
Measurement Science and Technology

Meas. Sci. Technol. 35 (2024) 015207 (12pp) https://doi.org/10.1088/1361-6501/ad044f

Development of time-resolved
photoluminescence microscopy of
semiconductor materials and devices
using a compressed sensing approach
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Abstract
Charge carrier lifetime is a key property of semiconductor materials for photonic applications.
One of the most established methods for measuring lifetimes is time-resolved
photoluminescence (TRPL), which is typically performed as a single-point measurement. In this
paper, we demonstrate a new time-correlated single photon counting method (TCSPC) for
TRPL microscopy, for which spatial information can be achieved without requiring
point-by-point scanning through the use of a compressed sensing (CS) approach. This enables
image acquisition with a single pixel detector for mapping the lifetime of semiconductors with
high repeatability. The methodology for signal acquisition and image reconstruction was
developed and tested through simulations. Effects of noise levels on the reliability and quality of
image reconstruction were investigated. Finally, the method was implemented experimentally to
demonstrate a proof-of-concept CS TCSPC imaging system for acquiring TRPL maps of
semiconductor materials and devices. TRPL imaging results of a semiconductor device acquired
using a CS approach are presented and compared with results of TRPL mapping of the same
excitation area measured through a point-by-point method. The feasibility of the methodology is
demonstrated, the benefits and challenges of the experimental prototype system are presented
and discussed.
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1. Introduction

Spatial variations of charge carrier lifetimes within compound
semiconductor materials and devices are of key interest for
both research and industrial applications. Spatial inhomogen-
eity and defects can have significant impact on device yields
and operation. Understanding such variations is important for
a range of device types and sizes, from ∼µm2 scale vertical
cavity surface emitting lasers and photodetectors, through to
large area wafers (cm2) for power electronic applications or
solar cells. Fast, accurate and repeatable measurement tech-
niques for quality assurance at different stages of device fab-
rication can lead to a reduction in both production costs and
material waste. The accurate measurement of material and
device spatial quality and characterisation of defects is also
required for identifying failure mechanisms related to specific
defects [1, 2].

Charge carrier lifetime is commonly used as one of the
parameters that describes material quality and determines the
overall efficiency of devices [3–5]. The parameter is used
in characterisation for various devices, such as photovoltaics
(PV) [6], laser diodes [7], light-emitting diodes [8] and other
semiconductor devices. One of the most established tech-
niques for measuring charge carrier lifetimes is time-resolved
photoluminescence (TRPL). The sample is excited using a
laser pulse, resulting in photoluminescence (PL) emission.
The PL signal is detected with high temporal resolution (down
to∼1 ps), allowing determination of the decay time of the sig-
nal and the associated charge carrier lifetimes. In this work,
we use the time-correlated single-photon counting (TCSPC)
[9] approach for acquiring TRPL measurements. The TRPL
signals in semiconductors considered here are on the order of
ns, however, they can cover a broad range of lifetimes, ranging
from sub-ns to ms depending on the material. In this work, a
photomultiplier tube (PMT) is used to perform TCSPC. A fea-
ture of TCSPC is that signal acquisition is spread over many
measurement cycles, improving temporal resolution and sig-
nal strength.

The PL lifetimes provide insights regarding the radiative
and non-radiative recombination processes happening within
the material [10–12]. As the material returns towards its
equilibrium state, excited carriers recombine through differ-
ent routes—radiatively or non-radiatively through Shockley–
Reed–Hall or Auger recombination. Each of these processes
occurs on different timescales and, therefore, corresponds to
different carrier lifetimes [13, 14].

Acquiring spatially-resolved measurements reveals the
variations in charge carrier lifetimes across the measured
sample, which is useful in terms of understanding the qual-
ity of the material [8]. Having the spatial information helps
understand the charge carrier diffusion within the material and
identify recombination centres [6]. Typically, this is achieved
by either raster scanning the sample or rotating the sample
and moving the point radially. However, there are disadvant-
ages with this type of approach. The mechanical movement
can compromise the spatial resolution and repeatability of the
measurements. Also, these types of measurements can take a
relatively long time to acquire, due to the need to measure the

PL decay at every point individually to get an accurate charge
carrier lifetime image.

Regardless of the measurement approach, the final result
of TRPL mapping is a compressible natural image—most nat-
ural signals and images will have a concise representation if
expressed in a convenient basis [15]. Such images measured
with raster techniques can be accurately compressed for stor-
age using less data than the originally acquired dataset [16],
this suggests the potential to apply the compressed sensing
(CS) paradigm to TRPL mapping.

