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ON P-ALGEBRAS AND THEIR DUALS

ANDREW BAKER

Abstract. The notion of P-algebra due to Margolis, building on work of Moore & Peterson, was

motivated by the case of the Steenrod algebra at a prime and its modules. We develop aspects of

this theory further, focusing especially on coherent modules and finite dimensional modules. We

also discuss the dual Hopf algebra of P-algebra and its comodules. One of our aims is provide

a collection of techniques for calculating cohomology groups over P-algebras and their duals,

in particular giving vanishing results. Much of our work is implicit in that of Margolis and

others but we are unaware of systematic discussions in the literature. We give some examples

illustrating topological applications which follow easily from our results.
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Introduction

This paper is a rewrite of the algebraic part of [Bak21] and we intend writing a companion

paper on the topological applications. Shortly after posting the earlier version, we discovered

some significant gaps in the calculations and this led to some substantial reworking of the

algebra which we feel is of enough interest to present it independently. Indeed, as far as we are

aware, although there has been significant use of properties of P-algebras in work involving the

Steenrod algebra, there does not appear to be much discussion of the dual notion so it seems
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worthwhile recording some basic results and in particular the existence of certain spectral

sequences for their cohomology.

The theory of P-algebras of Margolis [Mar83] which builds on work of Moore & Peter-

son [MP73], provides an important theoretical framework for understanding modules over

the Steenrod algebra at a prime with many applications in Algebraic Topology. In this pa-

per we review some basic results on P-algebras and their modules, particularly emphasising

properties of coherent modules and their relationship with finite dimensional modules; we

also mention some properties of pseudo-coherent modules. Next we consider the dual Hopf

algebra of a P-algebra and its comodules. In order to set up some Cartan-Eilenberg spectral

sequences we discuss the homological algebra required to make a bivariant derived functor of

the homomorphism for comodules with the aim of obtaining three such spectral sequences,

one of which involves dualising to modules over the P-algebra itself because comodules over

Hopf algebras do not always have resolutions by projective objects (although recent work of

Salch related to [Sal16] sheds light on this for connective graded comodules over a connective

graded Hopf algebra). After reviewing some properties of the mod 2 Steenrod algebra and

its dual, we discuss doubling and then describe some families of subHopf algebras and their

duals. Finally we give some applications of our results on coherent modules to show vanishing

of homotopy groups of maps between some spectra, rederiving and extending results of Lin,

Margolis and Ravenel.

An important motivation for our work is to rework some the algebraic machinery used in

Ravenel’s seminal paper [Rav84] and we will apply this in the planned sequel. In [Bak22] we

have also developed an ungraded analogue of the theory of P-algebras which sheds light on

some aspects of it.

1. P-algebras and their modules

We will make use material on P-algebras and their modules contained in [Mar83, chap-

ter 13]. Here is a summary of our assumptions, conventions and notations, some of which

differ slightly from those of Margolis.

• We will often suppress explicit mention of internal grading in cohomology and just

writeM forM∗ when discussing a module over A = A∗. When working in homology we

will usually writeM∗ or A∗.

• Wewill work with graded vector spaces over a field k and in particular, k-algebras and

their (co)modules. In our topological applications, k = F2 although similar results for

odd primes are easily found.

For a finite type graded vector space V∗ we think of Vn as dual to V
n = Homk(Vn,k),

so V ∗ is the cohomologically graded degree-wise dual, and bounded below means

that V ∗ is bounded below. We can also start with a finite type graded vector space

V ∗ and form V∗ where Vn = Homk(V
n,k); the double dual of V∗ is canonically isomor-

phic to V∗, and vice versa. We will denote the positive degree part of a graded vector

space by V +; of course for a graded k-algebra R, R+ is an ideal which is maximal if R is

also connected, making R local.

A graded vector space which is finite dimensional will be referred to as a finite;

when k is finite this terminology agrees with the use of finite for a module over a

P-algebra by Margolis.
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• In this paper, a P-algebra A will always be a P-Hopf algebra, i.e., a strictly increasing

union of connected finite dimensional cocommutative Hopf algebras A(n) ⊂ A(n+ 1) ⊂

A. Thus each A(n) is a Poincaré duality algebra and we will denote its highest non-

trivial degree by pd(n) as it is also the Poincaré duality degree; this number satisfies

the inequality pd(n) < pd(n+1). We also stress that each A(n) is a local graded ring and

A(n)pd(n) = A(n)0 = k. Other important properties are that A is free as a left or right

A(n)-module and A is a coherent k-algebra. Although in general Margolis does not

require P-algebras to be of finite type, all the examples we consider have that property

and it is required in some of our homological results so we will assume it holds.

It is important to note that P-algebras are coherent (but not Noetherian) and their

coherent modules play an important rôle in this paper. For general properties of co-

herence and pseudo-coherence we refer the reader to Bourbaki [Bou80, ex. §3.10], and

also Cohen [Coh69] for an account aimed at an algebraic topology audience.

In Algebraic Topology the important examples of P-algebras are the Steenrod alge-

bra A at a prime p as well as infinite dimensional sub and quotient Hopf algebras.

We will use the following basic result stated on page 195 of [Mar83] but left as an exercise.

Proposition 1.1. Suppose that A is a P-algebra. LetM be a finite A-module and F a bounded below

free A-module. Then

Ext∗A(M,F) = 0.

Proof. By [Mar83, theorem 13.12], bounded below projective A-modules are also injective, so

ExtsA(M,F) = 0 when s > 0, therefore we only have to show that HomA(M,F) = 0. It suffices to

prove this for the case F = A.

Suppose that 0 , θ ∈ HomA(M,A). The image of θ contains a simple submodule in its top

degree, so let θ(x) , 0 be in this submodule; then aθ(x) = 0 for every positive degree element

a ∈ A. Now for some n, θ(x) ∈ A(n)k where k < pd(n), and by Poincaré duality for A(n) there

exists z ∈ A(n) for which 0 , zθ(x) ∈ A(n)pd(n). This gives a contradiction, hence no such θ can

exist.

For a different proof, see Lorentz [Lor18, proposition 10.6], which shows that an infinite

dimensional Hopf algebra has no non-trivial finite dimensional left or right ideals. �

A particular concern for us will be the situation where we have a pair of P-algebras B ⊆ A

with B a subHopf algebra of A.

Proposition 1.2. For a pair of P-algebras B ⊆ A,

Ext∗A(A⊗B k,A) � Ext∗B(k,A) = HomB(k,A) = 0.

Proof. First we recall a classic result of Milnor & Moore [MM65, proposition 4.9]: A is free

as a left or right B-module. This guarantees the change of rings isomorphism (which is valid

for any subalgebra where A is a flat B-module) and the second isomorphism follows from

Proposition 1.1. �

Since a P-algebra A is coherent, its finitely presented modules are its coherent modules,

and they form a full abelian subcategory ModcohA of ModA with finite limits and colimits (in
3



particular it has kernels, cokernels and images). A coherent A-moduleM admits a finite pre-

sentation

A⊕k
π // A⊕ℓ // M // 0

which can be defined over some A(n), i.e., there is a finite presentation

A(n)⊕k
π′ // A(n)⊕ℓ // M ′ // 0

of A(n)-modules and a commutative diagram of A-modules

A⊗A(n) A(n)
⊕k Id⊗π′ //

OO

�

��

A⊗A(n) A(n)
⊕ℓ //

OO

�

��

A⊗A(n)M
′ //

OO

�

��

0

A⊕k
π // A⊕ℓ // M // 0

with exact rows. It is standard that every coherent A-module admits a resolution by finitely

generated free modules. It is also true that a homomorphism betweenM → N coherent mod-

ules is induced from a homomorphism between finitely generated modules over some A(m).

