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Uncovering bugs in code coverage profilers 
via control flow constraint solving 

Yang Wang, Peng Zhang, Maolin Sun, Zeyu Lu, Yibiao Yang,  
Yutian Tang, Junyan Qian, Zhi Li, Yuming Zhou 

Abstract—Code coverage has been widely used as the basis for various software quality assurance techniques. Therefore, it is 
of great importance to ensure that coverage profilers provide reliable code coverage. However, it is challenging to validate the 
correctness of the code coverage generated due to the lack of an effective oracle. In this paper, we propose an effective approach 
based on control flow constraint solving to test coverage profilers and have implemented a coverage bug hunting tool, DOG (finD 
cOverage buGs). Our core idea is to leverage inherent control flow features to generate control flow constraints that the resulting 
coverage statistics should respect. If DOG identifies any unsatisfiable constraints, it signifies the presence of incorrect coverage 
statistics. In such cases, DOG provides detailed diagnostic information about the suspicious coverage statistics for manual 
inspection. Compared with the state-of-the-art works, DOG has the following prominent advantages: (1) wide applicability: DOG 
eliminates the need for multiple coverage profilers (as required by differential testing) and program variants (as needed in 
metamorphic testing), making it highly versatile; (2) unique testing capability: DOG effectively analyzes and utilizes relationships 
among available coverage statistics, boosting its testing capabilities; and (3) enhanced interpretability: DOG provides clear control 
flow explanations for incorrect code coverage, enabling the localization of suspicious coverage areas. During our testing period 
with DOG, we successfully identified and reported 27 bugs in Gcov and llvm-cov, both widely-used coverage profilers. Of these, 
17 bugs have been confirmed (11 have been fixed), 3 were deemed expected behaviors by developers, and 7 remain unresolved. 
Remarkably, 21 out of 24 unexpected bugs had been latent for over two and a half years, and nearly half of the coverage bugs 
(10 out of 24) were undetectable by state-of-the-art coverage profiler validators. These results demonstrate the effectiveness and 
importance of using DOG to improve the reliability of code coverage profilers.  

Index Terms—Coverage bugs, control flow, constraint solving, coverage profilers, testing 

——————————   ◆   —————————— 

1 INTRODUCTION
ODE coverage is a metric that measures the extent to 
which a test suite exercises a software system [1]. The 

code coverage statistics generated by coverage profilers 
have been widely adopted in software quality assurance 
activities. In recent decades, many studies have used code 
coverage to guide efficient and effective testing (e.g., fuzz-
ing testing [2], [3], [4], [5], compiler testing [6], [7], [8], mu-
tant testing [9], [10], regression testing [11], [12], and test 
case generation [13], [14], [15]) and debugging (e.g., fault 
localization [16], [17], [18] and automated program repair 
[19], [20], [21]). The accuracy of generated code coverage 
statistics is of paramount importance, as incorrect meas-
urements could potentially mislead researchers or devel-
opers in their software engineering practices. Therefore, it 
is crucial for coverage profilers to ensure the correctness of 
the code coverage statistics they generate. 

However, coverage profilers themselves are software 
and are prone to errors. It is challenging to validate the 

correctness of the generated coverage statistics due to the 
lack of an effective oracle. Different from the oracle in 
white box testing that verifies the functionality of a pro-
gram, the expected coverage statistics for a coverage pro-
filer cannot be directly obtained or specified via any speci-
fication. Even if we obtain the oracle through heavy man-
ual verification, it still requires a lot of human effort to ex-
amine the correctness of the coverage statistics.  

To address the aforementioned challenge, the current 
mainstream solutions involve two approaches: differential 
testing, utilized in C2V [22], and metamorphic testing, 
adopted in Cod [23]. C2V operates under the assumption 
that different coverage profilers should yield identical 
code coverage statistics for a given input program. By com-
paring the coverage reports generated by multiple cover-
age profilers, C2V can reveal code coverage bugs. On the 
other hand, Cod alleviates the oracle problem through a 
metamorphic relation. This means that under the identical 
profiler, an input program should exhibit the same code 
coverage statistics for executed blocks as its path-equiva-
lent variants, which are generated by removing unexe-
cuted statements. Inconsistencies in coverage reports be-
tween an input program and its path-equivalent variants 
can then be used to detect bugs. However, despite demon-
strating their capability to reveal real coverage bugs in 
popular coverage profilers like Gcov  [24] and llvm-cov 
[25], both C2V and Cod possess inherent limitations that 
impede their effectiveness in defect detection, thereby hin-
dering their practical applicability. 
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• Applicability: C2V must use appropriate alternative 
profilers for benchmarking purposes and cannot be 
applied when there is only one profiler available (e.g., 
the programming language Cangjie, developed by 
Huawei, offers only one coverage profiler). For Cod, 
the strategy of path-equivalent variant generation can-
not be employed if there is no unexecuted code to re-
move (e.g., no statement is marked as unexecuted). 

• Testing capacity:  Inconsistent interpretations of the 
same coverage semantics by independently imple-
mented coverage profilers can lead to omissions and 
false alarms. For example, when applying C2V, a phe-
nomenon known as the "weak inconsistency" [23] 
emerges, where certain complex statements fail to re-
ceive coverage from certain profilers, resulting in 
missed bugs. The test space of Cod is limited as it fo-
cuses on the specific mechanism of coverage profilers, 
which can lead to underutilization of the rich coverage 
statistics of executed statements. Consequently, the re-
sults demonstrate that Cod is notably less effective in 
uncovering llvm-cov bugs, accounting for only a small 
fraction of all the bugs reported by Cod (3 out of 23). 

• Interpretability: Both C2V and Cod rely on text-com-
parison for their analysis. When coverage incon-
sistency is uncovered, they offer limited guidance to 
alleviate the burden of manual inspection. Testers are 
still required to precisely grasp the program context to 
determine the oracle, creating a higher threshold for 
bug comprehension, particularly in large programs. 
Furthermore, even if some potential bugs are identi-
fied, no interpretation is provided to deduplicate and 
reduce them. 

In this paper, we introduce control flow constraint solving, 
a brand-new effective approach for addressing the oracle 
problem in coverage profiler testing. Based on this idea, we 
implemented DOG (finD cOverage buGs), a Python3-
based coverage profiler validator that successfully detects 
numerous long-standing bugs in Gcov and llvm-cov. For a 
given coverage profiler, our core idea is to leverage the 
control flow features inside input programs to obtain the 
control flow constraints that the resulting coverage statis-
tics should respect. A control flow graph (CFG) serves as 
the graph representation of a program that describes the 
control flow between the basic blocks in the program dur-
ing execution. A lot of constraints about coverage statistics 
are implied in this representation, with which it is possible 
to verify the compatibility between coverage statistics of a 
set of control-flow-related statements even without a direct 
oracle. For example, within a single basic block, all state-
ments should have the same coverage statistics since exe-
cuting the block implies passing all its statements. Addi-
tionally, for an if-statement with two branches, the execu-
tion count of the if-statement should be equal to the sum of 
its branches' execution counts (as an execution can only 
pass through one of its branches).   

At a high level, given an input program with coverage 
statistics, DOG proceeds as follows. First, based on the 
 

1 https://github.com/NJUocean/DOG 
2 https://zenodo.org/record/8189924 

CFG, DOG derives a control dependence graph (CDG) to 
depict how one conditional statement governs the execu-
tion of other statements. Then, with the control depend-
ence in CDG, DOG extracts a set of control flow constraints 
and checks whether the coverage statistics of relevant 
statements in the input program are reasonable. In cases 
where constraints are found to be unsatisfiable, DOG of-
fers detailed diagnostic logs to assist testers in confirming 
suspicious coverage statistics. Compared with C2V and 
Cod, DOG has the following prominent advantages. First, 
DOG is applicable for any single coverage profiler, elimi-
nating the need for multiple profilers or path-equivalent 
variants as prerequisites. Second, DOG stands out with its 
distinctive testing capacity, as it takes a fundamentally dif-
ferent perspective in tackling the oracle problem within 
coverage profiler testing. It can effectively leverage availa-
ble coverage statistics of input programs to enhance testing 
capabilities. Third, DOG empowers testers with control 
flow reasoning, allowing them to interpret why code cov-
erage might be incorrect. This feature greatly facilitates the 
manual inspection of unsatisfiable constraints.  

In sum, this study makes three main contributions: 
• We propose a brand-new method, control flow con-

straint solving, which takes a fundamentally different 
perspective to tackle the oracle problem in coverage 
profiler testing. This approach has wide applicability, 
unique testing capacity, and enhanced interpretability. 

• Based on control flow constraint solving, we have im-
plemented a coverage profiler validator named DOG 
in Python3. This tool is open-source and publicly avail-
able1, 2, along with the corresponding datasets, empow-
ering interested researchers to freely reproduce or cus-
tomize their experiments. 

• We revealed 27 longstanding bugs in two widely used 
and well-tested coverage profilers Gcov and llvm-cov. 
Among these, 17 bugs got confirmed (11 got fixed), 3 
bugs were identified as expected behaviors by devel-
opers, and 7 bugs are still pending. Most notably, 
among 24 bugs revealing unexpected behaviors, 21 
had been latent for at least two and a half years by the 
time we found them, and 10 are completely undetect-
able by the state-of-the-art coverage profiler validators. 

The rest of this paper is organized as follows. Section 2 
introduces the preliminaries of coverage profiler and con-
trol dependence. Section 3 introduces control flow con-
straint solving formally and describes the implementation 
of DOG in detail. Then, our experimental setup and results 
are respectively presented in Section 4 and Section 5. After 
that, we discuss the issues in practical applications in Sec-
tion 6 and possible threats to the validity of our study in 
Section 7. Finally, Section 8 surveys related works and Sec-
tion 9 concludes this paper and outlines the direction for 
future work. 

2 PRELIMINARIES 
Before formally expounding our method, this section will 
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give a brief introduction to related concepts. Among them, 
the coverage profiler is the source of coverage statistics as 
well as our test target, and the control dependence plays a 
pivotal role in generating coverage constraints. In this pa-
per, the related discussion is based on graph representa-
tion. When referring to a node, it is referring to the corre-
sponding statement(s). 

2.1 Coverage profiler of C/C++  
A coverage profiler for C/C++ (such as Gcov) is a tool used 
to record coverage statistics by collecting runtime infor-
mation. In general, such a profiler has three steps to collect 
code coverage at the source level: program instrumenta-
tion, data collection, and coverage profiling. First, probes 
are inserted into the input program, which has no impact 
on the original execution logic. During the program’s exe-
cution, these probes will collect the raw coverage data re-
quired for the coverage profiler. Finally, with the collected 
runtime information, the coverage profiler can generate 
coverage statistics for all instrumented statements. Given a 
program p and its coverage report, for any statement stmt 
in p, we can obtain its coverage statistics= s according to its 
corresponding line numbers. s  0 indicates that stmt is ex-
ecuted s times, while s = −1 indicates that the coverage of 
stmt is not recorded. 

2.2 Control flow graph 
CFG has rich control flow information which is the starting 
point to control flow constraints. CFG is usually built in the 
unit of function so we adapt a definition of the function-
level CFG from existing literature [26]. 
Definition 1. (Control Flow Graph) A CFG Gf = (Nf, Ef, EN-
TRY, EXIT) is a labeled directed graph in which: 
— Nf is a set of content nodes that represent statements 

in a function. Ef is a set of edges that represent the 
control flow between these content nodes; 

— Nf is partitioned into two subsets NfB and NfP. Each 
node nb in NfB corresponds to statements in a basic 
block and has only one successor. Each node np in NfP 
corresponds to a conditional statement and has at 
least two distinct successors and attributes “T” (true) 
or “F” (false) associated with the outgoing edges; 

— the unique start node ENTRY is considered the ex-
ternal condition that determines the execution of the 
function, and it has two distinct successors: the first 
node in the CFG and the EXIT node. The unique stop 
node EXIT has no outgoing edge representing the 
end of execution; 

— for any node n ∈ Nf, n is reachable from ENTRY and 
there exists a path from n to EXIT. 

