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In this paper, we show how model checking can be used to create multi-step plans for a differential
drive wheeled robot so that it can avoid immediate danger. Using a small, purpose built model
checking algorithm in situ we generate plans in real-time in a way that reflects the egocentric reactive
response of simple biological agents. Our approach is based on chaining temporary control systems
which are spawned to eliminate disturbances in the local environment that disrupt an autonomous
agent from its preferred action (or resting state). The method involves a novel discretization of 2D
LiDAR data which is sensitive to bounded stochastic variations in the immediate environment. We
operationalise multi-step planning using invariant checking by forward depth-first search, using a cul-
de-sac scenario as a first test case. Our results demonstrate that model checking can be used to plan
efficient trajectories for local obstacle avoidance, improving on the performance of a reactive agent
which can only plan one step. We achieve this in near real-time using no pre-computed data. While
our method has limitations, we believe our approach shows promise as an avenue for the development
of safe, reliable and transparent trajectory planning in the context of autonomous vehicles.

1 Introduction

Simple biological systems (or agents) can safely navigate through a previously unseen environment by
responding in real-time to sensory inputs. On sensing an unexpected input (e.g., an obstacle) the agent
responds by performing an action to change its state. This action takes the form of a motor output which
results in a change to the environment, which is in turn sensed by the agent and the loop repeats [4]. The
behaviour is egocentric and reactive—the agent is only concerned with its immediate environment and
only deviates from its course (or resting state) when necessary. Naturally, complex agents are capable of
more sophisticated behaviours, such as the prediction of disturbances and the generation of plans to coun-
teract them. This requires distal sensor information and spatial understanding of the wider environment.
Indeed, there is evidence that in biological systems an innate “core” understanding of world physics and
causality allow organisms to organise their behaviours in accordance with predicted outcomes [29, 19].

Model checking [1] is a widely used technique for automatically verifying reactive systems. It is
based on a precise mathematical and unambiguous model of the possible system behaviour. To verify that
the model meets specified requirements (usually expressed in temporal logic), all possible executions are
checked systematically. If an execution failing the specification is found, the execution path which caused
the violation is returned. Model checking has previously been successfully used in a variety of different
systems. It helped to ensure the safety and reliability of safety-critical systems like flight control [31],
space-craft controllers [13] and satellite positioning systems [24]. It has also been successfully applied
to many aspects of software verification, e.g., for industrial systems and operating systems [2, 30].
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In autonomous robotic systems, model checking has been used for static and runtime verification [23,
10, 5, 33] and has been proposed for strategy synthesis [11, 17]. It has been used in many contexts, for
example: to generate real-time action plans with formal guarantees for steerable needles [21]); industrial
robots [32]; and for assistive-care robots which dynamically re-calibrate their path in real-time [12].

In recent work [26], we combined the Spin [14] model checker’s ability to identify paths violating
temporal properties with sensor information from a 3D Unity simulation of an autonomous vehicle,
to plan and perform consecutive overtaking manoeuvres on a traffic-heavy road. The model checker
received information from the (simulated) autonomous vehicle, updated its current model, derived a safe
path, then communicated the path back to the autonomous vehicle. Although a useful proof-of-concept,
the time delay due to model compilation (approx. 3 secs—even though verification of the model itself
only took around 20 ms) and the communication between the model checker and game engine was
unacceptable. In addition, the requirement to divide the underlying action space into discrete sections
made the approach feasible only for less congested environments, such as rural roads.

In this paper we investigate adapting the approach of [26] to a real autonomous agent. Our main
objective is to demonstrate the effectiveness of two measures which should address the time lag and
accuracy problems described above: (i) a simplified model checking algorithm with faster compilation
time, and (ii) the use of model checking situated on board the autonomous agent.

In Section 2 we give an overview of our method. Specifically we show how a robot uses multi-
step plans derived using model checking to move through a domain, avoiding immediate danger. We
present the underlying formal model and describe both how it is used to generate solution paths to
eliminate disturbances and how the model is updated in real-time. In Sections 3 and 4 we describe our
implementation and present results. In Section 5 we discuss the implications of our approach—how it
compares with previous work, an alternative physics modelling approach, and its current limitations.

2 Method

A typical scenario in which a wheeled robot is driving in an environment avoiding walls and obstacles
is shown in Figure1 A. The robot agent is initially in a resting state executing a preferred task T0 which
makes the robot drive in a straight line. However, from sensory input, the robot can infer that if it
continues to follow this path, it will crash into a wall, an unwanted and unexpected event. The robot
can predict what is going to happen as it knows its own direction and velocity and can reason about
possible courses of action. For example, it can switch to task TR (turn right) which is executed until the
disturbance D1 has been avoided. The task TR can be viewed as a temporary control system (see Figure
1B) with the goal of counteracting the disturbance until it has been avoided, turning states (i.e., sensor
data) into actions. Once the disturbance is eliminated, TR is not needed and the robot returns to task T0.