For a P-algebra we also have injective resolutions by finitely generated free modules.

Proposition 1.3. Let M be a coherent module over a P-algebra A. Then M admits an injective

resolution by finitely generated free modules.

Proof. By [Mar83, theorem 13.12], bounded below projective A-modules are injective.

For some n, M � A ⊗A(n)M
′ where M ′ is a finitely generated A(n)-module. Since A(n) is a

Poincaré duality algebra, it is standard thatM ′ admits a monomorphismM ′→ J ′ into a finitely

generated freeA(n)-module which is also injective (this is obvious for a simple module and can

be proved by induction on dimension). By flatness the composition

M
�

//
++

A⊗A(n)M
′ // A⊗A(n) J

′

is a monomorphism of A-modules into a finitely generated free module with coherent coker-

nel. Iterating this we can build a resolution of the stated form and since A is self-injective this

is an injective resolution. �

Our next result summarises the properties of coherent modules.

Proposition 1.4. The coherent modules over a P-algebraA form a full subcategoryModcoh
A of ModA

with enough projectives and injectives, and all finite limits and colimits.

We can generalise Proposition 1.1.

Proposition 1.5. LetM be a finite A-module and N a coherent A-module. Then

Ext∗A(M,N ) = 0.

Proof. The left exact functor HomA(M,−) has the right derived functors Ext∗A(M,−). By Propo-

sition 1.1, for each finitely generated free module F, Ext∗A(M,F) = 0. This means that F is

HomA(M,−)-acyclic, and it is well-known that these derived functors can be computed using

resolutions by such modules; see [Wei94] on F-acyclic objects and dimension shifting.

Now every coherent A-module N admits a resolution 0→N → J ∗ where each J s is a finitely

generated free module and these are HomA(M,−)-acyclic. Therefore Ext
∗
A(M,N ) = 0. �
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For example, every left A-module of the form

A//A(n) = A⊗A(n) k � A/AA(n)
+

is coherent so it admits such an injective resolution and then ExtsA(k,A//A(n)) = 0.

Here is a more general statement.

Proposition 1.6. Let A be a P-algebra and suppose that B ⊆ A is a subalgebra which is also a P-

algebra and that A is a free left B-module. Let L be a finite B-module and N a coherent A-module.

Then

Ext∗A(A⊗B L,N ) = 0.

Proof. We have

Ext∗A(A⊗B L,N ) � Ext∗B(L,N ).

By Proposition 1.3, N admits an injection resolution

0→N → J ∗

by finitely generated free A-modules. For each s > 0,

HomA(A⊗B L,J
s) �HomB(L,J

s) = 0

since a B-module homomorphism L→ J s must factor through finitely many B-summands and

therefore it is trivial. Therefore the cohomology Ext∗B(L,N ) is trivial. A similar argument also

applies to the case where N is a coproduct of coherent A-modules. �

Pseudo-coherentmodules over a coherent ring. In Bourbaki [Bou80, ex. §3.10], as well as co-

herent modules, pseudo-coherent modules are considered, where a module is pseudo-coherent

if every finitely generated submodule is finitely presented (so over a coherent ring it is coher-

ent). The reader is warned that pseudo-coherent is sometimes used in a different sense; for

example, over a coherent ring the definition of Weibel [Wei13, example II.7.1.4] corresponds

to our coherent.

Examples of pseudo-coherent modules over a coherent ring A include coproducts of co-

herent modules such as the finitely related modules defined by Lam [Lam99, chapter 2§4].

However pseudo-coherent modules do not form a full abelian subcategory ofModA since cok-

ernels of homomorphisms between pseudo-coherent modules need not be pseudo-coherent.

Nevertheless, pseudo-coherent modules do occur quite commonly when working with coher-

ent modules over P-algebras, for example as tensor products over a Hopf algebra.

Lemma 1.7. Let A be a ring andM a pseudo-coherent A-module. ThenM is the union of its coherent

submodules and therefore their colimit.

Proof. Every element m ∈M generates a cyclic submodule which is coherent. �

Lemma 1.8. Let A be a coherent ring and B an Artinian subring where A is flat as a right B-module.

Then every extended A-module A⊗BN is pseudo-coherent.

Proof. Let U ⊆ A ⊗B N be a finitely generated submodule. Taking a finite generating set and

expressing each element as a sum of basic tensors we find that U ⊆ A⊗BU
′ where U ′ ⊆N is a

finitely generated submodule. As B is Artinian and so Noetherian, U ′ is finitely presented, so

by flatness of A, A⊗BU
′ is a finitely presented A-module. Since A is coherent,U is also finitely

presented. �

5



An important special case of this occurs when A is a coherent algebra over a field k and B is

a finite dimensional subalgebra. If N is a B-module then it is locally finite, i.e., every element

is contained in a finite dimensional submodule.

In general, the tensor product of two coherent modules over a Hopf algebra that is a P-

algebra is not a coherent module. However, as we will soon see, it turns out that it is pseudo-

coherent.

Assumption 1.9. We will assume from now on that A is a cocommutative Hopf algebra over a

field k, and B ⊆ A a subHopf algebra where A is B-flat as a left and right B-module.

Now given two left A-modules L andM , their tensor product L⊗M is a left A-module with

the diagonal action given by

a · (ℓ ⊗m) =
∑

i

a′iℓ⊗ a
′′
i m,

where the coproduct on a is

ψa =
∑

i

a′i ⊗ a
′′
i .

In particular, given a left A-moduleM and a left B-module N , the tensor product ofM and

A⊗BN is a left A-moduleM ⊗ (A⊗BN ). There is an isomorphism of A-modules

(1.1) M ⊗ (A⊗BN )
Θ
−→
�

A⊗B (M ⊗N ); m⊗ (a⊗n) 7→
∑

i

a′i ⊗ (a
′′
i m⊗n)

where x = χ(x) andM ⊗N is a left B-module with the diagonal action.

A particular instance of this is

(1.2) (A//B)⊗ (A//B) � A⊗B (A//B)

where

A//B = A/AB+ � A⊗B k.

We will be especially interested in the case where the B-module A//B is a coproduct of finitely

generated modules.

Lemma 1.10. Suppose that A is coherent and B is finite dimensional. Let M be a left A-module

and N a left B-module. Then the A-moduleM ⊗ (A⊗BN ) is pseudo-coherent.

Proof. Using (1.1),

M ⊗ (A⊗BN ) � A⊗B (M ⊗N )

which is pseudo-coherent by Lemma 1.8. �

Corollary 1.11. Suppose that A is a P-algebra and that M1 and M2 are two coherent A-modules.

ThenM1 ⊗M2 is pseudo-coherent.

Proof. Every coherent A-module is induced from a finitely generated A(n)-module for some n.

By choosing a large enough n we can assume thatM1 � A⊗A(n)M
′
1 for some finitely generated

A(n)-moduleM ′1. Then

M1 ⊗M2 � A⊗ (M
′
1 ⊗M2),

so it is a pseudo-coherent A-module. �

Pseudo-coherence itself is probably of limited practical use, but stronger versions are per-

haps more likely to be of use for computational purposes.
6



Definition 1.12.