For the program presented in Fig. 1(a), Fig. 1(b) gives the 
CFG of the function “main”. In addition, CFG also marks 
the line numbers of related statements for each node, ac-
cording to which the coverage statistics of each content 
node can be obtained from the coverage report.  

2.3 Control dependence graph 
Control dependence underlies many program analysis 
and transformation techniques. In this paper, the defi-
nition of control dependence to follow is the following 
classic notion [27]. 
Definition 2. (Control Dependence) Let x and y be nodes 
in CFG Gf. y is control-dependent on x iff: 
— there exists a directed path from x to y with any z in 

path (excluding x and y) post-dominated by y; 
— x is not post-dominated by y. 
If y is control-dependent on x then x must have more 

than one exit. Following one specific exit E always results 
in y being executed, while taking other exits may result in 
y not being executed. Accordingly, one of the control con-
ditions of y’ execution is that x takes a particular value such 
that x exits from E. In Fig. 1(b), node 3 is control-dependent 
on ENTRY and the corresponding control condition is that 
ENTRY takes the value True. 

However, it is not easy to directly extract control de-
pendence from a CFG. For example, node 8_9 is not con-
trol-dependent on node 4 even if it is on the “F” branch of 
node 4, because statements in lines 8 and 9 will be executed 
no matter what the result of the condition in line 4 is. More-
over, multiple nodes that are control-dependent on the 
same node may also correspond to different control condi-
tions. Therefore, when dealing with foundational issues of 
control dependence, researchers often identify control 

  

3

4 5 6

8 9

EXIT

F T

ENTRY
T

F

 

3 8 9 4

5 6

T

r1

r2

T

ENTRY

 

  
1: #include<stdio.h> 
2: int main(){  
3: int a=2; 

4: while (a<10){ 

5: a=a+1; 

6: printf(“loop\n”); 

7: } 

8: printf(“exit\n”); 

9: return 0; 

10: } 

  
  

(a) source code (b) CFG (c) CDG 

Fig. 1. An illustrating example of source code, CFG, and CDG. (a) is source code, (b) and (c) give the CFG and CDG of the “main” function. 

 

Page 49 of 70 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

 

dependences from CFG with the assistance of post-domi-
nance and present them in the form of CDG [27]. We follow 
that practice here and base our presentation on such a def-
inition of the CDG. 
Definition 3. (Control Dependence Graph) A CDG Gd = 
(Nd, Rd, Ed, ENTRY) generated from a CFG Gf = (Nf, Ef, EN-
TRY, EXIT) is also a labeled directed graph in which: 
— Nd is a subset of Nf representing all possible content 

nodes that can be executed, and if a node is in Nf but 
not in Nd, then it is a dead node and will not be exe-
cuted under any conditions; 

— Rd is a set of region nodes that have nothing to do 
with the semantics of the program. They are added 
to summarize the set of control conditions and group 
all content nodes with the same set of control condi-
tions together; 

— Ed is a set of edges that, together with Rd, represent 
the control dependence between content nodes: for 
content nodes X and Y, if Y is control-dependent on 
X, there exists a region node Z having one incoming 
edge from X labeled with the associated control con-
dition (“T” or “F”) and one outcoming edge to Y; 

— ENTRY is defined in the same way as in Gf, determin-
ing the execution of the function, hence it must be 
identified as the root of Gd. As the end of Gf, EXIT is 
traversed whether the function is executed or not, so 
it does not involve any control dependence and will 
not show up in Gd. 

From Gd, we can analyze the control-flow-context for each 
content node (i.e., control dependence involving this node) 
as thoroughly as possible. Fig. 1(c) shows the CDG of func-
tion “main” where content nodes are solid while region 
nodes (i.e., r1 and r2) are dotted. Content nodes that are 

control-dependent on a certain node under the same con-
trol condition will be grouped by a region node. Different 
from content nodes, the coverage of a region node refers to 
the number of times the corresponding control condition is 
met and can be obtained from an agent which is a child 
content node with an in-degree of 1 as such a node is exe-
cuted only if this control condition is met. For example, the 
control condition of the execution of node 5_6 is that the 
predicate expression of node 4 takes the value True, and 
the coverage statistic of r2 (i.e., the number of times that the 
predicate expression of node 4 evaluates to True) is the 
same as that of node 5_6. Thus, from Fig. 3(c), we can easily 
know node 8_9 is control-dependent on ENTRY rather 
than node 4 and has the same control-flow-context as node 
3. Both node 8_9 and node 3 can act as agents of r1, and the 
agent of r2 is node 5_6. 

3 APPROACH 
In this section, we first show the framework of control flow 
constraint solving and illustrate how it works in practice 
with an example bug. Then, we formally introduce the core 
ideas of our method. Finally, we propose DOG, an auto-
mated validator for exposing coverage bugs, and explain 
the specific details in two algorithms. 

3.1 Framework 
To systematically and effectively expose coverage bugs, we 
propose a brand-new method called control flow con-
straint solving for testing coverage profilers. It aims to help 
developers expand the application scenarios of coverage 
profiler validation and reduce the human burden of iden-
tifying bugs. Fig. 2 shows the framework of our approach, 

Five steps of our testing framework
Identification of control 

dependence
Generation of control 

flow constraints Constraint Solving Log diagnostic 
information Manual inspection

SMT

CFG

CDG

Input program

Control flow
regularities

Bug reports

Tester

Control flow
constraints

Control 
dependence

Coverage 
statistics

Unsatisfiable 
constraints

Diagnostic

Coverage 
profiler

 
Fig. 2. The framework of control flow constraint solving 
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which consists of the following five steps:  
Step 1 Identification of control dependence. Given an in-

put program, we focus on its control flow information. 
By identifying control dependence between content 
nodes, we derive the CDG for each function from the 
corresponding CFG. 

Step 2 Generation of control flow constraints. With the 
control dependence, the control flow constraints which 
describe the relationship between the coverage statistics 
of graph nodes are generated according to the inherent 
control flow regularities. 

Step 3 Constraint solving. By instantiating a constraint 
with a given set of coverage statistics, we can encode it 
as an SMT problem instance. Therefore, the satisfiability 
of control flow constraints can be checked with the help 
of an SMT solver. 

Step 4 Logging diagnostic information. Each unsatisfiable 
constraint can correspond to a potential coverage bug. 
To facilitate manual inspection, we log diagnostic infor-
mation which includes the coverage statistics of the 
nodes involved in the solving process and the relation-
ship between them.  

Step 5 Manual inspection. Facing a large number of un-
satisfiable constraints that may point to the same 

underlying bug, testers confirm the oracle, deduplicate 
them with the help of diagnostics, and then report these 
confirmed and deduplicated potential bugs to develop-
ers. Only in this step, manual intervention is required. 

3.2 Illustrating example 
In the whole approach mentioned above, Steps 2 to 4 em-
body the core idea of control flow constraint solving, 
which will be illustrated using a bug example. Fig.3 shows 
how our method uncovers an llvm-cov bug (#48771 [53]) 
that is not found by existing methods. Fig. 3(a) and Fig. 3(b) 
are respectively the coverage report generated by Gcov 
and llvm-cov. They annotate each line of the original pro-
gram with a line number and the corresponding coverage 
statistic in a different format. As highlighted in Fig. 3(b), 
llvm-cov wrongly reported that line 13 was executed 4 
times. This bug is missed by existing methods since Gcov 
does not provide the corresponding coverage statistic of 
line 13 for C2V to compare and there are no unexecuted 
statements for Cod to remove. However, DOG can uncover 
it by analyzing control dependence. Fig. 3(c) and Fig. 3(d) 
give the CFG and CDG of the function “foo”, respectively. 
For the convenience of presentation, we mark the coverage 
statistics for each node in Fig. 3(d). The numbers in the up-
per-right corner of the content nodes are the coverage 
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6: 1: void foo(int v,int w){ 1|6| void foo(int v,int w){ 

-1: 2: int i; 2|6| int i; 
6: 3: if (w) { 3|6| if (w) { 
2: 4: goto do_default; 4|2| goto do_default; 

-1: 5: } 5|2| } 
4: 6: switch(v){ 6|4| switch(v){ 
1: 7: case 0: 7|1| case 0: 
1: 8: i=27; 8|1| i=27; 
1: 9: break; 9|1| break; 
1:10: case 1: 10|1| case 1: (c) CFG of “foo” 
1:11: i=8; 11|1| i=8; 
1:12: break; 12|1| break; 
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-1:13: default: 13|4| default: 
4:14: do_default: 14|4| do_default: 
4:15: i=10; 15|4| i=10; 
4:16: break; 16|4| break; 

-1:17: } 17|4| } 
6:18: } 18|4| } 
:19:  19| |  
1:20: int main(){ 20|1| int main(){ 

-1:21: int i; 21|1| int i; 
7:22: for (i=0;i<6;i++){ 22|7| for (i=0;i<6;i++){ 
6:23: if (i< 4) 23|6| if (i<4) 
4:24: foo(i,0); 24|4| foo(i,0); 

-1:25: else 25|2| else 
2:26: foo(i,1); 26|2| foo(i,1); 

-1:27: } 27|6| } 
-1:28: } 28|1| } 

    
    
    
    

(a) Coverage report by Gcov (b) Coverage report by llvm-cov (d) CDG of “foo” 

Fig. 3. An example showing how our method uncovers an llvm-cov bug (#48771) that is not found by existing methods. (a) and (b) are the 
coverage reports generated by Gcov and llvm-cov for the same input where coverage statistics and line numbers are listed in the first two 
columns in different order. The coverage of line 13 is wrongly marked as 4 (it is 2 actually) by llvm-cov. (c) is the CFG of function “foo”, and 

(d) is the CDG derived from (c). The edges from region nodes to agents are also shown as dashed lines. 
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statistics of those nodes, referring to the executions of re-
lated statements, which can be obtained from coverage re-
ports directly. The numbers in the upper-left corner of the 
region nodes are the coverage statistics of the region nodes. 
Additionally, we mark the edges from region nodes to 
their agents as dashed lines. For an object x (which can be 
a statement or a node), we use Cov(x) to represent its cov-
erage statistics. Thus, the process of revealing this bug 
through analyzing the control-flow-context around node 6 
can be presented as the following steps: 

Generation of control flow constraints. Given the CDG 
of function “foo”, we generate control flow constraints ac-
cording to the specified semantics. As can be seen, node 6, 
which corresponds to a switch-statement with a default la-
bel on the sixth line, has one father region node (i.e., r2) and 
three child region nodes (i.e., r4, r5, and r6). Any result of 
node 6 will cause a case node to be passed. Therefore, we 
have the following control flow constraint: 

𝐶𝑜𝑣(𝑛𝑜𝑑𝑒 6) =  𝐶𝑜𝑣(𝑟4) + 𝐶𝑜𝑣(𝑟5) + 𝐶𝑜𝑣(𝑟6) (1) 

Constraint solving. To check the satisfiability of Eq. (1), 
we determine the coverage statistics of each node with the 
coverage statistics and agency relationship. Accordingly, 
we know that: 

𝐶𝑜𝑣(𝑛𝑜𝑑𝑒 6)  =  4 (2) 

𝐶𝑜𝑣(𝑟4) = 𝐶𝑜𝑣(𝑛𝑜𝑑𝑒 7_8_9) = 1 (3) 

𝐶𝑜𝑣(𝑟5) = 𝐶𝑜𝑣(𝑛𝑜𝑑𝑒 10_11_12) = 1 (4) 

𝐶𝑜𝑣(𝑟6) = 𝐶𝑜𝑣(𝑛𝑜𝑑𝑒 13) = 4 (5)  

Considering Eq. (2) to (5), the relevant coverage statistics 
obviously do not satisfy the constraint represented by Eq. 
(1) (this checking procedure can be achieved by being con-
verted into an SMT-solving problem instance, which will 
be introduced in Section 3.3.3). 