While the robot has turned right in Figure 1A, the control goal of counteracting the disturbance D1
could have equally been achieved by turning left, executing task TL. However, as shown in Figure 1C,
the robot would have soon encountered a second disturbance D2, a situation which cannot be solved by
the temporary control system in Figure 1B as it can only reason one step ahead. In Figure 1C, if the robot
turns left, it can go straight for a while but then has to turn left or right again. Furthermore, if the robot
then turns right, it is possible that it might get trapped in a corner, which is undesirable behaviour. To
overcome this limitation, the robot needs some ability to reason about the outcome of chained sequences
of tasks for a given number of steps we call the horizon. This reasoning process translates into the tree
structure of tasks and sensory inputs shown in Figure 1D which forms the foundation of our method.

Our basic approach is illustrated in Figure 2. In Figure 2A, a wheeled robot drives towards the far
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Figure 1: Overview of the general concept. In A the robot is executing its preferred task T0 which makes
the robot drive in a straight line. The robot approaches a wall and senses a disturbance D1 which disrupts
the robot agent from its preferred course. The robot spawns a control task TR (turn right) to counteract
D1 which can be viewed as the temporary control system shown in B. The task TR only exists until the
disturbance is has been counteracted. However, the disturbance D1 could have been eliminated by turning
left TL. C shows that this would have immediately put the robot in a complex situation which cannot be
solved in a stimulus-response fashion by spawning a control task. In D a reasoning tree is shown for
chaining the spawning of temporary control tasks in response to disturbances in the environment.

wall of a cul-de-sac in its preferred task T0 and senses a disturbance D, operationalised in our case as the
nearest sensed point within a distance d = vtlook where v is the robot velocity and tlook is a set lookahead
time. The width of the visual field is determined by the width of the robot plus some tolerance and a
check is made for disturbances each iteration of the control loop (approx. every 200 ms). In this scenario,
if the robot turns left or right to avoid the disturbance D, the robot will immediately encounter another
disturbance. Furthermore, in either case the robot could get trapped in a corner which is undesirable.

To address this problem, our model is first updated with state information from the environment using
a lightweight procedure explained in Section 2.2. In essence, the procedure involves checking whether
a proper subset of the robot workspace is empty (i.e., free of obstacles) based on a novel abstraction of
the point cloud data. We utilise symmetry on the axes of a 2D vector space and perform simple filtering
to determine whether a given subset is disturbance free in which case the corresponding horizon state is
determined safe. Figure 2B shows a graphical representation of the procedure outcome, which in this
case has updated the model to reflect that turning left twice then returning to T0 is the safe option.

A valid path for the model is generated utilising a bespoke implementation of model checking (see
Figure 2C). We extract transitions from the path to recover the trajectory, which in our case forms a
sequence of control tasks from the set Act = {T0,TL,TR}. T0 denotes the preferred task of driving in a
straight line, and both TL and TR are temporary control systems (see Figure 1B) which rotate the robot
left or right by 90 degrees to eliminate a disturbance. Real execution is never exact, however error is
permissible so long as the control goal of eliminating the disturbance D is achieved. The resulting plan
is executed when the disturbance is some distance d < dsafe from the robot. Once the plan has been
executed, the robot returns to T0 until it encounters another unwanted disturbance in the environment.
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Figure 2: Representation of planning sequence for a cul-de-sac. In A the robot detects a disturbance
D (indicated by yellow star), the nearest detectable point associated with the far wall. A distance dsafe

defines a safe zone so the robot can rotate and acts as a threshold for the robot to start executing plans.
d = vtlook is the sensing range derived from the velocity and a lookahead time tlook. B shows a graphical
representation of the model update procedure. The robot cannot turn right/left then straight nor can it
plan an extra step, the only empty set is the one behind. In C a path is generated using in situ model
checking. Transitions are extracted and the resulting sequence of tasks (i.e., plan) is executed by control.

2.1 Preliminary model checking

2.1.1 Trajectory specification in LTL

We define trajectory specification as the desired sequence of discrete control tasks for an obstacle avoid-
ance scenario, limited in this initial case to static environments. The planning problem normally consists
of two conditions: (i) do not hit any obstacles and (ii) make progress towards a goal [27]. We address
(i) by model checking of a regular safety property. Usually when model checking, counterexamples
constitute violation of the property under scrutiny. We however denote any violation a solution path.

In this paper we focus on trajectory specification given as a Linear Temporal Logic (LTL) formula
due to its power for discrete sequential planning. LTL formulae are built from a finite set of atomic
propositions AP, Boolean connectors such as conjunction ∧ and negation ¬, and two temporal modalities
, (“next”) and ∪ (“until”) [1]. The atomic proposition a ∈ AP stands for the state label a in a transition
system. For example, in this initial work AP = {safe,horizon} where horizon ∈ AP is true in states of
the transition system defined as valid planning steps and safe ∈ AP is true in states that can be reached
without encountering a disturbance. The states where horizon is true are known a priori and therefore
fixed for our transition system while the states where safe is true is decided at runtime. A complete
description of our transition system is provided in Section 2.1.2.