• Amodule over a coherent ring is strongly pseudo-coherent if it is a coproduct of coherent

modules.

• A moduleM over a P-algebra A is n-strongly pseudo-coherent if

M � A⊗A(n)M
′

where the A(n)-moduleM ′ is a coproduct of finitely generated A(n)-modules.

Over a coherent ring every free module is strongly pseudo-coherent as is every finitely re-

lated module since it is the sum of a coherent module and a free module.

Of course an n-strongly pseudo-coherent module over a P-algebra A is strongly pseudo-

coherent. For a given n, the cyclic A-module A//A(n) = A/AA(n)+ � A⊗A(n) k can be viewed as

an A(n)-module, and by (1.2),

A//A(n)⊗A//A(n) � A⊗A(n) A//A(n).

If A//A(n) is a coproduct of finitely generated (i.e., finite dimensional) A(n)-modules then

A//A(n) ⊗A//A(n) is n-strongly pseudo-coherent. This occurs when A is the Steenrod algebra

for a prime p.

Example 1.13. When A =A is the mod 2 Steenrod algebra it is known that there is a coproduct

decomposition of the A(n)-module A//A(n) into finite dimensional modules which are gener-

alised Brown-Gitler modules. For details see Behrens et al [BHHM08, corollary 5.6].

2. The dual of a P-algebra and its comodules

The theory of P-algebras can be dualised: given a finite type P-algebra A, we define its

(graded) dual A∗ by setting An = Homk(A
n,k) and making this a commutative Hopf algebra

by dualising the structure maps of A (doing this the finite type condition is essential). We will

refer to the dual Hopf algebra of a (finite type) P-algebra as a P∗-algebra; although this is not

standard terminology it seems appropriate and convenient.

When working with comodules over a P∗-algebra A∗ we will use homological grading. For

leftA∗-comodules which are bounded below and of finite type there is no significant difference

between working with them or their (degree-wise) duals as A-modules. In particular,

CohomA∗(M∗,N∗) �HomA(N
∗,M∗),

where Mn = HomF2
(Mn,F2) and M

∗ is made into a left A-module using the antipode. More

generally,

Coexts,∗A∗(M∗,N∗) � Exts,∗A (N ∗,M∗),

where Coexts,∗A∗(M∗,−) denotes the right derived functor of CohomA∗(M∗,−), which can be com-

puted using extended comodules which are injective comodules here since we are working

over a field.

Here are the dual versions of Propositions 1.1 and 1.2. Recall that a cofree or extended A∗-

comodule is one of the form A∗ ⊗W∗ whereW∗ is a graded vector space.

Proposition 2.1. Suppose that A∗ is a P∗-algebra. Let L∗ a bounded below cofree A∗-comodule and

letM∗ be a finite A∗-comodule. Then

Coext∗A∗(L∗,M∗) = 0.
7



Proposition 2.2. For a surjective morphism of P∗-algebras A∗→ B∗,

Coext∗,∗A∗(A∗,A∗�B∗k) � Coext∗,∗B∗ (A∗,k) = CohomB∗(A∗,k) = 0.

Definition 2.3. If A∗ is a P∗-algebra then an A∗-comodule M∗ is coherent if its dual M∗ is a

coherent A-module; this is equivalent to the existence of an exact sequence of A∗-comodules

0→M∗→ A∗ ⊗U∗→ A∗ ⊗V∗

where U∗,V∗ are finite k-vector spaces.

Here is a dual version of Proposition 1.3.

Proposition 2.4. LetM∗ be a coherent comodule over a P∗-algebra A∗. ThenM∗ admits a projective

resolution by finitely generated cofree comodules.

Proof. Take an injective resolution ofM∗ as in Proposition 1.3 and then take duals to obtain a

projective resolution. �

Notice that since A∗ is an injective comodule we have

Coext∗A∗(A∗,A∗) �Homk(A∗,k) � A.

Proposition 2.5. Let M∗ be a coherent comodule over a P∗-algebra A∗ and let N∗ be a finite P∗-

comodule. Then

Coext∗A∗(M∗,N∗) = 0.

Proof. Let P•,∗→M∗→ 0 be a resolution ofM∗ by cofree comodules. Then by Proposition 2.1,

for each s > 0 we have

CohomA∗(Ps,∗,N∗) = 0,

and the result follows. �

Remark 2.6. For bounded below finite type comodules over a P∗-algebra A∗ dual to a P-algebra

A, taking degree-wise duals defines an equivalence of categories

Comod♭, f.t.A∗

(−)∗
// (Mod♭, f.t.A )op

(−)∗

oo

between the A∗-comodule and the A-module categories. Moreover, these functors are exact,

so this equivalence identifies injective comodules (which are retracts of extended comodules)

with bounded below projective modules. By [Mar83, theorem 13.12], bounded below projec-

tive A-modules are injective so it also identifies bounded below injective comodules as pro-

jective objects (this is not true in general of course). In fact this equivalence fits into a bigger

diagram

(2.1) Mod
♯, f.t.
A

(−)∗

��

Comod♭, f.t.A∗

(−)∗
//

00

..

(Mod♭, f.t.A )op
(−)∗

oo

(−)∗

OO

��

Mod
op
A

8



where Mod
♮, f.t.
A denotes the category of finite type bounded below homologically graded A-

modules (with A acting by decreasing degree), Mod♭, f.t.A denotes the category of finite type

bounded below cohomologically graded A-modules and ModA denoting the category of all

A-modules. All of the functors here are exact.

Remark 2.7. Each object M∗ of Mod
♮, f.t.
A is a locally finite A-module, i.e., it is a union of finite

modules. It is convenient to regradeM∗ so thatMn is given cohomological degree −n and then

multiplication by a positive degree element of A increases this cohomological degree. Then by

Proposition 1.5 we have for any coherent A-module N , Ext∗A(M∗,N ) = 0.

For a fixed A∗-comoduleM∗, the functor

CohomA∗(M∗,−) = Comod♭, f.t.A∗
(M∗,−)→Mod♭, f.t.

k

is left exact and has right derived functors Coext∗A∗(M∗,−). Since

CohomA∗(M∗,−) �HomA((−)
∗,M∗) =Mod♭, f.t.A ((−)∗,M∗) =ModA((−)

∗,M∗)

and injective comodules are sent to projective modules, we also have

(2.2) Coext∗A∗(M∗,−) � Ext∗A((−)
∗,M∗).

The contravariant functor Comod♭, f.t.A∗
→ Mod

op
A allows us to define cohomological invari-

ants of comodules using injective resolutions inModA as a substitute for projective resolutions

in Comod♭, f.t.A∗
. In effect for a comodule N∗ we define

Coext∗A∗(−,N∗) = ExtA(N
∗, (−)∗).

Of course this is calculated using injective resolutions of A-modules; since ExtA(−,−) is a bal-

anced functor, (2.2) implies that Coext∗A∗(−,−) is too, whenever we can use projective comodule

resolutions in the first variable. For example, if we restrict to the subcategory of coherent co-

modules we obtain balanced bifunctors

CoextsA∗(−,−) : (ComodcohA∗ (−,−))
op ⊗ComodcohA∗ (−,−)→Mod♭, f.t.

k
.