Logging Diagnostic Information. Among nodes 6, r4, r5, 
and r6, we will try to further infer the most suspicious 
nodes by checking whether their coverage statistics cause 
other constraints to be unsatisfiable. As a result, only r6 is 
involved in another unsatisfiable constraint:  

𝐶𝑜𝑣(𝑛𝑜𝑑𝑒 14_15_16) =  𝐶𝑜𝑣(𝑟3) + 𝐶𝑜𝑣(𝑟6) (6) 

𝐶𝑜𝑣(𝑛𝑜𝑑𝑒 14_15_16) = 4 (7) 

𝐶𝑜𝑣(𝑟3) = 𝐶𝑜𝑣(𝑛𝑜𝑑𝑒 4) = 2 (8) 

𝐶𝑜𝑣(𝑟6) = 𝐶𝑜𝑣(𝑛𝑜𝑑𝑒 13) = 4 (9) 

As a result,  it is node 13, the agent of r6, whose coverage 
statistic results in two control flow constraints (Eq. (1) and 
Eq. (6)) to be unsatisfiable. Therefore, node 13 is blamed as 
the most suspicious. Finally, the diagnostic information 
shown in Fig. 5 will be logged for testers to understand, 
classify, and report the bug (details of diagnosis are shown 
in Section 3.2.4).  

3.3 control flow constraint solving 
This subsection introduces in detail control flow constraint 
solving in four parts: insights, control flow regularities, 
constraint solving, and diagnosis strategy. 

3.3.1 Insights 
In the process of validating coverage statistics, program-
mers are required to analyze executions of statements from 
scratch along the control flow. When the control conditions 
are ambiguous, testers of developers need to analyze 
which coverage statistic is most likely to be wrong and 
even insert counting statements to determine the oracle. By 
tracing the control flow in the CFG and CDG of real pro-
grams, we obtain the following three main observations: 
• Insight 1: Control conditions determine whether the con-

trolled statements are executed.  
A statement is executed only when the correspond-

ing control condition is met. As a result, statements 
whose execution dependents on the same control con-
ditions will share the same coverage statistics, but this 
doesn't necessarily hold in reverse. 

• Insight 2: Control flow is traceable. 
In a CFG without unexpected exits, the control flow 

must consistently traverse from the ENTRY point to 
the EXIT point, and it does not arbitrarily increase or 
decrease without valid reasons. Consequently, we can 
observe that control flow enters and exits a node an 
equal number of times. 

• Insight 3: The coverage statistics involved in more than one 
unsatisfiable constraint are more likely to be incorrect. 

The coverage statistics of a single node can be in-
volved in the solving of different control flow con-
straints. Consequently, if an individual coverage sta-
tistic is incorrect, it can render more than one control 
flow constraint unsatisfiable simultaneously. That is 
to say, wrong coverage statistics are more likely to be 
perceived from different perspectives. 

Based on the above insights, we propose the core concept 
of control flow constraint solving to automate the manual 
verification of coverage statistics as much as possible. We 
summarize six control flow regularities according to In-
sight 1 and Insight 2 and heuristically locate the incorrect 
coverage statistics with Insight 3, which will be elaborated 
in detail in the following sections. 

3.3.2 Control flow regularities 
Given a program p, through program analysis, we can not 
only obtain the control flow information within each func-
tion but also the call relationships between functions. 
Based on this information as well as insight 1 and insight 
2, Table 1 briefly summarizes six control flow regularities,  
each serving different objectives. The regularity SB targets 
the consistency of coverage statistics of statements within 
a specific content node. The regularity SF depicts the con-
sistency of coverage statistics of content nodes that share 
the same father region nodes. The regularities IL and ON 
concentrate on the control flows into and out of content 
nodes. The last two regularities FCL and FEL focus on the 
relationship between the coverage statistics of functions 
and function calls/exits.  

The detailed specifications of these six control flow reg-
ularities are as follows: 

SB (Same-Block). If a content node n corresponds to k 
statements (stmti, 1≤i≤k) in the source program, we have: 
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𝐶𝑜𝑣(𝑛) = 𝐶𝑜𝑣(𝑠𝑡𝑚𝑡1) = ⋯ = 𝐶𝑜𝑣(𝑠𝑡𝑚𝑡𝑘)  

A content node corresponds to adjacent statements within 
a single basic block or a conditional statement. Therefore, 
they should have consistent coverage statistics. Satisfying 
the regularity SB is also the premise of obtaining coverage 
statistics for each content node from the coverage report. 
For example, in Fig. 3(c), associated statements of each con-
tent node have consistent coverage statistics so that the 
node coverage can be obtained. 

SF (Same-Fraternity). If there are m content nodes (ni, 1 
≤i≤m) sharing the same parents in CDG, we have: 

𝐶𝑜𝑣(𝑛1) = ⋯ = 𝐶𝑜𝑣(𝑛𝑚)  

The parent-child relationship in CDG exists only between 
a region node and its father/child content nodes, represent-
ing control dependence between these content nodes. We 
also define a brother relationship to capture the peer rela-
tionships between content nodes: for any two content 
nodes, if their execution depends on the same control con-
ditions, they are considered brother nodes to each other 
and will have the same number of executions regardless of 
the order in the source program. A node and all its brothers 
make up a fraternity and all fraternities are mutually ex-
clusive. Since the region nodes summarize the control con-
ditions, brother nodes should have the same father region 
nodes in CDG. For example, in Fig. 3(d), node 2 and node 
3 are brother nodes forming a fraternity of size two. How-
ever, node 4 and node 14_15_16 are not brother nodes be-
cause node 14_15_16 has one more parent region node r6 
which means that node 14_15_16 can be executed under 
more control conditions (the predicate expression of node 
3 takes the value True and the default-case of node 4 is 
caught) than node 4 (the predicate expression of node 3 
takes the value True). 

IL (Inflow-Lossless). If content node n has a father re-
gion nodes (Fi(n), 1≤i≤a) in CDG, we have: 

𝐶𝑜𝑣(𝑛) = ∑ 𝐶𝑜𝑣(𝐹𝑖(𝑛)) 
𝑎

𝑖=1
  

In the perspective of control dependence, the control flow 
into a content node comes from those content nodes it is 
control-dependent on and not from the father nodes in 
CFG. Every time a content node is executed, there is one 

corresponding control condition, on which it depends, be-
ing met. Since the coverage statistics of region nodes rec-
ord the number of times each control condition is met, 
Cov(n) should be equal to the sum of the coverage statistics 
of all its father region nodes. For example, Eq. (6) in Section 
3.2 is a control flow constraint of type IL. 

ON (Outflow-Nonincreasing). If content node n has b 
child region nodes (Cj(n), 1≤j≤b) in CDG, we have (by in-
sight 2): 

𝐶𝑜𝑣(𝑛) ≥ ∑ 𝐶𝑜𝑣 (𝐶𝑗(𝑛)) 
𝑏

𝑗=1
 

If n controls the execution of other content nodes, those 
nodes may get control flow from n and be executed. For 
example, Eq. (1) in Section 3.2 is generated according to 
ON. However, there is no control dependence between a 
content node and conditional branches sometimes. As 
there is no suitable example in Fig. 3, let us return to Fig. 1. 
As stated in Section 2.2, node 8_9 on the “F” branch of node 
4 is control-dependent on ENTRY instead of node 4. Node 
4 only governs the execution of node 5_6 on the “T” branch. 
Therefore, in the perspective of control dependence, we 
adopt a similar expression as IL, but with inequalities. The 
exact form of control flow constraints generated depends 
on the control-flow-context of n (e.g., for a switch-node, the 
equal sign can only be taken when controlling the execu-
tion of a default-case (like node 6 in Fig. 3(c)) because any 
result of the switch-node will cause a case to be executed). 

FCL (Function-Call-Lossless). For any function fx, we 
have: 

𝐶𝑎𝑙𝑙𝑒𝑑(𝑓𝑥) = 𝐶𝑜𝑣(𝑓𝑥)  

Called(fx) is the number of times fx is called (it defaults to 1 
for function “main”) which can be calculated by summing 
the coverage statistics of the call sites. Cov(fx) is the number 
of function executions which is given in the coverage re-
port on the line of the function declaration. Take the func-
tion “foo” in Fig. 3 as an example. “foo” is called in lines 24 
and 26 of the source code so that Called(foo) is the sum of 
Cov(24) and Cov(26). Besides, the coverage of “foo” is given 
in line 1 so that Cov(fx) is 6. 

FEL (Function-Exit-Lossless). For any function fx, we 
have: 

TABLE 1 
CONTROL FLOW REGULARITIES 

Name Full Name Object Description 

SB Same-Block Any content node n Statements related to n should have consistent coverage statistics. 

SF 
Same- 
Fraternity 

Content nodes having the 
same parents in CDG 

Nodes sharing the same father region nodes have the same control condi-
tions and thus have the same coverage statistics. 

IL Inflow-Lossless Any content node n 
The coverage statistic of a content node is equal to the sum of the coverage 
statistics of all its father region nodes. 

ON 
Outflow-Nonin-
creasing 

Any content node n 
The coverage statistic of a content node is greater than or equal to the sum 
of the coverage statistics of all its child region nodes. 

FCL 
Function-Call-
Lossless 

Any function fx A function executes as many times as it is called. 

FEL 
Function-Exit-
Lossless 

Any function fx A function exits as many times as it is executed. 
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𝐶𝑜𝑣(𝑓𝑥) = 𝐸𝑥𝑖𝑡(𝑓𝑥)  

Cov(fx) is the same as introduced in FCL. Similarly, Exit(fx) 
is the number of times a function exits and can be obtained 
by analyzing the coverage statistics of potential exits of fx. 
Potential exits are some content nodes post-dominated by 
EXIT directly. Also, take the function “foo” in Fig. 3 as an 
example, it can exit directly from three content nodes 
(node 7_8_9, node 10_11_12, and node 14_15_16) which 
governs no other nodes so that Exit(fx) is equal to the sum 
of coverage statistics of them, i.e., 6. 

3.3.3 Constraint solving 
With control flow regularities, we can generate six types of 
control flow constraints according to control dependence 
and function call relationships. Thus, we can solve these 
constraints one by one to hunt coverage bugs by checking 
whether associated coverage statistics are reasonable. In 
this way, we convert the task of coverage profiler testing 
into a set of local SMT-solving problems to verify the satis-
fiability of control flow constraints. Specifically, the con-
straint-solving process of a function is progressive. Satisfy-
ing the regularity SB is considered the basis to obtain cov-
erage statistics for content nodes, so we first take one 
round of traversal to solve SB-constraints. Next, we trav-
erse all fraternities to solve SF-constraints and choose ap-
propriate agents for region nodes. With available coverage 
statistics of graph nodes, the IL-constraint and ON-con-
straint are usually solved individually for each content 
node n, but if the coverage statistic of n is not available, we 
combine the two constraints as a whole, where n only acts 
as a bridge to connect its father region nodes and child re-
gion nodes. After processing all the content nodes, we fi-
nally focus on the function itself to solve its FCL-constraint 
and FEL-constraint.  

