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Enterobacterales of clinical importance for humans and domestic
animals are now commonly detected among wildlife worldwide.
However, few studies have investigated their prevalence among
bats, particularly in bat species living near humans. In this
study, we assessed the occurrence of Extended-spectrum beta-
lactamase-producing (ESBL) and carbapenemase-resistant
(CR) Enterobacterales in rectal swabs of bats submitted to
the Chilean national rabies surveillance program from 2021
to 2022. From the 307 swabs screened, 47 (15%) harboured
cefotaxime-resistant Enterobacterales. Bats carrying these bacteria
originated from 9 out of the 14 Chilean regions. Most
positive samples were obtained from Tadarida brasiliensis (n = 42),
but also Lasiurus varius, L. cinereus and Histiotus macrotus.
No Enterobacterales were resistant to imipenem. All ESBL-
Enterobacterales were confirmed as Rahnella aquatilis by
MALDI-TOF. No other ESBL or CR Enterobacterales were
detected. To our knowledge, this is the first screening of
antibiotic-resistant bacteria in wild bats of Chile, showing the bat
faecal carriage of R. aquatilis naturally resistant to cephalosporins,
but also including acquired resistance to important antibiotics for
public health such as amoxicillin with clavulanic acid. Our
results suggest unknown selective pressures on R. aquatilis, but
low or no carriage of ESBL or CR Escherichia coli and Klebsiella
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spp. Future studies should assess the zoonotic and environmental implications of R. aquatilis, which
are likely present in the guano left by bats roosting in human infrastructures.
lsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:231177
1. Introduction
Antimicrobial resistance (AMR) circulating at the human–domestic–wildlife interface is a global threat to
public health, causing at least 1.27 million human deaths per year [1,2]. Extended-spectrum beta-
lactamase-producing (ESBL) and carbapenemase-resistant (CR) Enterobacterales including Escherichia
coli and Klebsiella pneumoniae represent the highest burden of deaths attributed to AMR in humans.
Antimicrobial-resistant bacteria are carried by wildlife worldwide, and are often considered as an
indicator of wildlife exposure to anthropogenic pathogen sources [2–9]. Wildlife can act as sentinels of
‘human pathogen pollution’ in natural environments, but could also become potential reservoirs of
AMR to humans or domestic animals [4,7,10,11]. Bats (order Chiroptera) are considered one of the
main reservoirs of human infectious diseases, because they harbour a large number of zoonotic viral
pathogens, and their global distribution widely overlaps with humans [12]. However, the role of bats
in the dissemination of AMR remains still poorly understood [7].

Recent studies have investigated the occurrence of AMR among bats worldwide, mostly reporting the
faecal carriage of ESBL-E. coli [7,13–19]. For example, ESBL-E. coli have been reported in Eidolon helvum,
Megaloglossus woermanni and Nycteris hyspida in Africa and Tadarida teniotis in Europe [18,20,21]. In Latin
America, ESBL-E. coli have been reported in frugivorous bats including Artibeus planirostris and Sturnina
lilium of Brazil, the omnivorous Phyllostomus hastatus in Trinidad, insectivorous bats (Pteronotus parnelli,
Eptesicus tadeii and Molossus spp.) in Brazil and Trinidad, and the hematophagous Desmodus rotundus in
Peru and Brazil [7,13–15,22]. ESBL and CR-E. coli have also been reported in the frugivorous bats Artibeus
lituratus and Carollia perspicillata in Brazil [22]. However, little is known about ESBL-E. coli in other non-
tropical regions of Latin America including Chile.