LTL formulae over the set AP of atomic propositions are formed according to the following grammar
[1]: ϕ ::= true | a | ϕ1 ∧ϕ2 | ¬ϕ | , ϕ | ϕ1 ∪ϕ2 where a ϕ with an index denotes some arbitrary but
distinct formula in LTL. Hence in our case, the atomic propositions ϕ1 = safe and ϕ2 = horizon are both
LTL formulae, so by the grammar the conjunction ϕ1∧ϕ2 is also a formula as is its negation ¬(ϕ1∧ϕ2).
From this basic grammar, other operators can be derived, such as □ (“always”) and ♢ (“eventually”),
however the derivation is omitted here for brevity (see [1] for a detailed discussion).
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Our approach utilises a single regular safety property □ϕ where

ϕ = ¬(safe∧horizon) (1)

is an invariant expected to hold in each state of the system. Intuitively, the property □ϕ says that for any
state s in the transition system at least one a ∈ AP is always false. As our interest is in solution paths
not error paths, the invariant ϕ negates the desired outcome, so that what would normally be the set of
counterexamples for an infinite run of the system, becomes a set of solutions. Consequently, the set of
solutions paths for our model is the set of paths with a state satisfying the negation of the invariant:

¬ϕ = safe∧horizon (2)

The set of counterexamples of a regular safety property constitute a language of finite words which
can be recognised by a nondeterministic finite automaton (NFA) [1]. We therefore construct the NFA
A□ϕ = (Q,Σ,δ ,Q0,F) where Q is a finite set of states, Σ = 2AP is a finite alphabet defined as the power
set of the AP, δ : Q → 2Q is a transition relation, Q0 ⊆ Q is a set of initial states, and F ⊆ Q is a set of
accept states [1]. In fact, for any invariant ϕ , the language of all counterexamples (i.e., solutions) can be
represented by an NFA with two states. In our specific case, the NFA A□ϕ progresses to the accepting
state and terminates if and only if for some state in the transition system the conjunction in (2) is true.

2.1.2 Task-driven transition system

A finite transition system is used as a model to describe the behaviour of the robot and provides semantics
for trajectory specification in LTL. The discretized workspace consists of n states S = {s0,s1, ...,sn} and
control tasks are interpreted as labelled state transitions to reflect the reasoning tree in Figure 1D.

Definition 2.1 (Finite transition system). A finite transition system T S is a tuple
(S,Act,→, I,AP,L) where

• S is a finite set of states,

• Act is a finite set of actions,

• →⊆ S×Act ×S is a transition relation,

• I ⊆ S is a set of initial states,

• AP is a finite set of atomic propositions, and

• L : S → 2AP is a labelling function.

The labelling function L relates a set L(s)∈ 2AP of atomic propositions to a state s, where 2AP denotes the
powerset of AP (i.e., the set of all AP subsets including itself and the empty set) [1]. Hence the labelling
function L assigns truth-values, determining which atomic propositions are satisfied for some state s.

The intuitive behaviour of a finite transition system is as follows. The finite transition system T S
starts in some initial state s0 ∈ I and evolves according to the transition relation →. For convenience,
we represent a transition between states with s α−→ s′ instead of (s,α,s′) ∈→. If s is the current state,
then a transition s α−→ s′ originating from s is selected and executed, i.e., the action α associated with the
transition is performed, evolving the transition system from state s to s′. In cases where the current state
s has more than one outgoing transition, the action α is chosen in a nondeterministic fashion.
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Figure 3: Depiction of point cloud abstraction and states. Here A shows the structure of the abstraction
where dmax, dmin and dsafe are tunable parameters constrained by the dimensions of the robot. L+ tol
represents the wheelbase of the robot plus some tolerance, which does not need to be as wide as the main
driving corridor because the robot can only go straight. The states (black dots) represent a fixed point
distance dsafe in front of the robot for future robot configurations as it navigates the abstraction, facing
towards positive x by convention with the initial state s0 directly in front. In B an example scenario shows
five states in the positive lateral direction adjusting within the tolerance dmax −dmin to the location of the
nearest disturbance. Hence lateral states adapt to bounded stochastic variations in the local environment.

Our concrete model of robot behaviour is based upon abstraction of point cloud data from a 2D
LiDAR with 360 degrees field of view (see Figure 3A for an illustration). States S = {s0,s1, ...,s14}
represent points on a 2D vector space distance dsafe in front of possible future robot configurations; the
robot faces towards positive x by convention when entering the initial state s0 to generate a plan. Hence
path generation can be seen as the robot reasoning about where it will end up after executing a given
sequence of tasks whilst respecting the robot safe zone. As shown in Figure 3A, the four states on the
edge of the safe zone (grey box) represent a fixed point distance dsafe from the origin, defined to ensure
the robot always has adequate clearance for rotational movements when initiating a plan. In addition,
the furthermost state behind the robot on the x-axis is also a fixed distance from the origin; this state
provides the robot with an option to turn around and go back the way it came if relevant for the scenario.
The y-coordinate of states on the lateral extremes of our discretization is variable, however, determined
at runtime by the location of disturbances in the positive and negative lateral directions (see Figure 3B
for an illustration of the abstraction adjusting to a disturbance in the positive lateral direction).