Given a surjection of P∗-algebras A∗→ B∗ there are adjunction isomorphisms of the form

CohomA∗(−,−) � CohomB∗\\A∗((B∗\\A∗)�A∗(−),−),(2.3)

CohomB∗(−,−) � CohomA∗(−,A∗�B∗(−)),(2.4)

where B∗\\A∗ = k�B∗A. Later we will use these adjunctions to construct composite functor

spectral sequences.

Remark 2.8. Since writing this we became aware of the revised version of Salch [Sal16], where

it is shown that the category of graded connected comodules over a graded connected Hopf

algebra over a field has enough projectives. As our results are stronger but more restricted, we

feel it worthwhile presenting them despite the greater generality of Salch’s result.
9



3. Some homological algebra

In this section we describe some Cartan-Eilenberg spectral sequences for comodules over

a commutative Hopf algebra over a field. Some of these are similar to other examples in the

literature such as that for computing Cotor for Hopf algebroids in [Rav86].

To ease notation, in this section we suppress internal gradings and assume that all our ob-

jects are connective and of finite type over a field k. We refer to the classic [MM65] as well as

the more recent [MP12] for notation and basic ideas about graded Hopf algebras.

Before discussing cohomology for comodules, we will recall the dual theory to modules over

algebras, where there are classical Cartan-Eilenberg spectral sequences of [CE99] for a normal

sequence of Hopf algebras over a field k,

(3.1) R→ S→ S//R

where S is a free R-module. Then for a left S//R-module L and a left S-module M there is a

spectral sequence of the form

(3.2) Es,t2 = ExtsS//R(L,Ext
t
R(k,M)) =⇒ Exts+tS (L,M).

There is another similar spectral sequence for a left S-module M and a left S//R-module N

which has the form

(3.3) Es,t2 = ExtsS//R(Tor
t
R(k,M),N ) =⇒ Exts+tS (M,N ).

Since Ext and Tor are balanced functors, one approach to setting these spectral sequences

is by resolving both variables and using double complex spectral sequences. However, they

can instead be viewed as composite functor spectral sequences obtained using injective or

projective resolutions of the S-module M . When the algebras and modules are graded k-

vector spaces, these spectral sequences are tri-graded; also, in topological applications, (3.1) is

often a sequence of cocommutative Hopf algebras.

Now suppose we have a sequence of homomorphisms of connected commutative graded

Hopf algebras over k,

K\\HH։ K,

where in the notation of [MM65, definition 3.5],

K\\H = k�KH =H�Kk ⊆H.

We also assume given a left K\\H-comodule M and a left H-comodule N . Of course M and

N inherit structures of H-comodule and K-comodule respectively, where M is trivial as a K-

comodule. Our aim is to calculate Coext∗H (M,N ), the right derived functor of

CohomH (M,−) : ComodK\\H →Modk; N 7→ CohomH(M,N ).

Following Hovey [Hov04], we will write U
H
∧ V to indicate the tensor product of two H-

comodules U ⊗V =U ⊗k V with the diagonal coaction given by the composition

U ⊗V
µ⊗µ

//
,,

(H ⊗U )⊗ (H ⊗V )
�

// (H ⊗H)⊗ (U ⊗V )
ϕ⊗Id

// H ⊗ (U ⊗V ).

For a vector spaceW , the notation U ⊗W will be used to denote H-comodule with coaction
10



U ⊗W
µ⊗Id

//
,,

(H ⊗U )⊗W
�

// H ⊗ (U ⊗W )

carried on the first factor alone.

If L is a left H-comodule, then there is a well-known isomorphism of left H-comodules

(3.4) K\\H
H
∧ L = (H�Kk)

H
∧L �H�KL,

We can also regard K\\H = k�KH as a right H-comodule to form the left K\\H-comodule

(3.5) K\\H�HL = (k�KH)�HL � k�KL;

in particular, if L is a trivial K-comodule then as left K\\H-comodules,

(3.6) K\\H�HL � L.

We will use two more functors

ComodH → ComodK\\H ; N 7→ K\\H�HN = (k�KH)�HN � k�KN

and

ComodK\\H →Modk; N 7→ CohomK\\H (M,N ).

Notice that there is a natural isomorphism

CohomK\\H (M,K\\H�H (−)) � CohomH (M,−)

and for an injective H-comodule J , K\\H�H J is an injective K\\H-comodule. This means we

are in a situation where we have a Grothendieck composite functor spectral sequence which

in this case is a form of Cartan-Eilenberg spectral sequence; for details see [Wei94, section 5.8]

for example.

Proposition 3.1. Let M be a left K\\H-comodule and N a left H-comodule. Then there is a first

quadrant cohomologically indexed spectral sequence with

Es,t2 = CoextsK\\H (M,Cotor
t
K (k,N )) =⇒ Coexts+tH (M,N ).

If N is a trivial K-comodule then

Es,t2 � CoextsK\\H (M,Cotor
t
K (k,k)

K\\H
∧ N ).

There is another spectral sequence that we will use whose construction requires that one of

the Hopf algebras involved is a P∗-algebra. The reason for this is discussed in Remark 2.6: in

the category of finite type connected comodules, extended comodules are projective objects.

Proposition 3.2. Assume that H and K\\H are P∗-algebras. Let M be a left H-comodule which

admits a projective resolution and let N be a bounded below left K\\H-comodule. Then there is a

first quadrant cohomologically indexed spectral sequence with

Es,t2 = CoextsK\\H (Cotor
t
K (k,M),N ) =⇒ Coexts+tH (M,N ).

IfM is a trivial K-comodule then

Es,t2 � CoextsK\\H (Cotor
t
K (k,k)

K\\H
∧ M,N ).
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Proof. The construction is similar to the other one, and involves expressing CohomH (−,N ) as

a composition

CohomK\\H (−,N ) ◦ (K\\H�H (−)) = CohomK\\H (K\\H�H (−),N ) � CohomH(−,N ).

The functor K\\H�H (−) : ComodH → ComodK\\H sends projective objects to projective objects

(see Remark 2.6), so the standard construction can be used to give a spectral sequence. �

Of course the condition that M admits a projective resolution is crucial; in the case of P∗-

algebras this is satisfied ifM is a coherent comodule.

4. Finite comodule filtrations

In this section we will give some results based on a particular kind of comodule filtration.

We will make use of the adjoint coaction dual to the adjoint action which is given a thorough

treatment in Singer [Sin06, chapter 4]; the dualisation to the comodule setting is straightfor-

ward and details are left to the reader. For our purposes we need to know the following:

If B ⊆ A is a conormal subHopf algebra of a commutative Hopf algebra over a field k, then

there is a (left) adjoint coaction A→ A⊗A which is the composition of the solid arrows in the

following commutative diagram, where T is the switch map.

(4.1) B

��

((

A

ψ
��

((

A⊗A

ψ⊗Id=Id⊗ψ
��

B⊗B

��
A⊗A⊗A // A⊗A⊗A oo

Id⊗T

� // A⊗A⊗A oo
Id⊗χ⊗Id

� // A⊗A⊗A
ϕ⊗Id

// A⊗A

By [Sin06, proposition 4.24], the adjoint coaction makes A and any conormal subHopf alge-

bra B into an A-comodule Hopf algebra; furthermore, for any left A-comoduleM (which also

becomes a left A//B-comodule through the projection A → A//B), there is an induced left A-

coaction on CotorA//B(k,M) that factors through a left B-coaction.