CS theory was introduced in the early 2000s by Donoho
[17], and Candes and Tao [18]. It provides a methodology
for acquiring a compressed signal directly through specially
designed measurements. For the CS theory to be applicable,
two conditions must be met: (1) the signal must be sparse and
(2) themeasurement functions usedmust be designed such that
they are incoherent with the signal in its natural or transformed
basis [19, 20]. Details on how these conditions were met in
this work are given in section 2. After acquiring the com-
pressed measurements, the original signal can be reconstruc-
ted by solving an optimisation problem for the sparsest solu-
tion consistent with the measurements. For imaging applica-
tions, this means a single pixel detector can be used to acquire
a high-resolution image, provided that the spatial information
is encoded into the measurement itself [21]. In practice, spa-
tial information can be encoded into the measurement with
digital light processing (DLP), using a digital micromirror
device (DMD) [22]. The DMD allows the necessary meas-
urement functions i.e. spatial patterns to be projected onto the
sample or detector so that the compressed measurement can be
acquired. CS and DLP have been successfully applied in vari-
ous measurement applications such as light-beam induced cur-
rent imaging for PV [23] and fluorescence microscopy for bio-
logy applications [24]. Recent work has also been carried out
towards achieving temporally or spectrally resolved PL ima-
ging using liquid crystal spatial modulators [25]. There have
also been recent publications of implementing CS for hyper-
spectral imaging by utilising a DMD on the detection side of
the optical system [26]. Application of CS in measurement
systems is also possible without using a DMD, in techniques
where its integration is difficult or impossible and CS is used
to speed up measurements [27].

In this work, we demonstrate how CS can be adopted for
TRPL single pixel imaging. We have evaluated a new CS
TRPL mapping approach, based on a DMD-based, TCSPC
technique which can achieve high spatial and temporal resol-
utions. The methodology of CS TRPL was developed through
simulation work and implemented in a prototype experimental
setup. Amajor challenge in implementing CS theory for meas-
uring charge carrier lifetimes comes from it being a derived
measurement; the carrier lifetime cannot be measured dir-
ectly and must be determined by fitting an appropriate func-
tion to the measured TRPL signal decay. A dedicated com-
putational model was developed for simulating raster and
CS TRPL imaging of samples with non-uniform carrier life-
times. To process these measurements, a reconstruction tech-
nique was developed, capable of recovering charge carrier life-
time maps from CS TRPL measurements. The methodology
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was validated through simulations, where under-sampling and
noise limits for this application were investigated. An initial
experimental approach is presented, with results demonstrat-
ing the challenges and features of this method. The results
indicate the route towards a new TRPLmapping methodology,
that can potentially offer higher repeatability, spatial accuracy
and measurement speed compared to scanning approaches.

2. Methods

2.1. Principle of CS imaging

A TRPL mapping system would traditionally use a point-by-
point scanning approach. In CS TRPL, the aim is to simul-
taneously sample the whole area of interest, eliminating the
need for translational movements. To achieve this, predefined
patterns are projected onto the area of interest, using a spa-
tial encoder, measuring the PL decay for each of the patterns
with the TCSPC system. The resolution of the projected pat-
terns is equivalent to the required resolution of the final recon-
structed images. The series of patterns are projected, acquiring
for each pattern the combined TRPL response for the sum of
all illuminated pixels. The final reconstruction then calculates
the TRPL response of each pixel, eventually building a TRPL
map.

One of the benefits of CS theory is that it allows a
method for inferring the response or signal of each individual
pixel, even when not independently measuring it. Instead, the
response of each pixel can be acquired from combined meas-
urements of known patterns. The reconstruction works by tak-
ing advantage of the sparsity of natural signals—a constraint
is added, only allowing solutions with a small number of non-
zero coefficients in some transform domain. A detailed explan-
ation of CS methodology and applying it for single-pixel cam-
eras is described in work by Duarte et al [21]. A more detailed
description of the reconstruction is also given in section 2.2.5.

The other advantage of CS approach is under-sampling. In
a typical point-by-point measurement, each point of the image
must be measured. If a pixel is missed there is no informa-
tion acquired about it. This means that the display resolution
of any image is equivalent to the number of measurements
taken. However, by using a CS approach, the number of meas-
urements can be significantly reduced. The theoretical min-
imum number of measurements (r) is approximately given by
equation (1) [28],

r≈ k1Klog
( q
K

)
. (1)

where K is the number of significant elements of the image
when compressed in a sparse basis, q is the number of pixels
in the image and therefore q/K is analogous to a compression
ratio. k1 is a constant multiplier, relating to the quality of the
measurements [29]. If themeasurements are perfectly incoher-
ent with the sparsifying basis (e.g. discrete cosine transform
(DCT)), then k1 = 1. In practice, it is beneficial to samplemore
than r measurements to ensure accurate reconstruction.

Figure 1. A carrier lifetime image of a PV device, which was used
to generate a ‘virtual’ sample for simulating TRPL measurements.

