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Abstract
Magnetic helicity is a conserved quantity of ideal magnetohydrodynamics
(MHD) that is related to the topology of the magnetic field, and is widely
studied in both laboratory and astrophysical plasmas. When the magnetic field
has a non-trivial normal component on the boundary of the domain, the clas-
sical definition of helicity must be replaced by relative magnetic helicity. The
purpose of this work is to review the various definitions of relative helicity
and to show that they have a common origin—a general definition of relative
helicity in multiply connected domains. We show that this general definition is
both gauge-invariant and is conserved in time under ideal MHD, subject only
to closed and line-tied boundary conditions. Other, more specific, formulae for
relative helicity, that are used frequently in the literature, are shown to follow
from the general expression by imposing extra conditions on the magnetic field
or its vector potential.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Magnetic helicity is an invariant of ideal magnetohydrodynamics (MHD) that has found many
applications in astrophysical and laboratory plasmas. After its discovery in the late 1950s by
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Woltjer [1], it was quickly realized that magnetic helicity has a close connection to the linkage
of the magnetic field [2] (see [3] for a hydrodynamical version) and can, therefore, be con-
sidered a topological invariant of MHD. This original form of magnetic helicity is referred
to as classical magnetic helicity, and is concerned specifically with closed magnetic fields,
i.e. those that are bounded by magnetic flux surfaces.

The definition of classical magnetic helicity is as follows. A magnetic field vector B3 is
divergence-free (divB= 0) and can be written in terms of a vector potential A, B= curlA.
The classical form of magnetic helicity is written as

H=

ˆ
Ω

A ·B d3x, (1)

where B ·n= 0 on ∂Ω and n is outward normal unit vector on ∂Ω. It is a standard result to
show that H is gauge-invariant, i.e. independent of the choice of A, if Ω is a simply connected
domain (e.g. [4]).

Equation (1) has been used for both simply and multiply connected domains. For multiply
connected domains, however, equation (1) is not gauge-invariant and its application in such
domains requires the selection of a suitable gauge. A typical choice is the so-called Coulomb
gauge, which has led to a deeper understanding of the relationship between helicity and the
geometry and topology of magnetic fields (e.g. [2, 5]).

Equation (1) was recently extended by MacTaggart and Valli [6] to provide a gauge-
invariant definition of magnetic helicity for multiply connected domains. The expression can
be written as

H=

ˆ
Ω

A ·B d3x−
g∑

i=1

(˛
γi

A · ti dx
)(ˆ

Σi

B ·nΣi d
2x

)
, (2)

where g is the genus of Ω, the γi are closed paths around non-bounding surfaces in Ω, the ti
are unit tangent vectors on the γi, the Σi are cut surfaces internal to Ω and the nΣi are the unit
normal vectors of the cut surfaces. More details of these geometric features will be reviewed
later.

Equation (2) succinctly generalizes the definition of magnetic helicity that is often given in
the literature, where either

˛
γi

A · ti dx := 0 or
ˆ
Σi

B ·nΣi d
2x := 0, for i = 1, . . . ,g.

The former condition is often justified as removing the influence of magnetic field outside the
domain linking with that inside (e.g. [7]). The latter condition imposes zero magnetic flux and
this condition is too strong for many applications.

Everything we have described until now has been for magnetic fields that are everywhere
tangent to the boundary, i.e. B ·n= 0 on ∂Ω (or |B| tends to zero at a suitable rate if |x| →∞).
The natural extension is to consider B ·n= f ̸= 0 on ∂Ω.4 Indeed, this situation is often more
practical, and has received particularly close attention in solar physics (see [8, 9] and references
within). The main issue with having non-trivial normal components of the magnetic field on

3 Technically, B is the magnetic induction, but it is common practice in MHD to refer to it as the magnetic field.
4 We also assume that

´
Γr
f d2x= 0 on all the connected components Γr of the boundary in order to admit a vector

potential for B.
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Figure 1. A representation of the fields used in the construction of relative helicity.
The domain Ω is shown twice—on the left containing the magnetic field B, and on
the right containing the reference magnetic field B ′. Both fields are closed outside Ω by
the same B̃.

the boundary is that equations (1) or (2) are no longer gauge-invariant. To resolve this, a new
gauge-invariant form of helicity was introduced in the mid 1980s, called relative magnetic
helicity, with varying definitions proposed by different authors [4, 10, 11].