(4.2) CotorA//B(k,M)

))❙❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙

// A⊗CotorA//B(k,M)

B⊗CotorA//B(k,M)

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

Now let C be a cocommutative coalgebra over a field k. A C-comodule M is unipotent if it

has a finite length descending filtration by subcomodules

M =Mℓ ⊃Mℓ−1 ⊃ · · · ⊃M1 ⊃M0 = 0

where each quotient comodule M i+1/M i has trivial coaction. We will refer to such a filtra-

tion as a unipotent filtration of length ℓ. Every comodule M contains a primitive sequence of

subcomodules

M ⊇ · · · ⊇M [i+1] ⊇M [i] ⊇ · · · ⊇M [2] ⊇M [1] ⊇M [0] = 0
12



defined recursively by

M [i] = π−1i−1PrimC (M/M
[i−1])

where πi−1 : M→M/M [i−1] is the quotient homomorphism, so πi−1 induces an isomorphism

M [i]/M [i−1] �−→ PrimC(M/M
[i−1]).

In general this need not be exhaustive or become stable, but if it has both these properties then

it is a unipotent filtration ofM and we will say thatM has a finite primitive filtration.

Lemma 4.1. Suppose that the comoduleM is unipotent. Then the primitive sequence ofM is finite.

Proof. Suppose that

M =Mℓ ⊃Mℓ−1 ⊃ · · · ⊃M1 ⊃M0 = 0

is a unipotent filtration. Then we clearly have M1 ⊆M [1]. Now suppose that for some k > 1,

Mk ⊆M [k]. There is a commutative diagram of comodules

Mk+1 � � //

��

M

��

M

��

Mk+1/Mk � � //

**

M/Mk // M/M [k]

PrimC(M/M
k) //

?�

OO

M [k+1]/M [k]
?�

OO

from which it follows that Mk+1 ⊆M [k+1]. By Induction we find that Mn ⊆M [n] for all n > 1

and in particularM =Mℓ ⊆M [ℓ], soM [ℓ] =M . �

Lemma 4.2. Let L,M,N be C-comodules fitting into a short exact sequence

0→ L→M→N → 0.

ThenM is unipotent if and only if L and N are unipotent.

Proof. Suppose that M and N are unipotent. A unipotent filtration of N pulls back to a co-

module filtration ofM where each stage contains the image of L, and this can be extended to a

unipotent filtration ofM using a unipotent filtration of L.

Suppose thatM has a finite primitive filtration

M =M [ℓ] ⊃M [ℓ−1] ⊃ · · · ⊃M [1] ⊃M [0] = 0.

Set L1 = PrimC(L) = L∩M
[1]. Then

PrimC (L/L
1) � PrimC (L+M

[1]/M [1]) =
(

(L+M [1])∩M [2]
)

/M [1].

Now for each 1 6 k 6 ℓ define Lk = L∩M [k]. Notice that Lk = L∩M [k] ⊆= Lk+1 and Lℓ = L. Also,

Lk+1/Lk � (Lk+1 +M [k])/M [k] ⊆
(

(L+M [k])∩M [k+1]
)

/M [k] ⊆M [k+1]/M [k]

so the coaction of Lk+1/Lk is trivial. Now taking N =M/L define

N k = (L+M [k])/L �M [k]/Lk ∩M [k]

so that

N k+1/N k
� (L+M [k+1])/(L+M [k])

which is easily seen to have trivial coaction. �
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Remark 4.3. Suppose that M is a unipotent C-comodule. Then M is also unipotent as a D-

comodule where C → D is a surjective morphism of coalgebras. Also, if the coaction factors

through a C′-coaction M → C0 ⊗M where C′ ⊆ C is a subcoalgebra, then M is a unipotent

C0-comodule.

Our main use of such unipotent filtrations is to situations described in the next result.

Proposition 4.4. Let B ⊆ A be a conormal subHopf algebra of a commutative Hopf algebra over a

field k. Suppose thatM is a unipotent left A-comodule and that for every k > 0, CotorkA//B(k,k) is a

unipotent left A-comodule. Then each CotorkA//B(k,M) is a unipotent A-comodule.

Proof. We remark that the long exact sequence for CotorkA//B(k,−) used below is one of A-

comodules; the dual module case follows from the details given in Singer [Sin06, chapter 4].

We prove this by induction on the length ℓ of the unipotent filtration onM . When ℓ = 1,

CotorkA//B(k,M) � CotorkA//B(k,k)⊗M

and the result holds. Now suppose that it holds for ℓ < n and let ℓ = n. Consider the short

exact sequence

(4.3) 0→M [n−1]→M→M/M [n−1]→ 0

where we know that for all k > 0,

CotorkA//B(k,M
[n−1]), CotorkA//B(k,M

[n]/M [n−1])

are unipotent A-comodules. On applying CotorkA//B(k,−) to (4.3) we obtain a long exact se-

quence where in degree k we have

· · · // CotorkA//B(k,M
[n−1]) // CotorkA//B(k,M) // CotorkA//B(k,M

[n−1]) // · · ·

so by Lemma 4.2 there is a short exact sequence

0→N ′k → CotorkA//B(k,M)→N ′′k → 0

for unipotent comodules N ′k and N
′′
k . Again using Lemma 4.2 we find that CotorkA//B(k,M) is

unipotent. �

Remark 4.5. Although we have stated the last result in terms the A-comodule structure, in our

applications we will use it by passing to a conormal quotient Hopf algebra of A.

Proposition 4.6. Let B ⊆ A be a conormal subHopf algebra of a commutative Hopf algebra over a

fieldkwhere B is cocommutative. LetM be a leftA-comodule such that for every k > 0,CotorkA//B(k,M)

is a unipotent left B-comodule. Then each CotorkA(k,M) is a unipotent B-comodule.

Proof. There is a Cartan-Eilenberg spectral sequence with

Es,t2 = CotorsB(k,Cotor
t
A//B(k,M)) =⇒Cotors+tA (k,M).

When B is cocommutative this is a first quadrant cohomological spectral sequence of left B-

comodules, and the differentials are homomorphisms of unipotent B-comodules; this is ver-

ified by noting that the functor CotortA//B(k,−) � CotortA(B,−) takes values in the category of

left B-comodules, and when B is cocommutative and U is finite dimensional, CohomB(U,V ) is

naturally a left comodule. By Lemma 4.2, each Es,t∞ is a unipotent B-comodule and the same is

true of each CotornA(k,M). �
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In order to state a special case which will be used later, we recall a standard result which

can be found in [MP12, corollary 21.24]. Let B ⊆ A and C ⊆ A be conormal subHopf algebras

of a commutative Hopf algebra over a field k with C ⊆ B. Then there is an induced normal

inclusion B//C→ A//B and an isomorphism of Hopf algebras

(4.4) (A//C)//(B//C) � A//B.

Corollary 4.7. Suppose that B//C is cocommutative and M is a left A//C-comodule such that for

every k > 0, CotorkA//B(k,M) is a unipotent left A//C-comodule. Then each cohomology group

CotorkA//C (k,M) is a unipotent B//C-comodule.

Proof. Use the Cartan-Eilenberg spectral sequence in the proof of Proposition 4.6,

Es,t2 = CotorsB//C (k,Cotor
t
(A//C)//(B//C)(k,M)) =⇒ Cotors+tA//C (k,M).

where by (4.4),

Cotort(A//C)//(B//C)(k,M) � CotortA//B(k,M). �

Our motivation for developing these ideas is the following result.

