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Developing a Blood Cell-Based Diagnostic Test for Myalgic
Encephalomyelitis/Chronic Fatigue Syndrome Using
Peripheral Blood Mononuclear Cells

Jiabao Xu, Tiffany Lodge, Caroline Kingdon, James W. L. Strong, John Maclennan,
Eliana Lacerda, Slawomir Kujawski, Pawel Zalewski, Wei E. Huang,* and Karl J. Morten*

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is
characterized by debilitating fatigue that profoundly impacts patients’ lives.
Diagnosis of ME/CFS remains challenging, with most patients relying on
self-report, questionnaires, and subjective measures to receive a diagnosis,
and many never receiving a clear diagnosis at all. In this study, a single-cell
Raman platform and artificial intelligence are utilized to analyze blood cells
from 98 human subjects, including 61 ME/CFS patients of varying disease
severity and 37 healthy and disease controls. These results demonstrate that
Raman profiles of blood cells can distinguish between healthy individuals,
disease controls, and ME/CFS patients with high accuracy (91%), and can
further differentiate between mild, moderate, and severe ME/CFS patients
(84%). Additionally, specific Raman peaks that correlate with ME/CFS
phenotypes and have the potential to provide insights into biological changes
and support the development of new therapeutics are identified. This study
presents a promising approach for aiding in the diagnosis and management
of ME/CFS and can be extended to other unexplained chronic diseases such
as long COVID and post-treatment Lyme disease syndrome, which share
many of the same symptoms as ME/CFS.
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1. Introduction

Myalgic encephalomyelitis/chronic fatigue
syndrome (ME/CFS) is a complex disease
with unknown aetiology. With the hallmark
of the disease being fatigue, ME/CFS has a
wide range of symptoms that vary between
patients and can fluctuate over time. These
symptoms often include post-exertional
malaise (PEM), cognitive dysfunction,
sleep disturbances, orthostatic intolerance,
abnormal thermal regulation, myalgia, pho-
tosensitivity, and neuro-immuno-endocrine
dysfunction,[1] all of which result in a sig-
nificant reduction in patients’ quality of life.
Among all triggers identified for ME/CFS,
up to 75% of cases report infection episodes
preceding the onset of their condition.[2]

Other factors such as major stress events
and exposure to chemicals have also been
recognized as potential contributors.[3]

The patient’s susceptibility, whether influ-
enced by genetic factors or health history,
could be vital in their atypical response
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to a stressful trigger, thereby transitioning from the typical tran-
sient immune inflammatory response to a persistent, chronic
state. Around 70% of ME/CFS patients are female. Females have
a stronger response to infection or vaccination than males, and
differences in sex hormones are proposed to play a role in the
prevalence of autoimmune diseases, including ME/CFS.[4] Addi-
tionally, the microbiome may be essential, as different microbiota
have been associated with different hormonal profiles in males
and females.[5] Evidence also suggests abnormal brain function
in ME/CFS, with microglial activation being studied directly or
indirectly linked to metabolic changes and inflammation.[6]

Recently, many COVID-19 patients have developed Long
Covid or Long Hauler syndrome,[7–9] which may be classified as
ME/CFS if unresolved after six months and if it meets the IOM
criteria for ME/CFS, which mandate a PEM component.[10] There
are over 250000 ME/CFS cases reported in the UK and this num-
ber is expected to increase significantly due to the prevalence
of Long COVID with the estimated 50–100 million worldwide
cases.[2,11,12]

ME/CFS lacks a single sensitive and specific diagnostic test,[13]

making the development of a simple test with the potential
for early diagnosis a critical goal. Early diagnosis would en-
able patients to manage their conditions more effectively, poten-
tially leading to new discoveries in disease pathways and treat-
ment development. Given that most ME/CFS cases are identi-
fied via symptoms and questionnaires, the exclusion of alterna-
tive diagnoses is vital. Blood-based biomarkers may prove useful
in quickly and accurately diagnosing ME/CFS by supplement-
ing current sets of indicators measured during routine medi-
cal check-ups. Furthermore, blood-derived markers may help dif-
ferentiate similar disorders, such as ME/CFS, multiple sclero-
sis (MS), fibromyalgia, chronic Lyme disease, and Long Covid.[2]

Blood draws could also provide longitudinal insights into the
treatment response for ME/CFS and the onset of more severe
symptoms. Overall, developing a blood-based, single, objective
test would be a significant step toward enhancing the diagnosis
and management of ME/CFS.

Peripheral blood mononuclear cells (PBMCs) and muscle
biopsies obtained from ME/CFS patients exhibited altered mito-
chondrial function, indicating a difference in energetic function
when compared to non-fatigued controls.[14–16] Research by Mis-
sailidis et al. discovered that when lymphocytes from ME/CFS pa-
tients were immortalized, they generated cell lines with very dif-
ferent energetic properties.[17] As ME/CFS may have a systemic
energy issue, studying PBMCs may provide a good model for un-
derstanding the pathology affecting other organ systems. With
the evidence suggesting differences in the blood cell fractions
from ME/CFS patients, we hypothesized that single-cell analy-
sis of PBMCs might reveal differences in ME/CFS compared to
healthy and other disease groups. In this study, we have included
MS patients as a disease control group. ME/CFS and MS are two
distinct conditions with many similar clinical symptoms. One of
the key differences between the conditions is that MS is associ-
ated with clear pathological changes in the brain and is consid-
ered by the medical profession as a real illness[18] while ME/CFS
is still viewed with skepticism by many with no effective treat-
ment options or clear pathology.

