

Wang, Y., Zhang, P., Sun, M., Lu, Z., Yang, Y., Tang, Y. , Qian, J., Li,
Z. and Zhou, Y. (2023) Uncovering bugs in code coverage profilers via
control flow constraint solving. IEEE Transactions on Software
Engineering, 49, pp. 4964-4987. (doi: 10.1109/TSE.2023.3321381)

This is the author version of the work. There may be differences between
this version and the published version. You are advised to consult the
published version if you wish to cite from it:
https://doi.org/10.1109/TSE.2023.3321381

https://eprints.gla.ac.uk/307318/

Deposited on 26 September 2023

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

https://doi.org/10.1109/TSE.2023.3321381
https://doi.org/10.1109/TSE.2023.3321381
https://eprints.gla.ac.uk/307318/
http://eprints.gla.ac.uk/

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

Uncovering bugs in code coverage profilers
via control flow constraint solving

Yang Wang, Peng Zhang, Maolin Sun, Zeyu Lu, Yibiao Yang,
Yutian Tang, Junyan Qian, Zhi Li, Yuming Zhou

Abstract—Code coverage has been widely used as the basis for various software quality assurance techniques. Therefore, it is
of great importance to ensure that coverage profilers provide reliable code coverage. However, it is challenging to validate the
correctness of the code coverage generated due to the lack of an effective oracle. In this paper, we propose an effective approach
based on control flow constraint solving to test coverage profilers and have implemented a coverage bug hunting tool, DOG (finD
cOverage buGs). Our core idea is to leverage inherent control flow features to generate control flow constraints that the resulting
coverage statistics should respect. If DOG identifies any unsatisfiable constraints, it signifies the presence of incorrect coverage
statistics. In such cases, DOG provides detailed diagnostic information about the suspicious coverage statistics for manual
inspection. Compared with the state-of-the-art works, DOG has the following prominent advantages: (1) wide applicability: DOG
eliminates the need for multiple coverage profilers (as required by differential testing) and program variants (as needed in
metamorphic testing), making it highly versatile; (2) unique testing capability: DOG effectively analyzes and utilizes relationships
among available coverage statistics, boosting its testing capabilities; and (3) enhanced interpretability: DOG provides clear control
flow explanations for incorrect code coverage, enabling the localization of suspicious coverage areas. During our testing period
with DOG, we successfully identified and reported 27 bugs in Gcov and llvm-cov, both widely-used coverage profilers. Of these,
17 bugs have been confirmed (11 have been fixed), 3 were deemed expected behaviors by developers, and 7 remain unresolved.
Remarkably, 21 out of 24 unexpected bugs had been latent for over two and a half years, and nearly half of the coverage bugs
(10 out of 24) were undetectable by state-of-the-art coverage profiler validators. These results demonstrate the effectiveness and
importance of using DOG to improve the reliability of code coverage profilers.

Index Terms—Coverage bugs, control flow, constraint solving, coverage profilers, testing

—————————— ◆ ——————————

1 INTRODUCTION
ODE coverage is a metric that measures the extent to
which a test suite exercises a software system [1]. The

code coverage statistics generated by coverage profilers
have been widely adopted in software quality assurance
activities. In recent decades, many studies have used code
coverage to guide efficient and effective testing (e.g., fuzz-
ing testing [2], [3], [4], [5], compiler testing [6], [7], [8], mu-
tant testing [9], [10], regression testing [11], [12], and test
case generation [13], [14], [15]) and debugging (e.g., fault
localization [16], [17], [18] and automated program repair
[19], [20], [21]). The accuracy of generated code coverage
statistics is of paramount importance, as incorrect meas-
urements could potentially mislead researchers or devel-
opers in their software engineering practices. Therefore, it
is crucial for coverage profilers to ensure the correctness of
the code coverage statistics they generate.

However, coverage profilers themselves are software
and are prone to errors. It is challenging to validate the

correctness of the generated coverage statistics due to the
lack of an effective oracle. Different from the oracle in
white box testing that verifies the functionality of a pro-
gram, the expected coverage statistics for a coverage pro-
filer cannot be directly obtained or specified via any speci-
fication. Even if we obtain the oracle through heavy man-
ual verification, it still requires a lot of human effort to ex-
amine the correctness of the coverage statistics.

To address the aforementioned challenge, the current
mainstream solutions involve two approaches: differential
testing, utilized in C2V [22], and metamorphic testing,
adopted in Cod [23]. C2V operates under the assumption
that different coverage profilers should yield identical
code coverage statistics for a given input program. By com-
paring the coverage reports generated by multiple cover-
age profilers, C2V can reveal code coverage bugs. On the
other hand, Cod alleviates the oracle problem through a
metamorphic relation. This means that under the identical
profiler, an input program should exhibit the same code
coverage statistics for executed blocks as its path-equiva-
lent variants, which are generated by removing unexe-
cuted statements. Inconsistencies in coverage reports be-
tween an input program and its path-equivalent variants
can then be used to detect bugs. However, despite demon-
strating their capability to reveal real coverage bugs in
popular coverage profilers like Gcov [24] and llvm-cov
[25], both C2V and Cod possess inherent limitations that
impede their effectiveness in defect detection, thereby hin-
dering their practical applicability.

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————
• Y. Wang, P. Zhang, M. Sun, Z. Lu, Y. Yang, Y. Zhou are with State Labor-

atory for Novel Software Technology, Nanjing University.
• Y. Tang is with School of Computer Science and Engineering, University of

Glasgow.
• J. Qian is with the Key Lab of Education Blockchain and Intelligent Tech-

nology, Ministry of Education, Guangxi Normal University, and Guangxi
Collaborative Innovation Center of Multi-source Information Integration
and Intelligent Processing.

• Z. Li is with School of Computer Science and Engineering & School of Soft-
ware, Guangxi Normal University

Please note that all acknowledgments should be placed at the end of the paper, be-
fore the bibliography (note that corresponding authorship is not noted in af-
filiation box, but in acknowledgment section).

C

Page 47 of 70 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

• Applicability: C2V must use appropriate alternative
profilers for benchmarking purposes and cannot be
applied when there is only one profiler available (e.g.,
the programming language Cangjie, developed by
Huawei, offers only one coverage profiler). For Cod,
the strategy of path-equivalent variant generation can-
not be employed if there is no unexecuted code to re-
move (e.g., no statement is marked as unexecuted).

• Testing capacity: Inconsistent interpretations of the
same coverage semantics by independently imple-
mented coverage profilers can lead to omissions and
false alarms. For example, when applying C2V, a phe-
nomenon known as the "weak inconsistency" [23]
emerges, where certain complex statements fail to re-
ceive coverage from certain profilers, resulting in
missed bugs. The test space of Cod is limited as it fo-
cuses on the specific mechanism of coverage profilers,
which can lead to underutilization of the rich coverage
statistics of executed statements. Consequently, the re-
sults demonstrate that Cod is notably less effective in
uncovering llvm-cov bugs, accounting for only a small
fraction of all the bugs reported by Cod (3 out of 23).

• Interpretability: Both C2V and Cod rely on text-com-
parison for their analysis. When coverage incon-
sistency is uncovered, they offer limited guidance to
alleviate the burden of manual inspection. Testers are
still required to precisely grasp the program context to
determine the oracle, creating a higher threshold for
bug comprehension, particularly in large programs.
Furthermore, even if some potential bugs are identi-
fied, no interpretation is provided to deduplicate and
reduce them.

In this paper, we introduce control flow constraint solving,
a brand-new effective approach for addressing the oracle
problem in coverage profiler testing. Based on this idea, we
implemented DOG (finD cOverage buGs), a Python3-
based coverage profiler validator that successfully detects
numerous long-standing bugs in Gcov and llvm-cov. For a
given coverage profiler, our core idea is to leverage the
control flow features inside input programs to obtain the
control flow constraints that the resulting coverage statis-
tics should respect. A control flow graph (CFG) serves as
the graph representation of a program that describes the
control flow between the basic blocks in the program dur-
ing execution. A lot of constraints about coverage statistics
are implied in this representation, with which it is possible
to verify the compatibility between coverage statistics of a
set of control-flow-related statements even without a direct
oracle. For example, within a single basic block, all state-
ments should have the same coverage statistics since exe-
cuting the block implies passing all its statements. Addi-
tionally, for an if-statement with two branches, the execu-
tion count of the if-statement should be equal to the sum of
its branches' execution counts (as an execution can only
pass through one of its branches).

At a high level, given an input program with coverage
statistics, DOG proceeds as follows. First, based on the

1 https://github.com/NJUocean/DOG
2 https://zenodo.org/record/8189924

CFG, DOG derives a control dependence graph (CDG) to
depict how one conditional statement governs the execu-
tion of other statements. Then, with the control depend-
ence in CDG, DOG extracts a set of control flow constraints
and checks whether the coverage statistics of relevant
statements in the input program are reasonable. In cases
where constraints are found to be unsatisfiable, DOG of-
fers detailed diagnostic logs to assist testers in confirming
suspicious coverage statistics. Compared with C2V and
Cod, DOG has the following prominent advantages. First,
DOG is applicable for any single coverage profiler, elimi-
nating the need for multiple profilers or path-equivalent
variants as prerequisites. Second, DOG stands out with its
distinctive testing capacity, as it takes a fundamentally dif-
ferent perspective in tackling the oracle problem within
coverage profiler testing. It can effectively leverage availa-
ble coverage statistics of input programs to enhance testing
capabilities. Third, DOG empowers testers with control
flow reasoning, allowing them to interpret why code cov-
erage might be incorrect. This feature greatly facilitates the
manual inspection of unsatisfiable constraints.

In sum, this study makes three main contributions:
• We propose a brand-new method, control flow con-

straint solving, which takes a fundamentally different
perspective to tackle the oracle problem in coverage
profiler testing. This approach has wide applicability,
unique testing capacity, and enhanced interpretability.

• Based on control flow constraint solving, we have im-
plemented a coverage profiler validator named DOG
in Python3. This tool is open-source and publicly avail-
able1, 2, along with the corresponding datasets, empow-
ering interested researchers to freely reproduce or cus-
tomize their experiments.

• We revealed 27 longstanding bugs in two widely used
and well-tested coverage profilers Gcov and llvm-cov.
Among these, 17 bugs got confirmed (11 got fixed), 3
bugs were identified as expected behaviors by devel-
opers, and 7 bugs are still pending. Most notably,
among 24 bugs revealing unexpected behaviors, 21
had been latent for at least two and a half years by the
time we found them, and 10 are completely undetect-
able by the state-of-the-art coverage profiler validators.

The rest of this paper is organized as follows. Section 2
introduces the preliminaries of coverage profiler and con-
trol dependence. Section 3 introduces control flow con-
straint solving formally and describes the implementation
of DOG in detail. Then, our experimental setup and results
are respectively presented in Section 4 and Section 5. After
that, we discuss the issues in practical applications in Sec-
tion 6 and possible threats to the validity of our study in
Section 7. Finally, Section 8 surveys related works and Sec-
tion 9 concludes this paper and outlines the direction for
future work.

2 PRELIMINARIES
Before formally expounding our method, this section will

Page 48 of 70*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

AUTHOR ET AL.: TITLE 3

give a brief introduction to related concepts. Among them,
the coverage profiler is the source of coverage statistics as
well as our test target, and the control dependence plays a
pivotal role in generating coverage constraints. In this pa-
per, the related discussion is based on graph representa-
tion. When referring to a node, it is referring to the corre-
sponding statement(s).

2.1 Coverage profiler of C/C++
A coverage profiler for C/C++ (such as Gcov) is a tool used
to record coverage statistics by collecting runtime infor-
mation. In general, such a profiler has three steps to collect
code coverage at the source level: program instrumenta-
tion, data collection, and coverage profiling. First, probes
are inserted into the input program, which has no impact
on the original execution logic. During the program’s exe-
cution, these probes will collect the raw coverage data re-
quired for the coverage profiler. Finally, with the collected
runtime information, the coverage profiler can generate
coverage statistics for all instrumented statements. Given a
program p and its coverage report, for any statement stmt
in p, we can obtain its coverage statistics= s according to its
corresponding line numbers. s  0 indicates that stmt is ex-
ecuted s times, while s = −1 indicates that the coverage of
stmt is not recorded.

2.2 Control flow graph
CFG has rich control flow information which is the starting
point to control flow constraints. CFG is usually built in the
unit of function so we adapt a definition of the function-
level CFG from existing literature [26].
Definition 1. (Control Flow Graph) A CFG Gf = (Nf, Ef, EN-
TRY, EXIT) is a labeled directed graph in which:
— Nf is a set of content nodes that represent statements

in a function. Ef is a set of edges that represent the
control flow between these content nodes;

— Nf is partitioned into two subsets NfB and NfP. Each
node nb in NfB corresponds to statements in a basic
block and has only one successor. Each node np in NfP
corresponds to a conditional statement and has at
least two distinct successors and attributes “T” (true)
or “F” (false) associated with the outgoing edges;

— the unique start node ENTRY is considered the ex-
ternal condition that determines the execution of the
function, and it has two distinct successors: the first
node in the CFG and the EXIT node. The unique stop
node EXIT has no outgoing edge representing the
end of execution;

— for any node n ∈ Nf, n is reachable from ENTRY and
there exists a path from n to EXIT.

For the program presented in Fig. 1(a), Fig. 1(b) gives the
CFG of the function “main”. In addition, CFG also marks
the line numbers of related statements for each node, ac-
cording to which the coverage statistics of each content
node can be obtained from the coverage report.

2.3 Control dependence graph
Control dependence underlies many program analysis
and transformation techniques. In this paper, the defi-
nition of control dependence to follow is the following
classic notion [27].
Definition 2. (Control Dependence) Let x and y be nodes
in CFG Gf. y is control-dependent on x iff:
— there exists a directed path from x to y with any z in

path (excluding x and y) post-dominated by y;
— x is not post-dominated by y.
If y is control-dependent on x then x must have more

than one exit. Following one specific exit E always results
in y being executed, while taking other exits may result in
y not being executed. Accordingly, one of the control con-
ditions of y’ execution is that x takes a particular value such
that x exits from E. In Fig. 1(b), node 3 is control-dependent
on ENTRY and the corresponding control condition is that
ENTRY takes the value True.