It was recognized that in order to produce a gauge-invariant helicity with non-trivial normal
components on the boundary, a comparison of two different magnetic fields with the same
normal boundary conditions is required. Here, we follow the thread of the seminal work of
Berger and Field [4], who describe a way to construct relative helicity in a simply connected
domain.

Consider a magnetic field B in a simply connected Ω, as shown on the left-hand side of
figure 1. The first step is to ‘close’ the magnetic field (shown in red) by extending with another
divergence-free field B̃ (shown in blue) outside of Ω in such a way that the extension matches
the boundary components of B on ∂Ω (B̃ ·n= 0 on a ‘far’ boundary). In this way H(B, B̃)
can be determined in the classical way via equation (1). However, this quantity is not useful
by itself as it now extends outside the domain of interest and, further, it is not unique—B̃
is arbitrary up to boundary conditions. The solution lies in considering a second divergence-
free reference field in Ω, B ′ say, that satisfies B ′ ·n= B ·n= f on ∂Ω. This is shown on the
right-hand side of figure 1. Then, by adding the same extension B̃ to B ′, it can be shown that

HR
1 = H

(
B, B̃

)
−H

(
B ′, B̃

)
, (3)

is gauge-invariant subject to the condition that n×A= n×A ′ on ∂Ω. Further, equation (3)
can be reduced to the simple form

HR
1 =

ˆ
Ω

(A ·B−A ′ ·B ′) d3x, (4)

which, importantly, is independent of the extension B̃. It can also be shown that HR
1 , as written

above, is an invariant of ideal MHD for fixed Ω and closed and line-tied boundary conditions
(e.g. [12]).
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Another definition of relative helicity that is popular in the literature is the so-called Finn–
Antonsen formula [11],

HR
2 =

ˆ
Ω

(A+A ′) · (B−B ′) d3x. (5)

For simply connected Ω, this expression of relative helicity is gauge-invariant for both A and
A ′ independently, and without any condition on the tangential traces of the vector poten-
tials. Although Finn and Antonsen [11] do not provide a clear geometrical construction for
equation (5), as Berger and Field [4] did for equation (4), it is not difficult to show that HR

2
becomes HR

1 upon imposing n×A= n×A ′ on ∂Ω, namely

HR
2 =

ˆ
Ω

(A ·B−A ′ ·B ′) d3x+
ˆ
Ω

(A ′ ·B−A ·B ′) d3x

= HR
1 +

ˆ
Ω

(A ′ · curlA−A · curlA ′) d3x

= HR
1 +

ˆ
∂Ω

A ′ · (n×A) d2x

= HR
1 with n×A= n×A ′ on ∂Ω.

Finn and Antonsen [11] also claim that HR
2 is suitable for multiply connected domains subject

to the conditions that the fluxes of B and B ′ are equal both inside and outside Ω. They focus
their discussion on toroidal domains, but provide no rigorous proof of their claims for HR

2 in
multiply connected domains.

The purpose of this work is to provide a general definition of relative helicity in multiply
connected domains, fromwhich the other formulae, including those forHR

1 andH
R
2 , are derived

as special cases. In finding a suitable definition, we proceed with the following criteria: (1) the
general definition should reduce to equation (2) in the case where B ·n= 0 everywhere on
∂Ω, (2) the general definition must be gauge-invariant without extra conditions, such as those
for HR

1 and HR
2 , and must be conserved in time, for fixed Ω, under ideal MHD, (3) the general

definition should reduce to specific cases HR
1 and HR

2 by imposing extra conditions on either
the magnetic field or its vector potential.