Due to under-sampling, the solution becomes an underde-
termined linear system—there are more unknowns than meas-
urements, which has either infinite solutions or none. From
these possible solutions, a reconstruction algorithm selects the
most likely by maximising sparsity in the transform domain.
Finally, work done by Candes [19] showed that ℓ1 norm min-
imisation (also known as least residual norm or taxicab norm)
solutions have a high probability of correctly counting and
finding the non-zero solutions. Efficient ℓ1 norm algorithms
pre-date the concept of CS [30].

2.2. CS TRPL simulations

A simple model was built to run simulations to study the beha-
viour of the whole spatial imaging system when applying CS
TRPL. The simulations were performed using Python 3.8 [31]
making use of the available open-source libraries within SciPy
ecosystem [32], Matplotlib [33] and Numba [34].

2.2.1. Defining a virtual sample. The goal of the simulation
process was to investigate the feasibility of applying CS to
TRPL imaging and determine the correct process for recon-
structing lifetime maps.

For the simulation purposes, a charge carrier lifetime map
of an area of cadmium indium gallium selenide (CIGS) PV
device was used, as shown in figure 1. In principle, any image
or test structure could have been used for this. However, this
image was chosen to be representative of what might be expec-
ted in a physical CS TRPL measurement. From theory [35],
the charge carrier lifetime is expected to follow an exponen-
tial decay function, shown in equation (2),

I(t) =
k∑
i

Aiexp

(
− t
τi

)
. (2)
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Figure 2. Illustration of a typical CS TRPL measurement. The
insets show examples of some of the Hadamard patterns used in the
measurement acquisition. Every pattern covers the same overall area
on the sample but varying points within that area are being excited.
The different TRPL signals displayed in the figure serve as
examples of the differences between measurements of the different
patterns. By running these data through a reconstruction algorithm,
the spatial variations across the imaged area are calculated.

where I(t) is the TRPL signal of the sample at time t, k is num-
ber of recombination paths present, Ai is the amplitude and τi
is the charge carrier lifetime, for recombination route i. In the
simplest case, k= 1 where there is only one type of recombin-
ation present, which was used in this work for simplicity of
the calculations. When k> 1, the simulation process will stay
the same and only the shape of the TRPL decay curve will
change. Therefore, by defining a map of charge carrier life-
time values, we can calculate the TRPL of each pixel of the
virtual sample. The aim of our simulation process is to sim-
ulate TCSPC measurements using compressive sampling and
reconstruct the initial lifetime map, shown in figure 1.

2.2.2. Generating patterns. To simulate the CS process,
suitable binary projection patterns must be generated. The spa-
tial resolution of the patterns used dictates the spatial resolu-
tion of the reconstructed image, i.e. if we use 64× 64 resolu-
tion patterns, then the final reconstructed images will also have
the same resolution.

Two types of patterns were considered in these
simulations—one based on pseudo-random number gener-
ation and the other on a Walsh–Hadamard transform (WHT)
[23]. Examples of a few Hadamard patterns are shown in
figure 2. Both have their advantages and disadvantages. The
random sampling patterns benefit from minimal coherence
with transfer domains [36]. Random patterns must be stored
in memory for reconstruction to work. The amount of memory
required scales with the square of the pattern resolution. To
store all the random patterns needed for measuring a 106 pixel
image, a matrix with 1012 entries would have to be stored in
memory. Therefore, using random patterns quickly becomes
impractical if high resolution images are desired. In this work,
measurements based on WHT patterns were used. These pat-
terns have been shown to satisfy the incoherence requirement
needed for CS theory to be applicable in transform domains
such as DCT or discrete wavelet transform (DWT) [37, 38].
Any small amount of coherence that might be present between

these patterns and the measured signal can be accounted for
by increasing the number of total measurements needed, as
shown in equation (1).

The biggest advantage of using Hadamard patterns is the
reduced computational complexity when generating them.
Efficient algorithms have been written to generate such pat-
terns repeatedly and quickly. Furthermore, these can be
described as a transform acting on the measurement. The pat-
terns do not need to be stored in memory for reconstruc-
tion, instead a linear operator based on WHT can be used
which allows high resolution images without requiring an
unreasonable amount of computer memory. This is similar to
the way more common transforms are used, e.g. algorithms
have been created to compute Fast Fourier Transform quickly,
without needing to first calculate the whole transform mat-
rix. Hadamard patterns have been already demonstrated for
sampling in recent CS imaging applications [23].

2.2.3. Simulating TCSPC sampling. We used a simple
statistical model for simulating TCSPC emission for both
single point and CS simulations. The TCSPC principle works
by extending the TRPL collection over many laser pulses,
enabling very weak PL signals to be acquired [39]. This is
possible as long as the arrival of each detected photon can be
precisely timed and the TRPL response of the sample does not
change throughout the measurement cycle.