In practice, for any control flow constraint, all nodes in-
volved are referred to as its players, and we can leverage 
the coverage statistics of all its players to construct an SMT 
problem instance to conduct constraint solving. For exam-
ple, the control flow constraint represented by Eq. (1) in 
Section 3.2 has four players nodes 6, r4, r5, and r6. Fig. 4 
shows a sample code snippet of how to construct an SMT 
problem according to Eq. (1) to (5) in Python3 with z3 [68]. 
After initializing an SMT solver s (Line 2), we create an in-
teger variable n (Line 3) and an integer array variable cn of 
length 3 (Line 4) representing node 6 as well as its three 

child region nodes r4, r5, r6. These variables can be associ-
ated and assigned values according to the control flow con-
straint (Line 5) and coverage statistics (Lines 6-9). Finally, 
s.check() is called to obtain the result res which is a string 
variable “unsat” (Line 10). 

3.3.4 Diagnosis strategy 
Considering that the six regularities are general ground 
features that the coverage statistics should satisfy, once 
any control flow constraint is unsatisfiable, on the premise 
that the form of constraint is correct, a potential coverage 
bug is uncovered, and all players are suspicious until the 
true suspects (i.e., the nodes with incorrect coverage statis-
tics) are identified. To determine the suspects as well as 
their oracle, it is necessary to understand the context (i.e., 
who the players are, how they relate to each other concern-
ing control dependence as well as their coverage statistics) 
of potential bugs, so we provide detailed diagnostic infor-
mation for testers.  

It is worth noting that the difficulty of confirming sus-
pects is highly dependent on the complexity of the context, 
and we make a slight difference between the different 
types of constraints. An SB-constraint has only one content 
node, and if it is unsatisfiable, the node must be the suspect 
and the corresponding suspicious coverage statistics are 
easy to confirm by examining the adjacent statements. As 
for FCL-constraints, they usually refer to the interactions 
between functions so that corresponding unsatisfiable con-
straints need to be inspected manually with the function 
call relationships. Therefore, for these two types of unsat-
isfiable constraints, we prefer to just log diagnostic infor-
mation and leave them to human hands. The rest four reg-
ularities SF, IL, ON, and FEL, focusing on the compatibility 
of coverage statistics of multiple nodes in a function, are 
called compatibility-related regularities. For the simplicity of 
the presentation, in the following, we use compatibility-re-
lated constraints and compatibility-related bugs to denote con-
straints and potential bugs associated with compatibility-
related regularities. Since the coverage statistics of players 
of different compatibility-related constraints within the 
same function can intersect, we can perform heuristic in-
ference of suspects according to insight 3: a node whose 

1-Switch-case-
7,9

1-Switch-case-
10,12

4-Switch-
default-13,13

4-Passive-
14,16

21 1 4

IL IL

4-Switch-6,6

ON ON ON

2-Goto-4,4

 

Fig. 5. Graphic diagnostic information of llvm-cov bug #48771 which 
describes two unsatisfiable constraints in function “foo”. It is derived 
based on the CDG. For each region node, we record its coverage 

statistic. For each content node, we record its coverage statistic, se-
mantic type, and the start and end line numbers of the related state-

ments.  

 

 

1 from z3 import * 

2 s = Solver()   

3 n = Int('n') # node 6 

4 cn = IntVector('cn', 3) # r4, r5, and r6 

5 s.add(Sum([c for c in cn]) == n) # Eq.(1) 

6 s.add(n == 4) #  Eq.(2) 

7 s.add(cn[0] == 1) #  Eq.(3) 

8 s.add(cn[1] == 1) #  Eq.(4)  

9 s.add(cn[2] == 4) #  Eq.(5) 

10 res = str(s.check()) 

Fig. 4. A sample code snippet showing how to encode Eq. (1) to (5) in 
Section 3.2 to an SMT problem instance in Python3 with z3. 
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coverage statistic is involved in more than one unsatisfia-
ble constraint (either directly or indirectly through agency 
relationship) is more likely to be a suspect.  

In practice, graphics can better convey information than 
text. As shown in Fig. 5, the graphic diagnostic information 
of the illustrating bug (llvm-cov bug #48771 [53]) visualizes 
its context, which is related to two unsatisfiable compati-
bility-related constraints. It is derived based on the CDG, 
where the content nodes are more informative (connected 
by dashes are coverage statistics, semantic type, and the 
start and end line numbers), and the types of unsatisfiable 
constraints (i.e., ON and IL) are marked on the related 
edges. As stated in Section 3.2, two unsatisfiable con-
straints have a shared player whose agent node is accused 
as a suspect and highlighted with a shadow. 

3.4 DOG 
Based on control flow constraint solving, we have engi-
neered DOG, an automated validator for coverage profil-
ers. This subsection details the underlying procedures of 
DOG in Algorithm 1 and Algorithm 2 where Algorithm 1 
presents the parameterized pseudocode of DOG and Algo-
rithm 2 presents the implementation of the constraint solv-
ing procedure. Note that any italicized "function" in Algo-
rithm 1 and Algorithm 2 represent abstract procedures ra-
ther than actual functions. In addition to being explicitly 
initialized as a set or dictionary, any variable is an abstract 
object and is not instantiated by any specific class. 

Algorithm 1. The main procedure (Line 1) takes as in-
puts a coverage profiler under test, profiler, and an input 
program, program, and finally outputs the diagnostics of all 
potential bugs inside program. To perform constraint solv-
ing, we need to obtain the necessary information from pro-
gram. Line 2 leverages profiler to generate the coverage re-
port crp for program which logs the coverage statistics of 
each code line. Line 3 performs static analysis of program to 
parse control flow information GF containing the CFG of 
each function as well as the calling relationships. Line 4 
adopts the Lengauer-Tarjan algorithm [28] to compute 
dominators to construct the post-dominator tree (PDT) TP 
capturing the post-dominance relationships in each func-
tion. Finally, with GF and TP, GD can be built using the 
corresponding algorithm [27], from which the CDG of each 
function can be easily obtained (Line 5). The set PB is used 
to collect the context of all potential bugs in program and is 
initialized to an empty set (Line 6). Line 7 initializes an 
empty dictionary NC to save coverage statistics of graph 
nodes. Lines 8-39 loop in function units to solve control 
flow constraints. Control flow constraints on different ob-
jects are solved by calling the function Solving (Lines 14, 20, 
28, 31, 34, and 37). If any result is UNSAT, then the diag-
nostic of the unsatisfiable constraint is added to PB (Lines 
16, 22, 30, 33, 36, and 39). Lines 9-10 obtain the CFG and 
CDG of the current function.  Lines 11-18 iterate over all 
nodes in GDf, initialize their coverage statistics to -1(i.e., 
unavailable), and further computes the coverage statistics 
of the content nodes by checking whether each content 
node satisfies SB regularity. Then, since the brother rela-
tion is mutual, we solve SF-constraints in units of fraternity 
to avoid redundant computation and determine agents 

and coverage statistics of region nodes (Lines 19-26). Next, 
DOG further traverses all content nodes to solve IL-con-
straints and ON-constraints (Lines 27-33). Afterward, the 
FCL-constraint and FEL-constraint of the current function 
can be solved (Lines 34-39). Finally, DOG logs diagnostics 
of all potential bugs after inferring the suspects (Lines 40). 

Algorithm 2. The function Solving (Line 1) performs con-
straint solving based on the type of regularity, object, CDG, 
and the coverage statistics of graph nodes and returns re-
sult, the result of constraint solving, as well as related di-
agnostic information diagnostic, if any (Lines 11 and 41). We 
default that the constraint is satisfiable, so result and diag-
nostic are initialized to SAT and None respectively (Lines 2-

Algorithm 1 DOG’s pseudocode 
 

m P 
  1 procedure DOG(profiler, program): 

2  crp ← GenerateCoverage(profiler, program)  
3  GF ← StaticAnalyze(program)  
4  TP ← Lengauer-Tarjan(CFG) 
5  GD ←DependenceAnalyze(CFG, TP)  

 6  PB ← Ø /* potential bugs */ 
7  NC ← Dict() /* coverage statistics of  graph nodes */ 
8  foreach function f in program do 
9   GFf ← ObtainCFG(GF, f) 

10   GDf ←ObtainCDG(GD, f) 
    /* check SB regularity and get node coverage */ 

11   foreach node n in GDf do 
12    NC[n] ← -1 
13    if n is a content node then 
14     res, diag ← Solving(SB, n, GDf, NC) 
15     if res = UNSAT then 
16      PB.add(diag) 
17     else 
18      NC[n] ← ComputeCov(n, crp) 

   /* solve SF-constraints for fraternities */ 
19   foreach fraternity ft in GDf. do  
20    res, diag ← Solving(SF, ft, GDf, NC) 
21    if res = UNSAT then 
22     PB.add(diag) 
23    elif ft has a single father region node fr then 
24     if there is a node t in ft and NC[t] ≠ -1 then 
25      The agent of fr ← t 
26      NC[fr] ← NC[t] 

   /* solve IL/ON-constraints for content nodes */ 
27   foreach content node n in GFf do  
28    res, diag ← Solving(IL, n, GDf, NC) 
29    if res = UNSAT then 
30     PB.add(diag) 
31    res, diag ← Solving(ON, n, GDf, NC) 
32    if res = UNSAT then 
33     PB.add(diag) 

   /* solve FCL/FEL-constraints for function */ 
34   res, diag ← Solving(FCL, f, GDf, NC) 
35   if res = UNSAT then 
36    PB.add(diag) 
37   res, diag ← Solving(FEL, f, GDf, NC) 
38   if res = UNSAT then 
39    PB.add(diag) 
40  InferAndLog(PB) 
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3).  Line 4 initializes an empty set P to collect all the players 
involved in the solving procedure, which can be deter-
mined according to regularity and object (Lines 5-28).  For 
regularity SB, object is a single content node and there are 
no other players so we can directly check the consistency 
of coverage statistics of related statements (Lines 6-11); for 
regularity SF, object is a fraternity, and all nodes inside are 
players (Lines 12-14); for regularities IL/ON (Lines 15-22), 
object is a content node, the players also include the agents 
of all the father/child region nodes of it; for regularities 
FCL/FEL (Lines 23-28), object is a function and the players 
are the ENTRY node and its callers/exits. The ENTRY node 
can represent the function itself, the callers are some con-
tent nodes from the other function calling object, and the 
exits are those content nodes that can go directly to the 
EXIT node. Next, we initial an SMT solver solver and create 
an integer variable for each player, whose values depend 
on the corresponding coverage statistics (Lines 29-35). 
Then, we generate the control flow constraint constraint 
which can associate these variables together to finish the 
construction of the SMT problem instance. (Lines 36-37). If 
the result result is unsatisfiable, the context of the current 
potential bug will be extracted as diagnostic information 
diagnostic (Lines 38-40). Finally, both result and diagnostic 
will be returned (Line 41).  

4 EXPERIMENTAL SETUP 
In this section, we describe in detail the experimental 
setup. First, we list the research questions under inves-
tigation. Then, we introduce the experimental environ-
ment, subject coverage profilers under test, and the 
tools used in our study. After that, we characterize the 
test suite and present the preprocessing approach. Fi-
nally, we introduce our bug reduction strategy. 

4.1 Research questions 
In this paper, we study the following research questions: 

RQ1 (Effectiveness of bug finding): Is DOG competent 
and effective in exposing coverage bugs?  

The purpose of RQ1 is to investigate whether DOG is ef-
fective to validate real coverage profilers. Our original in-
tention is to propose a general and effective testing method, 
so it is expected that DOG applies to both hand-written 
and randomly generated test programs and can uncover 
new real coverage bugs in different independently devel-
oped coverage profilers. The answer to RQ1 enables us to 
understand whether it is worthwhile to use our new 
method in practice. 

To answer RQ1, we assess the effectiveness of DOG by 
measuring the ability to uncover real bugs in different cov-
erage profilers. For one thing, we leverage both handwrit-
ten and randomly generated input programs to reveal new 
coverage bugs; for another, we reproduce coverage bugs 
from the code snippets in the bug reports reported by the 
existing methods to examine the ability of DOG to detect 
coverage bugs in the earlier versions. 