Raman spectroscopy is a non-invasive and label-free approach
to probing molecular vibrations in a sample, and when combined

with confocal microscopy, it can interrogate individual cells.[19] A
single-cell Raman spectrum (SCRS) is a phenotypic fingerprint
of all biomolecules in that cell and could potentially differenti-
ate between various cell types and give insights into underlying
biology.[19] Our previous pilot study demonstrated that a com-
parison of SCRS could distinguish between ME/CFS patients
and healthy controls, and identified a potential PBMC biomarker
for ME/CFS.[20] Here, we built on our pilot study and further
assessed the diagnostic potential of a blood-based platform us-
ing single-cell Raman spectroscopy and state-of-the-art ensem-
ble learning classification models to discriminate ME/CFS from
two control groups. We also evaluated the capability of the ap-
proach to differentiate between different ME/CFS disease sever-
ity groups, including mild, moderate, and severe. With PBMC
being an easily accessible target, we believe that Raman spec-
troscopy combined with advanced artificial intelligence could of-
fer an affordable and non-invasive screening tool for ME/CFS
when the condition is first identified.

2. Results

2.1. Study Design of Human Subjects and Clinical Characteristics

Our previous pilot study on 10 individuals illustrated the capa-
bility of single-cell Raman spectroscopy and machine learning
approaches in finding specific biomarkers in PBMCs of ME/CFS
patients.[20] We now expanded our approach to a larger cohort as
a blood-based Raman spectroscopic diagnostic test at the single-
cell level. Table S1 (Supporting Information) summarizes the key
characteristics of the ME/CFS cohort and the healthy (HC) and
disease (MS) controls involved in this study. In total, 98 human
subjects were involved, including 61 ME/CFS and 37 controls
(HC, n = 16; MS, n = 21). Based on their clinical profiles. The
ME/CFS cohort was further divided into Severe (n = 21), Moder-
ate (n = 15), and Mild (n = 25).

All patients in the fatigue groups (ME/CFS and MS) had fa-
tigue for at least six months that was not relieved by rest. All MS
patients had an MS diagnosis given by an NHS consultant[21] and
those recruited were a mixture of relapsing, remitting, and pro-
gressive forms. Those with ME/CFS required a previous med-
ical diagnosis of ME/CFS. To be accepted as a participant with
ME/CFS, potential donors must meet either the Canadian Con-
sensus Criteria or CDC-1994 criteria; many fulfill both. The as-
sessment process for compliance with study criteria includes
baseline questionnaires about symptoms, a clinical assessment
performed by a clinical member of the research team, and urinal-
ysis screening and baseline blood tests, which are used to exclude
alternative diagnoses. Detailed questioning of potential partici-
pants with ME/CFS enables their disease to be classified accord-
ing to different case definitions. ME/CFS cases were categorized
as mild if they had an SF-36 Physical Function (PF) score greater
than 25; moderate if the PF score was below 25; and severe if they
were house- or bed-bound, with all patients identified as suffer-
ing with PEM.

Fatigue levels of the ME/CFS, MS patients, and healthy con-
trols were measured by clinical measures of Fatigue Severity
Scale (FSS).[22] The General Health Questionnaire (GHQ)[23] was
used primarily as a screening tool to exclude patients suffer-
ing from severe depression and has already been used in this
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Figure 1. Cohort clinical characteristics (n= 98). Symptom presence and intensity were determined for 63 variables obtained from the UKMEB symptoms
assessment. Responses were recorded on an ordinal 4-point scale, with 0 indicating “absent”, 1 indicating “mild”, 2 indicating “moderate”, and 3
indicating “severe”; gray boxes indicate missing data. Category inclusion was determined by calculating the relative mean ordinal weight/intensity for
each variable, with a between-group (severe ME compared to MS as the reference group) fold differentiation ≥1.5 mandated for analytical inclusion.
Additionally, Fischer’s Exact Test was calculated for severe ME versus MS comparison, with the Benjamini–Hochberg (BH) procedure applied to adjust
for multiple comparisons (sig. p < 0.05).

capacity in a previous ME/CFS study using Fukuda 1994
criteria.[24] The median FSS values could distinguish ME/CFS
and MS patients from healthy controls; ME/CFS: 59 (range 44–
63); MS: 54 (range 16–63); HC 17 (range 11–37) (Table S1, Sup-
porting Information). However, the FSS evaluation could not eas-
ily separate the ME/CFS from the MS patients nor between differ-
ent ME/CFS severities (p = 0.07). Using additional clinical mea-
sures recorded by the UK ME/CFS biobank during recruitment,
we investigated their utility in discriminating ME/CFS from MS
disease controls and healthy controls, producing a symptom
burden assessment (Table S2, Supporting Information). Symp-
tom feature inclusion was determined by calculating the rela-
tive mean ordinal intensity for each variable to provide suffi-
cient detail to rank order (as opposed to a median-derived inte-
ger with categorical representation) symptoms, allowing for se-
lective inclusion with a >1.5-fold difference between groups (se-
vere ME compared to MS). Figure 1 summarizes the symptoms
into a heatmap showing the top 28 clinical variables (Figure 1). A
clear difference was observed when comparing the HC with the
ME/CFS and MS patients. An increase in the severity of symp-
toms was seen when moving from mild to severe ME/CFS pa-
tients. The most significant measures as assessed by Fischer’s
Exact Test were calculated based on the severe ME versus MS
comparison, with the Benjamini–Hochberg (BH) procedure ap-
plied to adjust for multiple comparisons (*p < 0.05).