There are three parameters used to statistically simulate
TCSPC—lifetime τi of the measured pixel, probability p of
an excitation pulse resulting in a detectable photon, and the
number of laser pulses. This probability must be kept suitably
low, typically below 0.02 to prevent photon pile-up effects
[40]. The probability distribution for the number of photons
per pulse is a Poisson distribution with the mean number
of photons per pulse converging to p for p≪ 1. For each
pulse, the number of photons reaching the detector is sampled
from the Poisson distribution. If no photons are detected, the
algorithm moves on to the next pulse and performs the check
again. When a photon is detected, a photon arrival time is
sampled from an exponential distribution. Due to stochastic
nature of PL emission, multiple photons might arrive at the
detector between the laser pulses. However, the detectors used
in TCSPC setups are only capable of recording a single photon
after a laser pulse. Therefore, if multiple photons reach the
detector, only the first one would be recorded. To simulate this,
when multiple photons are detected, the arrival time of each of
them is determined. The arrival times are compared, and the
time of the fastest photon is recorded. The photon arrival time
gets placed into a histogram, where the width of each bin of the
histogram represents the temporal resolution of the measure-
ment. By repeating this process over a fixed number of laser
pulses, the histogram gets populated. After a large number of
pulses, typically 107 − 108, the histogram becomes equivalent
to the TRPL response of the measured area. These assump-
tions work in the limit that the pixel size is large compared
to the diffusion length, and therefore that measured emission
lifetime is not influenced by the lifetimes of nearby pixels.
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Figure 3. Flowchart of CS TRPL measurement process. After
projecting a given pattern, a TCSPC method is used to acquire
TRPL response of the whole area excited by the projected pattern.
Each pattern is measured for a fixed measurement duration,
determined by the number of laser pulses applied.

2.2.4. Simulating sampling with a DMD. A specific chal-
lenge for this work is that, unlike other implementations of
CS imaging in literature in which the measurement result of
each pattern is a single value, each projected pattern results in
a decay curve, which is the TRPL signal. A few typical raw
measurements from CS TRPL are shown in figure 2.

To simulate the excitation with different illuminated pat-
terns projected on the sample instead of just a point excita-
tion, each generated pattern is used to mask the virtual sample.
The measurement acquisition can be written down as b= Cx,
where b is a vector containing all the measured values, C con-
tains all the projected patterns and x is the sample being meas-
ured. The TCSPC simulation algorithm described above is
applied to the masked sample. In other words, the PL emis-
sion is only possible from the parts of the sample which are
virtually excited by the given pattern. A flowchart of the meas-
urement process is shown in figure 3.

The method is repeated for several patterns, determined
by the desired sampling level, up to a maximum number
of patterns to the target image display resolution. As high-
lighted in the earlier section, under-sampling is one of the
key advantages of CS. Fewer measurements than pixels in
the final image are sufficient for a meaningful reconstructed
image.

Once the Monte–Carlo simulation is complete, the results
file is a matrix, as indicated in table 1. Each row corresponds
to a different pattern that was applied during the measurement
and each column to a number of photon arrival events for that
particular time bin. These data are then used to reconstruct a
TRPL data cube which consists of the TRPLmaps for all these
bins.

2.2.5. Reconstruction algorithm. To reconstruct the
acquired measurements into an image, a convex optimiza-
tion problem must be solved.

A free-source package SPGL1 [41–43] is used precisely
for this purpose. The package is a solver for large-scale ℓ1
norm regularized least squares and is designed to solve three
problems—Basis Pursuit (BP), Basis Pursuit Denoise and
Lasso. The results from both the simulation and prototype
system are a matrix B, as illustrated in table 1. However,
the reconstruction algorithms can only accept 1D data which
would work if for every pattern there was only one signal
value, instead of a decay curve. Our chosen approach is split-
ting the measurement matrix into independent measurement
vectors bg for each time bin. To promote the sparsity of the
signal, it is useful to express the original image x in a trans-
form domain, such that sg =Ψxg. The measurement process
of each bin is then described by equation (3),

bg = CΨ−1sg (3)

where C is a column vector form of the projected pattern, Ψ
is the transform matrix of a chosen sparsifying basis such as
DCT or DWT and sg are the image’s coefficients of the sample
in a column vector form for the corresponding bin number. The
reconstruction is carried out for each bin independently of each
other, solving the equation (4)

ŝg = argmin
sg

||sg||1

subject to bg = CΨ−1sg (4)

where ∥·∥1 is the ℓ1 norm. The result of the optimization is
a vector of length n for each bin of the reconstruction. Each
of the vector values correspond to the sparsest solution of PL
intensity information at a specific time slice in the chosen
transform domain (DCT in this case). By applying the inverse
of the transform to each of these vectors, the coefficients are
converted to histograms for each pixel. After repeating the
reconstruction process for every bin in the measurement file,
the final result is a matrix of the format shown in table 2. This
can be simply reshaped into a 3D data cube, representing the
PL intensity of the sample and x, y and t coordinates, as is
illustrated in figure 4.