The rest of the work proceeds as follows. First, we present a summary of the geometrical
setup and some fundamental results necessary for calculations in multiply connected domains
(topological connections to these basic results are expanded upon in appendix A). This is
followed by the main result, the general definition of relative helicity in multiply connected
domains, for which we prove gauge-invariance and conservation in time under ideal MHD.
We conclude the paper by remarking on how HR

1 and HR
2 follow from the general definition.

2. Preliminary results

2.1. Geometrical setup

Let Ω be a multiply connected domain that is a bounded open connected set with Lipschitz
boundary ∂Ω and unit outer normal n. Let g> 0 be the first Betti number (or genus) of Ω.
This being the case, the first Betti number of ∂Ω is 2g. We can consider 2g non-bounding
cycles {γi}gi=1 ∪{γ ′

i }
g
i=1, that represent the generators of the first homology group of ∂Ω.

The {γi}gi=1 represent the generators of the first homology group of Ω. In figure 2, there is
only γ (≡ γ1), which encircles the hole of the torus. The tangent vector on γi is denoted ti.
Analogously, the {γ ′

i }
g
i=1 represent the generators of the first homology group of Ω

′
, where

4
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Figure 2. A torus Ω, shown cut in half to reveal the cross-section. The non-bounding
cycles of Ω, γ, and Ω ′, γ ′, are shown as blue curves. The associated cutting surfaces,
Σ ′ and Σ, are indicated by orange surfaces.

Ω ′ = B \Ω, and B is an open ball containing Ω. In figure 2, γ ′ encircles the cross-section of
the torus. The tangent vector on γ ′

i is denoted t ′i .
There exist g ‘cutting surfaces’ {Σi}gi=1 in Ω. These are connected orientable Lipschitz

surfaces satisfying Σi ⊂ Ω. Each cutting surface in Ω has boundary ∂Σi = γ ′
i . In figure 2, Σ

is the cutting surface of the cross-section of the torus. Each Σi ‘cuts’ the corresponding γi
cycle at only one point. The unit normal vector on a cutting surface is denoted nΣi , oriented
as γi. With this choice just described, it holds that t ′i = nΣi ×n. Analogously, {Σ ′

i }
g
i=1 are the

cutting surfaces in Ω ′, with ∂Σ ′
i = γi. In figure 2, Σ ′ is the surface that spans the hole of the

torus.

2.2. Hodge decomposition

We will make extensive use of the Hodge decomposition in multiply connected domains (e.g.
[13–17]). This states that any vector field Q ∈ L2(Ω)3 can be decomposed as

Q= curlA+∇ϕ +ρ,

where A is a vector field, ϕ is a scalar function and ρ is a vector field in the space of Neumann
harmonic fields, defined as

H (Ω) =
{
ρ ∈ L2 (Ω)3 : curlρ= 0, divρ= 0 in Ω; ρ ·n= 0on ∂Ω

}
.

Moreover, if curlQ= 0, then it follows that A= 0. For a simply connected domain, H(Ω) =
{0}, so the topology of a multiply connected domain is encoded in H(Ω). We now describe
how to characterize the basis H(Ω) in terms of the cycles and cutting surfaces introduced
above.

We have that dim(H(Ω)) = g and, following [18], a basis {ρ}gi=1 can be constructed where
ρi = ∇̃ϕi, for ϕ ∈ H1(Ω \Σi), with the following properties:

∆ϕi = 0 in Ω \Σi,

∂nϕi = 0 on ∂Ω,

[[∂nϕi]]Σi
= 0,

[[ϕi]]Σi
= 1,

5



J. Phys. A: Math. Theor. 56 (2023) 435701 D MacTaggart and A Valli

where [[·]]Σi denotes the jump acrossΣi. The notation ∇̃ϕi refers to the extension of this quant-
ity to L2(Ω)3. We discuss how this extension relates to the topology of Ω in appendix A.
Analogous definitions apply for harmonic fields in Ω ′.