2.2. SCRS Differentiate the Different Cohorts

We first used a simple approach examining mitochondrial ox-
idative phosphorylation in viable frozen PBMCs from 41 out of
the 98 subjects. A previous report by Tomas et al. has shown

a difference in whole-cell mitochondrial respiration, consistent
with a deficiency in cellular energetics associated with mitochon-
drial dysfunction or substrate flux feeding into the TCA cycle
and mitochondrial respiratory chain.[16] However, this assay was
difficult to reproduce; Missailidis et al. failed to reproduce this
finding in PBMCs but did find differences in zimmortalized
lymphocytes.[25] In our study, cell viability following thawing was
between 70% and 85% with a noticeable drop in viability follow-
ing 24 h in culture. Mitochondrial respiration was measured in
5 mm glucose media with rates measured over 1–2 h. No differ-
ence was observed in rates of mitochondrial respiration between
ME/CFS patients, MS patients, and healthy controls (Figure S1A,
Supporting Information). When ME/CFS patients were divided
into severe, moderate, and mild patients, no difference was ob-
served (Figure S1B, Supporting Information). This demonstrated
that mitochondrial function assessment of PBMCs using an oxy-
gen consumption assay on cryopreserved frozen samples failed
to discriminate disease cohorts, and will be challenging to de-
velop as a robust diagnostic approach.

As a simple mitochondrial function assessment failed to
differentiate different cohorts, we then sought to use single-
cell Raman spectroscopy to obtain whole single-cell molecular
profiles on the same samples. PBMCs of 98 individuals were
measured by single-cell Raman spectroscopy with single-cell
Raman spectra (SCRS) acquired on single PBMCs. In total,
we obtained 14 600 spectra from 2155 single cells. All Raman
measurements were blinded in this study. Figure 2A presents
the averaged SCRS of single PBMCs from the HC (number
of cells = 410), ME/CFS (number of cells = 1151), and MS
cohorts (number of cells = 594) at the fingerprint region (300–
1800 cm−1). The fingerprint region contains most information
from intrinsic molecular vibrations inside a cell and therefore,
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Figure 2. SCRS differs among different cohorts (n = 98). Averaged Raman spectra of 2155 single cells obtained from 98 individual subjects, separating
into A) three groups of HCs, ME, and MS, or B) five groups of HCs, Mild ME, Moderate ME, Severe ME, and MS. C) Differences between spectra of
ME and HC and MS and HC; green line: subtracted HC baseline. Raman spectra from each group were shifted in intensity to aid visualization and the
intensity is expressed in arbitrary units (a.u.). D–I) LDA clustering was used to visualize separations among three groups of HC, ME, and MS at the
single-cell level and the individual level, four groups of HC and different ME groups (mild, moderate, and severe) at the single-cell level and the individual
level, and five groups of HC, different ME groups (mild, moderate, and severe) and MS at the single-cell level and the individual level.

can be regarded as a “fingerprint” of one cell. The cell-to-cell
fluctuation was represented as the standard deviation at each
wavenumber, drawn as the shaded area in Figure 2A. The sum
of fluctuation was 21.7%, 19.7%, and 17.1% in HC, ME/CFS and
MS, respectively. The high fluctuations in the healthy controls
could be due to the prevalence of other factors that were not
criteria of ME/CFS or MS but might contribute to the changes
in the immune cells in the background population, for example,
existing infections, stress, or different lifestyles. The cells in the
ME/CFS cohorts differed more than those in MS cohorts in terms

of their metabolic profiles, probably because of a higher number
of subjects involved and the broad range of symptom severities
from mild, moderate, and severe. Similarly, averaged SCRS for
ME/CFS subgroups of Mild, Moderate, and Severe are illustrated
in Figure 2B. Figure 2C demonstrates the difference of spectra
between ME/CFS and HC, as well as between MS and HC. In ad-
dition to differing from healthy controls, the two disease cohorts
also showed a number of spectral differences from each other.

Supervised linear discriminant analysis (LDA) was used to re-
duce the noise and the high dimensionality of Raman spectra
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due to the presence of 1019 Raman wavenumbers (spectral range
from 319 to 3401 cm−1; spectral step size of ≈3 cm−1). An LDA
plot of all SCRS of 2155 cells along LD1 and LD2 illustrates
three clearly separable clusters representing HC, ME/CFS, and
MS (Figure 2D). The LD1, which explains 63% of the data vari-
ance, separates the MS cohort from the healthy controls and the
ME/CFS cohort, while LD2 explains the remaining 37% variance
and separates the ME/CFS cohort from the others. In addition to
visualization using single cells, LDA visualization was then con-
ducted at the individual level showing 98 subjects as three dis-
tinct clusters for HC, ME, and MS (Figure 2E). To compare HC
with ME/CFS cohorts only, LDA was performed on four groups:
HC and the 3 ME/CFS subgroups. Intriguingly, an LDA plot of
all SCRS again separates the HC and ME subgroups where the
axis along LD1 (52% of the variance) distinguishes all ME co-
horts from the healthy controls and LD2 (31% of the variance)
reveals the division of disease clusters of mild and groups of
moderate and severe (Figure 2F). Averaging SCRS to individu-
als nicely elucidates differences between HC subjects and ME
disease groups with different severities of mild, moderate, and
severe (Figure 2G). An LDA with all five groups shows distinc-
tive clusters of HC and severe ME, while interestingly, an overlap
of mild and moderate ME/CFS and MS (Figure 2H). LDA of the
five groups on the subject level also displays the separation of dif-
ferent subgroups (Figure 2I). The transferability of the cell-level
separation to subject level landed support for this approach to be
developed further into a diagnostic tool. Overall, data from the
three-group, four-group, and five-group LDA shows the under-
lying differentiating power within the SCRS for fatigue diseases
like ME/CFS and MS.