However, it is not easy to directly extract control de-
pendence from a CFG. For example, node 8_9 is not con-
trol-dependent on node 4 even if it is on the “F” branch of
node 4, because statements in lines 8 and 9 will be executed
no matter what the result of the condition in line 4 is. More-
over, multiple nodes that are control-dependent on the
same node may also correspond to different control condi-
tions. Therefore, when dealing with foundational issues of
control dependence, researchers often identify control

3

4 5 6

8 9

EXIT

F T

ENTRY
T

F

3 8 9 4

5 6

T

r1

r2

T

ENTRY

1: #include<stdio.h>
2: int main(){
3: int a=2;

4: while (a<10){

5: a=a+1;

6: printf(“loop\n”);

7: }

8: printf(“exit\n”);

9: return 0;

10: }

(a) source code (b) CFG (c) CDG

Fig. 1. An illustrating example of source code, CFG, and CDG. (a) is source code, (b) and (c) give the CFG and CDG of the “main” function.

Page 49 of 70 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

dependences from CFG with the assistance of post-domi-
nance and present them in the form of CDG [27]. We follow
that practice here and base our presentation on such a def-
inition of the CDG.
Definition 3. (Control Dependence Graph) A CDG Gd =
(Nd, Rd, Ed, ENTRY) generated from a CFG Gf = (Nf, Ef, EN-
TRY, EXIT) is also a labeled directed graph in which:
— Nd is a subset of Nf representing all possible content

nodes that can be executed, and if a node is in Nf but
not in Nd, then it is a dead node and will not be exe-
cuted under any conditions;

— Rd is a set of region nodes that have nothing to do
with the semantics of the program. They are added
to summarize the set of control conditions and group
all content nodes with the same set of control condi-
tions together;

— Ed is a set of edges that, together with Rd, represent
the control dependence between content nodes: for
content nodes X and Y, if Y is control-dependent on
X, there exists a region node Z having one incoming
edge from X labeled with the associated control con-
dition (“T” or “F”) and one outcoming edge to Y;

— ENTRY is defined in the same way as in Gf, determin-
ing the execution of the function, hence it must be
identified as the root of Gd. As the end of Gf, EXIT is
traversed whether the function is executed or not, so
it does not involve any control dependence and will
not show up in Gd.

From Gd, we can analyze the control-flow-context for each
content node (i.e., control dependence involving this node)
as thoroughly as possible. Fig. 1(c) shows the CDG of func-
tion “main” where content nodes are solid while region
nodes (i.e., r1 and r2) are dotted. Content nodes that are

control-dependent on a certain node under the same con-
trol condition will be grouped by a region node. Different
from content nodes, the coverage of a region node refers to
the number of times the corresponding control condition is
met and can be obtained from an agent which is a child
content node with an in-degree of 1 as such a node is exe-
cuted only if this control condition is met. For example, the
control condition of the execution of node 5_6 is that the
predicate expression of node 4 takes the value True, and
the coverage statistic of r2 (i.e., the number of times that the
predicate expression of node 4 evaluates to True) is the
same as that of node 5_6. Thus, from Fig. 3(c), we can easily
know node 8_9 is control-dependent on ENTRY rather
than node 4 and has the same control-flow-context as node
3. Both node 8_9 and node 3 can act as agents of r1, and the
agent of r2 is node 5_6.

3 APPROACH
In this section, we first show the framework of control flow
constraint solving and illustrate how it works in practice
with an example bug. Then, we formally introduce the core
ideas of our method. Finally, we propose DOG, an auto-
mated validator for exposing coverage bugs, and explain
the specific details in two algorithms.

3.1 Framework
To systematically and effectively expose coverage bugs, we
propose a brand-new method called control flow con-
straint solving for testing coverage profilers. It aims to help
developers expand the application scenarios of coverage
profiler validation and reduce the human burden of iden-
tifying bugs. Fig. 2 shows the framework of our approach,

Five steps of our testing framework
Identification of control

dependence
Generation of control

flow constraints Constraint Solving Log diagnostic
information Manual inspection

SMT

CFG

CDG

Input program

Control flow
regularities

Bug reports

Tester

Control flow
constraints

Control
dependence

Coverage
statistics

Unsatisfiable
constraints

Diagnostic

Coverage
profiler

Fig. 2. The framework of control flow constraint solving

Page 50 of 70*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

AUTHOR ET AL.: TITLE 5

which consists of the following five steps:
Step 1 Identification of control dependence. Given an in-

put program, we focus on its control flow information.
By identifying control dependence between content
nodes, we derive the CDG for each function from the
corresponding CFG.

Step 2 Generation of control flow constraints. With the
control dependence, the control flow constraints which
describe the relationship between the coverage statistics
of graph nodes are generated according to the inherent
control flow regularities.

Step 3 Constraint solving. By instantiating a constraint
with a given set of coverage statistics, we can encode it
as an SMT problem instance. Therefore, the satisfiability
of control flow constraints can be checked with the help
of an SMT solver.

Step 4 Logging diagnostic information. Each unsatisfiable
constraint can correspond to a potential coverage bug.
To facilitate manual inspection, we log diagnostic infor-
mation which includes the coverage statistics of the
nodes involved in the solving process and the relation-
ship between them.

Step 5 Manual inspection. Facing a large number of un-
satisfiable constraints that may point to the same

underlying bug, testers confirm the oracle, deduplicate
them with the help of diagnostics, and then report these
confirmed and deduplicated potential bugs to develop-
ers. Only in this step, manual intervention is required.

3.2 Illustrating example
In the whole approach mentioned above, Steps 2 to 4 em-
body the core idea of control flow constraint solving,
which will be illustrated using a bug example. Fig.3 shows
how our method uncovers an llvm-cov bug (#48771 [53])
that is not found by existing methods. Fig. 3(a) and Fig. 3(b)
are respectively the coverage report generated by Gcov
and llvm-cov. They annotate each line of the original pro-
gram with a line number and the corresponding coverage
statistic in a different format. As highlighted in Fig. 3(b),
llvm-cov wrongly reported that line 13 was executed 4
times. This bug is missed by existing methods since Gcov
does not provide the corresponding coverage statistic of
line 13 for C2V to compare and there are no unexecuted
statements for Cod to remove. However, DOG can uncover
it by analyzing control dependence. Fig. 3(c) and Fig. 3(d)
give the CFG and CDG of the function “foo”, respectively.
For the convenience of presentation, we mark the coverage
statistics for each node in Fig. 3(d). The numbers in the up-
per-right corner of the content nodes are the coverage

EXIT

2

3 4

F

T

ENTRY

TF

6

7 8 9 10 11 12 13

14 15 16

T T T

6: 1: void foo(int v,int w){ 1|6| void foo(int v,int w){

-1: 2: int i; 2|6| int i;
6: 3: if (w) { 3|6| if (w) {
2: 4: goto do_default; 4|2| goto do_default;

-1: 5: } 5|2| }
4: 6: switch(v){ 6|4| switch(v){
1: 7: case 0: 7|1| case 0:
1: 8: i=27; 8|1| i=27;
1: 9: break; 9|1| break;
1:10: case 1: 10|1| case 1: (c) CFG of “foo”
1:11: i=8; 11|1| i=8;
1:12: break; 12|1| break;

6

7
8 9

10
11 12 13 14

15 16

2 3

4

6

6

6

6

4 2

4 2

4

4

411

1 1

r1

r3
r2

r4 r5 r6

T

T

T
T

T

F

ENTRY

-1:13: default: 13|4| default:
4:14: do_default: 14|4| do_default:
4:15: i=10; 15|4| i=10;
4:16: break; 16|4| break;

-1:17: } 17|4| }
6:18: } 18|4| }
:19: 19| |
1:20: int main(){ 20|1| int main(){

-1:21: int i; 21|1| int i;
7:22: for (i=0;i<6;i++){ 22|7| for (i=0;i<6;i++){
6:23: if (i< 4) 23|6| if (i<4)
4:24: foo(i,0); 24|4| foo(i,0);

-1:25: else 25|2| else
2:26: foo(i,1); 26|2| foo(i,1);

-1:27: } 27|6| }
-1:28: } 28|1| }

(a) Coverage report by Gcov (b) Coverage report by llvm-cov (d) CDG of “foo”

Fig. 3. An example showing how our method uncovers an llvm-cov bug (#48771) that is not found by existing methods. (a) and (b) are the
coverage reports generated by Gcov and llvm-cov for the same input where coverage statistics and line numbers are listed in the first two
columns in different order. The coverage of line 13 is wrongly marked as 4 (it is 2 actually) by llvm-cov. (c) is the CFG of function “foo”, and

(d) is the CDG derived from (c). The edges from region nodes to agents are also shown as dashed lines.

Page 51 of 70 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

statistics of those nodes, referring to the executions of re-
lated statements, which can be obtained from coverage re-
ports directly. The numbers in the upper-left corner of the
region nodes are the coverage statistics of the region nodes.
Additionally, we mark the edges from region nodes to
their agents as dashed lines. For an object x (which can be
a statement or a node), we use Cov(x) to represent its cov-
erage statistics. Thus, the process of revealing this bug
through analyzing the control-flow-context around node 6
can be presented as the following steps:

Generation of control flow constraints. Given the CDG
of function “foo”, we generate control flow constraints ac-
cording to the specified semantics. As can be seen, node 6,
which corresponds to a switch-statement with a default la-
bel on the sixth line, has one father region node (i.e., r2) and
three child region nodes (i.e., r4, r5, and r6). Any result of
node 6 will cause a case node to be passed. Therefore, we
have the following control flow constraint:

𝐶𝑜𝑣(𝑛𝑜𝑑𝑒 6) = 𝐶𝑜𝑣(𝑟4) + 𝐶𝑜𝑣(𝑟5) + 𝐶𝑜𝑣(𝑟6) (1)

Constraint solving. To check the satisfiability of Eq. (1),
we determine the coverage statistics of each node with the
coverage statistics and agency relationship. Accordingly,
we know that:

𝐶𝑜𝑣(𝑛𝑜𝑑𝑒 6) = 4 (2)

𝐶𝑜𝑣(𝑟4) = 𝐶𝑜𝑣(𝑛𝑜𝑑𝑒 7_8_9) = 1 (3)

𝐶𝑜𝑣(𝑟5) = 𝐶𝑜𝑣(𝑛𝑜𝑑𝑒 10_11_12) = 1 (4)

𝐶𝑜𝑣(𝑟6) = 𝐶𝑜𝑣(𝑛𝑜𝑑𝑒 13) = 4 (5)

Considering Eq. (2) to (5), the relevant coverage statistics
obviously do not satisfy the constraint represented by Eq.
(1) (this checking procedure can be achieved by being con-
verted into an SMT-solving problem instance, which will
be introduced in Section 3.3.3).

Logging Diagnostic Information. Among nodes 6, r4, r5,
and r6, we will try to further infer the most suspicious
nodes by checking whether their coverage statistics cause
other constraints to be unsatisfiable. As a result, only r6 is
involved in another unsatisfiable constraint:

𝐶𝑜𝑣(𝑛𝑜𝑑𝑒 14_15_16) = 𝐶𝑜𝑣(𝑟3) + 𝐶𝑜𝑣(𝑟6) (6)

𝐶𝑜𝑣(𝑛𝑜𝑑𝑒 14_15_16) = 4 (7)

𝐶𝑜𝑣(𝑟3) = 𝐶𝑜𝑣(𝑛𝑜𝑑𝑒 4) = 2 (8)

𝐶𝑜𝑣(𝑟6) = 𝐶𝑜𝑣(𝑛𝑜𝑑𝑒 13) = 4 (9)

As a result, it is node 13, the agent of r6, whose coverage
statistic results in two control flow constraints (Eq. (1) and
Eq. (6)) to be unsatisfiable. Therefore, node 13 is blamed as
the most suspicious. Finally, the diagnostic information
shown in Fig. 5 will be logged for testers to understand,
classify, and report the bug (details of diagnosis are shown
in Section 3.2.4).

3.3 control flow constraint solving
This subsection introduces in detail control flow constraint
solving in four parts: insights, control flow regularities,
constraint solving, and diagnosis strategy.

3.3.1 Insights
In the process of validating coverage statistics, program-
mers are required to analyze executions of statements from
scratch along the control flow. When the control conditions
are ambiguous, testers of developers need to analyze
which coverage statistic is most likely to be wrong and
even insert counting statements to determine the oracle. By
tracing the control flow in the CFG and CDG of real pro-
grams, we obtain the following three main observations:
• Insight 1: Control conditions determine whether the con-

trolled statements are executed.
A statement is executed only when the correspond-

ing control condition is met. As a result, statements
whose execution dependents on the same control con-
ditions will share the same coverage statistics, but this
doesn't necessarily hold in reverse.

• Insight 2: Control flow is traceable.
In a CFG without unexpected exits, the control flow

must consistently traverse from the ENTRY point to
the EXIT point, and it does not arbitrarily increase or
decrease without valid reasons. Consequently, we can
observe that control flow enters and exits a node an
equal number of times.

• Insight 3: The coverage statistics involved in more than one
unsatisfiable constraint are more likely to be incorrect.

The coverage statistics of a single node can be in-
volved in the solving of different control flow con-
straints. Consequently, if an individual coverage sta-
tistic is incorrect, it can render more than one control
flow constraint unsatisfiable simultaneously. That is
to say, wrong coverage statistics are more likely to be
perceived from different perspectives.

Based on the above insights, we propose the core concept
of control flow constraint solving to automate the manual
verification of coverage statistics as much as possible. We
summarize six control flow regularities according to In-
sight 1 and Insight 2 and heuristically locate the incorrect
coverage statistics with Insight 3, which will be elaborated
in detail in the following sections.

3.3.2 Control flow regularities
Given a program p, through program analysis, we can not
only obtain the control flow information within each func-
tion but also the call relationships between functions.
Based on this information as well as insight 1 and insight
2, Table 1 briefly summarizes six control flow regularities,
each serving different objectives. The regularity SB targets
the consistency of coverage statistics of statements within
a specific content node. The regularity SF depicts the con-
sistency of coverage statistics of content nodes that share
the same father region nodes. The regularities IL and ON
concentrate on the control flows into and out of content
nodes. The last two regularities FCL and FEL focus on the
relationship between the coverage statistics of functions
and function calls/exits.