With this construction of the basis ofH(Ω), we can now perform calculations. Here, we are
going to derive an orthogonality result that will be important later. For brevity, we will only
outline the key steps and direct the reader to other work containing auxiliary results that are
required for the derivation. InΩ, letX be a divergence-free vector field, tangent to the boundary,
and let Y be a curl-free vector field. Now, writing X= curlA, for some vector potential A, we
have

ˆ
Ω

X ·Y d3x=
ˆ
Ω

curlA ·Y d3x=
ˆ
∂Ω

n×A ·Y d2x, (6)

where the last integral follows from Green’s identity with curlY= 0.
Now consider two fields A1 and A2 in Ω with curlA1 ·n= curlA2 ·n= 0 on ∂Ω. Alonso-

Rodríguez et al [17], by expressing the tangential traces of these fields in terms of the basis
vectors of H(Ω) and H(Ω ′), derived the following relation

ˆ
∂Ω

A1 ×n ·A2 d
2x=

g∑
i=1

αiµi −
g∑

i=1

βiδi, (7)

where

αi =

˛
γi

A1 · ti dx, βi =

˛
γ ′
i

A1 · t ′i dx,

δi =

˛
γi

A2 · ti dx, µi =

˛
γ ′
i

A2 · t ′i dx.

For our problem, we identify A1 := A and A2 := Y. It is clear that

βi =

ˆ
Σi

X ·nΣi d
2x, µi = 0,

following the application of Stokes’ theorem. Substituting these results into equation (6) leads
to the orthogonality relation

ˆ
Ω

X ·Y d3x=
g∑

i=1

(˛
γi

Y · ti dx
)(ˆ

Σi

X ·nΣi d
2x

)
. (8)

This identity was used by MacTaggart and Valli [6] to generalize classical helicity to mul-
tiply connected domains (equation (2)). We will also make use of equation (8) in generalizing
relative helicity to multiply connected domains.

Finally, we note that we will also make use of the fact that the basis functions satisfy

˛
γj

ρi · tj dx= δij,

for each i,j = 1, . . . ,g. We will expand upon this property in appendix A.

6
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3. General definition of relative helicity

Definition 1. Let Ω⊂ R3 be a multiply connected domain as defined above. Consider
divergence-free fields B and B ′ in Ω such that B ·n= B ′ ·n= f on ∂Ω. Denote the vector
potentials of B and B ′ as A and A ′ respectively. The general definition of relative magnetic
helicity, is given by

HR =

ˆ
Ω

(A+A ′) · (B−B ′) d3x−
g∑

i=1

(˛
γi

(A+A ′) · ti dx
)

×
(ˆ

Σi

(B−B ′) ·nΣi d
2x

)
. (9)

Remark 2. It is clear that equation (9) reduces to equation (2) when B is everywhere tangent
to ∂Ω and B ′ is set to zero. Thus, the classical helicity H is contained within HR.

Theorem 3. HR given in definition 1 is gauge-invariant and, assuming fu= 0 on ∂Ω, is con-
served in time under ideal MHD.

Proof. We split the proof into two parts: gauge-invariance and time-conservation.

3.1. Part 1: gauge-invariance

The gauge-invariance of relative helicity follows primarily from the fact that the definition
is based on B−B ′, which is everywhere tangent to ∂Ω. We now show that the particular
combinationA+A ′ (which appears in bothHR

2 andH
R) is not important for gauge-invariance,

and that any linear combination of A and A ′ will do. We thus replace A+A ′ in definition 1
by L(A,A ′) = αA+βA ′, for α, β ∈ R, and denote this modified form of the helicity by HR

L.
Clearly, HR

L reduces to HR when α= β = 1. Later, we will show that the α= β = 1 case is
selected as a natural consequence of the physics considered.

Suppose we have two vector potentials A and A⋆ of B and two vector potentials A ′ and A ′
⋆

of B ′. Then

HR
L (A,A ′)−HR

L (A⋆,A ′
⋆)

=

ˆ
Ω

[α(A−A⋆)+β (A ′ −A ′
⋆)] · (B−B ′) d3x

−
g∑

i=1

(˛
γi

[α(A−A⋆)+β (A ′ −A ′
⋆)] · ti dx

)(ˆ
Σi

(B−B ′) ·nΣi d
2x

)
= 0.