Proposition 4.8. Suppose that A∗ is a P∗-algebra andM∗ a unipotent left A∗-comodule. Then

CohomA∗(A∗,M∗) = 0.

Proof. A non-trivial comodule homomorphism f : A∗→M∗ factors through some subcomodule

Mk
∗ ⊆ M∗ in a unipotent filtration where and k is minimal. Now choose a non-zero element

x ∈Mk
∗ ∩ im f and choose a k-linear mapMk

∗ /M
k−1
∗ → k so that x 7→ 1 under the composition.

The resulting composition

A∗
f

// **Mk
∗

// Mk
∗ /M

k−1
∗

// k

is a non-trivial comodule homomorphism which cannot exist by Proposition 2.1. �

Corollary 4.9. For s > 0,

CoextsA∗(A∗,M∗) = 0.

Proof. This can be proved by induction of the length of a unipotent filtration forM∗. �

We will use this repeatedly in what follows to show that certain Coext groups vanish.

5. Recollections on the Steenrod algebra and its dual

The theory of P-algebras applies to many situations involving sub and quotient Hopf alge-

bras of the Steenrod algebra and its dual for a prime. We will focus attention on the prime 2

but the methods are applicable for all primes.

To illustrate this, here is a simple application involving the mod 2 Steenrod algebra; this

result appears in [Rav84, corollary 4.10]. We denote the mod 2 Eilenberg-Mac Lane spectrum

by H =HF2 and recall that

A∗ =H∗(H) = F2[ξ1, . . . ,ξn, . . .] = F2[ζ1, . . . ,ζn, . . .]

where ζn = χ(ξn) ∈ A2n−1 and the coproduct is given by the equivalent formulae

ψξn =
∑

06i6n

ξ2
i

n−i ⊗ ξi , ψζn =
∑

06i6n

ζi ⊗ ζ
2i

n−i .
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Doubling. The operation of doubling has been used frequently in studying A-modules. The

reader is referred to the account of Margolis [Mar83, section 15.3] which we will use as back-

ground.

Since the dual A∗ is a commutative Hopf algebra, it admits a Frobenius endomorphism

A∗→A∗ which doubles degrees and has Hopf algebra cokernel

E∗ =A∗//A
(1)
∗ =ΛF2

(ζs : s > 1),

where A
(1)
∗ = F2[ζ

2
s : s > 1]. Dually, there is a Verschiebung A→ A which halves degrees and

satisfies

Sqr 7→















Sqr/2 if r is even,

0 if r is odd.

The kernel of this Verschiebung is the ideal generated by the Milnor primitives P0
t (t > 1),

hence there is a degree-halving isomorphism of Hopf algebras A//E
�

−→ A, where E ⊆ A is the

subHopf algebra generated by the primitives P0
t and dual to the exterior quotient Hopf algebra

E∗.

Given a left (graded) A-moduleM , we can induce an A//E-moduleM(1) where

Mn
(1) =















Mn/2 if n is even,

0 if n is odd,

and we write x(1) to indicate the element x ∈ M regarded as an element of M(1); the module

structure is given by

Sqr (x(1)) =















(Sqr/2x)(1) if r is even,

0 if r is odd,

Using this construction, the category of leftA-modulesModA admits an additive functor to

the category of evenly graded A//E-modules,

Φ : ModA→Modev
A//E ; M 7→M(1)

which is an isomorphism of categories. The quotient homomorphism ρ : A → A//E also in-

duces an additive isomorphism of categories ρ∗ : Modev
A//E → ModevA and it is often useful to

consider the composition ρ∗ ◦Φ : ModA→ModevA .

By iterating Φ
(1) = Φ we obtain isomorphisms

Φ
(s) = Φ ◦Φ(s−1) : ModA→Mod

(s)

A//E (s−1)
; M 7→M(s)

where the codomain is the category of A//E (s−1)-modules concentrated in degrees divisible

by 2s and E (s−1) ⊆ A is the subHopf algebra multiplicatively generated by the elements

(5.1) Pab (s − 1 > a > 0, b > 1),

and E (0) = E .

By doubling all three of the variables involved the following homological result is immedi-

ate for e > 1 and two A-modulesM,N :

Exts,2
et

A(e)
(M(e),N(e)) � Exts,tA (M,N ).(5.2)
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Because doubling is induced using a grade changing Hopf algebra endomorphism, the dou-

ble A(1) is also a Hopf algebra isomorphic to the quotient Hopf algebra A//E and dual to the

subHopf algebra of squares A
(1)
∗ ⊆ A∗ which is also given by

A
(1)
∗ =A∗�A∗//A

(1)
∗
F2 = F2�A∗//A

(1)
∗
A∗ = (A∗//A

(1)
∗ )\\A∗.

More generally, for any s > 1, A(s) is isomorphic to the quotient Hopf algebra of A//E (s) dual to

the subalgebra of 2s-th powers

A
(s)
∗ = (A∗//A

(s)
∗ )\\A∗ ⊆ A∗.

In many ways, doubling is more transparent when viewed in terms of comodules. For an

A∗-comodule M∗, we can define a A
(1)
∗ -coaction µ(1) : M

(1)
∗ → A

(1)
∗ ⊗M

(1)
∗ where M

(1)
∗ denotes

M∗ with its degrees doubled; this is given on elements by the composition

M∗ µ
//

µ(1)

++
A∗ ⊗M∗

(−)2⊗Id

// A
(1)
∗ ⊗M∗.

By iterating we also obtain a A
(s)
∗ -coaction µ(s) : M

(s)
∗ →A

(s)
∗ ⊗M

(s)
∗ .

Then the comodule analogue of (5.2) is

Coexts,2
et

A
(e)
∗

(M
(e)
∗ ,N

(e)
∗ ) � Coexts,tA∗

(M∗,N∗).(5.3)

We can use iterated doubling combined with Proposition 1.2 to show that for any d > 1,

(5.4) Coexts,tA∗
(A∗,A

(d)
∗ ) � Exts,tA (A(d),A) = 0.

By doubling all three of the variables involved here we can also prove that for e > 0,

(5.5) Coexts,2
et

A
(e)
∗

(A
(e)
∗ ,A

(d+e)
∗ ) � Coexts,tA∗

(A∗,A
(d)
∗ ) = 0.

Some families of quotient P∗-algebras of A∗. We will begin by describing some quotients of

the dual Steenrod algebraA∗. For any n > 1, (ζ1, . . . ,ζn)⊳A∗ is a Hopf ideal so there is a quotient

Hopf algebra A∗/(ζ1, . . . ,ζn) together with the subHopf algebra

P (n)∗ =A∗�A∗/(ζ1,...,ζn)F2 = F2[ζ1, . . . ,ζn] ⊆ A∗

and in fact

A∗//P (n)∗ =A∗/(ζ1, . . . ,ζn).

Similarly, for any s > 0, the ideal (ζ2
s

1 , . . . ,ζ
2s
n ) ⊳A∗ is a Hopf ideal and there is a quotient

Hopf algebra

A∗//P (n)
(s)
∗ =A∗/(ζ

2s

1 , . . . ,ζ
2s
n )

with associated subHopf algebra

P (n)
(s)
∗ =A∗�A∗//P (n)

(s)
∗
F2 = F2[ζ

2s

1 , . . . ,ζ
2s
n ] ⊆ A∗.

