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Exploring the Elusive Mind: A Multimodal Wearable Sensor
Solution for Measuring Mind Wandering in University
Students

Sara Khosravi, Haobo Li, Ahsan Raza Khan, Ahmad Zoha, and Rami Ghannam*

Mind-wandering is a typical daily phenomenon during which attention shifts
from external stimuli to internal trains of thought. It affect students’ learning
by impairing comprehension, diminishing academic achievement, impeding
critical thinking, and encouraging a lack of attention and engagement in
classroom activities. This study aims to introduce a new method of detecting
and tracking mind wandering in university students. This approach involves
using wearable sensors, including galvanic skin response (GSR),
photoplethysmography (PPG), and eye-trackers, along with machine learning
techniques. The study provides a proof of concept for this multisensory
approach. The association between longer fixation duration and mind
wandering, and the influence of an instructor’s presence on fixation
allocation, and, consequently, the frequency and occurrence of mind
wandering is investigated. Furthermore, the feasibility of using eye-trackers in
conjunction with GSR and PPG sensors for detecting mind wandering
through a wearable multisensory data collection system is assessed. The
wearable multisensory device is evaluated by ten participants (university
students, males/females aged between 21-30). Two distinct machine learning
methods, support vector machine (SVM) and gated recurrent unit (GRU), are
used as classification models. With sensor fusion, the SVM and GRU models
yielded maximum accuracies of 86.53% and 89.86%, respectively. Moreover,
participants are observed to fixate on instructors more often, just before
instances of mind wandering.

1. Introduction

We live in a world where there are many distractions that can
quickly capture our attention, making it difficult to stay focused.
Even though educators try to provide engaging and interactive
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material to students, many still strug-
gle with disinterest and lack of atten-
tion. This phenomenon, where the mind
drifts away from the task at hand and be-
comes preoccupied with other thoughts,
is known as mind-wandering.

Mind wandering is closely connected
to learning, and many research stud-
ies have investigated its impact during
lectures.[1,2] The two most widely rec-
ognized techniques for gathering data
on mind wandering in the literature
are the “self-report” and “probe-caught”
methods.[3,4] The “probe-caught” ap-
proach involves interrupting participants
and inquiring about their mental state at
that moment, while the “self-report” tech-
nique requires participants to self-report
their mind-wandering experiences.
This study utilizes the probe-caught
method and incorporates a multisensory
approach, including biological, phys-
iological, and gaze-tracking sensors,
to collect the data for experiments.

Over the last decade, scientists have
shown increasing interest in develop-
ing and deploying innovative technolo-
gies to track and understand mind wan-
dering in educational settings, intending

to improve learning outcomes. This has involved using mobile
devices such as phones and tablets to gather self-reported data
from students, as well as sensors that can detect biological mark-
ers, such as temperature and pressure. However, these methods
can be intrusive for participants and require extensive data anal-
ysis. Moreover, the data collection process through a multisen-
sory approach is more reliable as it involves multiple data sources
that can be validated through experiments. Therefore, a multisen-
sory solution involving wearable sensors such as wearable gal-
vanic skin response (GSR), photoplethysmography (PPG), and
eye-trackers combined with machine learning offers a more ef-
ficient solution for monitoring mind wandering in students,[5]

as they are comfortable to wear and allow for real-time, rapid
data analysis, as illustrated in Figure 1. Due to their lightweight
design and ease of wear, students find these technologies com-
fortable to use. Furthermore, they can be integrated with data
analysis algorithms, allowing for swift and real-time analysis of
data.
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Figure 1. Conceptual schematic of the multisensory methodology for mind-wandering detection in the learning environment and an envisioned block
diagram for its measurements in students using PPG, GSR, and eye-trackers.

We have previously shown how students react to educational
materials, such as lecture slides, by assessing their visual atten-
tion through the use of eye-trackers.[6–8] Visual attention is only
one aspect of paying attention, and even if a person appears to be
focused on a task and their gaze is directed toward the intended
subject, they may be thinking about something entirely different.
The connection between eye movements and cognitive process-
ing is undeniable.