We then evaluated possible confounding factors that could
have influenced the LDA separations of the different cohorts, in-
cluding sex, body mass index (BMI), age, disease duration, types
and total counts of medications and supplements, as well as the
freezing duration and processing time for each sample (Table S3,
Supporting Information). Pearson correlation coefficients were
obtained from pairs of variables; the highest correlation with re-
gard to LD1 values was –0.24 (Medication Class Opiate Present)
and the highest correlation against LD2 was –0.27 (Medication
Class Tricyclic Or Mirtazapine Present), both of which are well
below the definition for high correlation (>0.75). The low corre-
lation between classification values and all potential confounding
factors illustrates the robustness of the Raman dataset to overlook
baseline differences and highlight disease effects.

2.3. Quantification of Biomolecules in Different Cohorts

The LDA was also used as a feature selection tool to find the most
significant Raman peak features contributing to group separa-
tion. Quantification at the significant peaks with respect to dif-
ferent groups of HCs, ME/CFS, and MS highlighted the different
biological components in cells of healthy individuals and fatigue
patients. Top Raman peak features selected based on LDA clus-
tering were quantified at single wavenumbers for HC, ME/CFS,
and MS groups, respectively, at both LD1 and LD2 (Table S4, Sup-
porting Information).

Following on from our pilot study finding phenylalanine as a
potential biomarker in PBMCs of ME/CFS patients, among the

top Raman features in Table S4 (Supporting Information), we
highlighted the relative quantification of aromatic amino acids
(AAAs) among cohorts, namely tryptophan (Figure 3A), tyrosine
(Figure 3B), and phenylalanine (Figure 3C) by integrating and
quantifying the associated Raman bands. A universal increase in
tryptophan and tyrosine in cellular PBMCs was observed in all
disease cohorts, including in all subgroups of ME/CFS and the
MS group (Figure 3A,B). Significant between-group differences
were found in all groups compared to the healthy controls except
for the mild ME/CFS subgroup. Quantification of intracellular
phenylalanine, on the other hand, suggests metabolic subtypes
existing in the ME patients, with the moderate and severe groups
having significantly reduced phenylalanine and the mild ME and
MS having increased levels relative to controls. Besides amino
acids altered lipid metabolism was also found (Figure 3D–F). All
the disease cohorts had significantly elevated glycerol levels com-
pared to the healthy controls (Figure 3D). Inconsistent alterations
in unsaturated lipids were observed with elevated levels in the
mild ME and the MS cohorts and decreased levels in the moder-
ate and severe ME patients (Figure 3E), suggesting a difference
in the lipidic profiles of different cohorts. Reduced cholesterol
and cholesteryl esters were observed, especially evident in the MS
cohort (Figure 3F). Biomolecules related to energy fuelling also
demonstrated differences among cohorts. Glycogen levels were
significantly reduced in the mild and severe ME cohort, as well
as in the MS group. Glucose quantification showed a decrease
in all ME subgroups and the MS cohort had the lowest glucose
accumulation (Figure 3H).

2.4. A Cell-Based Diagnostic Test using SCRS of PBMCs and an
Ensemble Learner

As LDA has already demonstrated its capability to well separate
different disease cohorts, we then sought to evaluate its perfor-
mance as a classifier on diagnosis by training a classification
model with 80% of the spectral data and testing the model perfor-
mance by using the remaining 20% as an independent test set.
The accuracy of classifying five classes of MS, Severe ME, Moder-
ate ME, Mild ME, and HC was 54.8% on the train set and 47.1%
on the test set (Table S5, Supporting Information). In order to fur-
ther improve the differentiation power of the model, ensemble
learning was employed. Ensemble learning is a machine learn-
ing approach that combines multiple classification algorithms
to achieve better performance than could be achieved by any of
the constituent algorithms alone. It has been reported for ob-
taining maximum predictive performance and has been applied
in many areas of medical diagnosis, from neurodegenerative
diseases[26,27] and cancer[28–30] to regenerative medicine for iden-
tifying stem cell differentiation.[31] Here, we supplied our SCRS
to eight different classification models, namely LDA, XGB (ex-
treme gradient boosting), SVM-Linear (support vector machine
with a linear kernel), SVM-Radial (support vector machine with
a radial basis function kernel), MLPNN (monotune multi-layer
perceptron neural network), RF (random forest), MDA (mixture
discriminant analysis) and GBM (gradient boosting machine).
Then, a separate GBM was employed to ensemble the outputs
from the different classifiers and establish an ensemble learner
which gave the final diagnosis (Figure 4). Upon resampling, the
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Figure 3. Relative quantification of biomolecules in PBMCs of HC, ME (mild, moderate, and severe), and MS cohorts (n = 98), related to aromatic amino
acids (AAAs) of A) tryptophan at 758 cm−1, B) tyrosine at 860 cm−1, and C) phenylalanine at 1003 cm−1, lipid metabolism of D) glycerol at 1114 cm−1,
E) unsaturated fatty acids (FA) at 3010 cm−1 and F) cholesterol/cholesteryl esters (CE) at 617 cm−1, and energy metabolism of G) glycogen at 485 cm−1

and H) glucose at 405 cm−1. The quantification results were represented as box plots and the sample mean of each disease group was compared with
healthy control (HC) by using Welch’s two-sample t-test for unequal variance (ns: not significant; **p < 0.01; ***p < 0.001; and ****p < 0.0001).