For each t > 0 there is a finite quotient Hopf algebra

P (n)
(s)
∗ /(ζ

2s+t

1 ,ζ2
s+t−1

2 , . . . ,ζ2
s+1

t ,ζ2
s

t+1, . . . ,ζ
2s
n )

and we have

P (n)
(s)
∗ = lim

t
P (n)

(s)
∗ /(ζ

2s+t

1 ,ζ2
s+t−1

2 , . . . ,ζ2
s+1

t ,ζ2
s

t+1, . . . ,ζ
2s
n )
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where the limit is computed degree-wise. The graded dual Hopf algebra

P (n)(s) = (P (n)
(s)
∗ )∗ =Hom(P (n)

(s)
∗ ,F2)

is the colimit of the finite dual Hopf algebras

Hom(P (n)
(s)
∗ /(ζ

2s+t

1 ,ζ2
s+t−1

2 , . . . ,ζ2
s+1

t ,ζ2
s

t+1, . . . ,ζ
2s
n ),F2),

i.e.,

P (n)(s) = colim
t

Hom(P (n)
(s)
∗ /(ζ

2s+t

1 ,ζ2
s+t−1

2 , . . . ,ζ2
s+1

t ,ζ2
s

t+1, . . . ,ζ
2s
n ),F2).

Therefore P (n)(s) is a P-algebra and P (n)
(s)
∗ is a P∗-algebra.

6. Some comodules and their cohomology

Later we will need to determine various cohomology groups such as

Coext∗,∗A∗
(A

(1)
∗ ,F2).

using the Cartan-Eilenberg spectral sequence of Proposition 3.1,

(6.1) Es,t2 = Coexts
A

(1)
∗

(A
(1)
∗ ,Cotor

t

A∗//A
(1)
∗

(F2,F2)) =⇒ Coexts+tA∗ (A
(1)
∗ ,F2),

where we have suppressed the internal grading. In fact, A
(1)
∗ is a projective A

(1)
∗ -comodule, so

Es,t2 = 0 when s > 0, therefore we only need to consider

E0,t
2 = Cohom

A
(1)
∗
(A

(1)
∗ ,Cotor

t

A∗//A
(1)
∗

(F2,F2)).

Here the Cotor term is bigraded with

Cotor∗,∗
A∗//A

(1)
∗

(F2,F2) = F2[qn : n > 0]

for qn = [ζn+1] ∈ Cotor1,2
n+1−1 represented in the cobar construction by the residue class of

ζn+1 ∈ A∗//A
(1)
∗ . We need to understand the comodule structure on this and similar Cotor

groups.

Now we can consider the adjoint coaction for A∗.

Lemma 6.1. The left adjoint coaction of A∗ is given by

µ : A∗→A∗ ⊗A∗; µ(ζn) =
∑

i>0

∑

j>0

ζiξ
2i+j

n−i−j ⊗ ζ
2i

j .

Proof. This follows by iterating the coaction and using the formulae

ψζn =
∑

06k6n

ζk ⊗ ζ
2k

n−k , ξr = χ(ζr). �

The left coaction on qn can be deduced from that on ζn+1 where we can ignore all terms in

the sum for µ(ζn+1) with i > 0, thus giving

(6.2) µqn =
∑

06j6n

ξ2
j+1

n−j ⊗ qj .

This extends to polynomials in the qn using multiplicativity.

This coaction is visibly defined over A
(1)
∗ ⊆ A∗, and in practise we will only require the

coaction over the quotient A
(1)
∗ //A

(3)
∗ so we will denote this coaction by

µ : Cotor∗,∗
A∗//A

(1)
∗

(F2,F2)→A
(1)
∗ //A

(3)
∗ ⊗Cotor

∗,∗

A∗//A
(1)
∗

(F2,F2),
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where for n > 2,

µqn = ξ
2
n ⊗ q0 + ξ

4
n−1 ⊗ q1 +1⊗ qn

and

µq1 = ξ
2
1 ⊗ q0 +1⊗ q1.

In what follows we will make use of this A
(1)
∗ //A

(3)
∗ -comodule structure and also the induced

A
(1)
∗ //A

(2)
∗ -comodule structure.

Proposition 6.2. For k > 0 there are no non-trivial A
(1)
∗ //A

(2)
∗ -comodule homomorphisms

A
(1)
∗ → Cotork,∗

A∗//A
(1)
∗

(F2,F2).

Hence

Cohom
A

(1)
∗
(A

(1)
∗ ,Cotor

k,∗

A∗//A
(1)
∗

(F2,F2)) = Cohom
A

(1)
∗ //A

(2)
∗
(A

(1)
∗ ,Cotor

k,∗

A∗//A
(1)
∗

(F2,F2)) = 0.

Before giving the proof, wewill define for each k > 0, an increasing filtration of theA
(1)
∗ //A

(2)
∗ -

comodule

Cotork,∗
A∗//A

(1)
∗

(F2,F2) = F2{q
r0
0 q

r1
1 · · ·q

rℓ
ℓ :

∑

06i6ℓ

ri = k}

by setting

Fk,s = F2{q
r0
0 q

r1
1 · · ·q

rℓ
ℓ : r0 > k − s,

∑

06i6ℓ

ri = k}.

Each Fk,s is a subcomodule of Cotork,∗
A∗//A

(1)
∗

(F2,F2) and

Fk,0 = F2{q
k
0}, Fk,k = F2{q

r1
1 · · ·q

rℓ
ℓ :

∑

06i6ℓ

ri = k}.

Now suppose that f : M∗ → Cotork,∗
A∗//A

(1)
∗

(F2,F2) is a non-trivial comodule homomorphism.

Choose s0 to be minimal so that imf ⊆ Fk,s0 . Then the composition

(6.3) M∗
f

//

f
++

Fk,s0 // Fk,s0 /Fk,s0−1

is a non-trivial comodule homomorphism, where Fk,s0 /Fk,s0−1 has the trivial coaction. Now

we may choose any non-trivial linear map Fk,s0/Fk,s0−1 → F2[d] which is non-trivial on imf

and so obtain a non-trivial comodule homomorphismM∗→ F2[d]. This is the key observation

required for our proof.

Proof of Proposition 6.2. Such a comodule homomorphism leads to a non-trivial A
(1)
∗ //A

(2)
∗ -

comodule homomorphism A
(1)
∗ → F2[d] for some d. By the Milnor-Moore theorem, A

(1)
∗ is an

extended A
(1)
∗ //A

(2)
∗ -comodule, so there must be a non-trivial A

(1)
∗ //A

(2)
∗ -comodule homomor-

phism A
(1)
∗ //A

(2)
∗ → F2[d

′] for some d ′ . But since A
(1)
∗ //A

(2)
∗ is a P∗-algebra, this contradicts

Proposition 2.5.

Since the natural homomorphism

Cohom
A

(1)
∗
(A

(1)
∗ ,Cotor

k,∗

A∗//A
(1)
∗

(F2,F2))→ Cohom
A

(1)
∗ //A

(2)
∗
(A

(1)
∗ ,Cotor

k,∗

A∗//A
(1)
∗

(F2,F2))

is injective, the last statement follows. �
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Corollary 6.3. The E2-term of the spectral sequence (6.1) is trivial, hence

Coext∗,∗A∗
(A

(1)
∗ ,F2) = 0.