To estimate cognitive load, attention, focus, and mind wander-
ing, gaze behavior can be captured and analyzed, which enables
the monitoring of visual attention.[9] Cutting-edge wearable de-
vices enable the measurement of gaze movements on specific
parts of learning materials, allowing for the identification of the
source of distraction. Our previous work involved using a wear-
able eye-tracker to monitor students’ visual attention while read-
ing educational materials and distinguish between different be-
haviors in text- and graphic-based visuals.[10] However, as visual
attention alone does not indicate a full focus on a task, we need
an additional indicator to validate the results obtained from the
wearable eye-tracker.

In this study, we sought to gain deeper insights into mind-
wandering by using dynamic stimuli, such as video, rather than
static stimuli. Following the approach taken by,[11] we aimed to
capture mind-wandering during a video lecture. To enhance the
accuracy of the experiment, we employed the use of a pupil core
wearable eye-tracker, which records data at a frequency of 200 Hz.

The following two hypotheses will be tested to study the impact
of mind-wandering:

1) Hypothesis 1: There is a positive correlation between partici-
pants’ fixation duration and their mind-wandering while en-
gaging in video-based learning sessions.

2) Hypothesis 2: In video-based teaching and learning, the pres-
ence of an instructor will lead to a higher level of mind-
wandering during lectures.

In our earlier work, we hypothesized that the length of visual
attention or fixation duration would be longer while a person
is mind wandering. We also hypothesized that the existence of
an instructor in the video could increase student mind wander-
ing. In this study, we aim to demonstrate the impact of both
of these hypotheses using a combination of multimodal sen-
sors. The main motivation of this work is the use of eye tracker,
PPG, and GSR sensors and the processing of their collected
data by machine learning methods, including support vector ma-
chine (SVM) and gated recurrent unit (GRU), that can be easily
adopted in classroom settings compared to electroencephalogra-
phy (EEG), which is very difficult and inconvenient for students.
The eye-tracker, PPG, and GSR signals are well-suited for real-
ization in a wearable device that can gather data from students
without causing any discomfort or privacy concerns.

The structure of this paper is as follows: Section 2 offers an
overview of the current developments in multisensory design for
educational purposes. Section 3 outlines our methodology. Sec-
tion 4 describes our process for developing a multisensory de-
sign. The results of our experiment and data analysis, showcasing
the proposed system, are presented in Section 5. Finally, Section 6
provides concluding remarks.

2. State-of-the-Art Wearable Devices for
Mind-Wandering Detection

Advances in technology for education have made it technically
feasible to put together electronic devices to enhance learning
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Table 1. Pros and cons of various sensors for measuring mind wandering.

Sensors Pros Cons

Respiration/pressure Unique to its specific purpose Lack of movement, discomfort

EEG Provides data on cognitive state Sensitive to environment

Heart-rate sensors Ease of access Need for validation

GSR Measuring the emotional state Sensitive to movement

Eye-tracker Can be used with moving target Only collect visual data

PPG Provides a more indirect measurement Inaccuracy during daily activities

and teaching. By utilizing a multisensory system that includes
various sensors for collecting and processing diverse physiolog-
ical and neurological data, wearable devices can enhance the ac-
curacy of attention and mind-wandering monitoring. In state-
of-the-art studies, the multisensory approach has been used to
assess mental workload, identify emotional states, and analyze
the learning and information processing process. For instance,
Campisi et al.[12] investigated the mental workload of students
while web browsing using augmented reality, Mutlu-Bayraktar
et al.[13] examined the effects of split attention in multimedia
learning environments using eye-tracking and EEG sensors, Saf-
faryazdi et al.[14] analyzed people’s emotional state during stim-
uli exposure using GSR and PPG sensors, and Srivastava et al.[15]

investigated the process of information learning and visual atten-
tion using eye-trackers.