Figure 4. Schematic illustration of the blood-based Raman spectroscopic diagnostic test for ME/CFS and MS at a single-cell level. A) PBMCs were
isolated from blood samples. B) Raman spectra of single PBMCs from 98 individuals were measured. C) Around 5–7 spectra were measured in each
cell which was then averaged to one spectrum for one cell; ≈30 spectra were obtained for each cell. D) SCRS at the single-cell level from 98 individuals
was then split into a train set (80%) and a test set (20%) with balanced subgroup distribution. The train set was used to train an ensemble learner and
the independent test set was input into the trained learner for diagnosing the cell as HC, ME, or MS.
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Figure 5. Ensemble learner performance on an independent test set breakdown by A) five classes with 84% overall accuracy and B) three classes with
overall 91% accuracy. Matrix entries are shown as percentage values. The three-class classification model shows a performance of diagnosing ME/CFS
with 91% sensitivity and 93% specificity, MS with 90% sensitivity and 92% specificity, and an overall accuracy at 91% with 87–93% at 95% confidence
interval.

eight individual classifiers were found to have low correlations
with each other (Figure S2, Supporting Information); therefore,
the ensemble learner could take full advantage of different clas-
sifiers without repetitive computational costs.

Figure 4 shows the technical, spectroscopic, and machine
learning workflow of a blood cell-based diagnostic test using
SCRS of PBMCs and an ensemble learning machine learning
model. After the isolation of PBMCs from the patient’s blood,
cells are taken for Raman spectroscopic examination. Single-cell
spectra are averaged from >5 spectra per cell and put into the
trained ensemble learning classification model for individual di-
agnoses. The individual diagnoses are then further converted via
a GBM model to give a final diagnosis.

The multi-model ensemble learner showed effectively much
better performance for the five-class prediction task on the
independent test set (Figure 5A). The accuracy was signifi-
cantly improved from 47% and 61% in individual models (Table
S5, Supporting Information) to 83.8% in the ensemble model
(Figure 5A), demonstrating the enhanced predictive power of
the ensemble model by combining different learning algorithms.
Specifically, the ensemble model showed capacity in differenti-
ating subgroups of ME/CFS patients based on their symptom
severity. The sensitivity and specificity are 88% and 95% for the
mild, 86% and 98% for the moderate, and 71% and 97% for the
severe (Figure 5A). Around 12% of the severe ME, patients have
been classified as either moderate or mild, while 11% have been
classified as MS, suggesting a resemblance of the two diseases,
especially MS and ME/CFS with high severity (Figure 5A).

For better clinical relevance on the predictive perspective, we
also looked at the performance of the ensemble learner for the
three-class classification tasks, that is, classifying each single-cell
spectrum as either MS, ME/CFS, or HC (Figure 5B). The model
achieved high performance on the independent test set with a
sensitivity of 91% and specificity of 93% for the ME/CFS group; a
90% sensitivity and 92% specificity for the MS group. The overall
accuracy on the test set was 91% (87–93% at a 95% confidence
interval) (Figure 5B).

It is important to highlight that our approach was initially
tested on a subset of 41 subjects from the larger cohort of 98
subjects. By incorporating a larger number of samples in our
analysis, we observed notable improvements in the performance
metrics of our three-class machine learning task, with the accu-
racy increasing from 85% to 91%, and from 70% to 84% in the
five-class classification for differentiating ME/CFS disease sever-
ity. These findings serve to underscore the repeatability and ro-
bustness of our algorithm, reinforcing our approach of utilizing a
blood cell-based diagnostic test that combines single-cell Raman
spectroscopy and ensemble learning as a promising diagnostic
tool for ME/CFS.

3. Discussion

In this work, we acquired SCRS of PBMCs from 98 individu-
als’ blood for a diagnostic test of ME/CFS and MS. A sample-to-
diagnosis workflow was established, which involves PBMC iso-
lation, Raman spectroscopic measurements, ensemble learning

Adv. Sci. 2023, 10, 2302146 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2302146 (7 of 11)
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classification, and final diagnosis. The SCRS of PBMCs from
healthy controls, ME/CFS, and MS disease controls showed dis-
tinct characteristics, and different phenotypes were visualized as
clear clusters at both single-cell level and individual level. None
of the FSS scale, clinical symptom presentations, nor the as-
sessment of mitochondrial respiration could separate the differ-
ent severity classes of ME/CFS patients from MS patients and
healthy controls, suggesting the need for a simple and direct di-
agnostic test for the disease. An SF-36 score of 25 was used to
separate the mild and moderate groups with good separation by
Raman microscopy. Future studies will explore the use of MFI-20
and DSQ questionnaires which could potentially improve mild
and moderate diagnoses. However, patients can fluctuate be-
tween mild and moderate states, hence, assigning patients into
one of the two groups will be a challenge.