This result follows as since curl[α(A−A⋆)+β(A ′ −A ′
⋆)] = 0 inΩ, div(B−B ′) = 0 inΩ and

(B−B ′) ·n= 0 on ∂Ω, we can make use of the orthogonality relation (8). To summarize, HR
L

is gauge-invariant without any additional assumptions on B or B ′ (or their vector potentials).

3.2. Part 2: conservation in time

Laurence and Avellaneda [12] showed that HR
1 could be extended to multiply connected

domains subject to a suitable choice of B ′ and gauge conditions. In the following, we assume
no gauge conditions or particular choices of B ′, and the only constraint will be that of impos-
ing closed and line-tied boundary conditions. In other words, as in Laurence and Avellaneda
[12], we adopt

7



J. Phys. A: Math. Theor. 56 (2023) 435701 D MacTaggart and A Valli

B ·n= B ′ ·n= f, given and fixed in time,

u ·n= 0, if B ·n= 0,

u= 0, if B ·n ̸= 0.

The above boundary conditions for the velocity field can be encapsulated in the expression
fu= 0, and, as we will show, this expression is a crucial condition for HR to be conserved
in time under ideal MHD if no extra conditions are imposed on the magnetic field. We note,
in passing, that the boundary condition fu= 0 is also assumed, among others, in Finn and
Antonsen [11].

To begin with, we will consider the time variation of HR
L and show that this must reduce to

HR. With B ′ and A ′ being fixed in time, we have

dHR
L (t)
dt

= α

ˆ
Ω

∂A
∂t

· (B−B ′) d3x+
ˆ
Ω

(αA+βA ′) · ∂B
∂t

d3x

−α

g∑
i=1

(˛
γi

∂A
∂t

· ti dx
)(ˆ

Σi

(B−B ′) ·nΣi d
2x

)

−
g∑

i=1

(˛
γi

(αA+βA ′) · ti dx
)(ˆ

Σi

∂B
∂t

·nΣi d
2x

)
.

Let us evaluate the four terms on the right-hand side in turn. Since ∂B/∂t= curl(u×B) in
Ω, we have curl(∂A/∂t−u×B) = 0 in Ω, therefore

∂A
∂t

= u×B+∇ψ +

g∑
j=1

δjρj,

for some scalar function ψ and δj ∈ R ( j = 1, . . . ,g). Using this result, the first term is
equal to

α

ˆ
Ω

∂A
∂t

· (B−B ′) d3x= α

ˆ
Ω

u×B+∇ψ +

g∑
j=1

δjρj

 · (B−B ′) d3x

=−α
ˆ
Ω

(u×B) ·B ′ d3x

+α

g∑
j=1

δj

ˆ
Σj

(B−B ′) ·nΣj d
2x, (10)

having used that
´
Ω
∇ψ · (B−B ′) d3x= 0 (e.g. [4]) and that

´
Ω
ρj · (B−B ′) d3x=´

Σj
(B−B ′) ·nΣj d

2x (e.g. [6]), since B−B ′ is a divergence-free and tangential vector field.
The second term takes the valueˆ

Ω

(
αA+βA ′) · ∂B

∂t
d3x=

ˆ
Ω

(
αA+βA ′) · curl(u×B) d3x

=

ˆ
Ω

(
αB+βB ′) · (u×B) d3x+

ˆ
∂Ω

(
αA+βA ′) · [n× (u×B)] d2x

= β

ˆ
Ω

(u×B) ·B ′ d3x+
ˆ
∂Ω

(
αA+βA ′) · [(B ·n)u− (u ·n)B] d2x

= β

ˆ
Ω

(u×B) ·B ′ d3x+
ˆ
∂Ω

(
αA+βA ′) · fu d2x. (11)

8
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The third term is equal to

−α

g∑
i=1

(˛
γi

∂A
∂t

· ti dx
)(ˆ

Σi

(B−B ′) ·nΣi d
2x

)