Antimicrobial-resistant bacteria found in bats are commonly hypothesized to be attributable to
contamination from humans or livestock [13,19]. However, few studies have compared the prevalence of
these bacteria among natural, rural and urban areas [7,18,20–22]. As such, the role of human activities
and the ability of bats to spread AMR within their populations remains poorly understood. In Chile,
ESBL-E. coli have been isolated from wild rodents, gulls, and condors [23–26], but no study has been
conducted on bats. Chile hosts several insectivorous bats inhabiting urban and rural areas that are
subject to the passive rabies surveillance program of the National Institute of Health [27]. Among
insectivorous bats submitted to the surveillance program, T. brasiliensis is one of the bat species most
closely associated with humans [28]. In this study, we aimed to estimate and compare the prevalence of
ESBL and CR-Enterobacterales among Chilean bats from rural and urban areas.
2. Material and methods
We collected 307 rectal samples from dead bats that were submitted to the National Rabies Surveillance
Program of the Institut of Public Health (Instituto de Salud Pública, ISP) in Chile from February 2021 to
August 2022. Bats studied originated from 14 geographical regions and belonged to the genera Tadarida,
Histiotus, Lasiurus, and Myotis. Morphological identification of bat individuals was performed by ISP
staff, and was based on key distinctive features of each species. All bats studied here were negative for
rabies according to the direct fluorescent antibody test. Samples were stored in Stuart transport media at
4°C until being screened in MacConkey selective media supplemented with antibiotics to isolate ESBL
and CR Enterobacterales. Samples were also grown on a MacConkey media without antibiotics
(negative control), to confirm the presence of Enterobacterales on the faecal sample. Screening was
made by direct incubation at 37°C for 24 h on MacConkey media supplemented with cefotaxime
sodium salt (CTX) at 2 mg/ml for ESBL-Enterobacterales and imipenem (IM) at 4 mg/ml for CR-
Enterobacterales screening, following previously published methods [7,13]. Samples presenting bacterial
growth were purified in the same medium to confirm growth and stored at −80°C. Bacterial species
confirmation was performed on 32 randomly chosen ESBL isolates among a total of isolates with similar
morphology and antibiotic-resistant phenotypic profile, using the matrix-assisted laser desorption
ionization-time of flight (MALDI-TOF) mass spectrometry using the MALDI Biotyper database DB 8326
MSP (Bruker Daltonics, Bremen, Germany) in the Laboratory of Microbiology of the Hospital Arnaud



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:231177
3

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

22
 N

ov
em

be
r 

20
23

 

de Villeneuve in Montpellier (France). Susceptibility tests were performed using the disc diffusion method
on Müller-Hinton agar following the European Committee on Antimicrobial Susceptibility Testing
(EUCAST) guidelines (Version 7.1, 2017). Twenty-seven antibiotics were analysed including penicillin
(ampicillin, amoxicillin, ticarcillin, piperacillin and temocillin), penicillin with β-lactamase inhibitors
(amoxicillin-clavulanic acid), antipseudomonal penicillin with β-lactamase inhibitors (ticarcillin-
clavulanic acid and piperacillin-tazobactam), non-extended spectrum cephalosporins (cephalexin),
extended-spectrum cephalosporins (cefotaxime, ceftazidime, cefepime and cefpodoxime), cephamycin
(cefoxitin), carbapenems (imipenem, ertapenem, meropenem), monobactams (aztreonam), quinolones
(ofloxacin, ciprofloxacin and levofloxacin), aminoglycosides (gentamicin, tobramycin and amikacin),
folate pathway inhibitors (trimethoprim-sulfamethoxazole), phenicol (chloramphenicol) and phosphonic
acids (fosfomycin). We divided antibiotics into the ‘categories’ defined in Magiorakos et al. [29].

To evaluate thedifference inoccurrence andprevalence betweenbats inhabiting rural andurban areas,we
conducted two complementary statistical tests. First, each municipality was assigned as rural or urban
following the Chilean ‘Comisión Interministerial de Ciudad, Vivienda y Territorio-COMICIVY’T’
(https://www.masvidarural.gob.cl/ruralidad-en-chile/). A municipality was assigned as urban if more
than 75% of its population were living in human densities higher than 150 inhabitants by km2. A Chi-
square test was then used to test the overall difference in prevalence between samples originated from
urban or rural municipalities using the prop.test function in R, or a Fisher’s exact-test if the number of
samples was small (fisher.test function). We also used a continuous variable of population density to
evaluate the effect of urban areas by conducting a general linear mixed-effect model with binomial
residual distribution with the glmer function [30]. The model included the dependent variable ‘presence/
absence of AMR’, and year, the municipality’s population density (log-transformed to increase normality
and avoid outliers) or total population (square-root transformation) as independent variables (each tested
in a separated model given their correlation), and the municipality within region as random effects. Chile
was divided by regions and each municipality was assigned to a region using the shapefile from Biblioteca
Del Congreso Nacional de Chile (https://www.bcn.cl/siit/mapas_vectoriales/index_html). The human
population size and density per municipality were obtained from the Comisión Interministerial de
Ciudad, Vivienda y Territorio-COMICIVYT. Since bats were collected on private property, no GPS
coordinates were available in order to comply with the confidential agreement established with the ISP.