By quantifying levels of intracellular metabolites via PBMCs’
Raman spectra, we observed metabolic differences between
the ME/CFS and two control cohorts. Most of the metabolic
changes that have been reported in previous ME/CFS studies of
plasma are consistent with direct and indirect effects of energy
strain[32–36] and abnormal lipid metabolism.[35–39] Our findings
agree with the altered utilization of amino acids in patients with
ME/CFS, including AAAs of tryptophan, tyrosine, and phenylala-
nine. This was also shown in the MS group compared to healthy
controls. There was a notable increase in tryptophan levels ob-
served in PBMCs across all disease groups, suggesting potential
alterations in the kynurenine pathway and NAD biosynthesis.[33]

A metabolic trap hypothesis[40] has been proposed, linking the
high levels of tryptophan in the immune cells of ME/CFS pa-
tients to their inability to generate kynurenine. This could be
attributed to mutations in the Indoleamine 2,3-Dioxygenase 2
(IDO2) gene, leading to the accumulation of tryptophan and sub-
sequent inhibition of kynurenine production via repression of
the more catalytically active IDO1 isozyme. Our data also support
the observation of tryptophan build-up in the PBMC cell frac-
tions of ME/CFS patients. However, it is important to consider
that PBMC fractions consist of mixed cell populations, with cells
expressing IDO1 and IDO2, including myeloid and plasmacytoid
dendritic cells, representing only a small percentage. Future in-
vestigations should therefore focus on specific IDO1 and IDO2-
expressing cell types to gain further insights.

Previous studies have also reported altered serum tryptophan
levels in ME/CFS patients.[41,42] Tryptophan, an essential amino
acid with significant implications for mood and fatigue, serves
as the precursor for both serotonin and kynurenine. Reduced
tryptophan levels in the brain have been strongly associated with
central fatigue, a hallmark feature of both ME/CFS and multi-
ple sclerosis (MS).[43] Brain cells synthesize their own serotonin
from tryptophan,[44] the build-up of tryptophan in the immune
system might lead to reduced availability and decreased sero-
tonin synthesis in the brain, thereby contributing to central fa-
tigue. Conversely, elevated blood tryptophan levels could indicate
an increase in serum serotonin. Excessive serotonin levels, as
observed in conditions like excessive serotonin syndrome, can
produce symptoms resembling those seen in ME/CFS.[45] Fur-
thermore, elevated serotonin levels can have detrimental effects
on the blood-brain barrier (BBB), potentially facilitating neu-
roinflammation that sustains disease progression and promotes
relapses.[46] Nevertheless, regardless of the specific mechanisms

involved, it is crucial to acknowledge the potential dysfunctional
effects of tryptophan and serotonin in the context of ME/CFS.

Together with the observation of decreased tyrosine levels in
all disease groups and reduced phenylalanine in the severe ME
group, our findings are consistent with other studies of patient
metabolism using broad-spectrum metabolite analysis that indi-
cated abnormal metabolite levels in patients with reduced levels
of serum amino acids and disturbances in pyruvate dehydroge-
nase, sphingolipid and phospholipid metabolism.[14,34,35,47] Ele-
vated glycerol was observed in all subgroups of ME and the MS
group. In combination with the altered unsaturated fatty acid lev-
els in the ME and MS groups, this may suggest that lipolysis is in-
duced where glycerol is broken down into free fatty acids, usually
occurring during times of energy deprivation, such as fasting and
exercising.[48,49] Altered utilization of fatty acids and amino acids
also suggests an alternative strategy for energy fuelling. Glyco-
gen and glucose levels decreased in cells of all disease groups.
A well-known mechanism of fatigue is the progressive rise in
muscle amino acid oxidation rates that occurs after continuous
exercise, which leads to glycogen depletion.[50,51] Nevertheless, a
single physical activity session is not a typical stressor intense
enough to deplete muscle glycogen stores.[52] Glycogen, apart
from serving as a fuel, also plays a role as a signalling molecule.
Overall, the causative effects of glycogen depletion on fatigue are
still unclear.[53] Altered fatty acid metabolism and reduced choles-
terol and cholesteryl esters were observed. There has been evi-
dence indicating that changes in lipid metabolism, such as those
in cholesterol, sphingolipids, and fatty acids, have a role not only
in the aetiology of neurodegenerative diseases like MS but also
as indicators of the disease’s occurrence and development.[54] Un-
usual lipid-mediated communication in immune cells is one the-
ory that could explain the aetiology of MS.[55]

We explored the use of ensemble learning for the identifica-
tion of cells based on their Raman spectra. The ensemble learner
achieved good predictive performance when tested via a sound
train/test split protocol and was improved significantly by com-
bining individual learning algorithms. It achieved an accuracy
rate of 91% for making a diagnosis of either MS, ME/CFS, or non-
fatigue; and 84% accuracy with additionally identifying ME dis-
ease severeness. The ensemble learner pre-training method can
be easily extended to new clinical settings for diagnosis. As the
test was carried out at the single-cell level, only a small amount
of blood sample is required. It also has the benefit of being able
to be carried out on fixed material without the limitations of a
live cell assay. A simple and minimally invasive test by analysis
of blood cells for the diagnosis of fatigue syndromes like ME/CFS
in primary care has the potential to make drastic impacts on pa-
tients’ quality of life. Of particular interest the achievement of
91% sensitivity and 93% specificity for ME/CFS group while, to
date, diagnosis and assessment of ME/CFS in research studies
are often based upon self-report, questionnaires, and subjective
measures, e.g., fatigue severity and impact.[56] An objective, sen-
sitive, and straightforward diagnostic tool can therefore resolve
the controversy concerning the nature of ME/CFS and make a
significant difference in the medical, economic, social, and emo-
tional impact of ME/CFS on individual patients and society. Al-
though the single-cell Raman spectroscopic approach is not yet
readily available in certified diagnostic laboratories, which might
represent a barrier to adoption, our study investigates its potential
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as a brand-new diagnostic technique that is rapid (measurement
for one sample < 1 h), accurate (91% accuracy) and minimally
invasive thus allowing for more often longitudinal monitoring of
the diseases. Validation of this approach involving more testing
subjects and further optimizations will follow this study in an at-
tempt to provide additional evidence of its diagnostic potential in
generalized clinical settings.