RQ2 (Significance of uncovered bugs): How significant 
are the bug-finding results?  

The purpose of RQ2 is to investigate whether our testing 

work makes sense since meaningful bug-finding results 
(e.g., long-latent and hard-to-find bugs) are more im-
portant for the quality assurance of coverage profilers than 
bugs that are not intended to be fixed. The answer to RQ2 
enables us to understand the uniqueness of DOG's detec-
tion capabilities.  

To answer RQ2, we evaluate the significance of these 
bugs found by DOG from two aspects: cross-version lifecy-
cle and uniqueness. For lifecycle, we wonder when these 
bugs are introduced and whether they exist in the subse-
quent versions. Therefore, we select nine releases for each 
subject coverage profiler to observe how the incorrect cov-
erage statistics change from version to version. For unique-
ness, we wonder if DOG has a unique capability to reveal 
hard-to-find bugs, so we investigate whether our new bugs 
can be detected by the state-of-the-art coverage profiler 

Algorithm 2 Constraint Solving 
  1 function Solving(regularity, object, cdg, cov): 

2  result ← SAT   
3  diagnostic ← None 
4  P ← Ø /* players */ 
5  switch regularity do 
6   case SB do /* object is a content node */ 
7    P.add(object) 
8    if coverage statistics are inconsistent then 
9     result ← UNSAT   

10     diagnostic ← Extract (cdg, cov, P, regularity) 
11    return result, diagnostic 
12   case SF do  /* object is a fraternity */ 
13    foreach content node n in object do 
14     P.add(n) 
15   case IL do /* object is a content node */ 
16    foreach father region node frn of object in cdg do 
17     P.add(agent of frn) 
18    P.add(object) 
19   case ON do /* object is a content node */ 
20    foreach child region node crn of object in cdg do 
21     P.add(agent of crn) 
22    P.add(object) 
23   case FCL do /* object is a function */ 
24    P.add(ENTRY of cdg) 
25    P.add(callers of object) 
26   case FEL do /* object is a function */ 
27    P.add(ENTRY of cdg) 
28    P.add(exits of object) 
29  solver ← InitializeSolver() 
30  foreach play p in P do 
31   vp ← IntegerVariable() 
32   if cov[p] ≠ -1 then 
33    solver.addConstraint(“vp = cov[p]”) 
34   else 
35    solver.addConstraint(“vp ≥ 0”) 
36  constraint ← ConstrctConstraint(P, regularity) 
37  solver.addConstraint(constraint) 
38  if solver.check() is unsatisfiable then 
39   result ← UNSAT 
40   diagnostic ← Extract (cdg, cov, P, regularity)   
41  return result, diagnostic 
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validators C2V and Cod. 
RQ3 (Usefulness of Diagnostics) How useful are diagnos-

tics for facilitating manual inspection? 
The purpose of RQ3 is to investigate whether our diag-

nostic is useful in facilitating manual inspection. We 
mainly focus on potential compatibility-related bugs as 
they only involve different nodes within a single function, 
apply to our heuristic inference strategy, and account for 
the vast majority (84.33% and 95.5% of the potential bugs 
found in manual input programs and random input pro-
grams). Their diagnostics are expected to not only visually 
describe the context of potential compatibility-related bugs 
concisely but also point out the specific incorrect coverage 
statistics as accurately as possible. The answer to RQ3 ena-
bles us to understand to what extent diagnostics help test-
ers reduce manual overhead.  

To answer RQ3, we measure the usefulness of the diag-
nostic of potential compatibility-related bugs from two di-
mensions: reduction of manual overhead and hit rate of in-
ference. For the former, we calculate the ratio of the size of 
the diagnostic (measured as the number of associated 
nodes or related lines of code) to that of the whole function. 
For the latter, we manually check the innocence of all sus-
pects inferred and calculate the percentage of them that 
does involve incorrect coverage statistics.  

RQ4 (Contribution of Regularities): How do these six 
types of regularities contribute to the bug-finding results? 

The purpose of RQ4 is to investigate how these regular-
ities work in uncovering real coverage bugs. The regulari-
ties we summarize are general ground features that the 
coverage statistics should satisfy. Constraints from them 
reveal potential bugs from different perspectives of control 
flow and infer suspects cooperatively. The answer to RQ4 
enables us to know the patterns in which regularities work 
so that testers can be inspired to adjust the testing strategy 
according to specific testing goals in the future. 

To answer RQ4, we understand their contribution by an-
alyzing the extent of their involvement in coverage profiler 
testing. For this purpose, we construct a bug database con-
taining these newly uncovered coverage bugs discovered 
by DOG and those revealed by existing methods in the ear-
lier versions. Accordingly, we determine the set of bugs 
each regularity can individually detect by only solving the 
constraints that come from it. In addition, we also show the 
contribution of compatibility-related regularities to heuris-
tics inference by analyzing the intersection of bugs that can 
be detected by different compatibility-related constraints.  

4.2 Hardware and subjects 
In this paper, our evaluation was conducted on a Linux 
server (running on 64-bit Ubuntu 18.04.6 with Linux kernel 
4.15.0-210-generic) with Intel(R) Xeon(R) Gold 5117 
@2.00GHz (48 cores) and 128GB RAM. We choose as sub-
jects the two most popular C code coverage profilers Gcov-
10.2.0 and llvm-cov-11.0.0, which are the latest release ver-
sion at the time when our study started at the end of 2020. 
They are adopted for the following reasons:  
• They have been widely used in the community of  
3 As stated in Section 3.1, the five steps of our testing framework are:  Identification of control dependence, Generation of control flow constraint, 

Constraint solving, Log diagnostic information, and Manual inspection 

software engineering. 
• They are integrated into well-known production com-

pilers, i.e. GCC and Clang, respectively. 
• They are used as the subject profilers in prior studies 

and thus we can easily and fairly make a comparison 
with previous approaches. 

Therefore, it is of great importance to uncover new bugs in 
these two widely used and well-tested coverage profilers 

4.3 Third-party tools support 
Based on control flow constraint solving, we implemented 
DOG, a coverage profiler validator, in Python3. Just like 
any other programmers, we adopt some mainstream Py-
thon3 libraries like os [66] (for interacting with the operat-
ing system) and re [67] (for regular expression operations) 
to support our functions. At a high level, the framework of 
our method can be divided into five steps3, three of which 
are supported by the following third-party tools: Under-
stand [29] (for Step 1), Z3 [30] (for Step 3), and Graphviz 
[64] (for Step 4).  
• Understand. Understand is a static analysis tool for 

maintaining, measuring, and analyzing critical or large 
code bases. Our static analysis of the input programs 
is implemented based on Understand. With its Python 
API, we can get the control flow information of the 
functions and the call relationship between the func-
tions. 

• Z3. Z3 is a high-performance theorem prover that has 
been wildly applied in a variety of SMT tasks. We lev-
erage the z3 [68] package in Python3 to perform con-
straint solving. The satisfiability of control flow con-
straints can be checked by converting them to SMT 
problem instances as stated before. 

• Graphviz. Graphviz is an open-source visual graphics 
tool from AT&T Research and Lucent Bell Laboratories. 
We turn to the corresponding Python3 package, graph-
viz [65], to draw pictures with Python3 syntax for vis-
ualization of diagnostics.  

4.4 Test programs 
We adopt the same test scenario as the existing works, each 
time checking the irrationality in the coverage statistics of 
a single program offered by the subject coverage profiler. 
In terms of test programs selection, we first look for the ap-
propriate input program from the test suite that comes 
with the release of GCC 10.2.0 which is a manual test suite 
for GCC compiler testing. There is a total of 38540 C pro-
grams in the subject test suite containing rich program se-
mantics without undefined behaviors. And then, before 
performing constraint solving, we go through the follow-
ing steps to filter out inappropriate programs and obtain 
coverage statistics and control flow information: 
Step 1 Code formatting. Given that many of these manual 

programs have inconsistent code styles, we format them 
into a unified LLVM style so that there will be no more 
than one statement per line and we can obtain statement 
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coverage statistics from line numbers more accurately. 
Step 2 Coverage generation. Given any program test.c, we 

tried to generate coverage reports test.c.gcov 4 and 
test.c.lcov5 for it using Gcov and llvm-cov, respectively. 
Programs that fail to obtain a valid coverage report in 5s, 
without additional inputs or files, will be discarded.  

Step 3 Static analysis. For each test program, we leverage 
Understand to analyze its control flow information as 
well as function call relationships. This process can be 
integrated into the testing process, but for the conven-
ience of reproducing, in advance, we save the infor-
mation of CFG and function call relationships in the 
form of files as the input of DOG. 

Step 4 Subjective filtration. In practice, we assume that 
functions exist independently of each other and interact 
through function calls, so we filter those inputs that de-
fine functions inside other functions, or jump between 
functions through "setjmp" and "longjmp". Besides, pro-
grams containing goto-statement whose target label is 
specified dynamically were also skipped. To facilitate 
the manual inspection, we also limit the size of programs: 
(1) no more than 5 defined functions, and (2) no more 
than 100 lines in source code. 

As a result, we finally get 4163 manual programs as our 
manual test suite. In addition, following previous studies 
[22], [23], we use Csmith [52] to generate 1000 random pro-
grams as a supplement6 . The semantics of random pro-
grams are statically given and they can be correctly parsed. 
Accordingly, these random programs do not need to be 
subjectively filtered. 

4.5 Bug deduplication 
During testing, we encountered many kinds of programs 
which have at least one potential bug with wrong coverage 
statistics. In our opinion, it would be irresponsible to sub-
mit all of them to developers for confirmation. Dozens of 
potential bugs may point to the same underlying reason, 
so, as testers, we should try our best to use our cognition 
to deduplicate them before reporting.  

To reduce the difficulty of bug deduplication, we adopt 
a two-step classification approach. This categorization aids 
testers in manually deduplicating bugs within different 
categories. In the classification process, we refer to two fea-
tures, one is the type of control flow regularities violated 
by the potential bugs, and the other is the type of incorrect 
coverage statistics of the suspects. In the existing works 
[22], [23], incorrect coverage statistics are distinguished 
into three types (Spurious Marking7, Missing Marking8, and 
Wrong Frequency9), and we inherited the same classification 
in this paper. After that, testers can deduplicate those po-
tential bugs under the same classification according to the 
similarity of the context.  

 
4 gcc -O0 –coverage test.c –o test; ./test;gcov test 
5 clang -O0 -fcoverage-mapping -fprofile-instr-generate=test.profraw test.c -o test; ./test; llvm-profdata merge test.profraw -o test.profdata; llvm-cov show -instr-

profile=test.profdata ./file > test.c.lcov 
6 --concise --max-struct-fields 5 --max-funcs 2 --max-array-len-per-dim 5 --max-block-depth 3 --max-block-size 2 
7 Spurious Marking: unexecuted statements are marked as executed. 
8 Missing Marking: executed statements are marked as unexecuted. 
9 Wrong Frequency: a statement executed m times is wrongly marked as executed n times where m > 0, n > 0, and m ≠ n. 

5 EXPERIMENTAL RESULTS 
In this section, we will present and analyze our experi-
mental results to answer the proposed research questions. 

5.1 RQ1: Effectiveness of bug finding 
For Gcov, DOG reports respectively 194 and 48 unsatisfia-
ble constraints in 117 manual programs and random pro-
grams. For llvm-cov, DOG reports respectively 272 and 120 
unsatisfiable constraints in 120 manual programs and 126 
random programs. After de-duplication, we reported 27 
potential coverage bugs, 13 in Gcov and 14 in llvm-cov, re-
vealing unusual coverage statistics. Table 2 shows the bug 
status of all the potential coverage bugs we reported. 17 
have been confirmed by developers, 7 are still pending, 
and 3 were categorized as expected because the anomalous 
coverage statistics found are expected behaviors that the 
mechanisms of the coverage profilers could not handle. Ta-
ble 3 summarizes the types of incorrect coverage statistics 
of these potential bugs. The potential bugs of both Gcov 
and llvm-cov cover all three types where the most frequent 
are Wrong frequency (16 out of 27) followed by Suprious 
marking (8 out of 27) and Missing marking (3 out of 27).  