A generalisation of these results is

Proposition 6.4. For any n > 0,

Coext∗,∗A∗
(A

(1)
∗ ,P (n)

(1)
∗ ) = 0.

Proof. We need to deal with the case n > 1. By Proposition 3.1 there is a Cartan-Eilenberg

spectral sequence of form

Es,t2 = Coexts
A

(1)
∗

(A
(1)
∗ ,Cotor

t

A∗//A
(1)
∗

(F2,P (n)
(1)
∗ )) =⇒ Coexts+tA∗ (A

(1)
∗ ,F2).

Since the A∗//A
(1)
∗ -coaction on P (n)

(1)
∗ is trivial,

Cotort
A∗//A

(1)
∗

(F2,P (n)
(1)
∗ ) � Cotort

A∗//A
(1)
∗

(F2,F2)
A

(1)
∗

∧ P (n)
(1)
∗ .

As left A
(1)
∗ -comodules

P (n)
(1)
∗ �A

(1)
∗ �A

(1)
∗ //P (n)

(1)
∗
F2

so by a standard ‘change of rings’ isomorphism,

Es,t2 � Coexts
A

(1)
∗ //P (n)

(1)
∗

(A
(1)
∗ ,Cotor

t

A∗//A
(1)
∗

(F2,F2)).

Again the Milnor-Moore theorem shows that A
(1)
∗ is a cofree A

(1)
∗ //P (n)

(1)
∗ -comodule and since

this is a P∗-algebra, E
s,t
2 = 0 for s > 0. Now a similar argument to that in the proof of Proposi-

tion 6.2 shows that E0,t
2 = 0. �

Before passing on to discuss other examples, we note that inA∗ there is a subcomodule 6kA∗
spanned by the monomials in the ξi of degree at most k. Under the doubling isomorphism

this corresponds to a subcomodule 6kA
(1)
∗ ofA

(1)
∗ spanned by monomials in the ξ2i of degree at

most k.

Proposition 6.5. For k > 0 there is an isomorphism of A
(1)
∗ -comodules

Cotork,∗
A∗//A

(1)
∗

(F2,F2)
�

−→ 6kA
(1)
∗ ; qr00 q

r1
1 · · ·q

rℓ
ℓ ↔ ξ2r11 · · ·ξ

2rℓ
ℓ .

The following result is an analogue of Proposition 6.2 whose proof can be adapted using the

filtration of 6kA∗ based on polynomial degree.

Proposition 6.6. For k > 0,

Coext∗A∗(A∗,
6kA∗) = 0.

We will also require some other vanishing results.

Proposition 6.7. For n > 0,

Coext∗,∗A∗
(A

(1)
∗ ,P (n)

(2)
∗ ) = 0

and

Coext∗,∗A∗
(A

(1)
∗ ,A

(2)
∗ ) = 0.
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Proof. By setting P (∞)
(2)
∗ =A

(2)
∗ we can present the proofs of these in a uniform faahion.

There is a Cartan-Eilenberg spectral sequence

Es,t2 = Coexts
A

(1)
∗

(A
(1)
∗ ,Cotor

t

A∗//A
(1)
∗

(F2,P (n)
(2)
∗ )) =⇒ Coexts+tA∗ (A

(1)
∗ ,P (n)

(2)
∗ ).

Here

Cotort
A∗//A

(1)
∗

(F2,P (n)
(2)
∗ ) � Cotort

A∗//A
(1)
∗

(F2,F2)
A

(1)
∗

∧ P (n)
(2)
∗

and

P (n)
(2)
∗ �A

(1)
∗ �A

(1)
∗ //P (n)

(2)
∗
F2

so

Es,t2 � Coexts
A

(1)
∗ //P (n)

(2)
∗

(A
(1)
∗ ,Cotor

t

A∗//A
(1)
∗

(F2,F2)).

Since A
(1)
∗ is a cofree A

(1)
∗ //P (n)

(2)
∗ -comodule, Es,t2 = 0 when s > 0. Also the change of coalgebra

homomorphism

Cohom
A

(1)
∗ //P (n)

(2)
∗
(A

(1)
∗ ,Cotor

t

A∗//A
(1)
∗

(F2,F2))→ Cohom
A

(1)
∗ //A

(2)
∗
(A

(1)
∗ ,Cotor

t

A∗//A
(1)
∗

(F2,F2))

is injective. By Proposition 6.2, the codomain is trivial so E0,t
2 = 0. �

7. Some topological applications

We illustrate our theory with a few calculations of homotopy groups of spectra. Some of the

following examples where found in response to questions of John Rognes. Results of this type

were proved by Lin, Margolis, Ravenel and others. The interested reader will be able to give

others, especially at odd primes.

For simplicity we assume that all spectra are 2-completed. We are interested in determining

when [X,Y ]∗ = 0 for two connective finite type spectra X,Y . Here the Adams spectral sequence

Es,t2 (X,Y ) = Exts,tA (H∗(Y ),H∗(X)) = Coexts,tA (H∗(X),H∗(Y )) =⇒ [X,Y ]s−t

converges by work of Boardman [Boa99], so we are interested in examples where E∗,∗2 (X,Y ) = 0.

The general result of Proposition 1.5 applies to many interesting examples.

• For each the spectra X where H = HF2, HZ2s (s > 2), HZ, kO, kU, tmf, and BP〈n〉

(n > 1), [X,S]∗ = 0 since H∗(X) is a coherent A-module and E∗,∗2 (X,S) = 0.

• For each of the above spectra X, [X,BP]∗ = 0. This follows since

H∗(BP) �A⊗E F2

where E ⊆ A is the subHopf algebra generated by the Milnor primitives and this is also

a P-algebra. So by Proposition 1.6,

E∗,∗2 (X,BP) � Ext∗,∗E (F2,H
∗(X)) = 0.

• The case of [BP,S]∗ involves more work. We will use the dual version of the Adams

spectral sequence,

E∗,∗2 (BP,S) = Coexts,tA∗
(A

(1)
∗ ,F2) =⇒ [BP,S]s−t .

We can calculate the E2-term using the Cartan-Eilenberg spectral sequence of (6.1),

and by Corollary 6.3 this E2-term

Coext∗
A

(1)
∗

(A
(1)
∗ ,Cotor

∗

A∗//A
(1)
∗

(F2,F2))
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is trivial. Therefore E∗,∗2 (BP,S) = 0 and [BP,S]∗ = 0.

References

[Bak21] A. Baker, On the dual of a P-algebra and its comodules, with applications to comparison of some Bousfield

classes (2021), available at arXiv:2103.01253.

[Bak22] , Locally Frobenius algebras and Hopf algebras (2022), available at arXiv:2212.00437.

[BHHM08] M. Behrens, M. Hill, M. J. Hopkins, and M. Mahowald, On the existence of a v322 -self map on M(1,4) at

the prime 2, Homology Homotopy Appl. 10 (2008), 45–84.

[BOSS19] M. Behrens, K. Ormsby, N. Stapleton, and V. Stojanoska, On the ring of cooperations for 2-primary con-

nective topological modular forms, J. Topol. 12 (2019), 577–657.

[Boa99] J. M. Boardman, Conditionally convergent spectral sequences, Contemp. Math. 239 (1999), 49–84.
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