As mentioned above, control tasks are interpreted as labelled transitions between states to reflect the
desired reasoning tree in Figure 1D. Hence we call our model a task-driven finite transition system where
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Figure 4: Task-driven finite transition system. Grey states indicate that horizon is true. These states
are known a priori and fixed for the model. Sle f t = {s3,s5,s7,s9,s11} and Sright = {s4,s6,s8,s10,s12} are
determined by the locations of disturbances in the lateral direction. The remaining states represent fixed
points. Transitions reflect the reasoning tree shown in Figure 1D for the spawning of control tasks.

• S = {s0,s1, ...,s14} is a set of states representing a point distance dsafe in front of the robot for
possible future configurations as it navigates the abstraction shown in Figure 3,

• Act = {T0,TL,TR} is the set of discrete control tasks defined in Section 2,

• →⊆ S×Act × S is a transition relation where s → s′ is admissible if and only if there exists a
control task which can evolve the model from state s to s′,

• I = {s0} is the initial state distance dsafe in front of the robot,

• AP = {safe,horizon} is the set of atomic propositions defined in Section 2.1.1, and

• L : S → 2AP is a labelling function such that L(s) determines if property (2) is true at state s.

Figure 4 shows the structure of our transition system. In our model, the states where horizon is true
are known a priori and therefore fixed, indicated in Figure 4 by grey states. This is a modelling choice
to reflect the final step of any plan, which is to return the robot to its resting state, the preferred task
T0. The transitions to horizon states provide some assurance that the robot has time to replan if another
disturbance is encountered soon after plan execution, e.g., due to an error in the real task execution.

Our model generates a plan of one, two or three steps, as any transition to a safe horizon state (i.e.,
a state where the property in (2) is true) represents a return to the preferred task T0 and is thus excluded.
One step plans reflect scenarios where the robot can spawn a single temporary control system TL/R to
counteract a disturbance then return immediately to the preferred task T0; two step plans are reserved for
scenarios where the robot is boxed in and needs to spawn a sequence of two TL/R to about turn and evade
the situation; and three step plans add an extra TL/R to counteract disturbances in the lateral direction.
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2.1.3 Product transition system and NFA

In model checking, we are normally interested in establishing whether □ϕ is true for all possible runs
of a system. This is equivalent to checking if Tracesfin(T S)∩A□ϕ = /0 where Tracesfin(T S) is the set
of finite traces for the transition system [1]. To check this, we first construct the product transition
system T S⊗A□ϕ , then derive an invariant ϕ for the product from the accept states of A□ϕ such that
Tracesfin(T S)∩A□ϕ = /0 if and only if T S⊗A□ϕ |=□ϕ (i.e., the property □ϕ is satisfied in the product
transition system). Verification of a regular safety property can therefore be reduced to invariant checking
on the product. However, as we are interested in counterexamples of the property as solution paths, our
focus is instead on generating paths in the system for states where the property □ϕ is false.

Definition 2.2 (Product transition system). The product transition system T S⊗A□ϕ is a tuple
(S′,Act ′,→′, I′,AP′,L′) where

• S′ = S×Q. s′ = ⟨s,q⟩ ∈ S′, ∀s ∈ S and ∀q ∈ Q,

• →′ is the smallest relation defined by the rule si
α−→s j∧p

L(s j)−−−→q

⟨si,p⟩
α−→′

⟨s j,q⟩
,

• I′ = {⟨s0,q⟩ | s0 ∈ I ∧∃q0 ∈ Q0. q0
L(s0)−−−→ q}.

• AP′ = Q, and

• L′ : S×Q → 2Q is given by L′(⟨s,q⟩) = {q}.

It suffices to perform a reachability analysis on T S⊗A□ϕ to check the invariant ϕ . In this paper,
we implement and perform invariant checking by forward depth-first-search (f-DFS) (see Algorithm 4
in [1] for details). Our model is updated with state information from sensors at runtime to determine
which horizon states are safe and generate a sequence of states from which the associated control tasks
can be extracted. If □ϕ is false for some state, then the execution path in which the state is reached
(normally referred to as a counterexample) is called a solution path for the task-driven finite transition
system, which in our case reflects a sequence of discrete robot configurations in the workspace. We then
extract the tasks associated with each transition to recover the trajectory for the control layer to execute.

2.2 Model update procedure

As mentioned above, states where horizon is true are known a priori (see Figure 4 for details), so for
a solution path to be generated it remains for us to decide which of these states is also safe. We utilise
longitudinal and lateral offsets of the point cloud to simulate respective displacements and take advantage
of symmetry on the axes of a 2D vector space to determine if a subset of our abstraction, specified to
represent a practical over-approximation of the task execution workspace, contains no disturbance. If a
given subset is empty, the corresponding state is reachable and determined safe, indicated in Figure 5.