Table 4 details all the filed bug reports including the sub-
ject profiler, the bug ID, the priority of bugs, the type of 
incorrect coverage, the status of bug reports, and the real 
status of coverage bugs. All these coverage bugs can be 
searched with the corresponding bug ID. For Gcov bugs 
that are reported in Bugzilla, “Priority” indicates the prior-
ity that the developer plans to fix the bug, with P1 being 
the highest, P5 the lowest. All the Gcov bugs are labeled 
with the default priority P3. For llvm-cov bugs which are 
managed in GitHub, there are no corresponding labels of 

TABLE 2 
REAL STATUS OF COVERAGE BUGS  

Status Gcov llvm-cov Total 
Reported 13 14 27 
Confirmed 7 10 17 

Fixed 1 10 11 
Pending 3 4 7 
Expected 3 0 3 
Duplicate 0 0 0 
Won’t fix 0 0 0 

 
 TABLE 3 

TYPES OF INCORRECT COVERAGE STATISTICS  
Type Gcov llvm-cov Total 

Spurious Marking 1 7 8 
Missing Marking 2 1 3 

Wrong Frequency 10 6 16 
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priority, and the report status is also somewhat different 
from Gcov bugs. On the one hand, in Bugzilla, “UNCON-
FIRMED” means pending and if it is confirmed as a new 
bug, it is marked as “NEW”, and the status will eventually 
change to “RESOLVED FIXED” after being fixed by devel-
opers. On the other hand, there are only two statuses 
“Open” and “Closed” for bug reports of llvm-cov bugs, 
which are equivalent to pending and fixed. Since the status 
of bug reports sometimes does not reflect the real status of 
bugs, so we validate and unify it based on the comments 
of developers and the coverage statistics in subsequent ver-
sions of subjects. Accordingly, even if it is claimed “RE-
SOLVED FIXED” by developers, we identify the true status 
of GCC Bug#99443 [59] as Expected.  

In addition to finding new bugs, we also study whether 
DOG is effective in revealing bugs in earlier versions. C2V re-
ported 42 bugs of Gcov in version 8.0.0, and 28 bugs of llvm-
cov in version 7.0.0.  Cod reported 20 bugs of Gcov in version 
9.0.1 and 3 bugs of llvm-cov in version 9.0.0. We also validate 
them manually and filter out those bugs with a status of 
“WONTFIX” or “DUPLICATE” and finally get 62 valid bugs 

(39 of Gcov and 23 of llvm-cov). With the code snippets in cor-
responding bug reports, these bugs in earlier versions are re-
produced to verify DOG. As shown in Table 5, DOG can un-
cover 34 and 19 bugs respectively, demonstrating the compre-
hensiveness of DOG's detection capabilities. Those coverage 
bugs missed by DOG, where it is hard to conduct valid 
constraint solving as there are no enough available cover-
age statistics in the simple code snippets, suggest the 
uniqueness of existing methods. When reviewing those 
early bugs, Gcov bug #99444 [60] in Fig. 6 is found to be a 
reintroduced case of a fixed Gcov bug #85332 [55] (uncov-
ered by C2V in version 8.0.0) as their input programs are 
almost the same. The coverage statistic of “case 0:” should 
be 1, however, after being marked as “RESOLVED FIXED”, 
it changed from 2 to 3, but still incorrect. It makes us sus-
pect that the developers got the root cause wrong and 
made a bad fix. 

Answer: DOG is effective. It can not only find a substan-
tial number of diverse and new bugs in two well-tested 
coverage profilers but also works for revealing bugs in pre-
vious versions. 

5.2 RQ2: Significance of uncovered bugs 
To understand the significance of our bug-finding, we 
measure the 24 unexpected coverage bugs (except 3 ex-
pected bugs #99442 [58], #99443 [59], and #99485 [61]) from 
two aspects: lifecycle and uniqueness. 

TABLE 4 
COVERAGE BUGS FOUND BY DOG 

 Profiler ID Priority Type Report Status Bug Status 
1 Gcov 99440 P3 Wrong NEW Confirmed 
2 Gcov 99441 P3 Wrong NEW Confirmed 
3 Gcov 99442 P3 Missing RESOLVED INVALID Expected 
4 Gcov 99443 P3 Missing RESOLVED FIXED Expected * 
5 Gcov 99444 P3 Wrong NEW Confirmed 
6 Gcov 99485 P3 Wrong RESOLVED INVALID Expected 
7 Gcov 100938 P3 Wrong NEW Confirmed 
8 Gcov 101192 P3 Wrong NEW Confirmed 
9 Gcov 101193 P3 Wrong NEW Confirmed 

10 Gcov 101554 P3 Wrong UNCONFIRMED Pending 
11 Gcov 101569 P3 Wrong UNCONFIRMED Pending 
12 Gcov 101618 P3 Wrong RESOLVED FIXED Fixed 
13 Gcov 101644 P3 Spurious UNCONFIRMED Pending 
14 llvm-cov 48767 - Spurious Closed Fixed 
15 llvm-cov 48770 - Spurious Closed Fixed 
16 llvm-cov 48771 - Wrong Closed Fixed 
17 llvm-cov 48772 - Spurious Closed Fixed 
18 llvm-cov 48779 - Missing Open Pending 
19 llvm-cov 48782 - Spurious Closed Fixed 
20 llvm-cov 48783 - Spurious Closed Fixed 
21 llvm-cov 48784 - Spurious Closed Fixed 
22 llvm-cov 48827 - Wrong Open Pending 
23 llvm-cov 50201 - Wrong Open Pending 
24 llvm-cov 50500 - Wrong Open Pending 
25 llvm-cov 50610 - Spurious Closed Fixed 
26 llvm-cov 50611 - Wrong Closed Fixed 
27 llvm-cov 50614 - Wrong Closed Fixed 

*: identified by authors 
 

TABLE 5 
DOG’S EFFECTIVENESS ON EARLY BUGS 
 Gcov llvm-cov 

Yes 34 19 
No 5 4 

Total 39 23 
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Lifecycle. We analyze the influence of our bug-finding 
on previous versions of coverage profilers. For Gcov, we 
consider 9 official release versions from 4.8.5 (released on 
June 30, 2015) and later. For llvm-cov, we also consider 9 
versions which are from 6.0.0 (released on May 8, 2018) 
and later. Fig. 7 shows the lifecycle of unexpected bugs 
over versions where the netted bars represent the experi-
ment version of our subjects. Quantitatively, 7 out of 10 
Gcov bugs and all llvm-cov bugs were present from the se-
lected earliest version (Gcov 4.8.5 and llvm-cov 6.0.0) and 
were not fixed until later versions of the target versions in 
our experiments. Specifically, during the tracing process of 
Gcov bugs in the 9 versions, we find that even the same 
input program has inconsistent coverage statistics in dif-
ferent versions. For the reintroduced bug in Fig. 6, the cov-
erage statistic of “case 0:” is also marked as 5 in version 
7.5.0. Meanwhile, the coverage statistic of “return *p0 == 0;” 
was also wrongly marked as 2 in earlier versions. Gcov bug 
#101569 [63] is also a case of reintroduction whose cover-
age statistics are only completely correct in version 8.4.0. 
Since Gcov-4.8.5 was released in June 2015 and llvm-cov-

6.0.0 was released in May 2018, we can conclude that most 
Gcov bugs are latent for over five years and all llvm-cov 
bugs are latent for over two and a half years.  

Uniqueness. We investigate whether our new bugs can 
be detected by the state-of-the-art coverage profiler valida-
tors C2V and Cod. By identifying inconsistencies in the 
coverage reports expected to be identical, C2V and Cod 
found a fair number of bugs in earlier versions of Gcov and 
llvm-cov. However, they are not as good as they used to be. 
Table 6 shows the effectiveness of existing methods for the 
bugs discovered by DOG. For C2V, it still works for all 
Gcov bugs, but only less than one-third of llvm-cov bugs 
(4/14) can be killed by C2V. The reason is that the mecha-
nism of instrumentation and parsing of llvm-cov tends to 
record the number of executions for all code lines. How-
ever, Gcov probably does not provide coverage statistics 
for some complex statements. Therefore, some llvm-cov 
bugs may be missed by C2V (i.e., “Weak Inconsistency” [23] 
mentioned in Section 3.1). Meanwhile, it is noted that Cod 
is completely invalid for coverage bugs of both two cover-
age profilers. There may be two reasons: 1) Cod has a 

  

(a) GCov (b) llvm-cov 

Fig. 7. Unexpected coverage bugs that affect corresponding release versions of GCov (a) and llvm-cov (b). The abscissa corresponds to the 
specific versions and release date. The netted bars represent the versions of our subjects. 

 

1: 1: int doit(int sel, int n, void *p) 1: 1: int doit(int sel, int n, void *p){ 

-1: 2: { 1: 2: int *const p0 = p; 

1: 3: int *const p0 = p; -1: 3:  

-1: 4:  1: 4: switch (sel) { 

1: 5: switch (sel) { 3: 5: case 0: 

-1: 6: { -1: 6: do { 

2: 7: case 0: 3: 7: *p0 += *p0; 

3: 8: do {*p0 += *p0;} while (--n); 3: 8: } while (--n); 

1: 9: return *p0 == 0; 1: 9: return *p0 == 0; 

-1:10:  0:10:   default: 

0:11:    default: 0:11: __builtin_abort(); 

0:12: abort (); -1:12: } 

-1:13: } -1:13: } 

-1:14: }   

(a) Gcov bug #85332 (b) Gcov bug #99444 

Fig. 6. Gcov bug #99444 is a reintroduced case of Gcov bug #85332.  
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different preference for inputs. Cod requires unexecuted 
statements to be modified, while DOG tends to find bugs 
with inputs having rich execution information as it is more 
conducive to performing control flow constraint checking; 
2) Cod is more of a targeted testing method. In previous 
work, almost all coverage bugs reported by Cod are Gcov 
bugs, where half of them have been fixed. That is, Cod tar-
gets specific mechanisms of coverage profilers, and this is 
the reason why Cod can achieve zero false positives. Like-
wise, the comprehensiveness of Cod is also limited. The 
above results show that DOG has a unique detection abil-
ity to detect bugs that are difficult to be detected by these 
existing methods. 

Answer: Our bug-finding results are significant. More 
than one-third of them cannot be detected by existing 
methods. Besides, all the coverage bugs found by DOG 
are long-latent for years. 

5.3 RQ3: Usefulness of diagnostic 
By offering insights into why the coverage statistics seem 
unreasonable based on control dependence, our diagnostic 
aims to streamline the bug confirmation process and re-
duce the dependency on extensive code understanding. 
For compatibility-related bugs, testers can confirm them 
by solely reading the provided graphic function-level di-
agnostics (e.g., Fig. 5) rather than comprehending the en-
tire function. The usefulness of such diagnostics can be 
measured from the following two aspects:  

Reduction of manual overhead. During the manual in-
spection of potential bugs, the manual overhead is roughly 
positively correlated to the number of code elements that 
need to be reviewed. Hence, we proposed code-element-ratio, 
which is the ratio of the number of code elements in a di-
agnostic compared to that of the whole function. The lower 
the code-element-ratio, the more cost diagnostic can re-
duce. Moreover, under the same code-element-ratio, the 
larger the function size, the more reduction. Table 7 shows 
the distribution of the number of code elements of all 8092 

manual functions and 2756 random functions, counted in 
two ways (content nodes or code lines). In both counting 
methods, the overall size of manual functions is signifi-
cantly smaller than that of random functions, with over 80% 
of manual functions being only a few lines long. 