Whilst this data cube is already useful as the intensity map
can be viewed at a desired time frame, it is more beneficial
to reduce the dimensionality and extract the minority charge
carrier lifetime map. To do so, the cube needs to be sliced
through one of the spatial dimensions rather than temporally.
In other words, the intensity over time behaviour of each indi-
vidual pixel for each time slice map is considered. By fitting
equation (2) using least-squares fitting, the charge carrier life-
time τ is determined for the given pixel. After repeating the
same process on every pixel, a charge carrier lifetime map is
reconstructed for the sampled area.

2.3. Experimental setup

In addition to the simulations, an experimental setup was
developed to investigate how this process can be applied in
practice and what the challenges of realising this method are.
The developed prototype setup is presented schematically in
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Table 1. An example of a typical results matrix of the CS TRPL simulation. Each column bi is a different TCSPC bin in the time domain, g
is the bin number, and m is the number of patterns sampled. Values are counts (no units).

b1 b2 b3 · · · bg

Pattern 1 64 321 62 113 60 332 · · · 24
Pattern 2 63 889 61 890 58 322 · · · 32
Pattern 3 64 613 63 092 61 002 · · · 2
· · · · · · · · · · · · · · · · · ·
Pattern m 61 009 59 867 57 479 · · · 4

Table 2. Typical result file structure after running the CS TRPL reconstruction routine. Every column is the PL intensity map at bin t. The
number of rows is equal to the number of pixels in the image.

x1 x2 x3 · · · xg

Pixel 1 6324 6212 6273 · · · 6543
Pixel 2 6123 6109 6183 · · · 6312
Pixel 3 6032 5989 6101 · · · 6211
· · · · · · · · · · · · · · · · · ·
Pixel n 2 0 1 · · · 3

Figure 4. Data cube example of PL intensity images at varying time
bins as acquired by performing CS TRPL reconstruction. Every
pixel of the image consists of the estimated TRPL response.

figure 5. The laser used in the setup is a Becker&Hickl 635 nm
multimode diode laser. The pulse duration is dependent on the
power setting and ranges from tens of ps to about 100 ps. The
repetition rate can be selected from 20, 50, and 80 MHz, with
average power of 8, 20, and 32 mW respectively. The pulse
energy stays constant across the repetition rates. The beam is
expanded and propagated onto a DMD (Vialux V-9501). The
DMD consists of 1920× 1080 micromirrors, each individu-
ally switchable between 2 states (on/off), allowing for any pat-
terns to be projected onto the sample. The reflected light of
the ‘on’ pixels of each generated pattern is focused through
an Olympus MDPlan 50 × microscope objective onto the

Figure 5. Schematic of the prototype system setup for TRPL
Imaging. The DBS is a shortpass dichroic mirror, with 680 nm
cut-off wavelength and OBJ is a microscope objective lens.

sample plane. The objective has 0.5 NA and 7.77 mm work-
ing distance. The setup gives a maximum illuminated area of
200× 200 µm2, with 1 W cm−2 power density. All the meas-
urements were carried out at a temperature of approximately
20 ◦C within a stable lab environment. Although temperature
variations can affect TRPL measurements [44], we expect that
small variations (±2 ◦C) in temperature during measurements
will have a negligible effect on measurement results.

A CMOS camera is positioned at the back focal plane of
the objective to image the sample surface and it is used to
achieve accurate focusing of pattern projection on the sample
surface. For detecting the PL signal, a hybrid PMT module
HPM-100-50 from Becker & Hickl is used. This PMT was
chosen due to its high quantum efficiency at NIR wavelengths
and absence of after-pulsing. A notch filter with OD6 and a
700 nm long-pass filter are used to reduce laser light leakage to
the detector. Additionally, an NIR PMT from Hamamatsu was
acquired with InGaAs detector to extend the range of poten-
tial samples that can be investigated. The combination of 2
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detectors gives a broad range of usable wavelengths, covering
700–1700 nm spectral range.

