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Summary
The planned withdrawal of life-sustaining treatment is a common practice in the intensive care unit for patients
where ongoing organ support is recognised to be futile. Predicting the time to asystole following withdrawal of
life-sustaining treatment is crucial for setting expectations, resource utilisation and identifying patients suitable
for organ donation after circulatory death. This systematic review evaluates the literature for variables
associated with, and predictive models for, time to asystole in patients managed on intensive care units. We
conducted a comprehensive structured search of the MEDLINE and Embase databases. Studies evaluating
patients managed on adult intensive care units undergoing withdrawal of life-sustaining treatment with
recorded time to asystole were included. Data extraction and PROBAST quality assessment were performed
and a narrative summary of the literature was provided. Twenty-three studies (7387 patients) met the inclusion
criteria. Variables associatedwith imminent asystole (<60 min) included: deteriorating oxygenation; absence of
corneal reflexes; absence of a cough reflex; blood pressure; use of vasopressors; and use of comfort
medications. We identified a total of 20 unique predictive models using a wide range of variables and
techniques. Many of these models also underwent secondary validation in further studies or were adapted to
develop new models. This review identifies variables associated with time to asystole following withdrawal of
life-sustaining treatment and summarises existing predictive models. Although several predictive models have
been developed, their generalisability and performance varied. Further research and validation are needed to
improve the accuracy and widespread adoption of predictive models for patients managed in intensive care
units whomay be eligible to donate organs following their diagnosis of death by circulatory criteria.
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Introduction
A common mode of death in the intensive care unit (ICU)

involves the planned withdrawal of life-sustaining treatment

(WLST) after recognising the futility of ongoing organ

support. This may involve terminating invasive ventilation or

vasopressors while end-of-life comfort care is administered

[1]. While there is some international variation, death can be

confirmed after a minimum of 5 min observation following

the onset of mechanical asystole (hereafter asystole) [2, 3].

The prediction of time to asystole following WLST is

important for setting expectations for families, ICU resource

utilisation and to guide the identification of patients suitable

for organ donation after circulatory death (DCD). The

heterogeneity in underlying conditions, in combination with

variations in levels of organ support, makes it challenging to

accurately predict this time. Current practice to identify

imminent death relies on clinical judgement; however, the

abilities of physicians to make reliable predictions in this

area are limited [4, 5].

The DCD donation process is often complex, resource

intensive and can be emotionally distressing for families [6],

particularly if the donation is unable to proceed [7].

Successful donation is often prevented due to logistical

challenges or the occurrence of prolonged time to asystole

where the organs are damaged due to excessive warm

ischaemic time. In the UK, 45% of unsuccessful DCD

donations are attributed to this prolonged time period [8].

A variety of predictive tools and models have been

developed [4, 5, 9–19] which can provide support for

decision-making in this area. Whilst some prediction

models initially appear to perform well, they are often

not appropriately validated and when external validation

has been undertaken, their performance typically does

not generalise well [20–22]. A lack of standardisation of

the variables recorded and the specifics of the

withdrawal process makes the transfer and shared use of

developed tools challenging. These problems underline

the unmet clinical need for the development of clinical

decision support tools capitalising on data, which in this

context could support widespread adoption and

deployment of time to asystole prediction models in

DCD. The aim of this systematic review was to evaluate

the literature for variables associated with, and predictive

models for, time to asystole in patients managed on ICUs

and who are eligible for DCD.

Methods
Following registration with PROSPERO [23] we searched

MEDLINE (inception to 11 May 2022) and Embase

(inception to 11 May 2022). The searches combined

Medical Subject Headings (MeSH), appropriate controlled

vocabulary and keywords for time, death and withdrawal

(online Supporting Information Appendices S1 and S2). We

explored the reference lists of all included studies and prior

review studies for further inclusions. Clinical experts were

consulted to evaluate the list of included studies for

omissions identified through their knowledge of the field.

Conference abstracts, poster abstracts, letter responses and

letters to editors were excluded. To meet inclusion criteria,

we required studies to evaluate an adult population in an

ICU environment who underwent WLST and had an

associated time to asystole recorded. Life-sustaining

treatment was defined as ventilation (invasive or non-

invasive) or haemodynamic support. Measurement of time

from WLST to death or asystole was also necessary for

inclusion. Studies that did not evaluate potential predictive

factors or models in relation to this measurement were

excluded.Only English language studies were included.

Two reviewers (CN and AB) independently reviewed all

titles and abstracts identified from the literature searches.

Potentially eligible studies underwent duplicate full-text

review. During both processes, we resolved disagreements

through a third reviewer (KP).

We extracted data from studies using customised

spreadsheets, with key population characteristics such as

age, ICU type and methods of withdrawal recorded. The

focus of the studies was summarised as a focus on one of:

variable evaluation; predictive model development; or a

mixture of both. Other study design aspects such as the

methods of withdrawal and outcomes assessed were also

recorded. The performance metrics of any evaluated

predictive factors ormodels were recorded.