In this article, we aim to demonstrate how a fusion of sen-
sors, including GSR, PPG and eye-trackers sensors, can be used
for assessing mind wandering. GSR is a widely used physiologi-
cal measure of emotional arousal, as it provides an indirect indi-
cation of emotional arousal through the measurement of sweat
gland activity. Increased sweat gland activity is often associated
with increased emotional arousal. However, it is essential to note
that GSR is not a direct measure of emotions but rather a mea-
sure of physiological arousal that may or may not be related to
emotions. Furthermore, GSR readings can be affected by vari-
ous factors, such as skin hydration levels, temperature, and skin
pressure.[16]

2.1. Sensors for Mind-Wandering Measurements

Mind wandering has been detected using various physiological
biomarkers such as heart rate, skin conductance,[17] and respi-
ration. Among them, pressure sensors,[18] EEG, GSR, PPG and
eye-trackers have been deemed as the most accurate options.[16]

However, each of these technologies comes with its own bene-
fits and limitations, as outlined in Table 1. The selection of the
technology to be used depends on the specific context and envi-
ronment.

In practical applications, it is not feasible to measure all the
signals, so in our study, we opted to focus on analyzing the GSR,
PPG, and eye-tracker sensors. These signals are well-suited for
implementation in a basic wearable device that can gather data
from students without causing any discomfort or privacy con-
cerns.

2.2. Wearable Eye-Trackers for Gaze Measurements

Most desktop eye-trackers only rely on a webcam for measuring
participant eye data. Affordability and ease of use are the main ad-

vantages of such technologies that caused their widespread use
by researchers. However, desktop eye-rackers use a camera at a
distance beyond 50 cm and can interfere with background lights
such as sunlight. On the other hand, wearable eye-trackers can
precisely monitor pupil movement because of their close prox-
imity to the eye. Furthermore, they provide the ability to monitor
and collect the gaze point that happened outside of the moni-
tor’s frame and follow the participants’ gaze map to identify the
source of distraction. In this experiment, we recorded data using
Pupil Core eye tracking glasses at 200 HZ in a 400 × 400 pixel
resolution.[6] Pupil Core eye-trackers can measure gaze behavior
in 2D and 3D formats. The 3D gaze collection uses pye3d for 3D
pupil detection.[7] In addition, a confidence level is provided to
set a threshold for proper pupil detection. The threshold is be-
tween 0, indicating no pupil detection, and 1, the highest pos-
sibility of pupil detection. To calculate fixations, the Pupil Core
employs a dispersion-based algorithm[8] with the ability to be im-
plemented both online and offline. In this study, we used an on-
line method for both pupils and gaze detection and calculated the
fixation based on a dispersion level of 1.5° in terms of degrees of
visual angle with a minimum duration of 100 ms.[9] Data with a
confidence value lower than ≈0.6 were eliminated from the ex-
periment.

The presentation of information to students can be a determin-
ing factor in their success or failure. The format in which the in-
formation is presented, whether in text or graphics, can have a
significant impact. Our recent study focused on examining the
difference in gaze behavior between text and graphic representa-
tions in lecture slides. Our experiment was based on the study
in,[11] using an 18-min video lecture on international compar-
isons in education. Participants were asked five questions prior
to watching the video and 18 questions afterward. We defined
areas of interest (AOI) to distinguish between the slide and the
teacher’s window. In gaze tracking technology, an AOI refers to
a defined region or specific part of a visual stimulus that is be-
ing observed by a person’s gaze. AOIs can be used to analyze and
identify which parts of an image are being attended to as well as
how long they are being attended to

2.3. Wearable GSR and PPG for Physiological Multisensory
Measurements

We developed emotion classification models using lightweight,
small, and compact PPG and GSR Shimmer3 sensors.[19] We
developed a complete application that utilized a database for
storing data and used pictures from the Geneva affective pic-
ture database (GAPED) to elicit emotions from participants. The
post-processing process involved using statistical parameters and
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power spectral density (PSD) as features and support vector ma-
chine (SVM) and k-nearest neighbors (KNN) as classifiers.