The detailed specifications of these six control flow reg-
ularities are as follows:

SB (Same-Block). If a content node n corresponds to k
statements (stmti, 1≤i≤k) in the source program, we have:

Page 52 of 70*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

AUTHOR ET AL.: TITLE 7

𝐶𝑜𝑣(𝑛) = 𝐶𝑜𝑣(𝑠𝑡𝑚𝑡1) = ⋯ = 𝐶𝑜𝑣(𝑠𝑡𝑚𝑡𝑘)

A content node corresponds to adjacent statements within
a single basic block or a conditional statement. Therefore,
they should have consistent coverage statistics. Satisfying
the regularity SB is also the premise of obtaining coverage
statistics for each content node from the coverage report.
For example, in Fig. 3(c), associated statements of each con-
tent node have consistent coverage statistics so that the
node coverage can be obtained.

SF (Same-Fraternity). If there are m content nodes (ni, 1
≤i≤m) sharing the same parents in CDG, we have:

𝐶𝑜𝑣(𝑛1) = ⋯ = 𝐶𝑜𝑣(𝑛𝑚)

The parent-child relationship in CDG exists only between
a region node and its father/child content nodes, represent-
ing control dependence between these content nodes. We
also define a brother relationship to capture the peer rela-
tionships between content nodes: for any two content
nodes, if their execution depends on the same control con-
ditions, they are considered brother nodes to each other
and will have the same number of executions regardless of
the order in the source program. A node and all its brothers
make up a fraternity and all fraternities are mutually ex-
clusive. Since the region nodes summarize the control con-
ditions, brother nodes should have the same father region
nodes in CDG. For example, in Fig. 3(d), node 2 and node
3 are brother nodes forming a fraternity of size two. How-
ever, node 4 and node 14_15_16 are not brother nodes be-
cause node 14_15_16 has one more parent region node r6
which means that node 14_15_16 can be executed under
more control conditions (the predicate expression of node
3 takes the value True and the default-case of node 4 is
caught) than node 4 (the predicate expression of node 3
takes the value True).

IL (Inflow-Lossless). If content node n has a father re-
gion nodes (Fi(n), 1≤i≤a) in CDG, we have:

𝐶𝑜𝑣(𝑛) = ∑ 𝐶𝑜𝑣(𝐹𝑖(𝑛))
𝑎

𝑖=1

In the perspective of control dependence, the control flow
into a content node comes from those content nodes it is
control-dependent on and not from the father nodes in
CFG. Every time a content node is executed, there is one

corresponding control condition, on which it depends, be-
ing met. Since the coverage statistics of region nodes rec-
ord the number of times each control condition is met,
Cov(n) should be equal to the sum of the coverage statistics
of all its father region nodes. For example, Eq. (6) in Section
3.2 is a control flow constraint of type IL.

ON (Outflow-Nonincreasing). If content node n has b
child region nodes (Cj(n), 1≤j≤b) in CDG, we have (by in-
sight 2):

𝐶𝑜𝑣(𝑛) ≥ ∑ 𝐶𝑜𝑣 (𝐶𝑗(𝑛))
𝑏

𝑗=1

If n controls the execution of other content nodes, those
nodes may get control flow from n and be executed. For
example, Eq. (1) in Section 3.2 is generated according to
ON. However, there is no control dependence between a
content node and conditional branches sometimes. As
there is no suitable example in Fig. 3, let us return to Fig. 1.
As stated in Section 2.2, node 8_9 on the “F” branch of node
4 is control-dependent on ENTRY instead of node 4. Node
4 only governs the execution of node 5_6 on the “T” branch.
Therefore, in the perspective of control dependence, we
adopt a similar expression as IL, but with inequalities. The
exact form of control flow constraints generated depends
on the control-flow-context of n (e.g., for a switch-node, the
equal sign can only be taken when controlling the execu-
tion of a default-case (like node 6 in Fig. 3(c)) because any
result of the switch-node will cause a case to be executed).

FCL (Function-Call-Lossless). For any function fx, we
have:

𝐶𝑎𝑙𝑙𝑒𝑑(𝑓𝑥) = 𝐶𝑜𝑣(𝑓𝑥)

Called(fx) is the number of times fx is called (it defaults to 1
for function “main”) which can be calculated by summing
the coverage statistics of the call sites. Cov(fx) is the number
of function executions which is given in the coverage re-
port on the line of the function declaration. Take the func-
tion “foo” in Fig. 3 as an example. “foo” is called in lines 24
and 26 of the source code so that Called(foo) is the sum of
Cov(24) and Cov(26). Besides, the coverage of “foo” is given
in line 1 so that Cov(fx) is 6.

FEL (Function-Exit-Lossless). For any function fx, we
have:

TABLE 1
CONTROL FLOW REGULARITIES

Name Full Name Object Description

SB Same-Block Any content node n Statements related to n should have consistent coverage statistics.

SF
Same-
Fraternity

Content nodes having the
same parents in CDG

Nodes sharing the same father region nodes have the same control condi-
tions and thus have the same coverage statistics.

IL Inflow-Lossless Any content node n
The coverage statistic of a content node is equal to the sum of the coverage
statistics of all its father region nodes.

ON
Outflow-Nonin-
creasing

Any content node n
The coverage statistic of a content node is greater than or equal to the sum
of the coverage statistics of all its child region nodes.

FCL
Function-Call-
Lossless

Any function fx A function executes as many times as it is called.

FEL
Function-Exit-
Lossless

Any function fx A function exits as many times as it is executed.

Page 53 of 70 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

𝐶𝑜𝑣(𝑓𝑥) = 𝐸𝑥𝑖𝑡(𝑓𝑥)

Cov(fx) is the same as introduced in FCL. Similarly, Exit(fx)
is the number of times a function exits and can be obtained
by analyzing the coverage statistics of potential exits of fx.
Potential exits are some content nodes post-dominated by
EXIT directly. Also, take the function “foo” in Fig. 3 as an
example, it can exit directly from three content nodes
(node 7_8_9, node 10_11_12, and node 14_15_16) which
governs no other nodes so that Exit(fx) is equal to the sum
of coverage statistics of them, i.e., 6.

3.3.3 Constraint solving
With control flow regularities, we can generate six types of
control flow constraints according to control dependence
and function call relationships. Thus, we can solve these
constraints one by one to hunt coverage bugs by checking
whether associated coverage statistics are reasonable. In
this way, we convert the task of coverage profiler testing
into a set of local SMT-solving problems to verify the satis-
fiability of control flow constraints. Specifically, the con-
straint-solving process of a function is progressive. Satisfy-
ing the regularity SB is considered the basis to obtain cov-
erage statistics for content nodes, so we first take one
round of traversal to solve SB-constraints. Next, we trav-
erse all fraternities to solve SF-constraints and choose ap-
propriate agents for region nodes. With available coverage
statistics of graph nodes, the IL-constraint and ON-con-
straint are usually solved individually for each content
node n, but if the coverage statistic of n is not available, we
combine the two constraints as a whole, where n only acts
as a bridge to connect its father region nodes and child re-
gion nodes. After processing all the content nodes, we fi-
nally focus on the function itself to solve its FCL-constraint
and FEL-constraint.

In practice, for any control flow constraint, all nodes in-
volved are referred to as its players, and we can leverage
the coverage statistics of all its players to construct an SMT
problem instance to conduct constraint solving. For exam-
ple, the control flow constraint represented by Eq. (1) in
Section 3.2 has four players nodes 6, r4, r5, and r6. Fig. 4
shows a sample code snippet of how to construct an SMT
problem according to Eq. (1) to (5) in Python3 with z3 [68].
After initializing an SMT solver s (Line 2), we create an in-
teger variable n (Line 3) and an integer array variable cn of
length 3 (Line 4) representing node 6 as well as its three

child region nodes r4, r5, r6. These variables can be associ-
ated and assigned values according to the control flow con-
straint (Line 5) and coverage statistics (Lines 6-9). Finally,
s.check() is called to obtain the result res which is a string
variable “unsat” (Line 10).

3.3.4 Diagnosis strategy
Considering that the six regularities are general ground
features that the coverage statistics should satisfy, once
any control flow constraint is unsatisfiable, on the premise
that the form of constraint is correct, a potential coverage
bug is uncovered, and all players are suspicious until the
true suspects (i.e., the nodes with incorrect coverage statis-
tics) are identified. To determine the suspects as well as
their oracle, it is necessary to understand the context (i.e.,
who the players are, how they relate to each other concern-
ing control dependence as well as their coverage statistics)
of potential bugs, so we provide detailed diagnostic infor-
mation for testers.

It is worth noting that the difficulty of confirming sus-
pects is highly dependent on the complexity of the context,
and we make a slight difference between the different
types of constraints. An SB-constraint has only one content
node, and if it is unsatisfiable, the node must be the suspect
and the corresponding suspicious coverage statistics are
easy to confirm by examining the adjacent statements. As
for FCL-constraints, they usually refer to the interactions
between functions so that corresponding unsatisfiable con-
straints need to be inspected manually with the function
call relationships. Therefore, for these two types of unsat-
isfiable constraints, we prefer to just log diagnostic infor-
mation and leave them to human hands. The rest four reg-
ularities SF, IL, ON, and FEL, focusing on the compatibility
of coverage statistics of multiple nodes in a function, are
called compatibility-related regularities. For the simplicity of
the presentation, in the following, we use compatibility-re-
lated constraints and compatibility-related bugs to denote con-
straints and potential bugs associated with compatibility-
related regularities. Since the coverage statistics of players
of different compatibility-related constraints within the
same function can intersect, we can perform heuristic in-
ference of suspects according to insight 3: a node whose

1-Switch-case-
7,9

1-Switch-case-
10,12

4-Switch-
default-13,13

4-Passive-
14,16

21 1 4

IL IL

4-Switch-6,6

ON ON ON

2-Goto-4,4

Fig. 5. Graphic diagnostic information of llvm-cov bug #48771 which
describes two unsatisfiable constraints in function “foo”. It is derived
based on the CDG. For each region node, we record its coverage

statistic. For each content node, we record its coverage statistic, se-
mantic type, and the start and end line numbers of the related state-

ments.

1 from z3 import *

2 s = Solver()

3 n = Int('n') # node 6

4 cn = IntVector('cn', 3) # r4, r5, and r6

5 s.add(Sum([c for c in cn]) == n) # Eq.(1)

6 s.add(n == 4) # Eq.(2)

7 s.add(cn[0] == 1) # Eq.(3)

8 s.add(cn[1] == 1) # Eq.(4)

9 s.add(cn[2] == 4) # Eq.(5)

10 res = str(s.check())

Fig. 4. A sample code snippet showing how to encode Eq. (1) to (5) in
Section 3.2 to an SMT problem instance in Python3 with z3.

Page 54 of 70*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

AUTHOR ET AL.: TITLE 9

coverage statistic is involved in more than one unsatisfia-
ble constraint (either directly or indirectly through agency
relationship) is more likely to be a suspect.

In practice, graphics can better convey information than
text. As shown in Fig. 5, the graphic diagnostic information
of the illustrating bug (llvm-cov bug #48771 [53]) visualizes
its context, which is related to two unsatisfiable compati-
bility-related constraints. It is derived based on the CDG,
where the content nodes are more informative (connected
by dashes are coverage statistics, semantic type, and the
start and end line numbers), and the types of unsatisfiable
constraints (i.e., ON and IL) are marked on the related
edges. As stated in Section 3.2, two unsatisfiable con-
straints have a shared player whose agent node is accused
as a suspect and highlighted with a shadow.

3.4 DOG
Based on control flow constraint solving, we have engi-
neered DOG, an automated validator for coverage profil-
ers. This subsection details the underlying procedures of
DOG in Algorithm 1 and Algorithm 2 where Algorithm 1
presents the parameterized pseudocode of DOG and Algo-
rithm 2 presents the implementation of the constraint solv-
ing procedure. Note that any italicized "function" in Algo-
rithm 1 and Algorithm 2 represent abstract procedures ra-
ther than actual functions. In addition to being explicitly
initialized as a set or dictionary, any variable is an abstract
object and is not instantiated by any specific class.

Algorithm 1. The main procedure (Line 1) takes as in-
puts a coverage profiler under test, profiler, and an input
program, program, and finally outputs the diagnostics of all
potential bugs inside program. To perform constraint solv-
ing, we need to obtain the necessary information from pro-
gram. Line 2 leverages profiler to generate the coverage re-
port crp for program which logs the coverage statistics of
each code line. Line 3 performs static analysis of program to
parse control flow information GF containing the CFG of
each function as well as the calling relationships. Line 4
adopts the Lengauer-Tarjan algorithm [28] to compute
dominators to construct the post-dominator tree (PDT) TP
capturing the post-dominance relationships in each func-
tion. Finally, with GF and TP, GD can be built using the
corresponding algorithm [27], from which the CDG of each
function can be easily obtained (Line 5). The set PB is used
to collect the context of all potential bugs in program and is
initialized to an empty set (Line 6). Line 7 initializes an
empty dictionary NC to save coverage statistics of graph
nodes. Lines 8-39 loop in function units to solve control
flow constraints. Control flow constraints on different ob-
jects are solved by calling the function Solving (Lines 14, 20,
28, 31, 34, and 37). If any result is UNSAT, then the diag-
nostic of the unsatisfiable constraint is added to PB (Lines
16, 22, 30, 33, 36, and 39). Lines 9-10 obtain the CFG and
CDG of the current function. Lines 11-18 iterate over all
nodes in GDf, initialize their coverage statistics to -1(i.e.,
unavailable), and further computes the coverage statistics
of the content nodes by checking whether each content
node satisfies SB regularity. Then, since the brother rela-
tion is mutual, we solve SF-constraints in units of fraternity
to avoid redundant computation and determine agents

and coverage statistics of region nodes (Lines 19-26). Next,
DOG further traverses all content nodes to solve IL-con-
straints and ON-constraints (Lines 27-33). Afterward, the
FCL-constraint and FEL-constraint of the current function
can be solved (Lines 34-39). Finally, DOG logs diagnostics
of all potential bugs after inferring the suspects (Lines 40).