We undertook quality assessment of predictive model

development and validation using the PROBAST (Prediction

model Risk Of Bias ASsessment Tool) [24] which was

designed to assess the risk of bias and applicability of

2 © 2024 TheAuthors.Anaesthesiapublished by JohnWiley & Sons Ltd on behalf of Association of Anaesthetists.

Anaesthesia 2024 Nicolson et al. | Asystole after withdrawal of life-sustaining treatment

 13652044, 0, D
ow

nloaded from
 https://associationofanaesthetists-publications.onlinelibrary.w

iley.com
/doi/10.1111/anae.16222 by U

niversity O
f G

lasgow
, W

iley O
nline L

ibrary on [01/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://twitter.com/dalecgardiner
https://twitter.com/danjrharvey
https://twitter.com/laveenamunshi
https://twitter.com/ICULone
https://twitter.com/KPuxty


diagnostic and prognostic prediction model studies. Given

the lack of standardisation of the withdrawal process,

heterogeneous populations and variables measured at time

of WLST, and variation in the outcome measure, we did not

undertake data pooling or meta-analysis. Therefore, the

analysis consisted of tabulation of study characteristics and

performance metrics with narrative summarisation of the

literature.

Results
The initial search returned a total of 2418 studies to be

further screened following the removal of duplicates (Fig. 1).

This produced 71 studies for full-text review with an

additional paper from reference screening and from expert

input. Full-text review identified 23 studies (7387 patients)

for inclusion in data extraction and analysis.

The DCD status of the populations was relatively evenly

split with 11 DCD eligible patient populations [9, 11, 12, 14,

18–22, 25, 26], 11 general populations not restricted by

DCD eligibility [4, 5, 10, 13, 15, 17, 27–31] and one study

evaluating a DCD eligible population [16] that was a subset

of a previously evaluated general population [15]. Median

ages of the patient populations ranged from 41 to 66 years.

Mixed ICU patient populations were the focus of 15 studies

[4, 5, 9, 10, 12, 14, 15, 19, 20, 25–27, 29–31] with a total of

5131 patients. Neurointensive care patient populations

were the focus of four studies [17, 21, 22, 28] with a total of

1181 patients. The remaining three studies [11, 13, 18] did

not specify the type of ICU environment from which the

patients originated, and totalled 757 patients. These study

characteristics are tabulated in the online Supporting

Information Table S1.

Practices for WLST varied across the studies.

Mechanical ventilation of the patient’s lungs was stopped at

the point of WLST in all studies, with the cessation of

vasoactive drugs in the majority. The specific process

of withdrawal, including details surrounding the

administration of comfort care medicines was not typically

detailed, with only five studies [11, 14, 19, 20, 25] specifying

that withdrawal of all active treatments was simultaneous.

Most studies evaluated the likelihood of asystole within

60 min as an outcome, with the exception of five studies [18,

26, 27, 29, 31]. The proportion of patients who became

asystolic within 60 min ranged from 44–76%. Eight studies

Figure 1 Study flowdiagramof study identification and inclusion.
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[4, 9, 13, 14, 17, 19, 21, 26] evaluated the likelihood of

asystole within 120 min, which occurred in 54–91% of

patients. Full outcomes assessed are shown in Table S1.

Seven studies [13, 25–27, 29–31] focused on the

evaluation of variables associated with their primary

outcome and did not derive or validate any predictive

models. These studies typically used p value cut-off

regression techniques. The variables found to be

statistically associated with asystole within 60 min using

multivariable analysis are detailed in Table 1 including odds

and/or hazard ratios with confidence intervals.

Deteriorating oxygenation was associated with

imminent asystole (<60 min) in six analyses represented

by SaO2:FIO2 ratio < 230 and PaO2 < 9.6 kPa [10];

oxygenation index [13, 20, 28] (which assesses the degree

of ventilatory support required to maintain oxygenation

[32]); FIO2 > 70% [30]; and increased FIO2 (>50%) [25].

The absence of corneal reflexes and a cough reflex

were found to be associated with imminent asystole in four

analyses [13, 17, 20, 28]. Additionally, an absent or extensor

motor response was associated with three of these analyses

[13, 17, 28].

Blood pressure measurements and the use of

vasopressors were associated with time to asystole.

However, their methods of evaluation varied between the

studies: lower diastolic blood pressure [10]; lower systolic

blood pressure [15]; lower mean arterial pressure [31];

higher vasopressor dose (adrenaline, noradrenaline or

phenylephrine > 0.2 lg.kg-1.min-1) [10]; vasopressor use

prior to withdrawal [27]; and vasopressor use within 12 h of

withdrawal [30] were associatedwith time to asystole.