In the literature, researchers previously used other phys-
iological multisensors, such as EMG and GSR signals, as
sources of information for real-time emotion detection in gam-
ing scenarios.[20] Our work categorized emotions using arousal
and valence scales, with arousal being divided into normal, high,
and very high categories and valence being split into positive
and negative categories. Another study, outlined in,[21] employed
EEG, GSR, EMG, BVP, EOG, and skin temperature signals to cre-
ate affective databases for emotion recognition. These databases
contained speech, visual, or audio-visual data, with emotional la-
bels including neutral, anxiety, amusement, sadness, joy, disgust,
anger, surprise, and fear. In another relevant study measured
EEG, ECG, GSR, and facial activity to understand the relationship
between emotional attributes and personality traits.[22] Emotions
were elicited using various stimuli (audio, video), and expressed
in different ways (facial expressions, speech, and physiological
responses), requiring the creation of a multimodal database for
implicit personality and affect recognition.

3. Methodology and Multisensory Design

3.1. Wearable Multisensory Design

Electrodermal activity, which refers to the skin’s resistance to the
flow of electricity, can be measured using a GSR sensor. This is
achieved by placing two electrodes at different points on the skin
and applying a small electric charge, usually 1.0 V, and record-
ing the current that passes between the electrodes. This current
is then converted into 𝜇Ω (or 𝜇A), which provides an indication
of the skin’s resistance to the flow of electricity. Emotional stim-
uli can influence this resistance, making it a valuable measure
for detecting changes in emotional arousal. Sweat gland func-
tion is regulated by the sympathetic nervous system, which is re-
sponsible for the body’s “fight-or-flight” response. GSR sensors
can detect even minor changes in electrical conductivity, making
it possible to detect emotional stimuli without visible sweating.
However, it is important to note that GSR alone cannot determine
the cause of emotional arousal and that other physiological and
contextual factors must be considered when interpreting results.
Therefore, controlling for external factors in the experimental de-
sign is essential to interpret GSR results accurately.

An increase in sweat gland activity leads to more perspiration
and lower skin resistance. To measure this, the standard unit for
GSR is conductance, which is the inverse of resistance and is
measured as Conductance = 1 / Resistance. This makes it eas-
ier to interpret the signal, as higher sweat gland activity results
in higher skin conductance.

To measure a GSR signal for emotional research purposes, the
most common method is to use a constant voltage system, also
known as the exosomatic method. In this method, the GSR sen-
sor applies a constant voltage of usually 0.5 V to the two electrodes
that are in contact with the skin. A small resistance is in series
with the voltage supplier and the electrodes to measure the skin
conductance and its variation using Ohm’s law (Voltage = In-
tensity × Resistance = Intensity/Conductance). Since the voltage
is kept constant, any fluctuation in the current flow through the

electrodes is due to a change in the electrical properties of the
skin, specifically the sweat gland activity.

The connection between sympathetic nervous activity, as mea-
sured by skin conductance (SC) and skin temperature (ST), and
attentional states has led to the use of physiology to monitor
mind wandering.[23] Previous research has shown that higher
levels of mind wandering are associated with overall lower lev-
els of SC.[24] Despite this finding, there have been no efforts to
develop automated mind wandering detectors based on SC or
ST signals, nor has there been any research on the relationship
between ST and mind-wandering. To address this gap, we col-
lected a large dataset where students were periodically asked to
report instances of mind wandering during computerized learn-
ing from instructional texts. Machine learning models were then
trained on these signals to predict mind wandering.

3.2. Participant Group Selection and Test Environment

The wearable multisensory device was assessed by 10 partic-
ipants who volunteered to take part in our experiments, par-
ticipants were university students studying postgraduate engi-
neering (males and females aged between 21 and 30). The ex-
periments were conducted with the approval of Glasgow Uni-
veristy’s ethics committee and participants provided their con-
sent through a consent form.

3.3. Data Collection Process

The stimulus was an 18-min lecture on international
education.[11] There was a pre-lecture questionnaire with
five questions regarding the knowledge of the participants about
the concept of the lecture. Afterward, the lecture was presented
to participants in the form of a video. After the lecture, the
post-lecture questionnaire will be presented to the participants,
containing 18 questions regarding the presented lecture and two
questions asking participants to rate their overall experience.