=−α
g∑

i=1

˛
γi

u×B+∇ψ +

g∑
j=1

δjρj

 · ti dx


×
(ˆ

Σi

(B−B ′) ·nΣi d
2x

)
=−α

g∑
i=1

(˛
γi

(u×B) · ti dx
)(ˆ

Σi

(B−B ′) ·nΣi d
2x

)

−α

g∑
j=1

δj

ˆ
Σj

(B−B ′) ·nΣj d
2x,

having used that
¸
γi
∇ψ · ti dx= 0 for each i = 1, . . . ,g, and that

¸
γi
ρj · ti dx= δij for each

i, j = 1, . . . ,g.
Observe that on the boundary ∂Ω we have B= n×B×n+ fn and that ti ×u is a normal

vector, therefore

(u×B) · ti = (ti ×u) ·B= (ti ×u) · fn= (n× ti) · fu.

Thus we conclude that the third term is given by

−α

g∑
i=1

(˛
γi

∂A
∂t

· ti dx
)(ˆ

Σi

(B−B ′) ·nΣi d
2x

)

=−α
g∑

i=1

(˛
γi

(n× ti) · fu dx

)(ˆ
Σi

(B−B ′) ·nΣi d
2x

)

−α

g∑
j=1

δj

ˆ
Σj

(B−B ′) ·nΣj d
2x. (12)

Before tackling the fourth term, we require the preliminary result,ˆ
Ω

B ·ρi d3x=
ˆ
Ω

B · ∇̃ϕi d3x=
ˆ
Ω\Σi

B ·∇ϕi d3x

=

ˆ
∂Ω\∂Σi

(B ·n)ϕi d2x+
ˆ
Σi

B ·nΣi d
2x

=

ˆ
∂Ω

f ϕi d
2x+
ˆ
Σi

B ·nΣi d
2x.

Now, with f being given and fixed in time,ˆ
Σi

∂B
∂t

·nΣi d
2x=

d
dt

ˆ
Σi

B ·nΣi d
2x=

d
dt

ˆ
Ω

B ·ρi d3x

=

ˆ
Ω

∂B
∂t

·ρi d3x=
ˆ
Ω

curl(u×B) ·ρi d3x

=

ˆ
∂Ω

[n× (u×B)] ·ρi d2x=
ˆ
∂Ω

fu ·ρi d2x,

9
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as n× (u×B) = fu. Therefore, the fourth term is given by

−
g∑

i=1

(˛
γi

(αA+βA ′) · ti dx
)(ˆ

Σi

∂B
∂t

·nΣi d
2x

)

=−
g∑

i=1

(˛
γi

(αA+βA ′) · ti dx
)(ˆ

∂Ω

fu ·ρi d2x
)
. (13)

Adding equations (10)–(13), we have

dHR
L (t)
dt

= (β−α)

ˆ
Ω

(u×B) ·B ′ d3x+
ˆ
∂Ω

(αA+βA ′) · fu d2x

−α

g∑
i=1

(˛
γi

(n× ti) · fu dx

)(ˆ
Σi

(B−B ′) ·nΣi d
2x

)

−
g∑

i=1

(˛
γi

(αA+βA ′) · ti dx
)(ˆ

∂Ω

fu ·ρi d2x
)
. (14)

To eliminate the first term on the right-hand side of equation (14), we set α= β. Since the
resulting coefficient becomes just a scaling factor, we take α= β = 1, and so HR

L reduces to
HR. To eliminate the remaining terms on the right-hand side of equation (14), we set fu= 0 on
∂Ω, and so

dHR

dt
= 0.