Two analyses identified the use of comfort medications

following WLST as being inversely associated, where the

use of comfort medications reduced the odds of asystole

within 60 min. In the study by DeVita et al. [10] the use of

comfort medications during the first hour after WLST

reduced the odds of imminent death during that time. In the

study by Kotsopoulos et al. [20], the use of midazolam and

dose of morphine administered after WLST were also

associated with reduced odds of asystole within 60 min.We

agree with Devita et al. [10] that this paradoxical finding

warrants a prospective trial to evaluate causality. The final

associated variable identified in multiple analyses was

positive end-expiratory pressure [15, 31].

The derivation or modification of predictive models

was reported in eight studies [4, 11, 13–17], external

validation of an existingmodel was undertaken in three [20–

22] and both derivation and external validation were

undertaken in five [5, 9, 10, 12, 19] (Table 2). Most of the

predictive model studies (15/16) included the evaluation of

models for prediction of asystole within 60 min whilst some

included evaluation of asystole within 120 min (9/16) or

other time ranges (2/16). In total 15 original models were

reported with a further five models derived by augmenting

or adjusting these.

Two of the original models evaluated were developed

using clinical experience and expert consensus without the

reported use of statistical techniques [9, 10]. Of

the remaining original models, two used a classification and

regression tree (CART) [10, 16], two used Cox regression

analysis [17, 25] and seven used other forms ofmultivariable

regression analysis [5, 11–15, 19]. The final two original

models used random survival forests [4] and a light gradient

boostingmachine [19] respectively.

At the point of derivation or modification validation

procedures were varied, with five studies evaluating model

performance against the same cohort used for model fitting

[5, 9, 10, 14, 19], with only one of these using cross-

validation to attempt to mitigate the impact of overfitting

[19]. Four models were validated at the point of derivation

by randomly splitting the cohort into a training and a testing

set [4, 12, 15, 16], with a further four validated using an

external cohort. One model was validated using a

prospective cohort and one was validated using both

external and prospective cohorts.

Sixteen instances of secondary validation (validation of a

distinct model by another group) were observed across six

studies [5, 12, 19–22] with three of these studies solely

attempting to validate previously derivedmodels without any

newmodel derivation ormodificationof existingmodels.

The University of Wisconsin DCD tool (UWDCD) [9] is a

scoring system developed using clinical experience to

identify relevant clinical and demographic patient

characteristics. As part of the tool, spontaneous respiratory

efforts, tidal volume, negative inspiratory force and oxygen

saturation are measured during a 10-min period of

ventilator disconnection. The tool thresholds these

measurements alongside the number of drugs used for

blood pressure support, patient age and airway type. Initial

validation using 43 patients showed a sensitivity of 0.87 and

specificity of 0.80 for asystole within 60 min of WLST [9].

During this validation, the authors also explored the

inclusion of BMI, yielding a sensitivity of 0.84 and specificity

of 0.85. Two studies externally validated the tool that

included BMI in larger populations (81 and 219 patients)

where the performance of predicting asystole within 60 min

did not generalise sufficiently well, reporting sensitivities of

0.42 and 0.45 and specificities of 0.61 and 0.49 [5, 21].

The United Network for Organ Sharing tool (UNOS)

[10] was developed using committee consensus and was

4 © 2024 TheAuthors.Anaesthesiapublished by JohnWiley & Sons Ltd on behalf of Association of Anaesthetists.
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Table 1 Variables associated with asystole within 60 min of withdrawal of life-sustaining treatment usingmultivariable analysis.
Alternative tabulation of risk ratios for the ten most frequently identified predictors available in online Supporting Information
Table S3. Values areOR (95%CI) or hazard ratio (95%CI).

Publication Risk factor Odds ratio p value

DeVita et al. [10] GCS3 2.83 (1.79–4.46) <0.001

SaO2/FIO2 < 230 1.78 (1.09–2.90) <0.05

Peak inspiratory pressure > 35 cmH2O 2.58 (1.49–4.48) <0.001

Respiratory rate off ventilator < 8breaths.min�1 6.01 (2.29 -–4.48) <0.001

Diastolic bloodpressure (per 10 mmHg) 0.80 (0.69–0.93) <0.01

PaO2 < 9.56 kPa 3.10 (1.53–6.30) <0.01

Adrenaline, noradrenaline or phenylephrine > 0.2 lg�1.kg�1.min-1 3.02 (1.75–5.21) <0.001