Our abstraction in Figure 3 assumes the robot is at the origin of an underlying 2D vector space used
as a model for the point cloud data. The robot is facing towards positive x by convention with the initial
state s0 distance dsafe directly in front of the robot on the x-axis. In Figure 5, subset o1 is a reflection of
o2 with the x-axis forming a line of symmetry (grey box indicates the robot safe zone, however both sets
extend to the x-axis). For each of these subsets, the y-axis also forms a line of symmetry which splits
each subset in half, such that each half is a reflection of the other. Symmetry on the x-axis means we can
use a simple inequality to decide whether an observation has a qualifying y-coordinate (within the lateral
bounds of the abstraction, positive for set o1 and negative for set o2). Symmetry on the y-axis means we
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Figure 5: The set of point cloud observations O and the disjoint subsets o1,o2, ...,o7 which form the
abstraction. If some oi = /0, the atomic proposition safe is true for the horizon state on the edge of the
set (indicated with red circles), otherwise the proposition is false. In addition, if the robot cannot travel a
lateral distance dmin in either direction, then it is assumed o7 = /0 to address trap situations, e.g., getting
stuck in a corner. In static environments this is valid as the direction the robot came from should be safe.

can use absolute values to ignore the sign and ensure that any included observation has an x-coordinate
which does not exceed some maximum distance from the y-axis. For sets o1 and o2, this distance is dsafe,
hence the longitudinal dimension of these sets respects the robot safe zone.

When a disturbance D is sensed, the procedure is initiated. First a longitudinal offset is calculated by
subtracting dsafe from the x-coordinate so we can forward simulate our abstraction to its location:

△x = Dx −dsafe (3)

However, if Dx ≤ dsafe then △x = 0, as the abstraction is already at the desired displacement from the
disturbance in the longitudinal direction, so no forward simulation is necessary for reasoning.

We then iterate the observations O, forward simulate each observation by subtracting △x from the
x-coordinate, and use symmetry on the axes of the vector space to sort observations into relevant subsets:

o1 = {o ∈ O | 0 < oy < dmax +dsafe ∧|ox| ≤ dsafe} (4)

o2 = {o ∈ O | − (dmax +dsafe)< oy < 0∧|ox| ≤ dsafe} (5)

where 0 is a constant to distinguish between positive and negative y-coordinates, the expression dmax +
dsafe represents the absolute distance to lateral extremes of our abstraction, and |ox| ≤ dsafe ensures the
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width of the subset respects the robot safe zone. Subsequent reasoning can be seen as the robot predicting
what will happen if it executes a one step plan to avoid the disturbance and return to its resting state.

If o1 = /0 and o2 = /0, then in either case we can infer that the subset is free of disturbances, meaning
that the robot can execute TL or TR then return to the preferred task T0 at least for distance dmax (a set
parameter for the furthermost possible lateral configuration of the robot from the origin of the vector
space, as per the point cloud abstraction shown in Figure 3A). From the robot agent perspective, this
means that both states s3 and s4 can be reached without encountering a disturbance (insofar as it knows)
and a path is generated nondeterministically. If o1 = /0 and o2 ̸= /0, then the robot can only execute TL

before returning to T0, so a path is generated for s3 not s4. If o1 ̸= /0 and o2 = /0, then the robot can only
execute TR before returning to T0, so a path is generated for s4 not s3. Where any of these conditions
hold, a one step plan is generated without progressing the procedure, as the robot would like to return to
its resting state as soon as possible. However, if both o1 and o2 are not empty, we can conclude that the
robot will soon encounter another disturbance once it returns to T0, so a one step plan is not possible.

Next a two step plan is considered, i.e., whether the robot is boxed in and should turn 90 degrees
twice to go back the way it came, or has enough room in the lateral directions to execute a three step plan.
The nearest positive lateral disturbance D+ = min |oy| for o ∈ o1 and nearest negative lateral disturbance
D− = min |oy| for o ∈ o2 is acquired. As long as |D+

y | or |D−
y | is greater than dmin, it is concluded that the

robot can travel at least distance dmin −dsa f e in the associated lateral direction. It is therefore considered
a safe initial direction and a valid three step plan exists for the scenario. Otherwise, the robot infers that
it is boxed in, so the only empty set is o7 (immediately behind the robot), leading to the generation of a
two step plan in which the robot turns around to go back the way it came (assumed to be safe). In this
case, a two step plan is generated and the procedure terminates, as further reasoning is unnecessary.

However, if at least one direction is determined initially safe for a three step plan, positive and
negative lateral offsets are calculated so that we can reason about counteracting any lateral disturbances:

△+
y = D+

y −dsafe (6)

△−
y = D−

y +dsafe (7)

where △+
y estimates the maximum lateral displacement of the robot in the positive direction while re-

specting the robot safe zone, and △−
y represents the same for the negative direction. At this point in the

procedure, we have no more use for sets o1 and o2 so they do not participate in any further reasoning.
Instead we build sets {o3,o5,o4,o6} to reason about counteracting any lateral disturbances. Progressing
this far means that we have already reasoned about the initial two steps the robot can execute.