3. Results and discussion

3.1. Simulation results

After carrying out the simulation for the measurement and
reconstruction processes as described in the previous section,
carrier lifetime maps were extracted. This was done by fitting
an exponential decay function to the TRPL curve of each pixel.
Note that for the purpose of simulation only mono-exponential
decays were investigated. CS allows the use of fewer observa-
tions to reconstruct a reliable representation of a signal. In our
case, this means that during the reconstruction stage, a vary-
ing sampling level can be chosen, which defines how many
measured patterns are used for the reconstruction step, i.e. a
sampling level of 10% means the number of patterns used in
the reconstruction is equal to 10% of the number of pixels
in the image. Figure 6 shows examples of the lifetime maps
reconstructed at (a) 2% (b) 20% (c) 50% and (d) 99% sampling
level with 64× 64 px resolution. This means for the 2% case
only 82 measurements were performed to acquire 4096 points
of spatial information. The simulation results show that the
structure is preserved and acquired even when using a low
sampling level. By acquiring a larger number of measure-
ments, the fine details of the reconstructed image becomemore
visible. One possible application using this low sampling rate
measurement is for fast initial measurements of a large area,
such as a whole wafer. Non-uniform areas could be identi-
fied even when using a low sampling rate, which could then
be investigated in more detail with higher resolution measure-
ments and a higher level of sampling.

To quantify the simulation results, the structural similarity
index (SSIM) [45] and mean square error (MSE) were used
to compare the original virtual sample to the reconstructed
images and are presented in figure 7. The SSIM ranges from
0.4 at the low sampling rate of 2%, to 0.92 at the high end.
There are incremental returns in reconstructed image quality
after a certain sampling rate. The SSIM reaches 0.9 at 40%
sampling rate and only goes up to 0.92 at 99 %.

To further evaluate the CS TRPL process, the effect of
measurement noise on reconstructed results was studied. In
a physical measurement, there would be variations introduced
by randommeasurement noise, the dark counts of the detector,
resolution and dynamic range of the instruments, laser instabil-
ities and other sources. To simulate this, we introduced small
Gaussian perturbations to the counts of each bin, with the
variance set as a percentage of the bin count. A Gaussian
distribution of noise was adopted, as even if each source of
measurement noise had a different distribution, the combin-
ation of all sources would result in a Gaussian (normal) dis-
tribution. By increasing the variance percentage, more noise
is added to the virtual measurements. The measurements
were then reconstructed using the same reconstruction pro-
cess and algorithm, keeping the sampling level constant at
50% i.e. using 2048 measurements/patterns projected for each
reconstruction.

Figure 8 shows the noisy maps reconstructed, with noise
variance ranging from 0.1% to 5%. The quality of the recon-
structed image rapidly deteriorates with increasing noise and
at 5% the image is hardly recognisable, is highly distorted and
has many pixels with failed fitting of the TRPL decays. This
is an important point to consider when applying the described
method experimentally. For TCSPC system to produce reli-
able results, sources of random noise must be minimised, such
as dark counts, detector noise and laser power fluctuations.
The CS part of the system is additionally highly susceptible
to any signal changes over time, such as sample or laser drift.
The CSmethodology considers all changes in measured signal
to be entirely related to spatial variations of the sample all of
these must be minimised to maintain a sufficiently low level
of noise. Some measurements quantifying the noise levels of
the developed prototype system are described in section 3.2.
These findings are crucial for the experimental implementa-
tion of a CS TRPL system, as they set the minimum noise level
requirements that such system should have to provide reliable
measurements.

To visualise the difference between the original values for
each pixel in the virtual sample and the pixels reconstruc-
ted from noisy measurements, we can look at the correlation
between them. A scatter plot where the y-axis presents the val-
ues of the reconstructed pixels and x-axis the values of the ori-
ginal pixels used. If the measurements were perfect and noise
had no effect on reconstruction, the scatter plot would simply
be a straight line with a slope of 1. This is approximated by the
case in figure 9(a), where the applied noise is only 0.1%, the
slope is nearly 1, and the scatter plot is very linear. Figure 9(b)
has the noise level increased to 2% showing larger variance of
the reconstructed lifetimes. Additionally, the slope is less than
1, i.e. the reconstructed values tend to be lower than the ori-
ginal ones. The above simulation results demonstrate that our
approach for applying CS in TCSPC measurements is feas-
ible. Feasibility for specific systems will depend on the noise
levels, which are dependent on system parameters, such as
laser power, laser uniformity and other factors.

3.2. Experimental results

From the simulation results described previously, it is clear
that the sources of noise must be carefully considered when
applying the method experimentally. Small deviations in the
measured number of counts can lead to significant degradation
in reconstruction quality.

We first consider the dark count rate of the detector and how
it changes over time. To do this, the PMT shutter was closed,
gain turned on, the PMT was allowed to warm up for an hour
and the count rate was then monitored over 24 h. The mean
dark count rate during this period was 46 000 ± 1000 cps. In
a TCSPC setup with the PMT shutter open and PL emission
reaching the detector, the count rate is typically on the order
of 107 cps, meaning the change in dark count rate should not
have a significant effect on the measurements.

