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ABSTRACT

This work demonstrates that plasma-enhanced atomic layer deposition (PEALD) with substrate biasing enables the preparation of ultrathin
superconducting TaCxN1�x films. By comparing with films grown without substrate biasing, the enhanced ion energies yield a hundredfold
reduction in room-temperature resistivity: a comparably low value of 217 lX cm is obtained for a 40 nm film. The ion-energy control enables
tuning of the composition, counteracts oxygen impurity incorporation, and promotes a larger grain size. Correspondingly, the critical tem-
perature of superconductivity (Tc) displays clear ion-energy dependence. With optimized ion energies, a consistently high Tc around 7K is
measured down to 11 nm film thickness. These results demonstrate the high ultrathin-film quality achievable through PEALD combined
with substrate biasing. This process is particularly promising for the fabrication of low-loss superconducting quantum devices.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0169339

Superconducting quantum circuits are among the leading archi-
tectures implemented in the current noisy, intermediate-scale quan-
tum technology.1,2 At the same time, it is recognized that the
transition to large-scale, fault-tolerant systems can only be realized
through major material advances and the development of scalable fab-
rication methods.1,2 Miniaturization and dense integration of circuit
features, which itself is limited by material defects, is also key for the
performance and scalability of these systems.3,4

Atomic layer deposition (ALD) is very promising in this context
for its true atomic-scale control and compatibility with large-scale fab-
rication.5 ALD has become a well-established thin-film deposition
technique nowadays widely applied in the semiconductor industry.
Motivated by the challenges in the preparation of quantum devices,
ALD of superconducting materials has been explored in recent years,
albeit to a limited extent.6–8 The studies generally focus on refractory
metal-nitrides, mostly NbN, which are of particular interest due to
their typically higher oxidation resistance9,10 and critical tempera-
tures11–13 compared to their pure-metal counterparts. However,

obtaining highly conductive metal-nitrides through ALD remains
challenging.14,15

Using a plasma in the ALD process is often shown to allow for
the growth of conductive films.14,15 As previously demonstrated by
our research, plasma-enhanced ALD (PEALD) with radio frequency
(RF) substrate biasing can significantly improve film quality by provid-
ing ion-energy control that enables the tuning of material proper-
ties.14,16,17 Examples of beneficial effects of enhanced ion energies are
film densification, increased electrical conductivity, and reduced impu-
rity contents. Similar benefits of energetic ions have been observed in
physical vapor deposition techniques18 commonly used to prepare
superconducting films.19–21 Combined with the unique merits of
PEALD, energetic ions could be key enablers of low-loss quantum cir-
cuits with ultrathin superconducting components.

In this Letter, we demonstrate that enhanced ion energies are
essential for the preparation of high-quality, ultrathin superconducting
TaCxN1�x films by PEALD. The choice for TaCxN1�x is inspired by
the record coherence times achieved with Ta superconducting
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transmon qubits.20,21 We assess the TaCxN1�x film quality through
investigations of the room-temperature conductivity, atomic composi-
tion, and microstructure of the films and show that ion-energy control
is key in tailoring these properties. We demonstrate superconductivity
in 7–40nm thick TaCxN1�x with high critical temperatures sustained
down to 11nm film thickness.

Thin TaCxN1�x films were prepared on Si(100) substrates at a
substrate table temperature of 250 �C by PEALD on an Oxford
Instruments FlexAL system. All depositions included both 10–20 Xcm
n-type Si(100) with 1–2 nm native oxide and with 450nm
thermal oxide. Some deposition runs included also high-resistivity
(>10 kXcm) Si(100) substrates with 1–2nm native oxide. Together
with sapphire, high-resistivity Si is the conventionally used substrate
for superconducting quantum devices.22 The used precursor was
Ta[N(CH3)2]3[NC(CH3)3] [(tert-butylimino)tris(dimethylamino)tan-
talum, or TBTDMT] and the gas flow through the plasma source con-
sisted of 10/40 sccm Ar/H2 resulting in a 6 mTorr pressure during the
plasma half-cycle. The remote plasma was generated by an inductively
coupled plasma (ICP) source operated at a power of 100W at radio
frequency (13.56MHz). The ion energy was controlled via substrate
biasing: a second radio frequency (13.56MHz) power supply was con-
nected to the substrate table. By varying the biasing power, the voltage
over the plasma sheath could be controlled and the energy of the ions
impacting the film could be enhanced. Bias powers between 0W
(grounded table) and 35W were used, leading to average ion energies
in the range of 20–250 eV.16 Further details on the PEALD process,
including ion flux-energy distribution functions and saturation curves,
can be found in Sec. S1 of the supplementary material.