Lateral offsets translate the point cloud data, such that the robot remains at the origin and the axes of
the vector space again form lines of symmetry on the relevant subsets. For example, when △+

y is applied,
the robot is at the origin distance dsafe from the nearest disturbance on the left of the robot, representing
an egocentric perspective of its future location if it first executed the sequence ⟨TL,T0⟩ (the orientation of
the robot is of course different, however for our purposes this can be ignored). As a result, states s11 and
s7, which are by design a fixed lateral distance dsafe from any sensed lateral disturbances, sit on the x-axis,
such that s11 is directly behind the robot and s7 is directly in front. The states are a midpoint in the lateral
dimension for the associated subsets, hence o5 is behind the robot, o3 is in front, and the x-axis forms a
line of symmetry which splits each subset in half. This means we can use absolute values to ignore the
sign and ensure that any included observation has a y-coordinate that does not exceed some maximum
distance from the x-axis. Symmetry on the y-axis means we can use a simple bounded inequality to
decide whether an observation has a qualifying x-coordinate (whilst excluding any of subsets o1 and o2).
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We therefore iterate O, forward simulating each observation subtracting △x from the x-coordinate as
before, but adjusting for the lateral displacement by subtracting △+

y or △−
y from the y-coordinate. O is

iterated once for each direction. In either case, the lateral offset places the relevant three step horizon
states on the x-axis so we can use symmetry on axes of the vector space for specifying relevant subsets:

o3,o4 = {o ∈ O | dsafe < ox ≤ βdsafe ∧|oy| ≤
1
2
(L+ tol)} (8)

o5,o6 = {o ∈ O | −βdsafe ≤ ox <−dsafe ∧|oy| ≤
1
2
(L+ tol)} (9)

where dsafe is a constant to distinguish between positive and negative x-coordinates (while excluding
subsets o1 and o2), β is a coefficient for tuning the length of the subsets and 1

2(L+ tol) defines the width
(see Figure 3A for an illustration). From a cognition perspective, subsequent reasoning can be seen as the
robot predicting what will happen if it returns to its resting state after eliminating a second disturbance.

Suppose the positive and negative lateral directions have both been calculated as safe for a three
step plan, i.e., both |D+

y | and |D−
y | are greater than dmin. If subsets {o3,o5,o4,o6} are empty, then states

{s7,s11,s8,s12} are deemed safe and a path is generated for one of the states in a nondeterministic way.
However, if any of the subsets are non-empty, the corresponding state is unsafe and excluded from path
generation via model checking. If |D+

y | ≤ dmin, then states s7 and s11 are automatically considered unsafe
(i.e., the positive lateral direction is invalid for a three step plan). If |D−

y | ≤ dmin, then states s8 and s12
are automatically considered unsafe (i.e., the negative lateral direction is invalid for a three step plan).
As mentioned above, prior to generating a three step plan, if |D+

y | and |D−
y | are less than or equal to dmin,

neither direction is considered safe, so a two step plan to turn around and evade the situation is generated.

3 Implementation

As a case study, we implemented our method on a differential drive robot shown in Figure 6A. Our robot
was adapted from a widely available mobile robot development platform, AlphaBot by Waveshare1. For
sensing the environment, we equipped the robot with a low cost 360 degree 2D laser scanner, RPLiDAR
A1M8 by Slamtec2, and for actuation we used two continuous rotation servos by Parallax3. The hard-
ware programming interface for the robot was a Raspberry Pi 3 Model B4 included with the AlphaBot
development kit running a Quad Core 1.2GHz Broadcom 64bit CPU with 1GB RAM and wireless LAN.

Our method was implemented5 in C++ using the closed-loop agent architecture shown in Figure 6B.
At runtime, LiDAR scans generate a callback from a dedicated thread which passes observations to the
agent event handler (approx. every 200 ms). The agent then initiates the task execution step which sends
a control signal to the actuator thread. If the robot is in the preferred task T0 after the control signal is sent
to the servos, a check is made for new disturbances in the environment. If a temporary control system
TL/R is the current task, the progress of counteracting the disturbance is checked. In either case, a task
result is returned to the agent indicating whether the task has been a success or has failed. When in the
preferred task T0, if there is no plan available, a new disturbance initiates the model update procedure
described in the previous section and generates a plan using invariant checking by f-DFS. The plan is

1https://www.waveshare.com/alphabot-robot.htm
2https://www.slamtec.com/en/LiDAR/A1/
3https://www.parallax.com/product/parallax-continuous-rotation-servo/
4https://www.raspberrypi.com/products/raspberry-pi-3-model-b/
5https://github.com/possibilia/mc-avoid

https://www.waveshare.com/alphabot-robot.htm
https://www.slamtec.com/en/LiDAR/A1/
https://www.parallax.com/product/parallax-continuous-rotation-servo/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b/
https://github.com/possibilia/mc-avoid
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Figure 6: A our robot. B the agent architecture.

executed when the disturbance is distance d < dsafe from the origin of the point cloud data. Once the
plan has been executed, the robot defaults to the preferred task T0 until a disturbance repeats the process.