All treatmentswithdrawnwithin 10 min 8.55 (4.23–17.30) <0.001

Tracheal tube removed 2.28 (1.33–3.90) <0.01

Comfortmedications givenduring first hour afterWLST 0.35 (0.21–0.59) <0.001

Yee et al. [28] Absent corneal reflex 4.24 (1.57–11.5) 0.0045

Absent cough reflex 4.47 (1.93–10.3) 0.0005

Extensor or absentmotor response 2.83 (1.01–7.91) 0.048

Oxygenation index > 4.2 3.36 (1.33–8.50) 0.0105

Rabinstein et al. [13] Absent corneal reflex 2.67 (1.19–6.01) 0.02

Absent cough reflex 4.16 (1.79–9.70) <0.001

Extensor or absentmotor response 2.99 (1.22–7.34) 0.02

Oxygenation index > 3.0 2.31 (1.10–4.85) 0.03

Windet al. [14] Controlledmechanical ventilation 2.50 (1.18–5.26) 0.02

Brieva et al. [15] Physician opinion 8.44 (4.3–16.6) <0.001

pH (per 0.1 units) 0.67 (0.47–0.94) 0.03

Systolic bloodpressure (permmHg) 0.99 (0.98–1.00) 0.01

GCS (per unit of GCS) 0.85 (0.74–0.98) 0.03

Positive end-expiratory pressure (per cmH2O) 1.17 (1.06–1.30) <0.01

Analgesia 0.32 (0.15–0.70) <0.01

Huynh et al. [30] Vasopresssors within 12 h ofMVwithdrawal 2.05 (1.37–3.07) -

FIO2 > 70% 1.92 (1.24–2.98) -

Kotsopoulos et al. [20] Absent cough reflex 8.04 (5.51–11.7) <0.001

Absent corneal reflex 3.76 (2.65–5.32) <0.001

Dosageofmorphine atWLST 0.88 (0.82–0.95) 0.002

Midazolamuse afterWLST 0.15 (0.09–0.23) <0.001

Oxygenation index (per unit) 1.18 (1.17–2.80) 0.008

Publication Risk factor Hazard ratio p value

Suntharalingam
et al. [25]

Age 31–40 y 0.70 (0.38–1.28) 0.001

Age 41–50 y 0.46 (0.29–0.76) 0.001

Age > 50 y 0.37 (0.23–0.59) 0.001

FIO2 (per%) 1.01 (1.00–1.02) 0.008

Ventilationwithout pressure support 1.67 (1.16–2.41) 0.006

Cooke et al. [27] Age (per 10 y) 0.95 (0.90–0.99) -

Female 0.86 (0.77–0.97) -

Non-white ethnicity 1.17 (1.01–1.35) -

Number of organ failures 1.11 (1.04–1.19) -

Surgical service 1.29 (1.06–1.56) -

(continued)
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evaluated in three studies. It is a criteria-based scoring tool

with higher scores corresponding to a higher probability of

asystole within 60 min. As with the UWDCD tool, the

original criteria use four measurements during a period of

ventilator disconnection in addition to seven further clinical

parameters. Two evaluations of the full criteria aiming to

assess prediction of asystole within 60 min produced an

area under the receiver operating characteristic curve

(AUROC) of 0.53 [21] and a positive predictive value (PPV) of

0.63 [10]. The evaluation by Coleman et al. used a modified

UNOS tool where the period of ventilator disconnection was

omitted and replaced with definitions of ventilator

dependence and oxygen disruption; this was found to give

a sensitivity of 0.61 and specificity of 0.84 [5].

Devita et al. [10] developed a predictive tool using

CART model analysis which took GCS ≥ 4, SaO2/FIO2 ≥ 230

and positive inspiratory pressure ≥ 35 cm H2O as inputs.

The performance was evaluated directly on the derivation

cohort, giving a sensitivity of 0.75 and specificity of 0.73 but

no external validation has been undertaken.

The Hunter New England Area Composite score [5] was

developed using logistic regression and included

ventilatory dependence with a measure of oxygenation

disruption. It achieved sensitivity of 0.56 and specificity of

0.13 on the derivation cohort. The inclusion of a systolic

blood pressure threshold (<100 mmHg) led to sensitivity of

0.39 and specificity of 0.96. No external validation of this

score has been undertaken.

Table 1 (continued)

Publication Risk factor Hazard ratio p value

Vasopressors 1.67 (1.49–1.88) -

Intravenous fluids 1.16 (1.01–1.32) -

He et al. [17] Pupils (normal vs. dilated) 0.34 (0.20–0.57) <0.001

Pupillary reflex (fixed vs. brisk) 0.53 (0.29–0.95) 0.034

Corneal reflex (present vs. absent) 0.32 (0.16–0.64) 0.001

Cough reflex (present vs. absent) 0.45 (0.27–0.74) 0.002

Motor response (normal vs. absent) 0.41 (0.28–0.60) <0.001

Cisterna ambiens (normal vs. absent) 0.19 (0.08–0.43) <0.001

Swirl sign (present vs. absent) 0.36 (0.24–0.54) <0.001

Brain herniation (present vs. absent) 0.44 (0.31–0.64) <0.001

Intraventricular haemorrhage (present vs.
absent)

0.28 (0.19–0.42) <0.001

Long et al. [31] Diabetes (present vs. absent) 1.75 (1.25–2.45) 0.001

PEEP (cmH2O) 1.07 (1.04–1.11) <0.001

Static pressure (cmH2O) 1.03 (1.01–1.04) 0.006

Tracheal extubation 1.41 (1.06–1.86) 0.017

Non-invasiveMAP (mmHg) 0.98 (0.97–0.99) 0.004

Predictive variable No. of studies
identifying
variable

Most frequently
identified
predictors

Oxygenation 6

Corneal reflex 4

Cough reflex 4

Motor response 3

Bloodpressure 3

Use of vasopressors 3

Use of comfortmedications 2

PEEP 2

GCS 2

GCS, Glasgow Coma Scale; MV, mechanical ventilation; WLST, withdrawal of life-sustaining treatment; PEEP, positive end-expiratory
pressure;MAP,mean arterial pressure.