Due to the difference in function size, we use the number 
of code elements corresponding to different quantiles as a 
lower bound to analyze the average code-element-ratio of 
diagnostics when the function size exceeds a certain size. 
Fig. 8 shows the trend of the average code-element-ratio 
changing with the lower bound of function size. The ab-
scissa is the quantiles of the function size and the specific 
number of code elements corresponding to each quantile 
can be seen in Table 7. The points with a lower bound of 0 
correspond to the average code-element-ratio of all diag-
nostics. As can be seen, there is a large difference in the av-
erage code-element-ratio for random and manual func-
tions due to different scales (from low to high are 0.32, 0.34, 
0.59, and 0.62). However, the general trend of these four 
curves is similar. As the lower bound of function size in-
creases, the number of functions beyond that size de-
creases, and the average code-element-ratio goes down in-
dicating that, on average, the relative size of a diagnostic is 
decreasing. It is noted that these four curves are relatively 
flat in the beginning, as most potential compatibility-re-
lated bugs are not found in too tiny functions. Considering 
the wealth of control dependence information inside, 
graphic diagnostic has a good reduction in the manual 
overhead, especially in large functions.  

Hit rate of inference. If a diagnostic has multiple poten-
tial compatibility-related bugs, DOG will infer, as far as 
possible, which nodes are most likely to have incorrect cov-
erage statistics. Table 8 shows the statistics of graphic diag-
nostics generated by DOG for the 8092 manual functions 

TABLE 6 
EXISTING METHODS’ EFFECTIVENESS ON NEW BUGS 

Method Testability Bug 
Gcov llvm-cov 

C2V 
√ 10 4 
× 0 10 

Cod 
√ 0 0 
× 0 0 

Total  10 14 
 

TABLE 7 
DISTRIBUTION OF THE NUMBER OF CODE ELEMENTS  OF 8092 

MANUL FUNCTIONS AND 2756 RANDOM FUNCTIONS 

Quantile 
Manual functions Random functions 
#Node #Line #Node #Line 

10% 1 1 2 6 
20% 1 2 5 9 
30% 2 3 5 12 
40% 2 4 7 16 
50% 3 5 10 20 
60% 3 6 12 25 
70% 4 7 16 30 
80% 5 8 20 37 
90% 8 12 25 49 

 
 

 
Fig. 8. The average code-element-ratio of diagnostics when the 

functions exceed a certain size. The abscissa is the quantiles of the 
function size and the specific number of code elements correspond-

ing to each quantile can be seen in Table 7. Connected by under-
scores in the legend are the type of functions and code element, re-

spectively.  

 

Page 61 of 70 *****For Peer Review Only*****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



16 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

 

and 2756 random functions in the test suite. As shown in 
the first row, when testing Gcov with the manual inputs, 
DOG generated 89 graphic diagnostics involving a total of 
147 unsatisfiable compatibility-related constraints, and 60 
nodes were blamed as suspects by heuristic inference. On 
average, each graphic diagnostic contains about two unsat-
isfiable compatibility-related constraints and about one 
suspect. To obtain the hit rate of inference, we manually 
inspected the generated graphic diagnostics. As shown in 
the rightmost column, the hit rate of inference is more than 
73% for the manual functions. Erroneous inference mainly 
comes from two aspects. First, many functions are small in 
size, so the intersection between 2 unsatisfiable compatibil-
ity-related constraints is more likely to have more than one 
node, resulting in not only the real suspect but also some 
innocent suspicious nodes being blamed. In this case, the 
range of suspects is also narrowed, that is, the hit rate will 
be higher if the “hit” is defined as the set of potential sus-
pects inferred from a graphic diagnostic including the real 
suspect. Second, wrong inferences also come from false 
alarms of DOG, which are due to the limitation of the static 
analysis ability. The cause of false alarms will be left for 
discussion in Section 6.1. In addition, random functions are 
less susceptible to the aforementioned two factors and 
have a higher hit rate, because they are larger in size and 
their static semantics are easier to analyze. 

Answer: Our diagnostic is useful in facilitating man-
ual bug inspection by reducing the manual overhead, es-
pecially in large functions, as well as providing suspects 
inference with a high hit rate. 

5.4 RQ4: Contribution of regularities 
In total, based on six control flow regularities, DOG can re-
spectively detect 44 and 33 new and old bugs in both Gcov 
and llvm-cov. By analyzing the set of bugs detected by dif-
ferent types of control flow constraints and the relation-
ship between these sets, we can evaluate how these regu-
larities are involved in coverage profiler testing. Since the 
number of regularities is more than three, we adopt Upset 

plot to show our results. UpSet plot is a data visualization 
method first proposed in 2014 [31] and is now frequently 
used instead of Venn diagram to show set data with more 
than three intersecting sets, especially in life sciences [32]. 
Upset shows intersections in the matrix with the rows of 
the matrix corresponding to the sets and the columns to the 
intersections between these sets (or vice versa) where the 
size of the sets and the intersections are shown as bar 
charts. As shown in Fig. 9, the rows correspond to the bug 
sets violating different regularity ranked in set size, and 
the columns correspond to the intersections between these 
bug sets ranked in degree. The rows in both Fig. 9(a) and 
Fig. 9(b) show that constraints from all control flow regu-
larities can uncover real coverage bugs but there is a clear 
difference in the size of the sets: compatibility-related con-
straints are oriented towards complex relationships within 
functions and uncover more bugs overall, while the FCL-
constraint finds the least number of bugs of both Gcov and 
llvm-cov. The rightmost six columns in both Fig. 9(a) and 
Fig. 9(b) indicate that all types of constraints have their 
unique abilities to reveal some coverage bugs of Gcov and 
llvm-cov that cannot be detected by other types so that no 
one regularity can be replaced by the others. The rows in 
Fig. 9(a) also show that, for Gcov, only the SB-constraint is 
orthogonal to the others, and the sets of bugs found by any 
two compatibility-related constraints have an intersection, 
and there are two bugs even violating three regularities at 
the same time. The rows in Fig. 9(b) display that, for llvm-
cov, both FCL and SB constraints are orthogonal to the 

TABLE 8 
STATISTICS OF GRAPHIC DIAGNOSTICS  

Tests #Func Subject #GD* #UCC* #SUS* Hit Rate 

Manual 8092 Gcov 89 147 60 73.3% 
llvm-cov 109 246 169 78.1% 

Random 2756 Gcov 17 33 12 100% 
llvm-cov 130 287 136 84.6% 

*GD: graphic diagnostic 
*UCC: unsatisfiable compatibility-related constraint 
*SUS: suspect 

  

(a) 44 Gcov bugs (b) 33 llvm-cov bugs 

Fig. 9. Upset plots for the relationship between sets of coverage bugs that can be detected by different types of control flow constraints.  
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others, and only the bugs detected by FEL have intersec-
tions with those of all other compatibility-related con-
straints. It is not hard to see that FEL contributes the most 
to inference. 

In the example given in Fig. 3, we successfully infer the 
suspects of a coverage bug uncovered by two unsatisfiable 
constraints, which are of type IL and ON, respectively. In 
addition, to visualize the cooperation of the compatibility-
related regularities more intuitively, Fig. 10 - Fig. 12 give 
another three bug examples (llvm-cov bug #49438 [54], 
Gcov bug #99441[57] and Gcov bug #88930 [56]) to show 
how we find suspicious nodes and infer the suspect, where 
from left to right are the segments of coverage report with 
incorrect coverage statistics, CDG of the corresponding 

function, and the diagnostic information given by DOG. 
Fig. 10 is an llvm-cov bug where line 15 is unexecuted but 
its coverage statistic is incorrectly recorded as 2, and it can 
be uncovered by DOG with ON and FEL. Fig. 11 is a Gcov 
bug where the if-statement in line 27 is executed 15 times 
but its coverage statistic is incorrectly recorded as 30 (the 
relevant semantic information is hidden for ease of presen-
tation), and it can be uncovered by DOG with SF and ON. 
Fig 12 is a Gcov bug revealed by C2V in an earlier version 
where the if-statement in line 6 is executed once but its cov-
erage statistic is incorrectly recorded as 2, and it can be un-
covered by DOG with IL, SF, and FEL. Specifically, for the 
potential bugs uncovered by FEL-constraints, the numbers 
before the FEL symbol are the actual number of exits of the 

… 

19 20 
21 22

1816 17 36

r1

r2

24 25 
26

23

r3

T

T

-1

0

15

15

T
28 29

27r4 r5

333031 r6

15

1515

15 30

-1

15 30

15

015

120105 105

T F

T

ENTRY

 

30-If-27,27

SF

15-Passive-
24,26

15 0

15-Passive-
28,29

0-Passive-
33,33

ON ON

 

15:15: static int bar(void) { 
 *** 

15:18: if (***) { 
 *** 

15:23: for(***;***;***) { 

 *** 

30:27: if(***) { 

      *** 

120:30:        While(***) 

105:31:          *** 

-1:32: } else 

0:33:          *** 

-1:34: } 
-1:35: } 
15:36: *** 

-1:37: } 

… 

(a) Coverage report (b) CDG (c) Diagnostic 

Fig. 11. Coverage report, CDG, and diagnostic of Gcov bug #99441.  In (a), line 27 is only executed 15 times but is wrongly marked as 30 
times. 

 

1| | extern void abort(void) 
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ENTRY

 

1-Entry

EXIT

1-Exit-18,18 2-Exit-15,15 2-Passive-
16,16

2-If-11,11

2 2

ON ON

1-FEL 2-FEL

 

2| |  
3|4| #define f(x) x 
4| |  
5|1| int main(){ 
6|1| #if f(1) == f /**/( 

 /**/ 1 /**/); 

7|1| int x; 

8|1| #endif 

9|1| x = 0; 

10|3| while (x<2){ 

11|2| if (f 

12|2| /**/ ( 
13|2| /**/ 0 /**/ 
14|2| /**/)) 

15|2| abort(); 

16|2| x++; 

17|2| } 

18|1| return 0; 

19|1| } 

(a) Coverage report (b) CDG (c) Diagnostic 

Fig. 10. Coverage report, CDG, and diagnostic of llvm-cov bug #49438.  In (a), line 15 is not executed but is wrongly marked as executed 
twice. 
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function from each potential exit. 
Take Fig. 12 as an example to show the cooperation of 

compatibility-related regularities in inference: (1) Node 6 
has a brother node 5 with inconsistent coverage so that SF 
is violated and the coverage of their parent region node r3 
is not available; (2) Since node 4 governs the execution of 
both two branches (i.e., r3 and r4), according to ON, the cov-
erage of r3 can be completed as: 

𝐶𝑜𝑣(𝑟3) = 𝐶𝑜𝑣(𝑛𝑜𝑑𝑒 4) − 𝐶𝑜𝑣(𝑟2) (10) 

Therefore, after completing coverage statistics as much as 
possible, it can be known that node 6 also violates IL; (3) 
From the perspective of function exit, both node 6 and 
node 7 are potential exits. Considering that node 7 is con-
trol-dependent on node 6, Cov(r6) = 1 and Cov(node 6) = 2, it 
turns out that the function “foo” exited once from node 6 
through another branch.  Accordingly, function “foo” is ex-
ecuted once but is recorded as exiting from node 6 and 
node 7 once each, causing FEL to be violated. Finally, node 
6 is inferred as a suspect for being involved in three unsat-
isfiable compatibility-related constraints. 

Answer: All six regularities are valid for finding cov-
erage bugs and no one can be replaced by the others. As 
for manual inspection, any two compatibility-related 
regularities can work together to infer suspects. Rela-
tively, FCL has weak effectiveness in testing, and FEL 
contributes the most to inference. 

6 DISCUSSION 
In this section, we discuss the causes of false alarms in 
practice, the feedback of developers, and the scalability of 
control flow constraint solving. 