Repetition rate of 20 MHz was used throughout all the
measurements carried out in this work, with laser power set to
the maximum available of 8 mW average power (pulsed) at the
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Figure 6. Reconstructed carrier lifetime maps from measuring a virtual sample in computational model. The sampling levels are 2%, 20%,
50% and 99% for the figures (a)–(d). As the sampling level is increased, more of the finer details become apparent. The numbers in white at
the top right of each subfigure indicate the SSIM of the reconstructed map compared to original virtual sample.

Figure 7. Green crosses show SSIM and blue circles show mean
square error change with increasing sampling levels. The
reconstruction quality rises rapidly at low sampling levels and levels
off at around 25% sampling ratio.

laser output (before the optical system). To consider sources
of noise and uncertainty in the TRPL signal for measurements
with a sample, a CIGS PV device was used. To achieve this,
the TRPL signal was collected 100 times from the same excit-
ation area with 5 s collection time for each TRPL measure-
ment. The standard deviation in the number of counts can be
determined for each bin of the TRPL across the 100 meas-
urements, as shown in figure 10. The standard deviation as a
percentage of the number of counts ranged between 2% at the
peak of the TRPL signal to almost 10% near the start and the
end of the TRPL collection window. In the simulated results
section, it was noted that standard deviation rapidly decreases
the quality of the reconstructed image. At noise levels of
2% or higher, the simulated measurements were severely
degraded. Regarding the experimental results, such high levels
of noise affect lifetime calculations and do not allow a
meaningful calculation of a lifetime value, as it is shown
below.

The high noise is likely caused by several factors. To
apply the pattern projection, the laser beam must be first
expanded to fill the DMD area, before being focused through
the objective onto the sample. The final excitation area is
roughly 200× 200µm, leading to a low excitation power

density and decreased signal to noise ratio. Furthermore, the
excitation source is a multimode laser with poor beam proper-
ties when expanded, leading to non-uniform excitation across
the focused area. Finally, some sample, detector, or laser drift
was observed, which also has a minor influence on the meas-
ured standard deviation. By looking at the total number of
counts across each measurement, it was observed that over-
all detected PL intensity has a small upwards drift through the
measurement duration. This is most likely caused by drift in
CIGS PL efficiency [46].

ACIGS solar cell samplewas chosen for use in the develop-
ment of CS TRPL system. The sample exhibited strong PL sig-
nal, with emission wavelength above 1000 nm which dictated
the use of a NIR PMT. An area of approximately 204 µm×
204 µm was imaged. Since this is a new method for spatial
mapping, any reconstructed imagemust first be validated. This
can either be achieved by knowingwhat the sample is expected
to look like or by applying a known method of mapping to the
same area first. Ideally, a point-by-point mapping TRPL sys-
tem capable of achieving the same resolution as achieved using
the CS TRPL methodology would be used. However, exciting
only a single point of the sample using the DMD device (in
order to achieve a direct point by point comparison with the
pattern projection), severely reduces the TCSPC signal. The
highest resolution point-by-point map we were able to achieve
with the system was 16 px× 16 px× 12 ps. The TRPL decays
were very faint, due to small excitation area and low carrier
densities. Dark counts account for a high proportion of the
overall measurement, making extraction of carrier lifetimes
not feasible. Instead, PL maps were integrated across several
time slices to reduce temporal resolution but increase the sig-
nal for each PL map. The reduced temporal resolution was
3 ns. The TRPL maps are shown in figures 11(a)–(c) for peri-
ods 0–3 ns, 3–6 ns and 6–9 ns respectively. CS TRPL meas-
urements of the same area are expected to look the same as
point-by-point scans. Therefore, these figures were compared
to ones acquired using CS TRPL for validation purposed.

For testing the CS TRPL methodology, measurements and
reconstructions were carried out as described in previous
sections. The laser and detection parameters were kept the
same as the ones used to acquire data for figure 11. Only
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Figure 8. Carrier lifetime maps reconstructed after following the described CS TRPL methodology with Gaussian noise added to the
measurements at a sampling level of 50%. The noise amplitude ranges from 0.1%, 1%, 2% to 5% for (a) to (d) respectively. The noise is
added to each bin of the TRPL measurements.

Figure 9. Scatter plots of the original lifetimes in the virtual sample
vs the reconstructed lifetimes after measurements with simulated
noise. (a) The noise level is 0.1%, (b) the noise level is 2%. The
black line is the best fit done using the least squares method. The
slope of best fit being <1 indicates that the reconstructed lifetime
values tend to be lower than the original ones.

change was using illumination patterns instead of single-point
excitation. After measurements and reconstruction, a data
cube was constructed, similar to the one in figure 4, giv-
ing 16× 16× 100 resolution (X×Y× t) with step sizes of
13µm× 13µm× 120 ps. However, due to the weak signal and
high noise levels it was impossible to extract a meaningful
charge carrier lifetime map by fitting the exponential decay
function. Instead, PL maps were integrated across several time
slices to reduce temporal resolution but increase the signal for
each PL map. The reduced temporal resolution was 3 ns. The

Figure 10. The standard deviation as percentage of the mean
number of counts for each bin of the CIGS TRPL response. TRPL
was measured 100 times from the same excitation area with
collection time of 5 s for each measurement. The observed standard
deviation curve is inversely proportional to the TRPL signal
strength—the uncertainty is lowest at the peak of TRPL.