6 © 2024 TheAuthors.Anaesthesiapublished by JohnWiley & Sons Ltd on behalf of Association of Anaesthetists.
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Table 2 Developed and validated predictivemodels and performancemetrics. The full list of variables used in eachmodel and
their corresponding ranges and/or thresholds are reported in online Supporting Information Table S4.

Model
number

Typeofmodel Time
to asystole;
min

AUROCor
Harrell’s
c-index*
(95%CI)

Sensitivity
(95%CI)

Specificity
(95%CI)

PPV
(95%CI)

NPV
(95%CI)

Lewis et al. [9] 1 Validation** <60 - 0.87 0.80 0.83 0.84

<120 - 0.79 0.64 0.82 0.60

2 Development <60 - 0.84 0.85 0.91 0.73

<120 - 0.79 0.56 0.85 0.45

DeVita et al. [10] 3 Validation** <60 - - - 0.63 -

4 Development - 0.79 0.63 0.63 0.78

5 Development - 0.75 0.73 0.69 0.78

Coleman et al. [5] 1 Validation <60 - 0.42 0.76 0.58 0.62

2 Validation - 0.61 0.84 0.76 0.73

6 Development - 0.56 0.13 0.34 0.27

7 Development - 0.39 0.96 0.88 0.66

Davila et al. [11] 8 Development <60 0.83 (0.76–0.90) 0.86 0.80 - -

deGroot et al. [12] 9 Validation*** <60 0.75 (0.63–0.87) - - - -

0.73 (0.61–0.85) - - - -

10 Development 0.74 (0.66–0.87) - - - -

Rabinstein et al. [13] 9 Development <60 - 0.81 0.73 0.75 0.79

Wind et al. [14] 11 Development <60 0.73 (0.66–0.82) 0.70 0.74 - -

<120 0.78 (0.69–0.86) 0.84 0.53 - -

Brieva et al. [15] 12 Development <60 0.78 (0.73–0.83) 0.82 (0.75–0.87) 0.59 (0.52–0.66) 0.68 (0.62–0.74) 0.75 (0.67–0.81)

12# 0.84 (0.80–0.88) 0.84 (0.78–0.89) 0.72 (0.65–0.79) 0.77 (0.71–0.82) 0.81 (0.74–0.86)

Brieva et al. [16] 13 Development <60 - 0.66 (0.55–0.76) 0.77 (0.66–0.86) 0.77 (0.65–0.86) 0.66 (0.55–0.76)

13# - 0.82 (0.73–0.90) 0.76 (0.64–0.85) 0.80 (0.70–0.87) 0.79 (0.68–0.88)

He et al. [17] 14 Development <60 0.94* (0.91–0.97) - - - -

<120 0.95* (0.92–0.98) - - - -

<60 0.99* (0.97–1.00) - - - -

<120 0.84* (0.72–0.96) - - - -

Kotsopoulos et al. [20] 10 Validation <60 0.86 (0.77–0.95) - - - -

8 Validation 0.80 (0.70–0.90) - - - -

11 Validation 0.62 (0.49–0.76) - - - -

15 Validation 0.63* - - - -

Xu et al. [21] 1 Validation <60 0.45 (0.36–0.53) - - - -

<120 0.49 (0.38–0.61) - - - -

3 Validation <60 0.53 (0.46–0.59) - - - -

<120 0.51 (0.43–0.60) - - - -

9 Validation <60 0.69 (0.62–0.77) - - - -

<120 0.73 (0.63–0.83) - - - -

14 Validation <60 0.88 (0.83–0.93) - - - -

<120 0.86 (0.77–0.94) - - - -

Scales et al. [4] 16 Development <60 0.79 (0.71–0.87) 0.87 (0.71–0.97) 0.7 (0.53–0.85) 0.75 (0.67–0.84) 0.83 (0.71–0.95)

<120 0.8 (0.72–0.88) 0.78 (0.64–0.91) 0.77 (0.58–0.90) 0.86 (0.79–0.93) 0.66 (0.55–0.81)

Nijhoff et al. [22] 9 Validation <60 0.77 (0.71–0.83) 0.88 0.46 0.36 0.92

<120 0.80 (0.74–0.86) - - - -

10 Validation <60 0.75 (0.68–0.81) 0.83 0.51 0.38 0.89

<120 0.83 (0.77–0.88) - - - -

Okahara et al. [18] 17 Development <90 - 1 - 0.56 -

Kotsopoulos et al. [19] 10 Validation <60 m 0.74 (0.70–0.79) - - - -

0.86 (0.77–0.95) - - - -

8 Validation 0.70 (0.65–0.75) - - - -

0.80 (0.70–0.90) - - - -

15 Validation 0.63 (0.58–0.68) - - - -

(continued)

© 2024 The Authors.Anaesthesiapublished by JohnWiley & Sons Ltd on behalf of Association of Anaesthetists. 7
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Davila et al. [11] used multivariable regression analysis

to develop a tool that took the dichotomised variables of

vasoactive drug use, age ≤ 40 y and presence of gag reflex.