Algorithm 2. The function Solving (Line 1) performs con-
straint solving based on the type of regularity, object, CDG,
and the coverage statistics of graph nodes and returns re-
sult, the result of constraint solving, as well as related di-
agnostic information diagnostic, if any (Lines 11 and 41). We
default that the constraint is satisfiable, so result and diag-
nostic are initialized to SAT and None respectively (Lines 2-

Algorithm 1 DOG’s pseudocode

m P
 1 procedure DOG(profiler, program):

2 crp ← GenerateCoverage(profiler, program)
3 GF ← StaticAnalyze(program)
4 TP ← Lengauer-Tarjan(CFG)
5 GD ←DependenceAnalyze(CFG, TP)

 6 PB ← Ø /* potential bugs */
7 NC ← Dict() /* coverage statistics of graph nodes */
8 foreach function f in program do
9 GFf ← ObtainCFG(GF, f)

10 GDf ←ObtainCDG(GD, f)
 /* check SB regularity and get node coverage */

11 foreach node n in GDf do
12 NC[n] ← -1
13 if n is a content node then
14 res, diag ← Solving(SB, n, GDf, NC)
15 if res = UNSAT then
16 PB.add(diag)
17 else
18 NC[n] ← ComputeCov(n, crp)

 /* solve SF-constraints for fraternities */
19 foreach fraternity ft in GDf. do
20 res, diag ← Solving(SF, ft, GDf, NC)
21 if res = UNSAT then
22 PB.add(diag)
23 elif ft has a single father region node fr then
24 if there is a node t in ft and NC[t] ≠ -1 then
25 The agent of fr ← t
26 NC[fr] ← NC[t]

 /* solve IL/ON-constraints for content nodes */
27 foreach content node n in GFf do
28 res, diag ← Solving(IL, n, GDf, NC)
29 if res = UNSAT then
30 PB.add(diag)
31 res, diag ← Solving(ON, n, GDf, NC)
32 if res = UNSAT then
33 PB.add(diag)

 /* solve FCL/FEL-constraints for function */
34 res, diag ← Solving(FCL, f, GDf, NC)
35 if res = UNSAT then
36 PB.add(diag)
37 res, diag ← Solving(FEL, f, GDf, NC)
38 if res = UNSAT then
39 PB.add(diag)
40 InferAndLog(PB)

Page 55 of 70 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

3). Line 4 initializes an empty set P to collect all the players
involved in the solving procedure, which can be deter-
mined according to regularity and object (Lines 5-28). For
regularity SB, object is a single content node and there are
no other players so we can directly check the consistency
of coverage statistics of related statements (Lines 6-11); for
regularity SF, object is a fraternity, and all nodes inside are
players (Lines 12-14); for regularities IL/ON (Lines 15-22),
object is a content node, the players also include the agents
of all the father/child region nodes of it; for regularities
FCL/FEL (Lines 23-28), object is a function and the players
are the ENTRY node and its callers/exits. The ENTRY node
can represent the function itself, the callers are some con-
tent nodes from the other function calling object, and the
exits are those content nodes that can go directly to the
EXIT node. Next, we initial an SMT solver solver and create
an integer variable for each player, whose values depend
on the corresponding coverage statistics (Lines 29-35).
Then, we generate the control flow constraint constraint
which can associate these variables together to finish the
construction of the SMT problem instance. (Lines 36-37). If
the result result is unsatisfiable, the context of the current
potential bug will be extracted as diagnostic information
diagnostic (Lines 38-40). Finally, both result and diagnostic
will be returned (Line 41).

4 EXPERIMENTAL SETUP
In this section, we describe in detail the experimental
setup. First, we list the research questions under inves-
tigation. Then, we introduce the experimental environ-
ment, subject coverage profilers under test, and the
tools used in our study. After that, we characterize the
test suite and present the preprocessing approach. Fi-
nally, we introduce our bug reduction strategy.

4.1 Research questions
In this paper, we study the following research questions:

RQ1 (Effectiveness of bug finding): Is DOG competent
and effective in exposing coverage bugs?

The purpose of RQ1 is to investigate whether DOG is ef-
fective to validate real coverage profilers. Our original in-
tention is to propose a general and effective testing method,
so it is expected that DOG applies to both hand-written
and randomly generated test programs and can uncover
new real coverage bugs in different independently devel-
oped coverage profilers. The answer to RQ1 enables us to
understand whether it is worthwhile to use our new
method in practice.

To answer RQ1, we assess the effectiveness of DOG by
measuring the ability to uncover real bugs in different cov-
erage profilers. For one thing, we leverage both handwrit-
ten and randomly generated input programs to reveal new
coverage bugs; for another, we reproduce coverage bugs
from the code snippets in the bug reports reported by the
existing methods to examine the ability of DOG to detect
coverage bugs in the earlier versions.

RQ2 (Significance of uncovered bugs): How significant
are the bug-finding results?

The purpose of RQ2 is to investigate whether our testing

work makes sense since meaningful bug-finding results
(e.g., long-latent and hard-to-find bugs) are more im-
portant for the quality assurance of coverage profilers than
bugs that are not intended to be fixed. The answer to RQ2
enables us to understand the uniqueness of DOG's detec-
tion capabilities.

To answer RQ2, we evaluate the significance of these
bugs found by DOG from two aspects: cross-version lifecy-
cle and uniqueness. For lifecycle, we wonder when these
bugs are introduced and whether they exist in the subse-
quent versions. Therefore, we select nine releases for each
subject coverage profiler to observe how the incorrect cov-
erage statistics change from version to version. For unique-
ness, we wonder if DOG has a unique capability to reveal
hard-to-find bugs, so we investigate whether our new bugs
can be detected by the state-of-the-art coverage profiler

Algorithm 2 Constraint Solving
 1 function Solving(regularity, object, cdg, cov):

2 result ← SAT
3 diagnostic ← None
4 P ← Ø /* players */
5 switch regularity do
6 case SB do /* object is a content node */
7 P.add(object)
8 if coverage statistics are inconsistent then
9 result ← UNSAT

10 diagnostic ← Extract (cdg, cov, P, regularity)
11 return result, diagnostic
12 case SF do /* object is a fraternity */
13 foreach content node n in object do
14 P.add(n)
15 case IL do /* object is a content node */
16 foreach father region node frn of object in cdg do
17 P.add(agent of frn)
18 P.add(object)
19 case ON do /* object is a content node */
20 foreach child region node crn of object in cdg do
21 P.add(agent of crn)
22 P.add(object)
23 case FCL do /* object is a function */
24 P.add(ENTRY of cdg)
25 P.add(callers of object)
26 case FEL do /* object is a function */
27 P.add(ENTRY of cdg)
28 P.add(exits of object)
29 solver ← InitializeSolver()
30 foreach play p in P do
31 vp ← IntegerVariable()
32 if cov[p] ≠ -1 then
33 solver.addConstraint(“vp = cov[p]”)
34 else
35 solver.addConstraint(“vp ≥ 0”)
36 constraint ← ConstrctConstraint(P, regularity)
37 solver.addConstraint(constraint)
38 if solver.check() is unsatisfiable then
39 result ← UNSAT
40 diagnostic ← Extract (cdg, cov, P, regularity)
41 return result, diagnostic

Page 56 of 70*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

AUTHOR ET AL.: TITLE 11

validators C2V and Cod.
RQ3 (Usefulness of Diagnostics) How useful are diagnos-

tics for facilitating manual inspection?
The purpose of RQ3 is to investigate whether our diag-

nostic is useful in facilitating manual inspection. We
mainly focus on potential compatibility-related bugs as
they only involve different nodes within a single function,
apply to our heuristic inference strategy, and account for
the vast majority (84.33% and 95.5% of the potential bugs
found in manual input programs and random input pro-
grams). Their diagnostics are expected to not only visually
describe the context of potential compatibility-related bugs
concisely but also point out the specific incorrect coverage
statistics as accurately as possible. The answer to RQ3 ena-
bles us to understand to what extent diagnostics help test-
ers reduce manual overhead.

To answer RQ3, we measure the usefulness of the diag-
nostic of potential compatibility-related bugs from two di-
mensions: reduction of manual overhead and hit rate of in-
ference. For the former, we calculate the ratio of the size of
the diagnostic (measured as the number of associated
nodes or related lines of code) to that of the whole function.
For the latter, we manually check the innocence of all sus-
pects inferred and calculate the percentage of them that
does involve incorrect coverage statistics.

RQ4 (Contribution of Regularities): How do these six
types of regularities contribute to the bug-finding results?

The purpose of RQ4 is to investigate how these regular-
ities work in uncovering real coverage bugs. The regulari-
ties we summarize are general ground features that the
coverage statistics should satisfy. Constraints from them
reveal potential bugs from different perspectives of control
flow and infer suspects cooperatively. The answer to RQ4
enables us to know the patterns in which regularities work
so that testers can be inspired to adjust the testing strategy
according to specific testing goals in the future.

To answer RQ4, we understand their contribution by an-
alyzing the extent of their involvement in coverage profiler
testing. For this purpose, we construct a bug database con-
taining these newly uncovered coverage bugs discovered
by DOG and those revealed by existing methods in the ear-
lier versions. Accordingly, we determine the set of bugs
each regularity can individually detect by only solving the
constraints that come from it. In addition, we also show the
contribution of compatibility-related regularities to heuris-
tics inference by analyzing the intersection of bugs that can
be detected by different compatibility-related constraints.

4.2 Hardware and subjects
In this paper, our evaluation was conducted on a Linux
server (running on 64-bit Ubuntu 18.04.6 with Linux kernel
4.15.0-210-generic) with Intel(R) Xeon(R) Gold 5117
@2.00GHz (48 cores) and 128GB RAM. We choose as sub-
jects the two most popular C code coverage profilers Gcov-
10.2.0 and llvm-cov-11.0.0, which are the latest release ver-
sion at the time when our study started at the end of 2020.
They are adopted for the following reasons:
• They have been widely used in the community of
3 As stated in Section 3.1, the five steps of our testing framework are: Identification of control dependence, Generation of control flow constraint,

Constraint solving, Log diagnostic information, and Manual inspection

software engineering.
• They are integrated into well-known production com-

pilers, i.e. GCC and Clang, respectively.
• They are used as the subject profilers in prior studies

and thus we can easily and fairly make a comparison
with previous approaches.

Therefore, it is of great importance to uncover new bugs in
these two widely used and well-tested coverage profilers

4.3 Third-party tools support
Based on control flow constraint solving, we implemented
DOG, a coverage profiler validator, in Python3. Just like
any other programmers, we adopt some mainstream Py-
thon3 libraries like os [66] (for interacting with the operat-
ing system) and re [67] (for regular expression operations)
to support our functions. At a high level, the framework of
our method can be divided into five steps3, three of which
are supported by the following third-party tools: Under-
stand [29] (for Step 1), Z3 [30] (for Step 3), and Graphviz
[64] (for Step 4).
• Understand. Understand is a static analysis tool for

maintaining, measuring, and analyzing critical or large
code bases. Our static analysis of the input programs
is implemented based on Understand. With its Python
API, we can get the control flow information of the
functions and the call relationship between the func-
tions.

• Z3. Z3 is a high-performance theorem prover that has
been wildly applied in a variety of SMT tasks. We lev-
erage the z3 [68] package in Python3 to perform con-
straint solving. The satisfiability of control flow con-
straints can be checked by converting them to SMT
problem instances as stated before.

• Graphviz. Graphviz is an open-source visual graphics
tool from AT&T Research and Lucent Bell Laboratories.
We turn to the corresponding Python3 package, graph-
viz [65], to draw pictures with Python3 syntax for vis-
ualization of diagnostics.

4.4 Test programs
We adopt the same test scenario as the existing works, each
time checking the irrationality in the coverage statistics of
a single program offered by the subject coverage profiler.
In terms of test programs selection, we first look for the ap-
propriate input program from the test suite that comes
with the release of GCC 10.2.0 which is a manual test suite
for GCC compiler testing. There is a total of 38540 C pro-
grams in the subject test suite containing rich program se-
mantics without undefined behaviors. And then, before
performing constraint solving, we go through the follow-
ing steps to filter out inappropriate programs and obtain
coverage statistics and control flow information:
Step 1 Code formatting. Given that many of these manual

programs have inconsistent code styles, we format them
into a unified LLVM style so that there will be no more
than one statement per line and we can obtain statement

Page 57 of 70 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

coverage statistics from line numbers more accurately.
Step 2 Coverage generation. Given any program test.c, we

tried to generate coverage reports test.c.gcov 4 and
test.c.lcov5 for it using Gcov and llvm-cov, respectively.
Programs that fail to obtain a valid coverage report in 5s,
without additional inputs or files, will be discarded.

Step 3 Static analysis. For each test program, we leverage
Understand to analyze its control flow information as
well as function call relationships. This process can be
integrated into the testing process, but for the conven-
ience of reproducing, in advance, we save the infor-
mation of CFG and function call relationships in the
form of files as the input of DOG.

Step 4 Subjective filtration. In practice, we assume that
functions exist independently of each other and interact
through function calls, so we filter those inputs that de-
fine functions inside other functions, or jump between
functions through "setjmp" and "longjmp". Besides, pro-
grams containing goto-statement whose target label is
specified dynamically were also skipped. To facilitate
the manual inspection, we also limit the size of programs:
(1) no more than 5 defined functions, and (2) no more
than 100 lines in source code.

As a result, we finally get 4163 manual programs as our
manual test suite. In addition, following previous studies
[22], [23], we use Csmith [52] to generate 1000 random pro-
grams as a supplement6 . The semantics of random pro-
grams are statically given and they can be correctly parsed.
Accordingly, these random programs do not need to be
subjectively filtered.

4.5 Bug deduplication
During testing, we encountered many kinds of programs
which have at least one potential bug with wrong coverage
statistics. In our opinion, it would be irresponsible to sub-
mit all of them to developers for confirmation. Dozens of
potential bugs may point to the same underlying reason,
so, as testers, we should try our best to use our cognition
to deduplicate them before reporting.