To assess the suitability of the prepared films for superconducting
quantum circuits, the film properties are studied as a function of film
thickness (Figs. 1 and 3) and applied RF bias power (Figs. 2 and 3, and
Table I). Film thicknesses are determined by ex situ spectroscopic
ellipsometry (SE), which is combined with four-point probe (FPP)
measurements on Si(100) substrates with thermal oxide to obtain the
resistivity. X-ray reflectivity (XRR) is used to confirm the thicknesses
obtained through SE and to determine the mass density. The film
composition is investigated by x-ray photoelectron spectroscopy
(XPS) and elastic (non-Rutherford) backscattering spectrometry
(EBS). The crystal structure is studied through scanning transmission
electron microscopy (STEM) imaging, top-view electron diffraction,
and x-ray diffraction (XRD). The surface roughness is extracted from
atomic force microscopy (AFM) measurements. The methods are fur-
ther elaborated on in Sec. S2 of the supplementary material.

For the preparation of TaCxN1�x films of varying thickness
between 7 and 40nm, a 20W RF bias power is applied to the substrate.
FPP measurements reveal a persistently low lateral room-temperature
resistivity, which decreases with increasing film thickness [Fig. 1(a)].
For 40 nm films, a 2176 7 lX cm resistivity is measured, which is rel-
atively low for tantalum (carbo)nitride films with thickness below
1lm.25–28 Due to the low bulk resistivities of both TaC (22 lX cm29)
and TaN (180 lX cm29), excellent conductivity can be achieved for
the TaCxN1�x films. The low resistivity of the films can be understood
from their stoichiometric TaCxN1�x composition with
x¼ 0.426 0.04, negligible oxygen impurity content, and high mass
density of 13.46 0.2 g cm�3 (Table I). In addition, as seen from the
cross-sectional BF-STEM inset image in Fig. 1(a), a smooth, closed
film is obtained. The grains appear to extend across the film, up from

the thin (�1 to 2 nm) amorphous native oxide layer at the substrate
interface. From the sloping grain boundaries, it is observed that the lat-
eral grain size increases linearly as a function of film thickness. This is
confirmed by determination of the average lateral grain size from top-
view STEM images (supplementary material S2.6) of films of various
thicknesses [red curve in Fig. 1(a)]. This yields an average
11.86 0.6 nm grain size for 35 nm film thickness.

The crystal structure is studied by XRD and top-view electron
diffraction. The x-ray diffractogram and radially averaged electron dif-
fraction intensity curve of Fig. 1(b) correspond to a face-centered cubic
(fcc) polycrystalline structure, confirming the growth of single-phase
TaCxN1�x. Though fcc TaN is metastable, this phase can be formed

FIG. 1. (a) Lateral room-temperature resistivity and grain size for a range of film
thicknesses of TaCxN1�x prepared with 20W RF bias power. The resistivity data
are fitted with a grain boundary scattering model23 (supplementary material S2.2),
and the lateral grain size is fitted with a linear relation. A BF-STEM image of a
cross section of a 35 nm film is shown in the inset. (b) Radially averaged intensity
curve extracted from the electron diffraction pattern in supplementary material S2.6
and gonio-mode x-ray diffractogram (with 3� axis offset) of a 35 nm film. The peaks
are identified by the TaCxN1�x fcc orientations, referenced to powder diffractograms
[ICSD ID 108168 (Ref. 24), black peaks], with an additional peak due to the Si
(100) substrate in the x-ray diffractogram.
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through the energy supplied by the energetic ions during film
growth,30,31 enabling the growth of a cubic solid–solid solution of fcc
TaC and TaN.10,26,32 The continuous fcc TaCxN1�x crystal structure is
desirable not only due to its large range of possible compositions,10,33

but also because it is the only TaCxN1�x crystal structure reported to
superconduct above 1.5K.33,34