4 Results

Our goal was to develop an egocentric method for chaining temporary control systems in response to dis-
turbances in the environment using in situ model checking. Specifically, we were interested in improving
on the case where an agent can only spawn a single control task in response to disturbances (see Section
2 for details). In this paper, we restricted our attention to static environments and local tactical planning
for avoiding obstacles, focusing on a cul-de-sac scenario as an initial test case for our method. Our re-
sults show an improvement on one step planning yielding efficient trajectories for avoiding a cul-de-sac.
In addition, for both comparisons our model checking procedure was executed in less than 11 ms.

Trajectories for the the first comparison are shown in Figure 7. Using our method, the robot ap-
proaches the cul-de-sac in Figure 7A and upon sensing a disturbance in the environment (i.e., a point
on the wall on the left) generates the three step plan ⟨TR,T0,TR⟩ in Figure 7B. Here the model update
procedure determines that sets o1 and o2 (see Figure 5 above) are non-empty and that it can drive at least
dmin = 0.5m in either direction. However, as sets o3 and o5 are also non-empty, it infers that it will meet
a disturbance if it turns either left or right after initially going in the left direction. In this particular case,
both sets o4 and o6 are empty and so the corresponding horizon states s8 and s12 are determined safe.
A path to one of the states is chosen nondeterministically, in this case s12. Execution time for the com-
bined model update procedure and path generation using in situ model checking was 9.22 ms. Figure 7C
shows the one step comparison, which in this case manages to navigate out of the cul-de-sac by chance,
however not without entering it first, making the trajectory less efficient.

The second comparison is shown in Figure 8. In this case, the robot approaches the bottom right
corner of the cul-de-sac in Figure 8A and infers that it is boxed in using our method. Consequently, it
generates the two step plan ⟨TL,TL⟩ in Figure 8B then returns to the preferred task T0. As in the previous
comparison, the model update procedure has determined that sets o1 and o2 are non-empty, however in
this case the robot cannot travel at least dmin = 0.5m in any direction, so a three step plan is invalid; it is
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Figure 7: Comparison 1. In A the robot recognises that it would get boxed in turning left so it makes a
three step plan for the right direction (last step cropped). In B the path and transitions in the model which
generated the behaviour are shown. C shows trajectory followed by agent which can only plan one step.
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Figure 8: Comparison 2. In A the robot approaches the bottom right corner of the cul-de-sac and infers
that it is boxed in so generates the two step plan shown in B to evade the situation. C shows that the robot
gets trapped between two walls for the one step planning case, eventually colliding with a wall.
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therefore assumed that only set o7 is empty and the corresponding horizon state s14 is safe. As there is
only one safe horizon state in this situation, nondeterminism is resolved in the algorithm so the path is
fully determined. Similar to the previous comparison, execution time for the combined update procedure
and path generation was 10.87 ms. In contrast, the one step planning trial causes the robot to get trapped
between two walls for a significant period of time before eventually colliding with one of them, as shown
in Figure 8C. Hence our method generates a more efficient trajectory and can avoid a trap situation.

5 Discussion

In this paper, we have shown that it is possible to use live model checking to plan a safe sequence
of discrete control tasks for a planning horizon of more than one step. In previous work [26], it was
demonstrated that model checking could be used to plan overtaking manoeuvres for an autonomous
vehicle (AV) as a proof of concept. As mentioned in the introduction, however, one of the main issues
was compilation time in Spin [14] (approx. 3 secs), making the real-world application of model checking
for trajectory planning impractical, even though verification of the model itself only took around 20 ms.
We have overcome the compilation time problem by creating a stripped down model checking algorithm
situated on board an autonomous agent. While our results are preliminary, we consider this work a
successful first step towards real-time model checking for reliable and safe AV trajectory planning.

As finite state model checking relies on a discrete action space, another limitation in [26] was division
of the underlying continuous system into 21 meter long segments, which is sufficient to represent rural
roads or empty motorways but not congested urban environments. While using a fine-grained discretiza-
tion would allow for more accurate modelling of the environment and vehicle speed, the state-space ex-
plosion problem imposes hard practical limits. If the state-space is too large, the additional computation
would make real-time application of model checking infeasible, especially in high speed environments
such as autonomous driving. In [22] it was argued that even a lag of 100 ms is unacceptable.

We have therefore introduced a novel discretization which moves away from static grids commonly
applied in model checking, using abstraction to represent bounded stochastic variations in the continuous
system. This has the benefit of keeping the state-space small but the model sensitive to fine-grained
variations in the local environment. In this initial work, the upshot of our discretization is not obvious,
however we believe that for any real-world application of model checking for AV trajectory planning, a
discrete representation of the environment with adaptive characteristics will be necessary.