To reduce the difficulty of bug deduplication, we adopt
a two-step classification approach. This categorization aids
testers in manually deduplicating bugs within different
categories. In the classification process, we refer to two fea-
tures, one is the type of control flow regularities violated
by the potential bugs, and the other is the type of incorrect
coverage statistics of the suspects. In the existing works
[22], [23], incorrect coverage statistics are distinguished
into three types (Spurious Marking7, Missing Marking8, and
Wrong Frequency9), and we inherited the same classification
in this paper. After that, testers can deduplicate those po-
tential bugs under the same classification according to the
similarity of the context.

4 gcc -O0 –coverage test.c –o test; ./test;gcov test
5 clang -O0 -fcoverage-mapping -fprofile-instr-generate=test.profraw test.c -o test; ./test; llvm-profdata merge test.profraw -o test.profdata; llvm-cov show -instr-

profile=test.profdata ./file > test.c.lcov
6 --concise --max-struct-fields 5 --max-funcs 2 --max-array-len-per-dim 5 --max-block-depth 3 --max-block-size 2
7 Spurious Marking: unexecuted statements are marked as executed.
8 Missing Marking: executed statements are marked as unexecuted.
9 Wrong Frequency: a statement executed m times is wrongly marked as executed n times where m > 0, n > 0, and m ≠ n.

5 EXPERIMENTAL RESULTS
In this section, we will present and analyze our experi-
mental results to answer the proposed research questions.

5.1 RQ1: Effectiveness of bug finding
For Gcov, DOG reports respectively 194 and 48 unsatisfia-
ble constraints in 117 manual programs and random pro-
grams. For llvm-cov, DOG reports respectively 272 and 120
unsatisfiable constraints in 120 manual programs and 126
random programs. After de-duplication, we reported 27
potential coverage bugs, 13 in Gcov and 14 in llvm-cov, re-
vealing unusual coverage statistics. Table 2 shows the bug
status of all the potential coverage bugs we reported. 17
have been confirmed by developers, 7 are still pending,
and 3 were categorized as expected because the anomalous
coverage statistics found are expected behaviors that the
mechanisms of the coverage profilers could not handle. Ta-
ble 3 summarizes the types of incorrect coverage statistics
of these potential bugs. The potential bugs of both Gcov
and llvm-cov cover all three types where the most frequent
are Wrong frequency (16 out of 27) followed by Suprious
marking (8 out of 27) and Missing marking (3 out of 27).

Table 4 details all the filed bug reports including the sub-
ject profiler, the bug ID, the priority of bugs, the type of
incorrect coverage, the status of bug reports, and the real
status of coverage bugs. All these coverage bugs can be
searched with the corresponding bug ID. For Gcov bugs
that are reported in Bugzilla, “Priority” indicates the prior-
ity that the developer plans to fix the bug, with P1 being
the highest, P5 the lowest. All the Gcov bugs are labeled
with the default priority P3. For llvm-cov bugs which are
managed in GitHub, there are no corresponding labels of

TABLE 2
REAL STATUS OF COVERAGE BUGS

Status Gcov llvm-cov Total
Reported 13 14 27
Confirmed 7 10 17

Fixed 1 10 11
Pending 3 4 7
Expected 3 0 3
Duplicate 0 0 0
Won’t fix 0 0 0

 TABLE 3

TYPES OF INCORRECT COVERAGE STATISTICS
Type Gcov llvm-cov Total

Spurious Marking 1 7 8
Missing Marking 2 1 3

Wrong Frequency 10 6 16

Page 58 of 70*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

AUTHOR ET AL.: TITLE 13

priority, and the report status is also somewhat different
from Gcov bugs. On the one hand, in Bugzilla, “UNCON-
FIRMED” means pending and if it is confirmed as a new
bug, it is marked as “NEW”, and the status will eventually
change to “RESOLVED FIXED” after being fixed by devel-
opers. On the other hand, there are only two statuses
“Open” and “Closed” for bug reports of llvm-cov bugs,
which are equivalent to pending and fixed. Since the status
of bug reports sometimes does not reflect the real status of
bugs, so we validate and unify it based on the comments
of developers and the coverage statistics in subsequent ver-
sions of subjects. Accordingly, even if it is claimed “RE-
SOLVED FIXED” by developers, we identify the true status
of GCC Bug#99443 [59] as Expected.

In addition to finding new bugs, we also study whether
DOG is effective in revealing bugs in earlier versions. C2V re-
ported 42 bugs of Gcov in version 8.0.0, and 28 bugs of llvm-
cov in version 7.0.0. Cod reported 20 bugs of Gcov in version
9.0.1 and 3 bugs of llvm-cov in version 9.0.0. We also validate
them manually and filter out those bugs with a status of
“WONTFIX” or “DUPLICATE” and finally get 62 valid bugs

(39 of Gcov and 23 of llvm-cov). With the code snippets in cor-
responding bug reports, these bugs in earlier versions are re-
produced to verify DOG. As shown in Table 5, DOG can un-
cover 34 and 19 bugs respectively, demonstrating the compre-
hensiveness of DOG's detection capabilities. Those coverage
bugs missed by DOG, where it is hard to conduct valid
constraint solving as there are no enough available cover-
age statistics in the simple code snippets, suggest the
uniqueness of existing methods. When reviewing those
early bugs, Gcov bug #99444 [60] in Fig. 6 is found to be a
reintroduced case of a fixed Gcov bug #85332 [55] (uncov-
ered by C2V in version 8.0.0) as their input programs are
almost the same. The coverage statistic of “case 0:” should
be 1, however, after being marked as “RESOLVED FIXED”,
it changed from 2 to 3, but still incorrect. It makes us sus-
pect that the developers got the root cause wrong and
made a bad fix.

Answer: DOG is effective. It can not only find a substan-
tial number of diverse and new bugs in two well-tested
coverage profilers but also works for revealing bugs in pre-
vious versions.

5.2 RQ2: Significance of uncovered bugs
To understand the significance of our bug-finding, we
measure the 24 unexpected coverage bugs (except 3 ex-
pected bugs #99442 [58], #99443 [59], and #99485 [61]) from
two aspects: lifecycle and uniqueness.

TABLE 4
COVERAGE BUGS FOUND BY DOG

 Profiler ID Priority Type Report Status Bug Status
1 Gcov 99440 P3 Wrong NEW Confirmed
2 Gcov 99441 P3 Wrong NEW Confirmed
3 Gcov 99442 P3 Missing RESOLVED INVALID Expected
4 Gcov 99443 P3 Missing RESOLVED FIXED Expected *
5 Gcov 99444 P3 Wrong NEW Confirmed
6 Gcov 99485 P3 Wrong RESOLVED INVALID Expected
7 Gcov 100938 P3 Wrong NEW Confirmed
8 Gcov 101192 P3 Wrong NEW Confirmed
9 Gcov 101193 P3 Wrong NEW Confirmed

10 Gcov 101554 P3 Wrong UNCONFIRMED Pending
11 Gcov 101569 P3 Wrong UNCONFIRMED Pending
12 Gcov 101618 P3 Wrong RESOLVED FIXED Fixed
13 Gcov 101644 P3 Spurious UNCONFIRMED Pending
14 llvm-cov 48767 - Spurious Closed Fixed
15 llvm-cov 48770 - Spurious Closed Fixed
16 llvm-cov 48771 - Wrong Closed Fixed
17 llvm-cov 48772 - Spurious Closed Fixed
18 llvm-cov 48779 - Missing Open Pending
19 llvm-cov 48782 - Spurious Closed Fixed
20 llvm-cov 48783 - Spurious Closed Fixed
21 llvm-cov 48784 - Spurious Closed Fixed
22 llvm-cov 48827 - Wrong Open Pending
23 llvm-cov 50201 - Wrong Open Pending
24 llvm-cov 50500 - Wrong Open Pending
25 llvm-cov 50610 - Spurious Closed Fixed
26 llvm-cov 50611 - Wrong Closed Fixed
27 llvm-cov 50614 - Wrong Closed Fixed

*: identified by authors

TABLE 5
DOG’S EFFECTIVENESS ON EARLY BUGS
 Gcov llvm-cov

Yes 34 19
No 5 4

Total 39 23

Page 59 of 70 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Lifecycle. We analyze the influence of our bug-finding
on previous versions of coverage profilers. For Gcov, we
consider 9 official release versions from 4.8.5 (released on
June 30, 2015) and later. For llvm-cov, we also consider 9
versions which are from 6.0.0 (released on May 8, 2018)
and later. Fig. 7 shows the lifecycle of unexpected bugs
over versions where the netted bars represent the experi-
ment version of our subjects. Quantitatively, 7 out of 10
Gcov bugs and all llvm-cov bugs were present from the se-
lected earliest version (Gcov 4.8.5 and llvm-cov 6.0.0) and
were not fixed until later versions of the target versions in
our experiments. Specifically, during the tracing process of
Gcov bugs in the 9 versions, we find that even the same
input program has inconsistent coverage statistics in dif-
ferent versions. For the reintroduced bug in Fig. 6, the cov-
erage statistic of “case 0:” is also marked as 5 in version
7.5.0. Meanwhile, the coverage statistic of “return *p0 == 0;”
was also wrongly marked as 2 in earlier versions. Gcov bug
#101569 [63] is also a case of reintroduction whose cover-
age statistics are only completely correct in version 8.4.0.
Since Gcov-4.8.5 was released in June 2015 and llvm-cov-

6.0.0 was released in May 2018, we can conclude that most
Gcov bugs are latent for over five years and all llvm-cov
bugs are latent for over two and a half years.

Uniqueness. We investigate whether our new bugs can
be detected by the state-of-the-art coverage profiler valida-
tors C2V and Cod. By identifying inconsistencies in the
coverage reports expected to be identical, C2V and Cod
found a fair number of bugs in earlier versions of Gcov and
llvm-cov. However, they are not as good as they used to be.
Table 6 shows the effectiveness of existing methods for the
bugs discovered by DOG. For C2V, it still works for all
Gcov bugs, but only less than one-third of llvm-cov bugs
(4/14) can be killed by C2V. The reason is that the mecha-
nism of instrumentation and parsing of llvm-cov tends to
record the number of executions for all code lines. How-
ever, Gcov probably does not provide coverage statistics
for some complex statements. Therefore, some llvm-cov
bugs may be missed by C2V (i.e., “Weak Inconsistency” [23]
mentioned in Section 3.1). Meanwhile, it is noted that Cod
is completely invalid for coverage bugs of both two cover-
age profilers. There may be two reasons: 1) Cod has a

(a) GCov (b) llvm-cov

Fig. 7. Unexpected coverage bugs that affect corresponding release versions of GCov (a) and llvm-cov (b). The abscissa corresponds to the
specific versions and release date. The netted bars represent the versions of our subjects.

1: 1: int doit(int sel, int n, void *p) 1: 1: int doit(int sel, int n, void *p){

-1: 2: { 1: 2: int *const p0 = p;

1: 3: int *const p0 = p; -1: 3:

-1: 4: 1: 4: switch (sel) {

1: 5: switch (sel) { 3: 5: case 0:

-1: 6: { -1: 6: do {

2: 7: case 0: 3: 7: *p0 += *p0;

3: 8: do {*p0 += *p0;} while (--n); 3: 8: } while (--n);

1: 9: return *p0 == 0; 1: 9: return *p0 == 0;

-1:10: 0:10: default:

0:11: default: 0:11: __builtin_abort();

0:12: abort (); -1:12: }

-1:13: } -1:13: }

-1:14: }

(a) Gcov bug #85332 (b) Gcov bug #99444

Fig. 6. Gcov bug #99444 is a reintroduced case of Gcov bug #85332.

7 7

8
9 9

10 10
9 9

0

4

8

12 14 14 14 14 14 14 14

4 4

0

4

8

12

16

Page 60 of 70*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

AUTHOR ET AL.: TITLE 15

different preference for inputs. Cod requires unexecuted
statements to be modified, while DOG tends to find bugs
with inputs having rich execution information as it is more
conducive to performing control flow constraint checking;
2) Cod is more of a targeted testing method. In previous
work, almost all coverage bugs reported by Cod are Gcov
bugs, where half of them have been fixed. That is, Cod tar-
gets specific mechanisms of coverage profilers, and this is
the reason why Cod can achieve zero false positives. Like-
wise, the comprehensiveness of Cod is also limited. The
above results show that DOG has a unique detection abil-
ity to detect bugs that are difficult to be detected by these
existing methods.

Answer: Our bug-finding results are significant. More
than one-third of them cannot be detected by existing
methods. Besides, all the coverage bugs found by DOG
are long-latent for years.

5.3 RQ3: Usefulness of diagnostic
By offering insights into why the coverage statistics seem
unreasonable based on control dependence, our diagnostic
aims to streamline the bug confirmation process and re-
duce the dependency on extensive code understanding.
For compatibility-related bugs, testers can confirm them
by solely reading the provided graphic function-level di-
agnostics (e.g., Fig. 5) rather than comprehending the en-
tire function. The usefulness of such diagnostics can be
measured from the following two aspects:

Reduction of manual overhead. During the manual in-
spection of potential bugs, the manual overhead is roughly
positively correlated to the number of code elements that
need to be reviewed. Hence, we proposed code-element-ratio,
which is the ratio of the number of code elements in a di-
agnostic compared to that of the whole function. The lower
the code-element-ratio, the more cost diagnostic can re-
duce. Moreover, under the same code-element-ratio, the
larger the function size, the more reduction. Table 7 shows
the distribution of the number of code elements of all 8092

manual functions and 2756 random functions, counted in
two ways (content nodes or code lines). In both counting
methods, the overall size of manual functions is signifi-
cantly smaller than that of random functions, with over 80%
of manual functions being only a few lines long.

Due to the difference in function size, we use the number
of code elements corresponding to different quantiles as a
lower bound to analyze the average code-element-ratio of
diagnostics when the function size exceeds a certain size.
Fig. 8 shows the trend of the average code-element-ratio
changing with the lower bound of function size. The ab-
scissa is the quantiles of the function size and the specific
number of code elements corresponding to each quantile
can be seen in Table 7. The points with a lower bound of 0
correspond to the average code-element-ratio of all diag-
nostics. As can be seen, there is a large difference in the av-
erage code-element-ratio for random and manual func-
tions due to different scales (from low to high are 0.32, 0.34,
0.59, and 0.62). However, the general trend of these four
curves is similar. As the lower bound of function size in-
creases, the number of functions beyond that size de-
creases, and the average code-element-ratio goes down in-
dicating that, on average, the relative size of a diagnostic is
decreasing. It is noted that these four curves are relatively
flat in the beginning, as most potential compatibility-re-
lated bugs are not found in too tiny functions. Considering
the wealth of control dependence information inside,
graphic diagnostic has a good reduction in the manual
overhead, especially in large functions.

