge users are considered as noise. After that, the 
parameter server removes the signal of edge user 1, and then 
decodes the signal of edge user 2 from the reconstructed 

 
Fig.  3.  The model for uploading the parameters using PD-NOMA 



received signal. Finally, after removing the signal of edge user 
1K − , the parameter server decodes the signal of edge user K . 

Based on the above analysis, we focus on the power 
allocation scheme for NOMA in the NOMA-based federated 
learning system, which enables the parameter server to detect 
and separate the signals after power multiplexing in higher 
quality by controlling the power differences of each edge user.  

B. Model Performance Optimization 
After the analysis of the system model performance, we start  

to optimize the power allocation algorithm of NOMA in the 
system. So far, a lot of research has been carried out in this area. 
The following are some of the classical power allocation 
algorithms summarized in this paper. 

1) Full Search Power Allocation: The algorithm performs 
an exhaustive enumeration of power allocation schemes for all 
edge users in the federated learning system to find the optimal 
solution. However, the complexity of this algorithm grows 
nonlinearly with the increasing number of edge users, resulting 
in a large signal expense [13]. 

2) Iterative Power Allocation: The central idea is based on 
the greedy algorithm, and the biggest advantage of this 
algorithm is its lower complexity. However, the algorithm may 
not provide the optimal power allocation scheme. 

3) Fixed Power Allocation: The algorithm is to sort the 
channel gain at each edge user and set a recursive coefficient 
for power allocation. It is assumed that the total power at the 
edge user end is sP . There are K edge users, and the power 
assigned to edge user k after the ordering can be expressed as: 

 1

1

, 1.

,1 .
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s k
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μ P P k K
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=

=
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∑
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The algorithm completes the recursion to achieve the power 
allocation according to (8). Its complexity is low and it utilizes 
the channel gain condition [14]. However, this algorithm fails 
to take full advantage of the real-time channel state of each edge 
user, and its applicability decreases as the channel gain changes 
in real time, which does not guarantee the system performance. 

Based on the analysis above, we propose a NOMA dynamic 
power allocation algorithm based on the real-time channel state 
at the edge user to improve the performance of the NOMA-
based federated learning system. First of all, to calculate the real-
time channel state information of each edge user, the transmit 
power t

kp of each edge user with its power gain t
kh is taken into 

consideration. Given that there are a total of K edge users, the 
real-time channel state information of edge user k at round t
when uploading is: 2

2|| ||t t
k kp h . where 2|| ||⋅ denotes the two-

parametric number of real-time channel state of each edge user. 
Thus, it can be set that the interference from the noise of other 
devices except the signal of edge user k is: 

 2 2
2

1
|| || σ .

K
t t t
k i i

i
i k

n p h
=
≠

= +∑  (9) 

Then the allocated power coefficient ,
t
PA kα  for each edge user 

at round t is: 
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where PAμ denotes the dynamic power allocation exponent of 
the system model. 

Algorithm 1: NOMA Dynamic Power Allocation Algorithm 
Based on the Real-Time Channel State at the Edge User 
Initialization: dynamic power allocation exponent PAμ  , 
global iteration count M , local iteration count N ； 
1:  for i =1: M  
2:      for (each edge user k ) do 
3:          for j =1: N  
4:              Calculate  ( )i, j i, j -1 i, j -1

k k k kw w -α F w∇= ; 
5:              Calculate i, j

kacc ; 
6:          end for 
7:          Calculate i

kacc according to i, j
kacc ; 

8:          Calculate 2 2
2

1
|| || σ

K
i i i
k u u

u
u k

n p h
=
≠

= +∑ ; 

9:          Calculate 
2
2

, 2
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10:    end for   
11:    Transmit signals using PD-NOMA; 

12:    Calculate 
1

K

ps k k k ps
k

y h p s z
=

= +∑ ; 

13:    Detects and separates the signals using SIC; 

14:    Complete global parameter aggregation

,

1

K
i N
k

i k
w

w
K

==
∑

; 
15: end for 

 

IV. SIMULATION RESULTS 
In this section, we conduct the simulation of the NOMA 

dynamic power allocation algorithm based on the real-time 
channel state at the edge user proposed in the NOMA-based 
federated learning system and analyze the results. We assume 
that 3K = , the distance from the parameter server to edge user 
1 is 100 m, to edge user 2 is 150 m, and to edge user 3 is 200 m. 
To analyze the optimization results of this power allocation 
algorithm more intuitively, the initial global iteration count M
is set to 30 and the local iteration count N is set to 5, and then 
the Rayleigh fading channel is considered in this paper. 

We firstly simulate the proposed NOMA dynamic power 
allocation algorithm based on the real-time channel state at the 
edge user from two perspectives: the accuracy of the machine 
learning model trained by each edge user and the energy 
consumption of the model parameters uploaded by each edge 
user. For each global iteration round, the training accuracy can 
be calculated while training, and the energy consumption needs 
to be further calculated. As noted above, the system model uses 
PD-NOMA to upload model parameters, and to facilitate the 
elaboration of this process, we temporarily assume that the 
ranking numbers of the K  edge users are in descending order 
according to the decoding order of SIC: edge user K is decoded 



first and edge user 1 is decoded last. Then, for edge user k , the 
reached rate at round i of the global iteration is described as: 
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where B is the transmission bandwidth, i
la is the power 

allocation coefficient of the edge user l at round i of the global 
iteration, i

lp  is the transmit power, and 2σ is the variance of the 
complex additive Gaussian white noise. The data size to be 
uploaded by edge user k is set to be i

kS . Therefore, the time 
consumed can be expressed as: 

 ,
,

.
i
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S
t

R
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At this point, i
kP is set to be the transmit power of edge user k . 