Cryopreservation has previously been shown to have impacts
on immune cell markers[57,58] as well as functions.[59,60] Contrary
to the impact of cryopreservation on PBMC functionality, the ap-
plication of single-cell Raman micro-spectroscopy using frozen
samples, fixed prior to analysis, was extremely robust, giving the
excellent differentiation of the patient groups with the additional
ability to separate the different ME/CFS severity types. Compared
with other blood tests being explored in ME/CFS,[61–63] our Ra-
man approach on fixed PBMC samples has many benefits. Once
prepared, samples can be stored in liquid nitrogen or at –80°C for
a prolonged time frame, and the freezing duration did not show
a significant effect contributing to classification using the Raman
dataset. Future studies should also compare freshly fixed PBMC
compared to samples cryopreserved before fixation. This was not
possible in this study due to samples being obtained frozen from
the ME/CFS UK biobank. Examining freshly fixed samples in the
future would be a better assessment of how this approach might
be used clinically as a diagnostic test.

Examining mitochondrial or energetic functions of PBMC has
shown promise as a test for PBMC. Still, results have varied be-
tween labs with the significant problems encountered when de-
veloping a live cell test, such as low energetic activities of the cells.
The ability to use fixed PBMCs is a major benefit allowing sam-
ples to be stored easily prior to analysis. The single-cell nature of
the Raman spectroscopic approach only requires a small blood
sample which could be developed as a point-of-care test perhaps
from one drop of blood. If differences can be identified in plasma
or serum, this approach would be provided with a sample that is
easy to generate, and a much faster output could be given. In the
future, the practical implementation of this diagnostic test can
also capitalize on these benefits. Due to cost and space consider-
ations, equipping every community laboratory with the necessary
Raman microscope may not be a feasible approach. However, by
collecting samples locally and subsequently fixing and transfer-
ring them to selected centers capable of conducting the Raman
tests, wider availability of the diagnostic test can be achieved. Al-
ternatively, a compact system containing portable Raman instru-
ments could be developed, which would be much cheaper than
a standard Raman microscope, and incorporated with microflu-
idic systems to stream cells through a Raman laser for detection,
eliminating the need for lengthy blood sample processing.

Over the next decade, advances in healthcare technologies and
a greater focus on prevention, early diagnosis, and well-being will
bring major improvements in patient outcomes. In chronic un-
explained conditions such as ME/CFS, using complex data and
machine learning approaches will be of great importance not only
in diagnosis but also in defining the early stages of the condi-
tions where the patient shows no or few symptoms. This will
help in establishing new treatment approaches linked to subtle
changes in the patient’s biology, preventing the development of
a full-blown disease, which is harder to treat once established.
Predictive analytics based on Auto prognosis, a tool generalizing

risk scores using machine learning algorithms, have already been
tested in a number of clinical settings.[64] To our knowledge, to-
gether with our pilot study, this is the first research using Raman
spectroscopy and advanced machine learning techniques to dis-
criminate subgroups of ME/CFS patients based on the symptoms
severity, achieved with high accuracy, sensitivity, and specificity.

With sophisticated machine learning algorithms, our Raman
spectroscopic approach has great potential as a diagnostic tech-
nique for diseases like ME/CFS.

Furthermore, our approach could be transferable to other
similar chronic conditions, such as multiple sclerosis (MS), fi-
bromyalgia, chronic Lyme disease, and Long Covid. Conditions
induced by a single stressor, such as chronic Lyme disease and
Long Covid, may differ from ME/CFS and fibromyalgia, which
are associated with multifaceted stressors. These distinctions
could result in the manifestation of unique characteristics along-
side common patterns. Recognizing and delineating these dif-
ferences would enhance diagnostic precision and enable the im-
plementation of tailored interventions, ultimately leading to im-
proved patient outcomes. With ongoing plans of expanding our
cohort size through collaborations with industrial partners to
generate independent datasets for validation and bringing in
other cohorts of patients with similar co-morbidities, our ap-
proach exhibits significant potential as a diagnostic tool for vari-
ous unexplained chronic diseases. By incorporating complemen-
tary techniques like metabolomics and proteomics, we can fur-
ther broaden our understanding of these diseases and potentially
identify potential biomarkers, and uncover shared disease mech-
anisms among these chronic conditions.

4. Experimental Section
Ethics: This study was approved by the Research Ethics Committees

at the University of Oxford (Reference number: R51826/RE001) and by
the UCL Biobank Ethical Review Committee-Royal Free (B-ERC-RF) Lon-
don NHS Foundation Trust (Reference number: EC.2017.012). Ethical ap-
proval for sample and data collection and storage was granted by the
London School of Hygiene & Tropical Medicine (LSHTM) Ethics Com-
mittee (Ref. 6123) and the National Research Ethics Service (NRES)
London-Bloomsbury Research Ethics Committee (REC ref. 11/10/1760,
IRAS ID:77 765). Samples were provided by the UK ME/CFS Biobank (UK-
MEB) in accordance with a Material Transfer Agreement signed by the Lon-
don School of Hygiene & Tropical Medicine and the University of Oxford.