This completes the proof of theorem 3. □

4. Concluding remarks

In this work, we have generalized relative magnetic helicity to multiply connected domains
of very general topology. We have shown that equation (9) satisfies criteria (1) and (2) from
the end of the Introduction, namely that the general definition reduces to the classical case
where B is tangent to ∂Ω (and B ′ can be ignored) and that the definition is gauge-invariant
and conserved in time under ideal MHD (subject to natural boundary conditions). Further,
there are no conditions imposed on B or B ′ (or their vector potentials) in equation (9), beyond
the standard magnetic boundary conditions B ·n= B ′ ·n= f ̸= 0. Based on this last point, we
expect the generalized form of relative helicity to be particularly useful for future theoretical
work, such as the constraint of helicity conservation on magnetic relaxation.

In reference to criterion (3), notice that HR reduces to HR
2 , the Finn–Antonsen formula (5),

upon the imposition of the condition
ˆ
Σi

(B−B ′) ·nΣi d
2x= 0, (15)

for i = 1, . . . ,g. It is interesting to note that although themore general expression,HR
L, is gauge-

invariant, this reduces to HR when imposing conservation in time, and both gauge-invariance
and time-conservation are needed for any quantity to be considered an invariant of ideal MHD.
This provides an explanation for why the integrand of the Finn–Antonsen formula has its

10
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particular form. For the sake of completeness, we note that, as discussed earlier, HR
1 follows

from HR by imposing both equation (15) and the condition A×n= A ′ ×n on ∂Ω. Finally,
we note that (15) is necessary for this last condition, and the proof is given in appendix B.
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Appendix A

Here we elucidate on the connections between algebraic topology and vector fields in multiply
connected domains and, in particular, the characterization of the space of harmonic fields. This
material is not normally presented in a style that is immediately recognizable for a fluid dynam-
ics/plasma physics audience, something which we hope to remedy shortly. First, however, we
list some other works that would be useful for those interested in studying the relationship of
topology to fluid dynamics and MHD.

A very readable account of the application of homology to MHD is given in Blank et al
[13]. The orthogonality relation (8) is derived in this work by a different method, but there
is no discussion of helicity as the work predates the introduction of helicity by Woltjer [1]!
Cantarella et al [14] provide a clear introduction to theHodge decomposition inR3, and this is a
good starting place for readers new to this subject. Amore technical approach is provided in the
monograph byAlonsoRodríguez andValli [15], which focusses on computing electromagnetic
fields in multiply connected domains.

In this paper, we have ‘cut’ our domains in order to perform calculations, and this is a typical
approach (e.g. [15, 18, 19]). However, cuts need not be introduced a priori to characterize the
space of harmonic fields H(Ω), and we will now follow the general approach of Ghiloni [16]
(in a much more condensed form). First, let us begin with some fundamental results.

Theorem 4 (de Rham). The first homology group and the first de Rham cohomology group
are finitely generated and have the same rank, that is given by the genus g (equivalent to the
first Betti number of Ω).

This theorem describes two groups. The first homology group is generated by g (equival-
ence classes) of non-bounding cycles inΩ. In this work, we have labelled these cycles {γi}gi=1.
Their equivalence classes {[γi]}gi=1 are generators of the first homology group. We speak of
equivalence classes because deformations of the γi, that do not change the topology of the
curves, have no effect (these are topological objects).

The dual description of homology is cohomology, and the first de Rham cohomology group
is generated by (equivalence classes of) loop fields in Ω, which are curl-free vector fields that
cannot be written as gradients inΩ. It is these loop fields that we will use to construct the basis

11
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of H(Ω). These fields also provide the extension of gradients to L(Ω)3, which we mentioned
in section 2.2.

Theorem 5. A set of generators of the first de Rham cohomology group is given by the equi-
valence classes of g loop fields ρ̂i such that

˛
γj

ρ̂i · tj dx= δij,

where δij is the Kronecker delta.

Proof. It is enough to show that the ρ̂i are linearly independent. Suppose that we have∑
i

αi [ρ̂i] = 0,

for αi ∈ R, which is equivalent writing∑
i

αiρ̂i =∇χ,

for some scalar function χ. It is clear that integrating on γj leads to

0=
˛
γj

∑
i

αiρ̂i · tj dx= αiδij = αj.