The effect of energetic ions on the conductivity, composition,
and microstructure is reported in Fig. 2 and Table I. Varying the RF
bias power applied to the substrate between 0 and 35W reveals a hun-
dredfold reduction in room-temperature resistivity through substrate
biasing [Fig. 2(a)]. The large drop in resistivity can be related to both
changes in film microstructure and composition. Though all films
grown in this work are of the fcc structure (as shown in the supple-
mentary material S2.7), the microstructure is greatly affected by the
high-energy ions. The impact of energetic ions during film growth
results in an enhanced mass-density [Fig. 2(a)] and promotes grain

FIG. 2. (a) Room-temperature resistivity (black) and mass density (red) of TaCxN1�x
films of �19 nm thickness for various applied RF bias powers. The theoretical bulk
density is indicated for the stoichiometric films by the red dashed line (calculated
from ICSD 159875 and 76456). (b) Atomic ratios measured by XPS (closed sym-
bols), with guides to the eye, and EBS (open symbols). (c) Lateral grain size (black)
and RMS surface roughness (red). (d) Top-view HAADF-STEM images for films pre-
pared with 0 and 20W RF bias power and cross-sectional HAADF-STEM images for
films prepared with 20 and 35W RF bias power, where the capping layer is prepared
by electron beam-induced deposition. The values of film thicknesses, varying
between 11 and 35 nm, are listed in supplementary material S2.1.

FIG. 3. (a) Critical temperature for TaCxN1�x films prepared with 20W RF bias
power for a range of film thicknesses. The inset shows the superconducting transi-
tion recorded for the 18 nm TaCxN1�x film. (b) Dependence of the critical tempera-
ture of TaCxN1�x films of �19 nm thickness on the RF bias power. At low bias
powers, the error bars indicate that no superconducting transition was measured
above a temperature of 2.4 K.
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growth [Fig. 2(c)] as determined from XRR measurements and top-
view STEM images (supplementary material S2.6), respectively. This is
also seen in the top-view HAADF-STEM images of Fig. 2(d), where a
less dense layer is grown without substrate biasing (0W), while more
energetic ions (20W) yield larger grain sizes. It is likely that energetic
ions promote grain coalescence during film growth, as has often been
attributed to increased mobility of surface species.17,18 XPS measure-
ments [Fig. 2(b)] indicate films grown without substrate biasing con-
tain notable oxygen impurities (10 at. % in Table I), whereas oxygen
contents are negligible for enhanced ion energies. As a consequence,
energetic ions enable the growth of stoichiometric TaCxN1�x films.
Furthermore, substrate biasing provides some tunability of the
TaCxN1�x composition; x increases from 0.36 for 9W RF bias power
to 0.48 for 35W RF bias power. The improved conductivity, micro-
structure, and composition confirm film-quality enhancement
through energetic ions. Similar beneficial effects of energetic ions in
PEALD have been observed for other conductive metal-nitrides
(HfNx

14,17 and TiNx
17) in our previous studies. Though we do not

observe a beneficial effect of energetic ions on the root mean square
(RMS) surface roughness [Fig. 2(c)] as determined by AFM, it remains
below 1nm, confirming the growth of smooth films. In addition to the
beneficial effect of energetic ions, Fig. 2 demonstrates the importance
of ion-energy control. For excessive ion-energy enhancement, we
observe an onset of material degradation, specifically in resistivity and
mass density. The theoretical bulk density, which was calculated
assuming a linear relation between the C/N ratio and density that has
been reported for the fcc TaCxN1�x system,26 is indicated by the red
dashed line in Fig. 2(a). Comparing the theoretical and measured mass
density we observe that the measured mass density decreases more
strongly than expected from this linear relation, indicating material
degradation beyond �20W RF bias power. This is confirmed by the
cross-sectional HAADF-STEM images of Fig. 2(d), which reveal voids
in the film prepared with 35W RF bias power. A similar trend of ion-
induced damage was also observed in our earlier work on PEALD
with substrate biasing.17 When their energy is too high, the ions can
lead to significant void incorporation, implantation, which occurs to a
small extent by Ar in the studied films, see Table I, and creation of a

large number of vacancies, interstitials, and dislocations by atomic dis-
placements during film growth.17,35