One limitation, however, is that our discretization of the LiDAR data models points on a 2D vector
space. While sufficient for initial research, realistic driving scenarios will require richer information
about the geometry of the local environment for reliable decision-making. If the dimensionality of ob-
jects in the environment is not known, then sophisticated manoeuvres will be impossible. For example,
overtaking can be broken down into three distinct sub-manoeuvres [8]: (i) lane change to overtaking
lane, (ii) pass leading vehicle(s), and (iii) lane change back to original lane, so for a successful over-
take, the AV needs to know the necessary lateral and longitudinal displacements relative to the leading
vehicle(s). Points on a plane have no dimensionality, so it is expected that some LiDAR preprocessing
yielding richer geometry information about objects will be required for performant AV decision-making.

In a real-world driving scenario, AVs will need to cope with unpredictable traffic and changing
weather conditions, so trajectory planning should in addition be sensitive to uncertainty in the driving
environment. For this initial work we have chosen to keep the complexity of the model low to simplify
the problem; one benefit is that the restricted modelling palette forces basic assumptions to be questioned
in pursuit of a solution, as opposed to relying on the modelling apparatus alone. In our case, we have at-
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tempted to stretch assumptions about relevant discretizations, moving away from typical fixed structures.
In future work, however, a probabilistic model checker such as PRISM [16] could be stripped down and
implemented on an autonomous agent to handle uncertainty in the local environment.

The main limitation of our approach is that it is not goal-directed. While our method is capable of
local tactical planning for obstacle avoidance, any realistic scenario involving AVs (e.g., overtaking) re-
quires the ability to make progress towards a goal relevant to the task. For example, in our previous work
[26] a simulated LiDAR array provided sensory input sufficient for determining whether an overtake was
possible. Subsequent research will seek to improve on our solution by adding goal-directed behaviour to
the autonomous agent as a next step towards transparent and ecologically valid trajectory planning.

The major benefit of our approach is that it is tailored for individual scenarios and takes place in
real-time using no pre-computed data [26]. Furthermore, it makes hard decisions which are in principle
transparent. Popular machine learning approaches for trajectory planning, such as deep reinforcement
learning [15], are either trained offline on datasets irrelevant to the immediate context, or trained online
within a simulated environment. While predictions are fast in offline methods, they can result in unex-
pected or risky behaviour for unseen cases, which in autonomous driving can be dangerous, as evidenced
in recent high profile accidents like the Tesla crash while in autopilot mode [20] and the Uber autonomous
taxi crash [7], both of which were fatal. Online training of reinforcement learning in a simulated envi-
ronment might be able to generate a larger variability of situations for training (and a much larger dataset
than any real world data), but it would ultimately generate a rigid black box system which would not
be transparent or guaranteed to react safely in all situations. Our solution relies on data from the local
environment and generates explainable trajectories in real-time. Unlike machine learning methods, our
basic approach makes clear decisions which are transparent by design.

Safety is ensured by our abstraction through over-approximation of the robot workspace and strict
adherence to the robot safe zone. Similar concepts restricting the local behaviour of robots have been
used elsewhere. In [18], for example, the notion of a safe maneuvering zone (SMZ) was used with
a kinematic model for obstacle avoidance. The SMZ defines a circular boundary around the closest
detected obstacle, creating a temporary sub-goal which minimally deforms the original robot path. The
contour of any encountered obstacle is navigated until the robot can return to its original path. However,
as the SMZ places safety bounds on obstacles, efficient strategies for obstacle avoidance may be ignored.
Our safe zone is egocentric, so paths are not constrained by the contours of obstacles in the environment.

Previous work [3] combining lattice-based planning with optimal control has informed the develop-
ment of our method. Here optimal path planning algorithms were used to generate motion primitives
which can then be chained, producing locally optimal solutions to the path planning problem. However,
it is a non-trivial task for a robot to precisely determine its position and follow a trajectory, often the
approach favoured by safe navigation methods in the literature, such as control barrier functions [28].
Instead we focus attention on possible collisions which are tracked until out of reach whilst respecting
the robot safe zone. Hence the trajectories produced by sequences of motion primitives (i.e., control
tasks) are flexible in our method, as long as the control goal of eliminating disturbances is achieved.

5.1 Comparison with physics modelling

In a similar vein to model checking, we have approached closed-loop navigation from a lower level of
abstraction; in brief, this consists of representing the robot, its behaviour and the external environment
in the physics engine Box2D [6] (unpublished data). In this framework, we replace the model checking
step by simulation of the execution of a task (or sequence of tasks) in the physics engine. The outcome of
simulation can then be used to determine a sequence that best satisfies a goal. Modelling through a widely
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utilised and validated physics library allows for accurate simulation of complex, dynamic environments.
On the other hand, the speed of this method is strongly correlated with the number of bodies used
in the simulation. In simple scenarios, optimal path selection is possible within the LiDAR sampling
rate. However, cluttered environments and/or the creation of large task trees result in highly variable
performance to a point where it no longer suits real-world applications in robots with low CPU clock
speed (our data was collected on a 1.4GHz CPU). This limitation is not in the model checking approach,
making it more robust, reliable and suited to a wider range of scenarios.
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