3. Results
From 307 faecal samples collected out of 14 Chilean regions (n = 238 from urbanmunicipalities, n = 69 from
rural municipalities, figure 1a), 47 bats (15%) carried CTX-resistant Enterobacterales, including 42
individuals of Tadarida brasiliensis (15% of AMR prevalence, 42 out of 272 T. brasiliensis individuals),
defined as at least one isolate of CTX-resistant Enterobacterales. Two individuals of Lasiurus varius and
one individual of Histiotus macrotus and L. cinereus also carried these bacteria (table 1). No lactose-
positive Enterobacterales were resistant to imipenem. AMR-positive samples were obtained from 9 out
of the 14 (64.3%) Chilean regions sampled. There was no significant difference in the prevalence
between regions (Fisher’s exact test: p-value = 0.07, figure 1b). AMR prevalence in urban municipalities
was 11% (35 out of 307) and 17% (12 out of 69) in rural municipalities, with no significant difference
between them (Chi-squared test: chi = 0.13, p-value = 0.72, figure 1c). Neither municipality’s human
population size (GLMM, AIC = 249, Estimate =−1.38 × 10−3, p-value = 0.16) or population density
(GLMM, AIC = 251, Estimate = 0.01 × 10−5, p-value = 0.87) was significantly correlated to the presence/
absence of AMR in bats. All 32 ESBL-Enterobacterales isolates (out of 47 isolates having similar
morphology and antibiotic-resistant profile) were identified as Rahnella aquatilis. No ESBL-E. coli or
Klebsiella sp. were detected. Rahnella aquatilis isolates were resistant to seven antimicrobial categories;
65% were resistant to five antimicrobial categories, followed by six (19%) and four (16%) categories.
Resistance to antimicrobial categories included β-lactams and cephalosporins (100% to penicillin and
non-extended β-lactams cephalosporins; 60% to extended-spectrum-beta-lactamases), penicillin with
β-lactamase inhibitors (68% to amoxicillin with clavulanic acid), phosphonic acid (60%) and
chloramphenicol (13%) (figure 2). One isolate was resistant to piperacillin with tazobactam.

4. Discussion
The circulation of AMR in bats remains poorly understood, but recent reports have detected the presence
of AMR in several bat species living in close proximity to humans and domestic animals [7,13,18]. In this
study, we found cephalosporin-resistant R. aquatilis in three of the four genera of bats collected, mostly

https://www.masvidarural.gob.cl/ruralidad-en-chile/
https://www.bcn.cl/siit/mapas_vectoriales/index_html


Table 1. Prevalence of cefotaxime (CTX)-resistant Enterobacterales among insectivorous bats of Chile.

bat genera bat species CTX-resistant

name total species total % number prevalence

Tadarida 272 T. brasilensis 272 88.3 42 13.6

Histiotus 26 H. macrotus 24 7.8 1 0.3

H. montanus 1 0.3 0 0.0

Histiotus sp. 1 0.3 0 0.0

Lasiurus 6 L. cinerus 1 0.3 1 0.3

L. varius 4 1.3 2 0.6

L. villosissimus 1 0.3 0 0.0

Myotis 3 M. atacamensis 1 0.3 0 0.0

M. chiloensis 2 0.6 0 0.0

unknown 1 - 1 0.3 1 0.3

total 308 47

% 15.3

(a) (b) (c)