Figure 2 shows the schematic diagram of the experimental
setup. Participants were asked to sit in front of the computer in
a comfortable position that allowed them to read the screen. The
eye-tracking glasses, the GSR sensor and the PPG sensor, were
placed on the participant’s head and hand. The calibration and
validation process were done for the eye tracker. Two GSR sen-
sors and one PPG sensor were attached to the participant’s fin-
gers on the non-dominant hand.

Participants were also instructed on the process of the test
and how to answer the questions, and what to consider as mind
wandering or not. Figure 3 shows the raw collected data from
each individual sensor (eye-tracker, GSR and PPG) with and with-
out mind-wandering. The acquisition frequency for eye-tracker is
200 Hz, and for GSR and PPG, sensors are 50 Hz.

The extracted characteristic information from the data in
Figure 3 encompasses signal attributes such as amplitude,
shape, frequency, as well as the precise positions and values of
signal peaks. The SVM classifier derives this characteristic infor-
mation from the original sensor data through a feature-extraction
process, where statistical parameters such as mean, standard
deviation, median, and others detailed in Table 2 are computed
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Figure 2. The experimental setup for the wearable device with a combination of multisensory eye-tracking, GSR and PPG sensors. The Figure shows the
calibration procedure and the Pupil Core headset, Shimmer GSR and PPG sensors, and a participant taking the test.

and subsequently provided to the classifier for training and
testing.

In contrast, the GRU network obtains the characteristic in-
formation by directly analyzing the time dependency within the
original signal. This is accomplished through the update and re-
set gates of each GRU unit. In other words, GRU network finds
the temporal relationship between data points at different time
locations and uses it to represent the characteristic information
hidden in raw data.

The processing of these data and their fusion using machine
learning are described in Section 4.

4. Multisensory Fusion and Machine Learning

Prior to the classification, numerical features are extracted from
the raw sensor data measurements. The features we used in
this work are listed in Table 2. The whole feature pool con-
tains regular statistical parameters such as mean, median,

Figure 3. The raw data were collected from each sensor of the Pupil Core eye-tracker, Shimmer GSR, and PPG sensors, respectively. Graphs on the left
show the collected data with mind-wandering, whereas the graphs on the right are for data with non-mind-wandering.
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 27511219, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adsr.202300067 by N

es, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [15/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advsensorres.com


www.advancedsciencenews.com www.advsensorres.com

Table 2. The list of numerical features extracted from the raw sensor data
measurements.

Features

Mean Skewness

Standard deviation Kurtossis

Median Minimum

Mad Range

25th quantile Mean of the autocorrelation

75th quantile Standard deviation of the autocorrelation

Inter quartile range Signal energy

minimum and standard deviation, and higher-order statisti-
cal parameters such as skewness and kurtosis. Besides that,
correlation-based features and signal energy features are also
involved.

Two different machine learning methods, notably, a conven-
tional SVM and GRU, are utilized as the classification models.
The SVM[25,26] is known as a robust classifier in the field of in-
door human activity recognition, gesture recognition and biomet-
ric identification, it intends to build a hyperplane to separate the
feature points of different classes based on the distribution of the
features. The support vectors are the feature points close to the
decision boundary, and they are able to control the position and
orientation of the hyperplane, whereas the margin between the
positive and negative hyperplane needs to be maximized through
those support vectors.