Although we will use these loop fields to characterize H(Ω), they are not yet in a
suitable form, i.e. although they are curl-free, they need to also be made divergence-
free and everywhere tangent to the boundary. Let us denote ωi to be the solution of the
Neumann problem

∆ωi = divρ̂i in Ω,

∇ωi ·n= ρ̂i ·n on ∂Ω.

This construction allows us to find a suitable projection of the loop fields to be divergence-free
and everywhere tangent to the boundary.

Theorem 6. The spaceH(Ω) is finite dimensional with dimension g. A basis is given by ρi =
ρ̂i −∇ωi, for i = 1, . . . ,g.

Proof. In theorem 5, we showed that the ρ̂i are linearly independent. Since ρi and ρ̂i differ
only by a gradient, it is clear that the ρi must also be linearly independent.

Let ρ ∈H(Ω). Its equivalence class [ρ] is an element of the first de Rham cohomology
group, hence we can write

[ρ] =
∑
i

αi [ρ̂i] , ρ=
∑
i

αiρ̂i +∇χ,

12
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where χ satisfies

∆χ =−
∑
i

αidivρ̂i =−
∑
i

αi∆ωi in Ω,

∇χ ·n=−
∑
i

αiρ̂i ·n=−
∑
i

αi∇ωi ·n on ∂Ω.

Hence,

∇χ =−
∑
i

αi∇ωi,

and so

ρ=
∑
i

αiρi.

This procedure shows how the basis of H(Ω) connects directly to fundamental results in
algebraic topology and how the topology of the domains that we have considered for helicity
calculations is encoded in H(Ω).

Appendix B

In multiply connected domains, finding A ′ such that curlA ′ = B ′ in Ω with A ′ ×n= A×n
on ∂Ω needs the compatibility conditions

divB ′ = 0 in Ω , divτ (A×n) = B ′ ·n on ∂Ω, (B.1)

where divτ is the surface divergence on ∂Ω, and

ˆ
Ω

B ′ ·ρi d3x+
ˆ
∂Ω

(A×n) ·ρi d2x= 0, i = 1, . . . ,g. (B.2)

Conditions (B.1) are satisfied as

divτ (A×n) = curlA ·n= B ·n= f = B ′ ·n on ∂Ω.

The first term in (B.2) readsˆ
Ω

B ′ ·ρi d3x=
ˆ
Ω

B ′ · ∇̃ϕi d3x=
ˆ
Ω\Σi

B ′ ·∇ϕi d3x

=−
ˆ
Ω\Σi

(divB ′)ϕi d
3x+
ˆ
∂Ω\∂Σi

B ′ ·nϕi d2x

+

ˆ
Σi

B ′ ·nΣi d
2x

=

ˆ
∂Ω

f ϕi d
2x+
ˆ
Σi

B ′ ·nΣi d
2x. (B.3)

13
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The second term in (B.2) readsˆ
∂Ω

(A×n) ·ρi d2x=
ˆ
∂Ω

(A×n) · ∇̃ϕi d2x=
ˆ
∂Ω\γ ′

i

(A×n) ·∇ϕi d2x

=−
ˆ
∂Ω\γ ′

i

divτ (A×n) ϕi d
2x

+

˛
γ ′
i

(A×n) ·nΣi dx

=−
ˆ
∂Ω

curlA ·nϕi d2x+
˛
γ ′
i

(n×nΣi) ·A dx

=−
ˆ
∂Ω

B ·nϕi d2x−
˛
γ ′
i

ti ·A dx

=−
ˆ
∂Ω

f ϕi d
2x−
ˆ
Σi

curlA ·nΣi d
2x

=−
ˆ
∂Ω

f ϕi d
2x−
ˆ
Σi

B ·nΣi d
2x. (B.4)

Inserting (B.3) and (B.4) into (B.2) reveals that the necessary conditions to be satisfied in the
choice of B ′, for HR

1 in multiply connected domains, are
ˆ
Σi

B ′ ·nΣi d
2x=

ˆ
Σi

B ·nΣi d
2x,

for i = 1, . . . ,g.
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