PBMC Processing: PBMC were obtained from the UK ME/CFS Biobank
London School of Hygiene & Tropical Medicine and stored at −80 °C until
needed. The PBMC samples used were processed according to the UCL-
RFH Biobank protocol (BB/SOP/007/01) by the personnel at the UCL-RFH
Biobank laboratory. The process includes dilution with sterile HBSS, sep-
aration on centrifugation using Lympholyte as a medium, and the isola-
tion of mononuclear cells that are pelleted following further centrifugation.
Samples had been stored between 1 and 5 years at the Biobank in liquid
nitrogen tanks.

Oxygen Consumption Rate (OCR) Assays: Cells were gently de-frosted
and counted using Trypan Blue. For the oxygen consumption rate (OCR)
assay, 500 000 cells per well were plated in 96-well black plates. MitoX-
press Xtra Oxygen sensing probe (Agilent) was added according to the
manufacturer’s instructions, using warmed High Sensitivity (HS) min-
eral oil. The plates were read by ClarioStar plate reader (BMG Labtech)
in time-resolved fluorescence mode using Ex TR-ex filter (340 nm) and
Em TR-em (650 nm), at 37 °C. OCR was calculated using MARS Software
(BMG Labtech). For Raman micro-spectroscopic measurements, 5000
cells were washed in phosphate-buffered saline (PBS) and fixed in 4%
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paraformaldehyde (PFA) for 15 min then washed with PBS, centrifuged,
and pellets re-suspended in PBS, stored at 4 °C until analyzed.

Measurements of Single-Cell Raman Spectra (SCRS): Raman spectro-
scopic measurements were blinded in this study. Upon receival, the PFA-
fixed cells were washed twice with dH2O to remove traces of medium or
chemical. Then 2 μL of each sample was dropped onto an aluminium-
coated microscopic slide to be air-dried. Raman spectra were acquired
using an HR Evolution confocal Raman microscope (Horiba Jobin–Yvon,
UK Ltd) equipped with a 532 nm neodymium–yttrium aluminum garnet
laser. The laser power on the cells was 5 mW, attenuated using neutral
density filters. An air objective (50×, NA = 0.65) was used to focus single
cells. Raman scattering from the focal point was detected by a charge-
coupled device (CCD) cooled at −70 °C. SCRS were measured from 320
to 3400 cm−1 with 300 grooves per mm grating. A mapping mode was
used to characterize single cells and the acquisition parameters were 5 s
per spectrum. As each cell sized ≈3–10 μm2 after air-dried, 5–10 spectra
per cell and ≈30 single cells per each group were measured. After quality
control to remove spectra with low signal-to-noise ratios, measurements
of 98 samples yielded a total number of 14 600 Raman spectra from 2155
single cells. The spectra from each cell were then averaged into SCRS.

Ensemble Learning Classification Model: SCRS was divided into a train
set and a test set with a 0.8:0.2 split ratio. Both the train and test sets
contained a balanced number of samples from five groups of MS, Severe
ME, Moderate ME, Mild ME, and HC. While the train set was used to
train a classification model, the test set was used to independently evalu-
ate the model performance. A cross-validation approach was used to en-
able all samples to enter the independent test set at least once, therefore,
making the best use of the sample pool. The final performance measure-
ments were reported based on averages on all cross-validation results.
Pre-processing of the raw Raman spectra involved scaling, centering, and
dimension reduction by principal component analysis to the first hundred
principal components. The pre-processed Raman spectra were used as
the inputs into eight different classification models, namely LDA, XGB (ex-
treme gradient boosting), SVM-Linear (support vector machine with linear
kernel), SVM-Radial (support vector machine with radial basis function
kernel), MLPNN (monotune multi-layer perceptron neural network), RF
(random forest), MDA (mixture discriminant analysis), and GBM (gradi-
ent boosting machine) (Table S5, Supporting Information). Tenfold cross-
validation with five repetitions was used during model construction. After
establishing and evaluating the classification models based on the eight
classifiers, eight models were stacked together to build a two-layer ensem-
ble learner for a better classification result. The prediction outcomes of
the test set from the eight models were used as features for the ensem-
ble learner which used a GBM. All models were constructed in an R 4.0.0
environment.

Statistics Analysis: Descriptive statistics (median and range) were cal-
culated to summarize sociodemographic variables. All continuous clinical
variables were analyzed using two-sided non-parametric tests for indepen-
dent samples; Wilcoxon rank sum test with continuity correction (Mann
Whitney U), with categorical variables compared using Fisher’s Exact Test.

Symptom presence and intensity were determined for 63 variables ob-
tained from the UKMEB symptoms assessment. Responses were recorded
on an ordinal 4-point scale, for all three groups (HC, MS, ME), with 0 indi-
cating “absent”, 1 indicating “mild”, 2 indicating “moderate” and 3 indi-
cating “severe”. Variables were worded such as “Have you had dizziness
standing up?”, or “Have you had confusion/brain fog?”. Clinical data were
analyzed using R version 4.0.2. Heatmaps were created using the ggplot2
package.

All Raman spectra were preprocessed by comic ray correction, poly-
line baseline fitting, and vector normalization of the entire spectral region.
Data analysis, statistics, and visualization were done in an R environment
(4.0.0). Quantification of intracellular biomolecules was done by integrat-
ing the corresponding Raman bands in SCRS. Raman bands were inte-
grated at 758, 880, 1013, and 1550 cm−1 and 1022–1036 cm−1 for quanti-
fying tryptophan; 1003 and 1032 cm−1 for quantifying phenylalanine; 642,
830, and 850 cm−1 for quantifying tyrosine. The quantification results were
represented as box plots and sample means were compared with healthy
control (HC) by using Welch’s two-sample t-test for unequal variance.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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