The mathematical representation of a linear SVM hyperplane
and its objective function is given as follows[27]:

h : x′W + b = 0 (1)

minW,b,𝜉i

1
2
‖W‖2 + C

n∑
i=1

𝜉i(C > 0, 𝜉i ≥ 0) (2)

where W denotes the normal vector to the hyperplane and b is the
bias value. C refers to the regularization parameter, also known as
the penalty factor, which is highly correlated with the tolerance of
misclassification. The penalty factor is always greater than zero
and the larger factor will create a hard margin, and vice versa
(soft margin), its value needs to be determined carefully since
hard margin may result in overfitting of the classifier. In our case,
the penalty factor is set as one in the training of the classification
model. 𝜉i represents the slack variable related to the classification
error, the SVM algorithm automatically allocates a slack variable
for the feature points between the hyperplane and its margin,
whereas the value of the slack variable (0≤ 𝜉i≤1) is proportional
to the distance of feature points to the hyperplane. In the circum-
stance that the feature points beyond the hyperplane (misclassi-
fication), the slack variable is larger than one.

If a linear hyperplane is not able to separate the feature
points, the features can be mapped to a higher-dimensional space
through a kernel function, where a linear boundary is available.
The conventional kernel function includes higher order poly-
nomial (quadratic, cubic) and Gaussian function, whereas the
choice of the kernel function depends on the data distribution
and the optimal hyperplane to separate them. In this paper, we

Figure 4. The block diagram of a simple GRU to process the recorded raw
data with faster processing speed and less memory cost.

chose the quadratic kernel function. SVM algorithm is suitable to
implement on a multiclass problem by utilizing multiple binary
classifiers via “one versus one” approach, for instance, if there
are N classes to distinguish, N(N−1)/2 times binary SVM will
be computed to construct hyperplanes between each individual
class.

GRU is the improved version of the regular recurrent neural
network (RNN).[28–30] A standard GRU consists of two different
gates, namely, the update gate and reset gate; compared to other
variants of RNN, such as long short-term memory (LSTM), GRU
has comparable performance with a simpler architecture, faster
processing speed and less memory cost. The block diagram of
a simple GRU is illustrated in Figure 4, and the mathematical
expression of GRU is given below[28,29]:

r(t) = 𝜎(Wrhht−1 + Wrxxt + br) (3)

u(t) = 𝜎(Wuhht−1 + Wuxxt + bu) (4)

c(t) = tanh(Wchr(t) ⊙ h(t − 1)) + Wcxxt + bc) (5)

h(t) = z(t) ⊙ c(t) + (1 − z(t)) ⊙ h(t − 1) (6)

where r(t) and u(t) represent the output of the reset and update
gate, respectively. 𝜎 denotes the sigmoid activation function. W
refers to the weight index of gated units, whereas b is the bias
value. ⊙⊙ refers to the Hadamard product of two vectors. c(t)
represents the output of the tanh operator, which receives a lin-
ear combination of the current input x(t) and the result of the
Hadamard product between r(t) and h(t−1). h(t) represents the
current output of the GRU. The update gate u(t) controls the ratio
of current input information and historical information. When
u(t) is close to 1, most of the historical information is forgotten,
and a larger volume of input information is taken from the cur-
rent moment, and vice versa. In this paper, as GRU has the ability
to extract useful time-dependent information from raw data, the
input of GRU is a time-series signal rather than features.

The confidence level of the classifier is a probability matrix
with its size equal to nXm, n is the number of samples and m
is the number of classes. It is used to measure the certainty of
classifier decision-making, whereas, for each sample, the class
yielding the highest confidence level will be chosen as the out-
put class. The value of the confidence level is converted from the

Adv. Sensor Res. 2024, 3, 2300067 2300067 (6 of 9) © 2023 The Authors. Advanced Sensor Research published by Wiley-VCH GmbH
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Figure 5. The SVM classification for GSR, eye-tracker, PPG, and fusion. Class 1 notes mind-wandering, and class 2 indicates non-mind-wandering.

unnormalized classifier output through a softmax function, as
shown below:

Pc =
ec∑K

k=1 ek

(7)

where class c is the class of interest, Pc the confidence level of
class c, ec, and ek denote the unnormalized classifier output of
class c and class k (k ≤ K), respectively, and K is the number of
classes.