The original authors validated the tool using a prospective

cohort to give an AUROC of 0.83. External validation across

three cohorts yielded an AUROC of 0.80, 0.70 and 0.80 [19,

20].

The circulatory death in patients in neurocritical state

(DCD-N) tool is based on corneal reflex, cough reflex, motor

response and oxygenation index [28]. The authors validated

the model through fitting with a prospective cohort [13],

finding a sensitivity of 0.81 and 0.73. Three studies externally

validated this model giving an AUROC of 0.75 [12], 0.69 [21]

and 0.77 [22]. In addition to externally validating this model,

de Groot et al. [12] also proposed a modified model using a

continuous oxygen index. This modified model gave an

AUROC of 0.74 using an internal validation cohort and was

externally validated across four cohorts giving an AUROC of

0.75, 0.86, 0.74 and0.86 [19, 20, 22].

Wind et al. [14] used logistic regression to develop a

model that used the dichotomised presence of: controlled

mode ventilation; noradrenaline use; cardiovascular co-

morbidity; brainstem reflexes; and neurologic deficit. This

achieved an AUROC of 0.73 within the derivation cohort

which fell to 0.62 in a subsequent external validation

cohort [20].

Brieva et al. developed models using logistic

regression in a general population [15] and later, using

CART model analysis in a DCD subset of this patient

population [16]. All of these models used ranges of positive

Table 2 (continued)

Model
number

Typeofmodel Time
to asystole;
min

AUROCor
Harrell’s
c-index*
(95%CI)

Sensitivity
(95%CI)

Specificity
(95%CI)

PPV
(95%CI)

NPV
(95%CI)

0.63 - - - -

18 Development <60 m 0.80 (0.69–0.91) - - - -

19 Development <120 m 0.82 (0.73–0.92) - - - -

20 Development <60 m 0.79 - - - -

<120 m 0.81 - - - -

*, **First published validation of a tool without initial published derivation; ***Validation of the variable combination identified by Yee
et al. [28] before evaluation; #Plus expert opinion.

Table 3 Tabular Prediction model Risk Of Bias ASessment Tool (PROBAST) results for risk of bias and applicability across
domains.

Study Risk of bias Applicability Overall

Participants Predictors Outcome Analysis Participants Predictors Outcome Risk of bias Applicability

Lewis et al. [9] + + + - + - + - -

DeVita et al. [10] + + ? - - - + - -

Coleman et al. [5] + + + - - + + - -

Davila et al. [11] + + + - - + + - -

deGroot et al. [12] ? + ? - - + + - -

Rabinstein et al. [13] + + + - - + + - -

Wind et al. [14] + + + - + + + - -

Brieva et al. [15] + + + - - + + - -

Brieva et al. [16] + + + - + + + - +

He et al. [17] + + + + - - + + -

Kotsopoulos et al. [20] + + + + + + + + +

Xu et al. [21] - + + + - - + ? -

Scales et al. [4] ? + + + - + + + -

Nijhoff et al. [22] + + + + + + + + +

Okahara et al. [18] + + + - - - - - -

Kotsopoulos et al. [19] + + + + + + + + +

+ indicates low risk of bias/low concern regarding applicability; - indicates high risk of bias/high concern regarding applicability; and ?
indicates unclear risk of bias/unclear concern regarding applicability.

8 © 2024 TheAuthors.Anaesthesiapublished by JohnWiley & Sons Ltd on behalf of Association of Anaesthetists.
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end-expiratory pressure, spontaneous respiratory rate, GCS

and systolic blood pressure, with the inclusion of ICU

specialist opinion used to define a second model in both

populations. Using internal validation cohorts, the models

achieved sensitivities of 0.82 and 0.66 and specificities of

0.59 and 0.77 in the general and DCD patient populations,

respectively. The inclusion of ICU specialist opinion in these

models improved performance to sensitives of 0.84 and

0.82, and specificities of 0.72 and 0.76 respectively.

The C-DCD model is a nomogram that was developed

using Cox regression analysis to identify 10 variables for

inclusion (Table S4) [17]. The authors used two validation

cohorts (external and prospective) to evaluate the model

and report an AUROC of 0.94 and 0.99. A subsequent

external validation demonstrated slightly worse

performancewith anAUROCof 0.88 [21].

The first model to incorporate time series rather than

instantaneous data into a prediction model was developed

by Scales et al. [4]. Here random survival forests used

physician predictions alongside a series of variability features

of blood pressure and heart rate time series. An internal

validation cohort demonstrated an AUROC of 0.79 using this

model. Therehasbeennoexternal validationof thismodel.