Then we can build a model of the energy consumption of edge 
user k for uploading the model parameters: 
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The comparison of the optimization results of the NOMA 
power allocation algorithm is shown in Figure 4. Firstly, we 
compare the average accuracy of the machine learning models 
trained by each edge user in each round of the global iteration. 
After the arithmetic analysis of the values in the figure, we find 
that using the proposed NOMA dynamic power allocation 
algorithm based on the real-time channel state at the edge user 
can improve the training accuracy rate by 6.84%. Then, we 
compare the total cumulative energy consumption of the model 
parameters uploaded by all edge users in each round of the 
global iteration. We find that the proposed NOMA dynamic 
power allocation algorithm can reduce the energy consumption 
of the model parameters uploaded by each edge user. Thus, we 
can conclude that the proposed NOMA dynamic power 
allocation algorithm based on the real-time channel state at the 
edge user can reduce energy consumption while improving the 
training accuracy, which can improve the performance of the 
NOMA-based federated learning system.  

Based on this, we conduct the simulation of the BER of the 
NOMA-based federated learning system using new algorithm. 
The result is shown in Figure 5. We can find that the distance 
between the edge user and the parameter sever can cause 
influence on BER in the NOMA-based federated learning 
system using the new algorithm. The further the distance 
between the edge user and the parameter server, the greater will 
be the BER. Thus, selecting the appropriate distance between 
the edge user and the parameter server is also significant in the 
NOMA-based federated learning system using the NOMA 
dynamic power allocation algorithm based on the real-time 
channel state at the edge user. 

During the experiment, we find that the dynamic power 
allocation exponent PAμ  also has an influence on the 
performance of the system model. Therefore, we need to find 
the best value for the performance of the current system model 
by changing PAμ . As shown in Figure 6, we present the 
comparison results of the dynamic power allocation exponent 
of the new algorithm. When 0 0.5PAμ≤ ≤ , the difference in the 
power among the edge users increases accordingly as PAμ
increases, the training accuracy increases as well. When 
0.6 1PAμ≤ ≤ , the training accuracy shows a fluctuating trend. 
For the total energy consumption for uploading the parameters 
by edge users, when 0 0.2PAμ≤ ≤ , the total energy 
consumption decreases as PAμ increases. In the case of 
0.3 1PAμ≤ ≤ , as PAμ increases, the power allocated to edge user 
1 becomes larger and the total energy consumption of the 
system increases.  

 

 

 
Fig.  4.  The comparison of the optimization results of the NOMA power 
allocation algorithm 

Fig.  5.  BER of NOMA-based federated learning system using new algorithm 

Fig.  6.  The comparison of the dynamic power allocation exponent of the new 
algorithm 



Therefore, to ensure the energy consumption for uploading 
parameters in the system not be too high while improving the 
training accuracy of the machine learning model as much as 
possible, we consider that the optimal solution for PAμ should 
be 0.5 0.7PAμ≤ ≤ . 

In the experiment, we find that different values of the local 
iteration count N  also influence the performance of the 
NOMA-based federated learning system. To determine the 
value of the local iteration count N that can best optimize the 
performance of the system model, we use the NOMA dynamic 
power allocation algorithm based on the real-time channel state 
at the edge user, and set the global iteration count 30M = , the 
dynamic power allocation exponent 0.6PAμ = , and then 
compare the average accuracy of the machine learning models 
trained by each edge user in each round of the global iteration 
when N  is set to different values. 

As shown in Figure 7, we present the comparative analysis 
of the local iteration count N in the NOMA-based federated 
learning system. It can be seen that the training accuracy 
increases as N increases. However, when N is large enough, 
there is no obvious increase in the training accuracy. In 
particular, when 25N = , the average accuracy is the best and 
the value is even better than that when 30N = . Therefore, we 
conclude that the performance of this system model is the best 
when 20 25N≤ ≤ in the NOMA-based federated learning 
system. 

V. CONCLUSION 
In this paper, we studied the performance of the NOMA-

based federated learning system. Firstly, we built a NOMA-
based federated learning system, which improved the 
communication efficiency of federated learning. Secondly, we 
proposed a NOMA dynamic power allocation algorithm based 
on the real-time channel state at the edge user to improve the 
performance of the NOMA-based federated learning system. 
The algorithm made full use of the real-time channel state 
information at the edge user to find the optimal power allocation 
scheme. Finally, we simulated the proposed algorithm, and then 

we adjusted and analyzed the parameters in the algorithm to find 
appropriate parameters to optimize the performance of the 
system model. The results showed that the proposed algorithm 
improved the average training accuracy of the system model by 
6.84% and reduced the energy consumption for uploading 
parameters. The performance of the system model was the best 
when 0.5 0.7PAμ≤ ≤  and 20 25N≤ ≤ . 
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