(d)
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Figure 1. Spatial distribution of antimicrobial-resistant Enterobacterales among insectivorous bats from Chile: (a). Map of Chile
including sampled municipalities (b). Bar plot represents the proportion of AMR Enterobacterales in insectivorous bats per
region. The total number of individual bats sampled per region (n) is shown at the top of each confidence interval bar
(estimated using the fisher.test function in R). (c) Zoom map of central Chile showing municipalities with bat samples that
harboured antimicrobial resistant bacteria ( purple) or not (yellow). (d ). Bar plot comparing the proportion of AMR between
rural and urban municipalities. A municipality was assigned as urban if more than 75% of its population was living in
densities higher than 150 inhabitants per km2.
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belonging to T. brasiliensis, one of the bat species with the closest association with humans in Chile and
Latin America [28]. However, the lack of isolation of ESBL-E. coli or Klebsiella suggests a low or non-
existent circulation of these bacteria among insectivorous bats of Chile living in proximity to humans.
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Figure 2. Antimicrobial resistance phenotypic profiles of ESBL-Rahnella aquatilis among insectivorous bats from Chile (n = 32). Bars
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defined by Magiorakos et al. [29].
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We found no evidence of cephalosporin-resistant E. coli or Klebsiella spp. in bats from Chile, although
these bacteria have been previously detected in bats worldwide but at a low prevalence
[7,14,15,17,18,20,21]. We hypothesize that the absence or very low incidence of AMR in these bacterial
species indicates a relatively low exposure with contamination sources from human or domestic
animal origins in Chile, despite spatial overlapping of bats with anthropogenic landscapes. In
contrast, the common vampire bat D. rotundus in Peru hosted ESBL-E. coli, potentially generated from
close contact of this bat species with livestock during blood feeding [14,17,31]. Alternatively, the
collection of rectal swabs from dead bats could have reduced the viability and isolation of
Enterobacterales such as E. coli, although previous studies have found these bacteria in dead wild
animals [20]. Moreover, we used the same screening method as our previous study reporting ESBL-E.
coli in vampire bats [7], which should limit methodological biases in prevalence estimations.
Therefore, our findings suggest that insectivorous bats in Chile are not common carriers of AMR,
similar to the <5% prevalence of ESBL-E. coli and no CR found among wild mice, rabbits and foxes in
central Chile [23]. Future longitudinal studies could assess if AMR prevalence evolves over time.

Although we did not find ESBL-E. coli and Klebsiella spp., we detected ESBL-R. aquatilis in bats from
eight regions of Chile. Rahnella aquatilis has been previously isolated in bats from the Netherlands and
Slovakia [32,33] but, to our knowledge, no report of this bacteria exists in bats of the Americas.
Gerbáčová et al. [33] reported that R. aquatilis is a predominant bacterium in the insectivorous bat
microbiome. This species has also been isolated from plants, water samples, and clinical samples of
immunocompromised patients with bacteremia [34–36]. Thus, it can be an opportunistic bacterium
causing pathogenicity in humans, and potentially in other species such as bats [32]. The isolated R.
aquatilis from this study showed similar AMR phenotypic profiles to previous studies, with natural
resistance to several families of antimicrobials such as penicillin, extended cephalosporin, and
phosphonic acids [34]. We also found a few isolates of R. aquatilis resistant to chloramphenicol, and all
isolates were resistant to amoxicillin in combination with clavulanic acid. However, resistance to ESBL
in combination with clavulanic acid and resistance to chloramphenicol are uncommon in R. aquatilis
and can be acquired [34–37], suggesting potential unknown selective pressures driving AMR to these
antibiotics in the environment of Chilean bats. Future studies using whole genome sequencing could
elucidate the molecular mechanisms behind the observed patterns of phenotypic resistance, and
identify potential drivers for the selection of AMR in these bats.

We found no significant difference in the prevalence of ESBL-resistant Enterobacterales between
urban and rural municipalities. Contrary to our expectations and despite a lack of significance, the
observed tendency favoured a potentially higher prevalence in rural municipalities. Given logistical
challenges and more limited surveillance in regions far away from the capital city, the number of bats
submitted to the ISP surveillance program is usually higher close to urban centres and central Chile,
especially for T. brasiliensis. Thus, comparing the difference between both environments would likely
require a particular sampling effort to increase the number of bats analysed from rural municipalities.
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Additionally, field sample collection of live bats is required to confirm whether the observed pattern
detected among dead bats of the surveillance program reflects the circulation of AMR among healthy
wild bats. Finally, given our inability to obtain GPS coordinates for the location of the surveyed bats,
a more refined definition of an urban/rural area where bats were found (e.g. households) was not
possible. Thus, our definition of a bat as collected on an ‘urban’ or ‘rural’ area could be poorly
resolved for municipalities with high spatial internal heterogeneity, but this will also depend on the
extent of bat foraging within a municipality, which could expose them to most of this heterogeneity.
ing.org/journal/rsos
R.Soc.Open

Sci.10:231177
5. Conclusion
To our knowledge, this is the first screening of antibiotic-resistant bacteria in bats from Chile. We
identified the faecal carriage of ESBL-R. aquatilis in bats, but the absence of faecal carriage of ESBL or
CR-E. coli. Although R. aquatilis has been reported in bats and is naturally resistant to certain
antimicrobials, resistance to β-lactamase inhibitors and chloramphenicol suggests potential
mechanisms selecting for AMR on these urban and rural bats. Future studies should assess the
zoonotic and public health implications of bacteria such as R. aquatilis, which could be largely present
in the guano left by these bats in the environment.
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