Finally, alongside the validation of two previous models,

Kotsopoulos et al. evaluated two new models, one using the

least absolute shrinkage and selection operator (LASSO) to

select variables in a standard linear least squares setting, and

another using a light gradient boosting machine (LightGBM)

which accounts for more convoluted nonlinear statistical

relationship between the variables and the outcome [19]. The

regression model which was built using LASSO achieved an

AUROC of 0.80 in their external validation cohort and the

model that was built using LightGBM achieved an AUC of

0.79 in 10-fold cross-validation.

We assessed the quality of the studies reporting model

development or validation using PROBAST. The full results

are available in online Supporting Information Table S2 with

tabular results summarised in Table 3.

When considering all domains using the PROBAST

assessment criteria, 10 studies were judged to be at high

risk of bias, five were considered at low risk of bias and one

was at an unclear risk of bias. Participant selection (domain

1) was considered to be low risk of bias in 13 studies,

unclear in two studies due to inclusion/exclusion criteria,

and high risk in one study due to participant selection.

Predictors (domain 2) were judged to be low risk in all 16

studies, with consistent predictive variable definition and

assessment. Outcome determination (domain 3) was found

to be at low risk of bias in 14 studies and unclear in the

remaining two due to lack of clarity of the withdrawal

process. Analysis (domain 4) was found to be the most

common source of risk of bias with a high result for 10

studies and a low result for the remaining six studies.

Data imbalance, and in particular lacking a sufficiently

large number of participants who had died within the

specified time span (60 min or 120 min), was identified as

an issue in 13 of 16 studies. Potentially inappropriate

dichotomisation of continuous variables was identified in 3

of 16 studies. The frequency of missing data was not

reported in 10 studies and participants with missing data

were excluded in two studies. Multiple imputation was used

tomitigate missing data in three studies where missing data

were < 5% and the methods used to manage missing

datawere not reported in the final study.

Variable selection based on univariable analysis was

identified in eight studies, leading to the possible exclusion

of variables that may have been important after adjustment

for other variables or failing to account for information

overlap (i.e. redundancy). Univariable analysis to determine

a subset of predictive variables is known to be flawed and

there is considerable research work in the machine learning

community investigating advanced principled methods

towards determining parsimonious variable subsets.

Appropriate model performance measures were used

in 10 studies with this becoming more common in more

recent publications. As defined within PROBAST, the

consideration of overfitting and optimism were also more

frequent in more recent publications, although only four

model development studies accounted for these effects

appropriately. Four studies published between 2003 and

2012 undertook model evaluation using the full derivation

cohort which inevitably leads to overfitting and reported

performances that would be unlikely to be verified in an

external dataset.

When considering all domains, 12 studies were high

concern for applicability and four studies were low concern

for applicability (Table 3). Participant selection (domain 1)

was found to be high concern for applicability in 10 of 16

studies, with this typically being due to either a non-DCD

eligible population or restriction to specific or limited

diagnoses. Predictors (domain 2) were considered to be of

low concern for applicability in 11 studies and high concern

in the remaining five. High concern for applicability was

suggested by the use of a period of ventilator disconnection

to generate predictive variables in two studies and the

requirement for brain imaging in three studies.

Outcome applicability (domain 3) was generally good,

with all but one study reporting the generally accepted

60 min threshold for asystole with many also reporting

additional thresholds.

© 2024 The Authors.Anaesthesiapublished by JohnWiley & Sons Ltd on behalf of Association of Anaesthetists. 9
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Discussion
This systematic review shows the ongoing challenges of

developing reliable predictive tools for time to asystole

following WLST. The heterogeneity of patient populations

and variations in clinical practice continue to represent core

challenges that impedevalidation andpotential deployment.

We found that studies focussing on identifying

variables associated with time to asystole have further

strengthened the body of evidence behind the key

predictors, with neurological and respiratory-related

variables found repeatedly to be associated with time to

asystole. In particular, the absence of a cough reflex or

corneal reflexes were associated with a shorter time to

asystole. It is possible that these are surrogate markers for

the loss of other brainstem reflexes and may represent a

population of patients who are apnoeic and will progress to

cardiorespiratory arrest shortly after cessation of mandatory

ventilation. We identified several tools that have been

developed to predict time to asystole in <60 min although,

in general, these did not performwell on external validation.

The most promising tool to date was the C-DCD tool, which

had an AUROC of 0.88 on external validation in a

neurosurgical ICU setting. It has yet to undergo evaluation in

a general ICU setting beyond the original paper.

We were able to systematically evaluate the quality of

included studies using the PROBAST tool, with a focus on

their applicability to the review question and their risk of

bias. We found that over time studies have substantially

improved in both these areas. Robust examples of primary

and external validation have become more prevalent within

the literature, which helps move developed predictive tools

closer to clinical use. Despite this, there are still no reports

within the literature of use of existing or developed

predictive tools clinically. The reasons for this are not

explicitly discussed or elaborated on.