Finally, we confirm superconductivity of the films through FPP
measurements on high-resistivity Si(100) substrates at sample temper-
atures between 2.4 and 300K. We measure a consistently high critical
temperature (Tc) of 7K for the 11–40nm films prepared with 20W
bias power [Fig. 3(a)]. A relatively high Tc for such thin films is a rar-
ity, and has only been achieved for TaN grown by high-temperature
sputtering on sapphire substrates.36,37 For the 6.7nm film in Fig. 3(a),
the Tc decreases to 4.3K, as expected from the increase in room-
temperature resistivity observed in Fig. 1(a). Moreover, the 6.7 nm
film thickness is likely slightly below the coherence length of the mate-
rial.38 The confirmed superconducting transition for such a thin film
and the high Tc sustained down to 11nm point to the high quality
achievable for ultrathin films through PEALD.

The effect of energetic ions on the Tc is depicted in Fig. 3(b),
which indicates an optimum ion energy. For films prepared with 0
and 9W bias powers, no superconducting transition is recorded. High
Tc values around 7K are observed for 20 and 28W bias powers, after
which the Tc degrades to 4K for 35W bias power. These results are in
agreement with the ion-energy-dependence of the properties in Fig. 2,
underlining the importance of achieving low impurity levels, small
grain boundary area, and minor microstructural damage. It follows
that ion-energy control is critical for the preparation of ultrathin films
with high Tc by PEALD.

In conclusion, we have assessed the suitability of the prepared
films for superconducting quantum circuits through investigation of
their electrical conductivity, composition, and microstructure.
Energetic ions enhance conductivity, purity, density, and Tc in
TaCxN1�x films prepared by PEALD and in this way enable the
growth of superconducting TaCxN1�x films down to 7nm film thick-
ness. In addition, a high smoothness of PEALD films is demonstrated.
These material properties are promising for integration of the films in
superconducting quantum circuits, where high-quality material and
interfaces are key. Also taking into account scalability and reproduc-
ibility, PEALD with substrate biasing could become an enabling tech-
nique for low-loss quantum circuits with ultrathin superconducting

TABLE I. Summary of growth per cycle (GPC) values and material properties for TaCxN1�x films prepared with a 0 and 20W RF bias power. The film thicknesses are 18.8 and
20.9 nm, respectively.

0 W RF bias power 20 W RF bias power

GPC (thickness) 0.556 0.03 Å 0.356 0.03 Å
GPC (Ta areal density)a 1.366 0.04 at. nm�2 1.236 0.03 at. nm�2

Resistivity (1.46 0.1) � 104 lX cm 2366 10 lX cm
Mass density 10.26 0.3 g cm�3 13.46 0.2 g cm�3

Lateral grain size 2.96 0.1 nm 7.26 0.4 nm
RMS roughness 0.436 0.02 nm 0.5206 0.007 nm

N/Tab 0.836 0.02 0.586 0.02
C/Tab 0.296 0.08 0.426 0.04
Ob 106 2 at.% � 2 at.%
Ara < 0.1 at.% 0.76 0.3 at.%

aDerived from EBS measurements.
bDerived from XPS measurements, top and substrate interface regions excluded.
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components. For thin-film applications where some film disorder is
desired, such as superconducting nanowire single photon detectors
(SNSPDs),39,40 the high-energy regime of PEALD with substrate bias-
ing holds much promise as well.

See the supplementary material for the PEALD process details,
elaboration on characterization techniques, film thicknesses, fit of the
thickness-dependence of the room-temperature resistivity, additional
XPS data, HAADF-STEM images, and electron diffraction and x-ray
diffraction measurements.
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