In this paper, we developed a decision-level fusion method to
combine the confidence level of all sensing approaches. The fu-
sion process[26,31,32] is depicted in Equation (8):

PFusion (s, c) =
N∑

n=1

Pn (s, c) (8)

where Pn denotes the confidence level matrix for classifier n,
PFusion is the confidence level matrix after fusion. s refers to the in-
dex of samples, and c indicates the class number. The confidence
level matrix of different sensors shares the same dimension. The
fusion of data from multiple sensors is the straightforward ac-
cumulative of their respective output confidence level matrices.
The new prediction label is the class with the highest fusion con-
fidence level. In our paper, n equates to 3, representing g classifi-
cation results from eye-tracker, GSR, and PPG, respectively. It is
important to notice that the fusion of data is unrelated to the ac-
quisition frequency of sensors because data fusion occurs at the
decision level, following classification.

5. Results and Discussion

The schematic diagram of the experimental setup is presented in
Figure 2. The training and testing procedure has been repeated
for ten times and the results listed in Figures 5 and 6 are the
average of ten iterations. In addition, the data selected for training
and testing is different for every iteration.

Figure 5 illustrates the results of SVM classification, where
class 1 and class 2 indicate mind-wandering and non-mind-
wandering, respectively. The row elements of the confusion
matrix denote the output class, whereas the column elements
denote the target class. The sum of the target class should
be equal to 100%. The right diagonal elements represent the
correctly classified rate, and the left diagonal elements represent
the misclassification rate. The results show that the processed
for individual sensors with accuracies of 80.97%, 76.81%, and
76.39% for GSR, eye-tracker and PPG, respectively. Our results
deploying SVM show that the accuracy of sensor fusion is
86.53%.

Figure 6 demonstrates the results of GRU classification, which
processed for individual sensors with accuracies of 85.69%,
81.67%, and 80.42% for GSR, eye-tracker and PPG, respectively.
Using GRU, the processing results confirm that the accuracy
of sensor fusion reaches 89.86%. The fusion using GRU pro-
vides a subsequent improvement of around 3.3% on top of fusion
through SVM algorithm.

Figure 7 illustrates the boxplot of the ten iterations of “train-
ing and testing”. The blue circle represents the mean value of ten
different classification results, whereas the red line in the middle
of the “box” represents the median value. The upper and lower
boundaries denote the maximum and minimum accuracy values
of ten iterations of “training and testing” separately. The edges of
the blue “box” denote the 25th and 75th percentile of the classifi-
cation results. It is observed that fusion with SVM and GRU not
only increases the mean classification accuracy, but also the vari-
ance of classification accuracy. In other words, the stability of the
classification system improves thanks to the fusion process. Ad-
ditionally, compared to the SVM classifier, GRU-based recurrent
neural networks provide a higher gain in mean and variance of
ten iterations “training and testing”. The fluctuations in perfor-
mance displayed by the wearable sensors in Figure 7 result from
the classifier’s selection of varying datasets for training and test-
ing in each of the ten iterations. The classifier achieves a high
classification accuracy when exposed to favorable data segments

Adv. Sensor Res. 2024, 3, 2300067 2300067 (7 of 9) © 2023 The Authors. Advanced Sensor Research published by Wiley-VCH GmbH
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Figure 6. The GRU classification for GSR, eye-tracker, PPG, and fusion. Class 1 notes mind-wandering, and class 2 indicates non-mind-wandering.

and conversely, encounters challenges when presented with less
favorable data segments.

6. Conclusion

In this paper, a proof-of-concept wearable multisensory were de-
signed and implemented to work with machine learning tech-
nique in order to enhance the students learning and concentra-
tion detection. A decision-level fusion method was developed to
combine the confidence level of all sensing techniques. The wear-
able multisensory device was tested by 10 participants (university
students, males and females aged between 21 and 30). We used
two different machine learning methods: SVM and GRU, for the
classification models. Our results showed that using SVM and
GRU, process the accuracy of sensor fusion with accuracies of
86.53% and 89.86%, respectively. In the future study, this work

Figure 7. The boxplot of 10 iterations of training and testing using each
individual sensor and their fusion using SVM and GRU.

will be enhanced further by incorporating more participants with
an integrated multisensory device.
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