Hit rate of inference. If a diagnostic has multiple poten-
tial compatibility-related bugs, DOG will infer, as far as
possible, which nodes are most likely to have incorrect cov-
erage statistics. Table 8 shows the statistics of graphic diag-
nostics generated by DOG for the 8092 manual functions

TABLE 6
EXISTING METHODS’ EFFECTIVENESS ON NEW BUGS

Method Testability Bug
Gcov llvm-cov

C2V
√ 10 4
× 0 10

Cod
√ 0 0
× 0 0

Total 10 14

TABLE 7
DISTRIBUTION OF THE NUMBER OF CODE ELEMENTS OF 8092

MANUL FUNCTIONS AND 2756 RANDOM FUNCTIONS

Quantile
Manual functions Random functions
#Node #Line #Node #Line

10% 1 1 2 6
20% 1 2 5 9
30% 2 3 5 12
40% 2 4 7 16
50% 3 5 10 20
60% 3 6 12 25
70% 4 7 16 30
80% 5 8 20 37
90% 8 12 25 49

Fig. 8. The average code-element-ratio of diagnostics when the

functions exceed a certain size. The abscissa is the quantiles of the
function size and the specific number of code elements correspond-

ing to each quantile can be seen in Table 7. Connected by under-
scores in the legend are the type of functions and code element, re-

spectively.

Page 61 of 70 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

16 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

and 2756 random functions in the test suite. As shown in
the first row, when testing Gcov with the manual inputs,
DOG generated 89 graphic diagnostics involving a total of
147 unsatisfiable compatibility-related constraints, and 60
nodes were blamed as suspects by heuristic inference. On
average, each graphic diagnostic contains about two unsat-
isfiable compatibility-related constraints and about one
suspect. To obtain the hit rate of inference, we manually
inspected the generated graphic diagnostics. As shown in
the rightmost column, the hit rate of inference is more than
73% for the manual functions. Erroneous inference mainly
comes from two aspects. First, many functions are small in
size, so the intersection between 2 unsatisfiable compatibil-
ity-related constraints is more likely to have more than one
node, resulting in not only the real suspect but also some
innocent suspicious nodes being blamed. In this case, the
range of suspects is also narrowed, that is, the hit rate will
be higher if the “hit” is defined as the set of potential sus-
pects inferred from a graphic diagnostic including the real
suspect. Second, wrong inferences also come from false
alarms of DOG, which are due to the limitation of the static
analysis ability. The cause of false alarms will be left for
discussion in Section 6.1. In addition, random functions are
less susceptible to the aforementioned two factors and
have a higher hit rate, because they are larger in size and
their static semantics are easier to analyze.

Answer: Our diagnostic is useful in facilitating man-
ual bug inspection by reducing the manual overhead, es-
pecially in large functions, as well as providing suspects
inference with a high hit rate.

5.4 RQ4: Contribution of regularities
In total, based on six control flow regularities, DOG can re-
spectively detect 44 and 33 new and old bugs in both Gcov
and llvm-cov. By analyzing the set of bugs detected by dif-
ferent types of control flow constraints and the relation-
ship between these sets, we can evaluate how these regu-
larities are involved in coverage profiler testing. Since the
number of regularities is more than three, we adopt Upset

plot to show our results. UpSet plot is a data visualization
method first proposed in 2014 [31] and is now frequently
used instead of Venn diagram to show set data with more
than three intersecting sets, especially in life sciences [32].
Upset shows intersections in the matrix with the rows of
the matrix corresponding to the sets and the columns to the
intersections between these sets (or vice versa) where the
size of the sets and the intersections are shown as bar
charts. As shown in Fig. 9, the rows correspond to the bug
sets violating different regularity ranked in set size, and
the columns correspond to the intersections between these
bug sets ranked in degree. The rows in both Fig. 9(a) and
Fig. 9(b) show that constraints from all control flow regu-
larities can uncover real coverage bugs but there is a clear
difference in the size of the sets: compatibility-related con-
straints are oriented towards complex relationships within
functions and uncover more bugs overall, while the FCL-
constraint finds the least number of bugs of both Gcov and
llvm-cov. The rightmost six columns in both Fig. 9(a) and
Fig. 9(b) indicate that all types of constraints have their
unique abilities to reveal some coverage bugs of Gcov and
llvm-cov that cannot be detected by other types so that no
one regularity can be replaced by the others. The rows in
Fig. 9(a) also show that, for Gcov, only the SB-constraint is
orthogonal to the others, and the sets of bugs found by any
two compatibility-related constraints have an intersection,
and there are two bugs even violating three regularities at
the same time. The rows in Fig. 9(b) display that, for llvm-
cov, both FCL and SB constraints are orthogonal to the

TABLE 8
STATISTICS OF GRAPHIC DIAGNOSTICS

Tests #Func Subject #GD* #UCC* #SUS* Hit Rate

Manual 8092 Gcov 89 147 60 73.3%
llvm-cov 109 246 169 78.1%

Random 2756 Gcov 17 33 12 100%
llvm-cov 130 287 136 84.6%

*GD: graphic diagnostic
*UCC: unsatisfiable compatibility-related constraint
*SUS: suspect

(a) 44 Gcov bugs (b) 33 llvm-cov bugs

Fig. 9. Upset plots for the relationship between sets of coverage bugs that can be detected by different types of control flow constraints.

2

1

2

3

1 1

3

1 1

2

9

1

8

9

0.0

2.5

5.0

7.5

10.0

In
te

rs
ec

tio
n

Si
ze

FEL
SF
IL
SB
ON

FCL

051015
Set Size

1

5

4

2

5

2

3

2

4

2

3

0

2

4

In
te

rs
ec

tio
n

Si
ze

IL
FEL
ON
SF
SB

FCL

0510
Set Size

Page 62 of 70*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

AUTHOR ET AL.: TITLE 17

others, and only the bugs detected by FEL have intersec-
tions with those of all other compatibility-related con-
straints. It is not hard to see that FEL contributes the most
to inference.

In the example given in Fig. 3, we successfully infer the
suspects of a coverage bug uncovered by two unsatisfiable
constraints, which are of type IL and ON, respectively. In
addition, to visualize the cooperation of the compatibility-
related regularities more intuitively, Fig. 10 - Fig. 12 give
another three bug examples (llvm-cov bug #49438 [54],
Gcov bug #99441[57] and Gcov bug #88930 [56]) to show
how we find suspicious nodes and infer the suspect, where
from left to right are the segments of coverage report with
incorrect coverage statistics, CDG of the corresponding

function, and the diagnostic information given by DOG.
Fig. 10 is an llvm-cov bug where line 15 is unexecuted but
its coverage statistic is incorrectly recorded as 2, and it can
be uncovered by DOG with ON and FEL. Fig. 11 is a Gcov
bug where the if-statement in line 27 is executed 15 times
but its coverage statistic is incorrectly recorded as 30 (the
relevant semantic information is hidden for ease of presen-
tation), and it can be uncovered by DOG with SF and ON.
Fig 12 is a Gcov bug revealed by C2V in an earlier version
where the if-statement in line 6 is executed once but its cov-
erage statistic is incorrectly recorded as 2, and it can be un-
covered by DOG with IL, SF, and FEL. Specifically, for the
potential bugs uncovered by FEL-constraints, the numbers
before the FEL symbol are the actual number of exits of the

…

19 20
21 22

1816 17 36

r1

r2

24 25
26

23

r3

T

T

-1

0

15

15

T
28 29

27r4 r5

333031 r6

15

1515

15 30

-1

15 30

15

015

120105 105

T F

T

ENTRY

30-If-27,27

SF

15-Passive-
24,26

15 0

15-Passive-
28,29

0-Passive-
33,33

ON ON

15:15: static int bar(void) {

15:18: if (***) {

15:23: for(***;***;***) {

30:27: if(***) {

120:30: While(***)

105:31: ***

-1:32: } else

0:33: ***

-1:34: }
-1:35: }
15:36: ***

-1:37: }

…

(a) Coverage report (b) CDG (c) Diagnostic

Fig. 11. Coverage report, CDG, and diagnostic of Gcov bug #99441. In (a), line 27 is only executed 15 times but is wrongly marked as 30
times.

1| | extern void abort(void)

11

15 16

7 9 10

18

1

3
2

2

1

1

1

r1

r5

r2

r3 r4

T

T

T

F

F

1

2 2

22

ENTRY

1-Entry

EXIT

1-Exit-18,18 2-Exit-15,15 2-Passive-
16,16

2-If-11,11

2 2

ON ON

1-FEL 2-FEL

2| |
3|4| #define f(x) x
4| |
5|1| int main(){
6|1| #if f(1) == f /**/(

 /**/ 1 /**/);

7|1| int x;

8|1| #endif

9|1| x = 0;

10|3| while (x<2){

11|2| if (f

12|2| /**/ (
13|2| /**/ 0 /**/
14|2| /**/))

15|2| abort();

16|2| x++;

17|2| }

18|1| return 0;

19|1| }

(a) Coverage report (b) CDG (c) Diagnostic

Fig. 10. Coverage report, CDG, and diagnostic of llvm-cov bug #49438. In (a), line 15 is not executed but is wrongly marked as executed
twice.

Page 63 of 70 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

18 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

function from each potential exit.
Take Fig. 12 as an example to show the cooperation of

compatibility-related regularities in inference: (1) Node 6
has a brother node 5 with inconsistent coverage so that SF
is violated and the coverage of their parent region node r3
is not available; (2) Since node 4 governs the execution of
both two branches (i.e., r3 and r4), according to ON, the cov-
erage of r3 can be completed as:

𝐶𝑜𝑣(𝑟3) = 𝐶𝑜𝑣(𝑛𝑜𝑑𝑒 4) − 𝐶𝑜𝑣(𝑟2) (10)

Therefore, after completing coverage statistics as much as
possible, it can be known that node 6 also violates IL; (3)
From the perspective of function exit, both node 6 and
node 7 are potential exits. Considering that node 7 is con-
trol-dependent on node 6, Cov(r6) = 1 and Cov(node 6) = 2, it
turns out that the function “foo” exited once from node 6
through another branch. Accordingly, function “foo” is ex-
ecuted once but is recorded as exiting from node 6 and
node 7 once each, causing FEL to be violated. Finally, node
6 is inferred as a suspect for being involved in three unsat-
isfiable compatibility-related constraints.

Answer: All six regularities are valid for finding cov-
erage bugs and no one can be replaced by the others. As
for manual inspection, any two compatibility-related
regularities can work together to infer suspects. Rela-
tively, FCL has weak effectiveness in testing, and FEL
contributes the most to inference.

6 DISCUSSION
In this section, we discuss the causes of false alarms in
practice, the feedback of developers, and the scalability of
control flow constraint solving.

6.1 Causes of false alarms
In this paper, DOG leverages Understand to analyze the
control flow information as well as function call relation-
ships for input programs. Although the test suite has been
preprocessed to avoid complicated situations, there are

still a few unusual cases in manual inputs beyond the static
analysis capabilities of Understand. Fig. 13 shows two typ-
ical code snippets of manual programs leading to false
alarms. In Fig. 13(a), the function “bar” has an alias “foo”,
so when line 7 is executed, it is the function “foo” that gets
called causing the program to exit early. DOG is unable to
handle dynamic information like this yet and still classifies
the statements in lines 7 and 8 as a basic block (i.e., one
content node). In Fig. 13(b), the structure of the switch-
statement and the if-statement is mixed in an unconven-
tional way where the control flow of statements in lines 6
and 7 comes from both the switch-statement in line 2 and
the if-statement in line 4, which cannot be properly parsed
by Understand as well.

Overall, the false positives of DOG mainly come from

1 extern void abort(void);

2 extern void exit(int);

3 void foo(void) {exit(0);}

4 static void bar(void)

5 __attribute__((alias(“foo”)));

6 int main(void) {

7 bar();

8 abort();

9 }

(a) Function alias

1 void foo(int x) {

2 switch(x){

3 case 0:

4 if (0) {

5 printf(“0\n”);

6 case 1:

7 printf(“1\n”);

8 }

9 }

10 }

(b) Mixed control flow context

Fig. 13. Two manual code snippets causing false alarms. Function
“foo” is called by alias in (a), and (b) has mixed control flow context.

 1: 1: void foo(long dx, long dy,

9

10 12 7

6

43

5

r1

r3r2

r4 r5 r6

T

T
F

T
F

T

1

1

1 1

-1

210

0 0 1

0

0 10

ENTRY

0-Passive-

12,12

0-Passive-
10,10

1-Passive-7,7

2-If-6,6

1-ENTRY EXIT

SF

1-FEL

1-FEL

0-FEL

0-FEL

1-Passive-5,5

1-If-4,4

0 =1

0-If-9,9

IL

completion

 int xi, int yi)
-1: 2: {
1: 3: int hints = 0;
1: 4: if(dy != 0 && (dx<=1155)){

1: 5: hints = dy > 0 ? 2:1;

2: 6: if(xi) {

1: 7: hints = 1;

-1: 8: }

0: 9: }else if(dx!=0&&(dy<=0)){

0:10: hints = 2;

-1:11: }else {

0:12: hints = 3;
-1:13: }
1:14: }

(a) Coverage report (b) CDG (c) Diagnostic

Fig. 12. Coverage report, CDG, and graphic diagnostic of Gcov bug #88930. In (a), line 6 is only executed once but wrongly marked as
twice, where the relevant semantic information is hidden for ease of presentation.

Page 64 of 70*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

AUTHOR ET AL.: TITLE 19

the restriction of static analysis. All the six control flow reg-
ularities we propose are general ground regularities that
the coverage statistics should satisfy and there should have
no false alarm during control flow rule checking with pre-
cise control flow information. DOG indeed achieves zero
false alarms for uncovering potential bugs with random
programs whose control flow information can be fully
parsed correctly.