This systematic review builds on a prior review by

Munshi et al. [33] who evaluated the literature in this area up

to 2014 with similar inclusion criteria. Since publication of

this review, several new time-to-asystole prediction tools

have been developed. There has also been a greater focus

on external validation of existing prediction tools, often

evaluating several at the same time. The focus on time to

asystole within 60 min as the primary outcome has

persisted, althoughmany studies have expanded this scope

to include evaluations of models targeting time to asystole

within 30 min, 120 min or 240 min. The ongoing

exploration of predicting asystole within periods >60 min is

important, given the evolving landscape of DCD [34]. The

modelling methods used for predictions have become

more diverse with the first use of random survival forests,

variable selection using LASSO methods and gradient

boosting machines explored. Additionally, one study

incorporated time series data through the use of measures

of vital sign variability as predictive variables [4] in contrast

to the use of a single instantaneous set of variables as seen

in all othermodels.

The authors of the previous systematic review

concluded that differences in practice could have an

important impact on time to asystole as many studies did

not specify the simultaneous withdrawal of ICU treatments

(e.g. inotropic support and tracheal extubation) at time of

WLST [34]. This weakness remains in many of the more

recent publications and likely reflects the variation in clinical

practice in ICUs and the problems in modifying or

standardising clinical protocols for observational studies.

The use of more rigorous prediction tool development

processes, particularly with regards to variable selection,

validation measures andmodel calibration, has successfully

reduced the bias observed in recent studies. This helps to

provide support to the results as well as the performance

measures they report in the external validation of existing

models.

The increased focus on this external validation of

existing models allows us to compare their results with the

reported model performance at derivation. Three models

[11, 12, 25] were externally validated in more than one

external cohort, with predictive models typically performing

slightly worse on external validation. This may suggest that

the heterogeneity of patient populations is limiting

generalisability or that the initial model development

process was susceptible to optimism or overfitting.

However, the broad reproducibility of model performance

through validation using several large populations is

promising and provides evidence that supports the

underlyingmodels.

The suitability of the described models for use in

clinical practice is dependent on their specific use, patients

and environments. We observed minimal discussion of the

importance of model performance metrics in real-world

clinical situations. The trade-offs of acceptable specificity

and sensitivity will be strongly impacted by the clinical

environment, organ donation resources and number of

potential donors evaluated. For example, in a context where

there are many more potential donor candidates than the

organ donation resources could manage, it may be

important that the predictive model has a high specificity to

maximise the effectiveness of the organ donation resources

such as organ retrieval teams.

10 © 2024 TheAuthors.Anaesthesiapublished by JohnWiley & Sons Ltd on behalf of Association of Anaesthetists.
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Several models showed promising performance on

external validation; however, none could reliably predict

imminent asystole with a level of accuracy that precludes

error. Consideration for use in DCD protocols will depend

on their current performance at predicting imminent

asystole. The case for this could be further strengthened by

organisational level validation of the model’s reliability and

applicability before deployment.

There are several limitations to this reviewwhich should

be noted. First, the inclusion of mixed intensive care and

neurointensive care populations, and the inclusion of DCD

eligible and non-DCD eligible populations lead to wide

heterogeneity in the study participants. This limits the

potential for both meta-analysis and conclusions about

specific populations as there may be wide differences

between these populations. Second, the models remain

heavily focused on an outcome of time to asystole within

60 min, which limits the applicability in situations where

longer times to asystole would be clinically acceptable, such

asDCDprogrammes focused on specific organs.

The ongoing progress in predictive variable

identification and predictive modelling suggests that we

may be getting closer to developing and validating models

that could be deployed more broadly in clinical practice.

Current exploration and potential use of models appears to

be fractured and often on a local scale or limited to a

specific organ retrieval programme. The development of

more generalisable tools will rely on further large multi-

centre or international studies using robust analysis

procedures. It would be prudent for future efforts to

develop predictive tools to consider all predictive variables

identified within this review to aid in planning prospective

data collection and variable selection in their analyses. The

use of time series data, as partially demonstrated with

measures of variability [4], may offer several advantages

over typical instantaneous variables where the negative

impact of spurious or outlying measurements has the

potential to be minimised. Further exploration into the use

of vital sign variability and full time series data for predictive

modelling is warranted.

In conclusion, reliable prediction of time to asystole

following WLST is an important area for clinical practice for

DCD and vital for its expansion within and in addition to,

existing programs. Accurate prediction would ensure

donation is offered as an end-of-life decision where it is

feasible, for the benefit of potential donors, their families,

organ donation systems and recipients. This review

provides an overview of the current progress in this area,

highlighting key challenges and identifying areas of

potential interest for further exploration. We emphasise the

need to move towards standardisation of WLST practices

through consensus, and we single out the potential of

extracting clinically useful information from time series data

(e.g. mining blood pressure and heart rate series), which has

been hitherto largely neglected.
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