TRPL maps are shown figures 12(a)–(c) for periods 0–3 ns,
3–6 ns and 6–9 ns respectively, acquired using 50% sampling
level. In other words, the number of patterns measured for
acquiring this image was 50% of the total number of pixels in
the image. The resulting images are dominated by the features
of a non-uniform laser beam used for excitation. However,
a good agreement is seen between the point-by-point scan
images and ones acquired using CS approach. This demon-
strates the principle of the CS TRPL approach qualitatively,
however, the laser source used for excitation is not suitable for
quantitative validation.

The diode laser used in this experiment is typically focused
to a single point, where the non-uniformities in the beam pro-
file would not have a significant impact. However, in the case
of CS, the non-uniformities in the beam profile appear in the
resulting measurements.

Although it was not possible to acquire a charge car-
rier lifetime map with the current experimental setup, the
results demonstrate the feasibility of acquiring PL maps at
different time bins, allowing TRPL imaging and potentially
charge carrier lifetime imaging with an upgraded system. It
is also important to highlight that higher resolution CS TRPL

9



Meas. Sci. Technol. 35 (2024) 015207 A Baltušis et al

Figure 11. Normalised TRPL intensity maps of CIGS sample (a)
from the peak emission to 3 ns after the peak, (b) 3–6 ns after the
peak and (c). These measurements were acquired by scanning a
single point across the sample using the DMD. No measurement
data were acquired for the white pixel (failed decay acquisition),
hence, it appears white in the maps above.

Figure 12. Normalised TRPL intensity maps of CIGS sample (a)
from the peak emission to 3 ns after the peak, (b) 3–6 ns after the
peak and (c) 6–9 ns reconstructed from CS TRPL methodology
with 50% sampling level. The reconstructed maps show good
agreement with observations in the point-by-point scan
maps.
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measurements were also attempted, achieving 64 px× 64 px
resolutions and are provided in the supplementary material.
However, the limiting factor were the point-by-point scans, as
without acquiring these with the same resolution, the measure-
ments cannot be validated.

4. Conclusions

In this work, we developed for the first time the process, meth-
odology and an experimental approach for CS TRPLmeasure-
ments using a TCSPC technique for semiconductor imaging.
Initially we developed and used a computational model, for
simulating DLP and TCSPC, in order to investigate the applic-
ation of a CS approach. We have presented a new reconstruc-
tion process suitable for TRPL measurements, that makes use
of established optimisation algorithms and achieves successful
reconstruction. The feasibility of the methodology was valid-
ated, and effects of measurement noise and sampling levels
were investigated through the simulations.

The sampling and reconstructing approach were then used
for the development of a proof-of-concept experimental setup,
based on a TCSPC system, in which a DMD has been integ-
rated. CS TRPL results show that the method is feasible after
comparing them to similar area mapped with a point-by-point
scan. The simulation and initial experimental results demon-
strate that this approach for CS TRPL imaging is feasible.
Moreover, CS TRPL shows an improvement in the contrast
of acquired maps due to exciting a broader area at the same
time compared to point-by-point scan.

Through this prototype experimental system, we have
determined the challenges for a CS TRPL measurement
method. In the current system there is insufficient excita-
tion power and a non-uniform laser beam profile which did
not allow high quality reconstruction and the extraction of a
meaningful value of charge carrier lifetime. After expanding
the laser beam, the excitation density decreases significantly,
reducing the amount of TRPL detectable. Furthermore, due to
the highly non-uniform laser beam profile, it is challenging
to determine which reconstructed sample features are real and
which are only an effect of the beam profile. The noise sim-
ulations and experimental investigation showed that this tech-
nique is very sensitive to noise levels and system or sample
drifts.

An upgrade of the proposed prototype system with a high-
power laser with a high-quality uniform beam profile can lead
to an optimised CS TRPL setup. This can offer advantages
for charge carrier lifetime imaging, such as enhanced repeat-
ability compared to scanning approaches, high image resol-
ution and increased measurement speed. Such a system can
establish the CS TRPL method a powerful technique for semi-
conductor characterisation and quality control. Additional
sampling approaches and reconstruction algorithms dedic-
ated to this method can also be investigated, that will benefit
sampling speed and reconstruction quality.
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