6.2 Developers’ feedback
Overall, developers have confirmed 17 and fixed 11 among
those coverage bugs that we reported. However, the reac-
tion was different between the developers of Gcov and
llvm-cov. For Gcov bugs, the developers are more aggres-
sive, sometimes updating not only the status of a bug re-
port, but also the corresponding reason, and none of the
bugs was downgraded to a priority of P4 or P5. While de-
velopers of llvm-cov tend to fix coverage bugs silently,
leading bugs have only two statuses: pending or fixed.

Among the bugs reported by us, there are altogether 3
expected Gcov bugs since their anomalous coverage statis-
tics are considered by the developers to be expected. Fig.
14 shows the two expected bugs which are directly marked
as “RESOLVED INVALID” by Gcov developers. As shown in
Fig.14(a), a segment error was triggered (Gcov bug #99442),
causing all statements to be marked as unexecuted. This is
expected by developers [58]:

There is no way really to recover from a segfault in a manner
that is suitable for all programs.

Therefore, when a segment error occurs, the coverage sta-
tistics of the executed statements need to be recovered

manually. As Fig. 14(b) shows, according to the program
semantics, the function “free” should be called only once,
but it is executed five times (a total of five times "passed" is
printed). The developer explained that the counting mech-
anism of Gcov can only record the first two times [61]:

Later calls are not counted as counters are already streamed
into GCDA file. Well, I tend to close it as invalid.

Fig. 15 shows the last special expected bug #99443 where
similar to Fig. 14(a), when the program exits from the
abort-statement on line 19, all statements were marked as
unexecuted (the printf-statements on lines 13 and 17 out-
put successfully). It is also a case of the expected behavior
of developers but not documented well, and it is marked
as “RESOLVED FIXED” after being documented. There-
fore, we tend to identify it as an expected bug.

Despite there being still a few bugs that are pending or
waiting to be fixed, developers can get inspiration from
them and are indeed actively fixing bugs so we believe
there will be more bugs to be confirmed or fixed in the fu-
ture. For example, in the comments of Gcov bug #101193
revealed by DOG, the first developer thinks that it is not
related to bitfields, whereas the second developer disa-
grees and intends to fix it in the future [62]:

Actually I suspect it is more related to bitfields and spread
across multiple lines. There is an optimization done early (be-
fore GCOV) in fold-const which combines the above to use and
afterwards. I have a few set of patches which allows to get rid of
most of the optimization in fold-const dealing with this but not
all; This is something which I am going to work towards for
GCC 12 but after the current phiopt work.

-1: 1: #include <x86intrin.h>

-1: 2: #include <stdio.h>

: 3:

-1: 4: extern void abort(void);

: 5:

-1: 6: #ifdef __x86_64__

-1: 7: #define EFLAGS_TYPE unsigned long long int

-1: 8: #else

-1: 9: #define EFLAGS_TYPE unsigned int

-1:10: #endif

:11:

0:12: int main(void) {

0:13: printf(“1\n”);

0:14: EFLAGS_TYPE flags = 0xD7; /*111010111b*/

-1:15: __writeeflags(flags);

0:16: flags = _readeflags();

0:17: printf(“2\n”);

0:18: if ((flags & 0xFF) != 0xD7)

0:19: abort();

0:20: printf(“3\n”);

-1:21: #ifdef DEBUG

-1:22: printf(“PASSED\n”);

-1:23: #endif

-1:24: }

Fig. 15. Expected Gcov bug #99443. It was marked as “RESOLVED
FIXED” by the developer but identified as an expected bug by us ac-

cording to the comments of the developer.

-1: 1: #include <stdio.h>

-1: 2: char fixed_regs[0x00080000];

2: 3:

0: 4: int main(void) {

0: 5: printf(“PASSED\n”)

0: 6: return fixed_regs[0x000ff000];

-1: 7: }

(a) Gcov bug #99442

-1: 1: #include<stdio.h>

2: 2: void free(void *ptr) {

2: 3: printf(“passed\n”);

2: 4: }

: 5:

1: 6: void *foo(void) {

1: 7: printf(“return\n”);

1: 8: return 0;

-1: 9: }

:10:

1:11: int main(void) {

1:12: void *p = foo();

1:13: free(p);

1:14: return 0;

-1:15: }

(b) Gcov bug #99485

Fig. 14. Two expected Gcov bugs that were directly marked as “RE-
SOLVED INVALID” by developers.

Page 65 of 70 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

20 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

6.3 Scalability
As smaller programs are easier for testers and developers
to comprehend, replicate, validate, and subsequently ad-
dress within the profilers, our experiment was centered
around using small programs as inputs to detect coverage
bugs. Moreover, considering that we adopt more program
analysis techniques than existing works, we will perform a
comprehensive analysis of the automation cost and man-
ual effort involved to gain insight into its scalability:
• Automation cost. Automation costs primarily arise

from two key phases: program analysis and constraint
solving. In the phase of program analysis, we em-
ployed two algorithms to generate PDT and CDG for
each function, respectively. For PDT generation, we
utilize the Lengauer-Tarjan algorithm, which effi-
ciently finds dominators in the CFG of a function with
a time complexity of O(Vα(V)) [28], where V represents
the number of content nodes and α is the functional
inverse of Ackerman's function. With PDT and CFG in
hand, the subsequent algorithm allows us to analyze
control dependence with a time complexity of O(V2)
[27]. Moving on to the constraint-solving phase, as
shown in Table 9, we generate O(V) control flow con-
straints for each function and all of them are simple
linear constraints. To avoid the complexity of con-
straint-solving instances exploding as the program
size increases, we only solve one control flow con-
straint at a time. During this revision, we additionally
employ Csmith to generate 100 random programs with
more than 1000 lines to explore the relationship be-
tween total constraint-solving costs and program size.
Fig. 16 illustrates a linear relationship between con-
straint-solving time and program size, especially in
terms of content nodes. One possible reason is that
many lines outside the function are not related to con-
straint solving, such as macros and global variables.
Additionally, we find that the overall time consump-
tion of testing llvm-cov exceeds that of testing Gcov
because llvm-cov provides a greater number of cover-
age statistics to be checked.

• Manual effort. Manual efforts come from the manual
inspection of test results. The difficulty of manual in-
spection increases as the size increases, and the extent
of this increase is difficult to measure. In practice, pro-
cessing the testing results by hand takes much longer
time than the automated execution during the previ-
ous testing process. However, our diagnostic infor-
mation can greatly enhance inspection efficiency by
providing control flow reasoning for the presence of
unusual coverage statistics, especially in large func-
tions (refer to Section 5.3 for further details). For in-
stance, even statements that are widely separated and
seemingly unrelated in terms of control dependencies
can be connected through our method, revealing
brother relationships (potential bugs uncovered by SF-
constraints can be easily confirmed and validated with
diagnostics).

7 THREATS TO VALIDITY
We consider the most important threats to the internal and
external validity of our study. Internal validity is the de-
gree to which conclusions can be drawn about the causal
effect of independent variables on the dependent variables.
External validity is the degree to which the results of the
research can be generalized to the population under study
and other research settings.

7.1 Threats to internal validity
The threats to internal validity mainly come from two as-
pects. First, our algorithm requires the coverage statistics
of graph nodes, but sometimes the coverage statistics of
nodes are not available, causing some bugs to be missed

(a) Measured in lines (b) Measured in content nodes
Fig. 16. The relationship between the total time of constraint solving and the size of programs, when program size is measured in different

ways.

TABLE 9
THE NUMBER OF CONTROL FLOW CONSTRAINTS OF EACH

TYPE GENERATED FOR A FUNCTION
 SB SF IL ON FCL FEL Total

Number V ≤V V V 1 1 O(V)
* V is the number of content nodes of the CFG of the function

Page 66 of 70*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

AUTHOR ET AL.: TITLE 21

during coverage constraint solving. In order to reduce this
threat, for graph nodes whose coverage statistics are not
available, their coverage statistics are regarded as non-neg-
ative integer variables in constraint solving. Besides, we
also try to narrow their range based on the available cov-
erage statistics of other nodes in related contexts (e.g., Fig.
12(c)). Second, there is a threat to cause false positives or
false negatives in manual work. For one thing, the imple-
mentation of the DOG is influenced by the individual's
programming ability, for another, we reduce potential cov-
erage bugs in our experiments manually which may lead
to mistakes. To alleviate this threat, version control during
code development is performed by two authors of this ar-
ticle, and all results of manual deduplication need to be ap-
proved by these two authors.

7.2 Threats to external validity
The threats to external validity mainly lie in subjects and
test inputs. First, we only choose Gcov and llvm-cov as the
subjects. They may not be representative enough for other
coverage compilers. In the future, we plan to extend our
approach to other C coverage profilers and even coverage
profilers for other programming languages. Second, the in-
puts in our experiment face the threat of diversity in terms
of size and semantics. Most functions in our manual test
suite are less than 10 lines. We follow the previous works
[22], [23] and use the random program generator Csmith
to enrich our inputs, but there is still the problem of con-
vergence in these random programs. In future work, we
will focus on generating real and diverse test inputs.

8 RELATED WORK
In this section, we introduce the related work in recent
years to the automated testing of developer tools. First, we
briefly review the work related to coverage profiler testing,
after which we present the related testing works about the
profiler and debugger.

8.1 Coverage profiler testing
As far as we know, little attention has been paid to the val-
idation of code coverage profilers. Currently, only Yang et

al. [22], [23] proposed two coverage profiler validators fo-
cusing on this direction, i.e., C2V and Cod. As the first at-
tempt in this direction, C2V leverages a differential testing
approach to hunting for bugs in coverage profilers. It as-
sumes that the code coverages given by multiple inde-
pendently implemented coverage profilers are identical.
Therefore, potential bugs could be found by checking the
consistency of the coverage reports generated by different
coverage profilers. Later, Cod, an automated self-validator
for coverage profilers based on metamorphic testing, is
proposed to address the limitations of C2V. It uncovers
coverage bugs according to a metamorphic relation that
modifying unexecuted code blocks in an input program
should not affect the coverage statistics of the executed
code blocks under the identical profiler.

Inspired by existing works, we propose control flow
constraint solving to address the oracle problem within
coverage profiler testing, based on which we also imple-
ment a profiler validator called DOG. To the best of our
knowledge, DOG is the first effort leveraging control flow
regularities to validate the coverage profiler, which is our
biggest innovation. Table 10 provides a technical compari-
son of C2V, Cod, and DOG. Clearly, the main difference
between these three works is that they adopt different
methodologies to tackle the oracle problem. Overall, these
three studies have identified a significant number of bugs
in various versions of C coverage profilers during different
periods. Many of these bugs have been verified and ad-
dressed by developers, highlighting the effectiveness of
these approaches in enhancing the reliability and maturity
of relevant coverage profilers.

8.2 Compiler testing
Compiler testing is the most attractive area of toolchain
testing and has received a lot of attention in the past dec-
ade. As surveyed by Chen et al. [33], researchers have
mainly carried out studies on the following four aspects of
compiler testing: (1) constructing test programs. Besides
constructing the validation suites manually [34], [35], the
related main techniques of test program generation can be
broadly categorized as grammar-based methods [36], [37]

TABLE 10
COMPARISON AMONG C2V, COD, AND DOG

 C2V Cod DOG

Methodology Differential testing Metamorphic testing control flow constraint solving

Insight
Multiple coverage profilers should
generate consistent coverage statis-
tics for the same program

A coverage profiler should generate
consistent coverage statistics for ex-
ecuted statements of path-equiva-
lent variants

Coverage statistics should follow
some control flow regularities.

Input Coverage statistics from different
coverage profilers

Coverage statistics for path-equiva-
lent variants

Coverage reports and control flow
information

Output The line with inconsistent coverage
statistics

The line with inconsistent coverage
statistics

Diagnostic information describing
the context of potential bugs

Advantage Easy to implement Zero false-positive Generalizability and interpretability

Shortage Narrow application and heavy hu-
man burden Limited testing capacity Restriction of static analysis

Page 67 of 70 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

22 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

and mutation-based methods [6], [38]; (2) alleviating the
test oracle problem. Since it is difficult to determine the test
oracle in compiler testing, i.e., to determine whether a
given test program exposes any undesired behavior, many
technologies have been proposed to mitigate this issue, e.g.,
differential testing [7], [36] and metamorphic testing [6], [8];
(3) optimizing the test process. To improve the test effi-
ciency, many optimization approaches for test-program
execution have been proposed which can be divided into
two types: i.e., test-program prioritization [39], [40] and
test-suite reduction [47], [48]; and (4) post-processing of
test results. If the test programs indeed trigger compiler
bugs, the next step is to understand and fix these bugs. The
related efforts can fall into three groups: test program re-
duction [43], [44], duplicated bug identification [45], [46],
and compiler bug debugging [46], [47].

8.3 Debugger testing
Debugger is also an important developer tool that is
widely used. Recently, the testing of debuggers has started
to receive attention. For the testing of interactive debug-
gers, Lehmann and Pradel [48] have proposed a feedback-
directed test generator, called DBDB, which generates de-
bugger actions to exercise the debugger. By comparing
traces of multiple debuggers differentially, diverging be-
havior that points to bugs and other noteworthy differ-
ences can be found. Built on DBDB’s approach for obtain-
ing initial test inputs, Tolksdorf et al. [49] have presented
the first metamorphic testing approach for debuggers
where both the debugged code and the debugging actions
will be transformed in such a way that the behavior of the
original and the transformed inputs should differ only in
specific ways. Li et al. [50] focus on the validation of the
correctness of debug information given by a debugger for
optimized code. They verify whether a debugger can stop
at a predetermined line and print the correct value of a spe-
cific variable without triggering undefined behavior for
optimized code. Di Luna et al. [51] proposed Debug2, a
framework to find debug information bugs that rely on
trace invariants to perform differential analysis on debug
traces of optimized and unoptimized programs, and gen-
eralized the work of differential analysis of debug infor-
mation of optimized code to more aspects than the con-
sistency of variables information.

9 CONCLUSION AND FUTURE WORK
In this paper, our primary objective is to unveil coverage
bugs in coverage profilers. To achieve this goal, we present
an effective approach called control flow constraint solving,
specifically designed to tackle the oracle problem inherent
in coverage profiler testing. We identify and summarize six
control flow regularities based on control dependence and
the pattern of control flow during program execution. By
leveraging these regularities, we generate coverage con-
straints that describe the relationship between coverage
statistics. Using control flow constraint solving as the foun-
dation, we have developed a code coverage profiler valida-
tor called DOG, implemented in Python3. To assess its ef-
fectiveness, we conducted evaluations on two widely used

C/C++ coverage profilers, namely Gcov and llvm-cov. As a
result, we discovered 27 bug reports exposing abnormal
coverage statistics. Out of these, 17 bugs were confirmed
(with 11 of them fixed), 3 bugs were identified as expected
behaviors by the developers, and 7 bugs are still pending.
Most notably, among 24 bugs revealing unexpected behav-
iors, 21 had been latent for at least two and a half years by
the time we found them, and 10 are completely undetecta-
ble by the state-of-the-art code coverage profiler validators.
The results show that the overhead of inspection of com-
patibilities-related bugs can be reduced effectively and
each regularity makes an irreplaceable contribution to
finding bugs. Our work introduces a novel method for un-
covering bugs in coverage profilers, offering simplicity and
effectiveness when compared with state-of-the-art ap-
proaches.

In our future endeavors, we are dedicated to further en-
hancing the effectiveness of control flow constraint solving
through several key areas of focus. First, we aim to bolster
the generation of diverse test inputs, enabling us to explore
a broader range of scenarios and situations within the code.
Second, we are committed to advancing the accuracy of
program analysis within control flow constraint solving.
Third, we plan to extend the applicability of control flow
constraint solving to cover profilers designed for other pro-
gramming languages. Through these future endeavors, we
envision a powerful and flexible toolset that empowers de-
velopers and researchers to assess code coverage with in-
creased accuracy and confidence.

ACKNOWLEDGMENT
The authors express their sincere gratitude to the anony-
mous reviewers for providing highly insightful comments
and valuable suggestions. This work was supported in part
by grants from Natural Science Foundation of China
(xxxxxxx).

Page 68 of 70*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

AUTHOR ET AL.: TITLE 23

REFERENCES
[1] M. Ivanković, G. Petrović, R. Just and G. Fraser, “Code coverage

at Google,” Proc. Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 955-963.

[2] M. Böhme, V.-T. Pham and A. Roychoudhury, “Coverage-based
greybox fuzzing as markov chain,” IEEE Transactions on Software
Engineering, vol. 45, no. 5, 2017, pp. 489-506.

[3] C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation strategy
for increasing greybox fuzz testing coverage,” Proc. Proceedings
of the 33rd ACM/IEEE International Conference on Automated Soft-
ware Engineering, 2018, pp. 475-485.

[4] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao, B. Li,
J. Yin and S. See, “Deephunter: a coverage-guided fuzz testing
framework for deep neural networks,” Proc. Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2019, pp. 146-157.

[5] Q. Zhang, J. Wang, M.A. Gulzar, R. Padhye and M. Kim,
“Bigfuzz: Efficient fuzz testing for data analytics using frame-
work abstraction,” Proc. 2020 35th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), IEEE, 2020, pp.
722-733.

[6] V. Le, C. Sun and Z. Su, “Finding deep compiler bugs via guided
stochastic program mutation,” ACM SIGPLAN Notices, vol. 50,
no. 10, 2015, pp. 386-399.

[7] Y. Chen, T. Su, C. Sun, Z. Su and J. Zhao, “Coverage-directed dif-
ferential testing of JVM implementations,” Proc. proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2016, pp. 85-99.

[8] C. Sun, V. Le and Z. Su, “Finding compiler bugs via live code
mutation,” Proc. Proceedings of the 2016 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, 2016, pp. 849-863.

[9] J. Zhang, L. Zhang, M. Harman, D. Hao, Y. Jia and L. Zhang,
“Predictive Mutation Testing,” IEEE Transactions on Software En-
gineering, vol. 45, no. 9, 2019, pp. 898-918; DOI
10.1109/tse.2018.2809496.

[10] P. Zhang, Y. Li, W. Ma, Y. Yang, L. Chen, H. Lu, Y. Zhou and B. Xu,
“CBUA: A probabilistic, predictive, and practical approach for evaluat-
ing test suite effectiveness,” IEEE Transactions on Software Engineering,
2020, pp. 1-1; DOI 10.1109/tse.2020.3010361.

[11] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Software testing, verification and reliability, vol. 22,
no. 2, 2012, pp. 67-120.

[12] N. Bin Ali, E. Engström, M. Taromirad, M.R. Mousavi, N.M. Minhas, D.
Helgesson, S. Kunze and M. Varshosaz, “On the search for industry-rel-
evant regression testing research,” Empirical Software Engineering, vol. 24,
no. 4, 2019, pp. 2020-2055.

[13] G. Fraser and A. Arcuri, “A large-scale evaluation of automated unit test
generation using evosuite,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 24, no. 2, 2014, pp. 1-42.

[14] G. Fraser and A. Arcuri, “1600 faults in 100 projects: automatically find-
ing faults while achieving high coverage with evosuite,” Empirical soft-
ware engineering, vol. 20, no. 3, 2015, pp. 611-639.

[15] Y. Kim and S. Hong, “DEMINER: test generation for high test coverage
through mutant exploration,” Software Testing, Verification and Reliability,
vol. 31, no. 1-2, 2021, pp. e1715.

[16] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M.D. Ernst, D. Pang
and B. Keller, “Evaluating and improving fault localization,” Proc. 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE),

IEEE, 2017, pp. 609-620.
[17] M. Wen, J. Chen, Y. Tian, R. Wu, D. Hao, S. Han and S.C. Cheung, “His-

torical Spectrum based Fault Localization,” IEEE Transactions on Software
Engineering, 2019, pp. 1-1; DOI 10.1109/tse.2019.2948158.

[18] Y. Li, S. Wang and T. Nguyen, “Fault localization with code coverage rep-
resentation learning,” Proc. 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE), IEEE, 2021, pp. 661-673.

[19] E.K. Smith, E.T. Barr, C. Le Goues and Y. Brun, “Is the cure worse than
the disease? overfitting in automated program repair,” Proc. Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering, 2015,
pp. 532-543.

[20] J. Yang, A. Zhikhartsev, Y. Liu and L. Tan, “Better test cases for better au-
tomated program repair,” Proc. Proceedings of the 2017 11th joint meeting
on foundations of software engineering, 2017, pp. 831-841.

[21] M. Motwani, M. Soto, Y. Brun, R. Just and C. Le Goues, “Quality of auto-
mated program repair on real-world defects,” IEEE Transactions on Soft-
ware Engineering, 2020.

[22] Y. Yang, Y. Zhou, H. Sun, Z. Su, Z. Zuo, L. Xu and B. Xu, “Hunting for
bugs in code coverage tools via randomized differential testing,” Proc.
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), IEEE, 2019, pp. 488-499.

[23] Y. Yang, Y. Jiang, Z. Zuo, Y. Wang, H. Sun, H. Lu, Y. Zhou and B. Xu,
“Automatic self-validation for code coverage profilers,” Proc. 2019 34th
IEEE/ACM International Conference on Automated Software Engineering
(ASE), IEEE, 2019, pp. 79-90.

[24] Gcov. Available: https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.
[25] llvm-cov. Available: https://llvm.org/docs/CommandGuide/llvm-

cov.html.
[26] V.P. Ranganath, T. Amtoft, A. Banerjee, J. Hatcliff and M.B. Dwyer, “A

new foundation for control dependence and slicing for modern program
structures,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 29, no. 5, 2007, pp. 27-es.

[27] J. Ferrante, K.J. Ottenstein and J.D. Warren, “The program dependence
graph and its use in optimization,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 9, no. 3, 1987, pp. 319-349.

[28] T. Lengauer and R.E. Tarjan, “A fast algorithm for finding dominators in
a flowgraph,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 1, no. 1, 1979, pp. 121-141.

[29] Understand. Available: https://www.scitools.com.
[30] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” Proc. Interna-

tional conference on Tools and Algorithms for the Construction and Analysis of
Systems, Springer, 2008, pp. 337-340.

[31] A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot and H. Pfister, “UpSet:
visualization of intersecting sets,” IEEE transactions on visualization and
computer graphics, vol. 20, no. 12, 2014, pp. 1983-1992.

[32] K. Gadhave, H. Strobelt, N. Gehlenborg and A. Lex, “UpSet 2: From Pro-
totype to Tool.”

[33] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao and L. Zhang, “A
survey of compiler testing,” ACM Computing Surveys (CSUR), vol. 53, no.
1, 2020, pp. 1-36.

[34] Perennial, “The Perennial Validation Suite for C and C++,” [Online].
Available: https://www.peren.com.

[35] K.-H. Wolf and M. Klimek, “A Conformance Test Suite for Arden Syntax
Compilers and Interpreters,” Proc. MIE, 2016, pp. 379-383.

[36] C. Sun, V. Le and Z. Su, “Finding and analyzing compiler warning de-
fects,” Proc. Proceedings of the 38th International Conference on Software En-
gineering, 2016, pp. 203-213.

[37] J. Chen, G. Wang, D. Hao, Y. Xiong, H. Zhang and L. Zhang, “History-
guided configuration diversification for compiler test-program genera-
tion,” Proc. 2019 34th IEEE/ACM International Conference on Automated

Page 69 of 70 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://llvm.org/docs/CommandGuide/llvm-cov.html
https://llvm.org/docs/CommandGuide/llvm-cov.html
https://www.scitools.com./

24 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Software Engineering (ASE), IEEE, 2019, pp. 305-316.
[38] Y. Tang, H. Jiang, Z. Zhou, X. Li, Z. Ren and W. Kong, “Detecting com-

piler warning defects via diversity-guided program mutation,” IEEE
Transactions on Software Engineering, vol. 48, no. 11, 2021, pp. 4411-4432.

[39] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, L. Zhang and B. Xie, “Test
case prioritization for compilers: A text-vector based approach,” Proc.
2016 IEEE international conference on software testing, verification and valida-
tion (ICST), IEEE, 2016, pp. 266-277.

[40] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang and B. Xie, “Learning to pri-
oritize test programs for compiler testing,” Proc. 2017 IEEE/ACM 39th In-
ternational Conference on Software Engineering (ICSE), IEEE, 2017, pp. 700-
711.

[41] H.S. Chae, G. Woo, T.Y. Kim, J.H. Bae and W.-Y. Kim, “An automated
approach to reducing test suites for testing retargeted C compilers for
embedded systems,” Journal of Systems and Software, vol. 84, no. 12, 2011,
pp. 2053-2064.

[42] A. Groce, M.A. Alipour, C. Zhang, Y. Chen and J. Regehr, “Cause reduc-
tion: delta debugging, even without bugs,” Software Testing, Verification
and Reliability, vol. 26, no. 1, 2016, pp. 40-68.

[43] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison and X. Yang, “Test-case
reduction for C compiler bugs,” Proc. Proceedings of the 33rd ACM SIG-
PLAN conference on Programming Language Design and Implementation,
2012, pp. 335-346.

[44] M. Pflanzer, A.F. Donaldson and A. Lascu, “Automatic test case reduc-
tion for opencl,” Proc. Proceedings of the 4th International Workshop on
OpenCL, 2016, pp. 1-12.

[45] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide and J. Regehr,
“Taming compiler fuzzers,” Proc. Proceedings of the 34th ACM SIGPLAN
conference on Programming language design and implementation, 2013, pp.
197-208.

[46] J. Holmes and A. Groce, “Causal distance-metric-based assistance for de-
bugging after compiler fuzzing,” Proc. 2018 IEEE 29th International Sym-
posium on Software Reliability Engineering (ISSRE), IEEE, 2018, pp. 166-177.

[47] J. Chen, J. Han, P. Sun, L. Zhang, D. Hao and L. Zhang, “Compiler bug
isolation via effective witness test program generation,” Proc. Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, 2019, pp.
223-234.

[48] D. Lehmann and M. Pradel, “Feedback-directed differential testing of in-
teractive debuggers,” Proc. Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, 2018, pp. 610-620.

[49] S. Tolksdorf, D. Lehmann and M. Pradel, “Interactive metamorphic test-
ing of debuggers,” Proc. Proceedings of the 28th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, 2019, pp. 273-283.

[50] Y. Li, S. Ding, Q. Zhang and D. Italiano, “Debug information validation
for optimized code,” Proc. Proceedings of the 41st ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, 2020, pp. 1052-
1065.

[51] G.A. Di Luna, D. Italiano, L. Massarelli, S. Österlund, C. Giuffrida and L.
Querzoni, “Who’s debugging the debuggers? exposing debug infor-
mation bugs in optimized binaries,” Proc. Proceedings of the 26th ACM In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems, 2021, pp. 1034-1045.

[52] X. Yang, Y. Chen, E. Eide and J. Regehr, “Finding and understanding
bugs in C compilers,” Proc. Proceedings of the 32nd ACM SIGPLAN confer-
ence on Programming language design and implementation, 2011, pp. 283-294.

[53] llvm-cov Bug #48771. Available: https://github.com/llvm/llvm-project/is-
sues/48771.

[54] llvm-cov Bug #49438. Available: https://github.com/llvm/llvm-

project/issues/49438.
[55] Gcov Bug #85332. Available:

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85332.
[56] Gcov Bug #88930. Available:

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88930.
[57] Gcov Bug #99441. Available:

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99441.
[58] Gcov Bug #99442. Available:

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99442.
[59] Gcov Bug #99443. Available:

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99443.
[60] Gcov Bug #99444. Available:

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99444.
[61] Gcov Bug #99485. Available:

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99485.
[62] Gcov Bug #101193. Available:

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101193.
[63] Gcov Bug #101569. Available:

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101569.
[64] Graphviz. Available: https://www.graphviz.org/.
[65] graphviz. Available: https://pypi.org/project/graphviz/.
[66] os. Available: https://docs.python.org/3/library/os.html.
[67] re. Available: https://docs.python.org/3/library/re.html.
[68] z3. Available: https://pypi.org/project/z3-solver/

Page 70 of 70*****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://github.com/llvm/llvm-project/issues/48771
https://github.com/llvm/llvm-project/issues/48771
https://www.scitools.com./
https://www.scitools.com./

	Enlighten Accepted coversheet
	307318