6.1 Causes of false alarms 
In this paper, DOG leverages Understand to analyze the 
control flow information as well as function call relation-
ships for input programs. Although the test suite has been 
preprocessed to avoid complicated situations, there are 

still a few unusual cases in manual inputs beyond the static 
analysis capabilities of Understand. Fig. 13 shows two typ-
ical code snippets of manual programs leading to false 
alarms. In Fig. 13(a), the function “bar” has an alias “foo”, 
so when line 7 is executed, it is the function “foo” that gets 
called causing the program to exit early.  DOG is unable to 
handle dynamic information like this yet and still classifies 
the statements in lines 7 and 8 as a basic block (i.e., one 
content node). In Fig. 13(b), the structure of the switch-
statement and the if-statement is mixed in an unconven-
tional way where the control flow of statements in lines 6 
and 7 comes from both the switch-statement in line 2 and 
the if-statement in line 4, which cannot be properly parsed 
by Understand as well.  

Overall, the false positives of DOG mainly come from 

1 extern void abort(void); 

2 extern void exit(int); 

3 void foo(void) {exit(0);} 

4 static void bar(void) 

5 __attribute__((alias(“foo”))); 

6 int main(void) { 

7 bar(); 

8 abort(); 

9 } 

(a) Function alias 
  

1 void foo(int x) { 

2 switch(x){ 

3 case 0: 

4 if (0) { 

  

5 printf(“0\n”); 

6 case 1: 

7 printf(“1\n”); 

8 } 

9 } 

10 } 

(b) Mixed control flow context 

Fig. 13. Two manual code snippets causing false alarms. Function 
“foo” is called by alias in (a), and (b) has mixed control flow context. 

 

 1: 1: void foo(long dx, long dy, 
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T
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T
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ENTRY

 
0-Passive-
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1-ENTRY EXIT

SF

1-FEL

1-FEL

0-FEL

0-FEL

1-Passive-5,5

1-If-4,4

0 =1

0-If-9,9

IL

completion

 

 int xi, int yi) 
-1: 2: { 
1: 3: int hints = 0; 
1: 4: if(dy != 0 && (dx<=1155)){ 

1: 5: hints = dy > 0 ? 2:1; 

2: 6: if(xi) { 

1: 7: hints = 1; 

-1: 8: } 

0: 9: }else if(dx!=0&&(dy<=0)){ 

0:10: hints = 2; 

-1:11: }else { 

0:12: hints = 3; 
-1:13: } 
1:14: } 

 

(a) Coverage report (b) CDG (c) Diagnostic 

Fig. 12. Coverage report, CDG, and graphic diagnostic of Gcov bug #88930.  In (a), line 6 is only executed once but wrongly marked as 
twice, where the relevant semantic information is hidden for ease of presentation. 
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the restriction of static analysis. All the six control flow reg-
ularities we propose are general ground regularities that 
the coverage statistics should satisfy and there should have 
no false alarm during control flow rule checking with pre-
cise control flow information. DOG indeed achieves zero 
false alarms for uncovering potential bugs with random 
programs whose control flow information can be fully 
parsed correctly. 

6.2 Developers’ feedback 
Overall, developers have confirmed 17 and fixed 11 among 
those coverage bugs that we reported. However, the reac-
tion was different between the developers of Gcov and 
llvm-cov. For Gcov bugs, the developers are more aggres-
sive, sometimes updating not only the status of a bug re-
port, but also the corresponding reason, and none of the 
bugs was downgraded to a priority of P4 or P5. While de-
velopers of llvm-cov tend to fix coverage bugs silently, 
leading bugs have only two statuses: pending or fixed.  

Among the bugs reported by us, there are altogether 3 
expected Gcov bugs since their anomalous coverage statis-
tics are considered by the developers to be expected. Fig. 
14 shows the two expected bugs which are directly marked 
as “RESOLVED INVALID” by Gcov developers. As shown in 
Fig.14(a), a segment error was triggered (Gcov bug #99442), 
causing all statements to be marked as unexecuted. This is 
expected by developers [58]:  

There is no way really to recover from a segfault in a manner 
that is suitable for all programs. 

Therefore, when a segment error occurs, the coverage sta-
tistics of the executed statements need to be recovered 

manually.  As Fig. 14(b) shows, according to the program 
semantics, the function “free” should be called only once, 
but it is executed five times (a total of five times "passed" is 
printed). The developer explained that the counting mech-
anism of Gcov can only record the first two times [61]:  

Later calls are not counted as counters are already streamed 
into GCDA file. Well, I tend to close it as invalid. 

Fig. 15 shows the last special expected bug #99443 where 
similar to Fig. 14(a), when the program exits from the 
abort-statement on line 19, all statements were marked as 
unexecuted (the printf-statements on lines 13 and 17 out-
put successfully). It is also a case of the expected behavior 
of developers but not documented well, and it is marked 
as “RESOLVED FIXED” after being documented. There-
fore, we tend to identify it as an expected bug. 

Despite there being still a few bugs that are pending or 
waiting to be fixed, developers can get inspiration from 
them and are indeed actively fixing bugs so we believe 
there will be more bugs to be confirmed or fixed in the fu-
ture. For example, in the comments of Gcov bug #101193 
revealed by DOG, the first developer thinks that it is not 
related to bitfields, whereas the second developer disa-
grees and intends to fix it in the future [62]: 

Actually I suspect it is more related to bitfields and spread 
across multiple lines. There is an optimization done early (be-
fore GCOV) in fold-const which combines the above to use and 
afterwards. I have a few set of patches which allows to get rid of 
most of the optimization in fold-const dealing with this but not 
all; This is something which I am going to work towards for 
GCC 12 but after the current phiopt work.  

-1: 1: #include <x86intrin.h> 

-1: 2: #include <stdio.h> 

: 3:  

-1: 4: extern void abort(void); 

: 5:  

-1: 6: #ifdef __x86_64__ 

-1: 7: #define EFLAGS_TYPE unsigned long long int 

-1: 8: #else 

-1: 9: #define EFLAGS_TYPE unsigned int 

-1:10: #endif 

:11:  

0:12: int main(void) { 

0:13: printf(“1\n”); 

0:14: EFLAGS_TYPE flags = 0xD7; /*111010111b*/ 

-1:15: __writeeflags(flags); 

0:16:   flags = _readeflags(); 

0:17:   printf(“2\n”); 

0:18: if ((flags & 0xFF) != 0xD7) 

0:19: abort(); 

0:20: printf(“3\n”); 

-1:21: #ifdef DEBUG 

-1:22: printf(“PASSED\n”); 

-1:23: #endif 

-1:24: } 

Fig. 15. Expected Gcov bug #99443. It was marked as “RESOLVED 
FIXED” by the developer but identified as an expected bug by us ac-

cording to the comments of the developer. 

 

-1: 1: #include <stdio.h> 

-1: 2: char fixed_regs[0x00080000]; 

2: 3:  

0: 4: int main(void) { 

0: 5: printf(“PASSED\n”) 

0: 6: return fixed_regs[0x000ff000]; 

-1: 7: } 

(a) Gcov bug #99442 
 

-1: 1: #include<stdio.h> 

2: 2: void free(void *ptr) { 

2: 3: printf(“passed\n”); 

2: 4: } 

: 5:  

1: 6: void *foo(void) { 

1: 7: printf(“return\n”); 

1: 8: return 0; 

-1: 9: } 

:10:  

1:11: int main(void) { 

1:12: void *p = foo(); 

1:13: free(p); 

1:14: return 0; 

-1:15: } 

(b) Gcov bug #99485 

Fig. 14. Two expected Gcov bugs that were directly marked as “RE-
SOLVED INVALID” by developers. 
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6.3 Scalability 
As smaller programs are easier for testers and developers 
to comprehend, replicate, validate, and subsequently ad-
dress within the profilers, our experiment was centered 
around using small programs as inputs to detect coverage 
bugs. Moreover, considering that we adopt more program 
analysis techniques than existing works, we will perform a 
comprehensive analysis of the automation cost and man-
ual effort involved to gain insight into its scalability: 
• Automation cost. Automation costs primarily arise 

from two key phases: program analysis and constraint 
solving. In the phase of program analysis, we em-
ployed two algorithms to generate PDT and CDG for 
each function, respectively. For PDT generation, we 
utilize the Lengauer-Tarjan algorithm, which effi-
ciently finds dominators in the CFG of a function with 
a time complexity of O(Vα(V)) [28], where V represents 
the number of content nodes and α is the functional 
inverse of Ackerman's function. With PDT and CFG in 
hand, the subsequent algorithm allows us to analyze 
control dependence with a time complexity of O(V2) 
[27]. Moving on to the constraint-solving phase, as 
shown in Table 9, we generate O(V) control flow con-
straints for each function and all of them are simple 
linear constraints. To avoid the complexity of con-
straint-solving instances exploding as the program 
size increases, we only solve one control flow con-
straint at a time. During this revision, we additionally 
employ Csmith to generate 100 random programs with 
more than 1000 lines to explore the relationship be-
tween total constraint-solving costs and program size. 
Fig. 16 illustrates a linear relationship between con-
straint-solving time and program size, especially in 
terms of content nodes. One possible reason is that 
many lines outside the function are not related to con-
straint solving, such as macros and global variables. 
Additionally, we find that the overall time consump-
tion of testing llvm-cov exceeds that of testing Gcov 
because llvm-cov provides a greater number of cover-
age statistics to be checked. 

• Manual effort. Manual efforts come from the manual 
inspection of test results. The difficulty of manual in-
spection increases as the size increases, and the extent 
of this increase is difficult to measure. In practice, pro-
cessing the testing results by hand takes much longer 
time than the automated execution during the previ-
ous testing process. However, our diagnostic infor-
mation can greatly enhance inspection efficiency by 
providing control flow reasoning for the presence of 
unusual coverage statistics, especially in large func-
tions (refer to Section 5.3 for further details). For in-
stance, even statements that are widely separated and 
seemingly unrelated in terms of control dependencies 
can be connected through our method, revealing 
brother relationships (potential bugs uncovered by SF-
constraints can be easily confirmed and validated with 
diagnostics). 

7 THREATS TO VALIDITY 
We consider the most important threats to the internal and 
external validity of our study. Internal validity is the de-
gree to which conclusions can be drawn about the causal 
effect of independent variables on the dependent variables. 
External validity is the degree to which the results of the 
research can be generalized to the population under study 
and other research settings.  

7.1 Threats to internal validity 
The threats to internal validity mainly come from two as-
pects. First, our algorithm requires the coverage statistics 
of graph nodes, but sometimes the coverage statistics of 
nodes are not available, causing some bugs to be missed 

  

(a) Measured in lines (b) Measured in content nodes 
Fig. 16. The relationship between the total time of constraint solving and the size of programs, when program size is measured in different 

ways.  

 

 

TABLE 9 
THE NUMBER OF CONTROL FLOW CONSTRAINTS OF EACH 

TYPE GENERATED FOR A FUNCTION  
 SB SF IL ON FCL FEL Total 

Number V ≤V V V 1 1 O(V) 
* V is the number of content nodes of the CFG of the function 
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during coverage constraint solving. In order to reduce this 
threat, for graph nodes whose coverage statistics are not 
available, their coverage statistics are regarded as non-neg-
ative integer variables in constraint solving. Besides, we 
also try to narrow their range based on the available cov-
erage statistics of other nodes in related contexts (e.g., Fig. 
12(c)). Second, there is a threat to cause false positives or 
false negatives in manual work. For one thing, the imple-
mentation of the DOG is influenced by the individual's 
programming ability, for another, we reduce potential cov-
erage bugs in our experiments manually which may lead 
to mistakes. To alleviate this threat, version control during 
code development is performed by two authors of this ar-
ticle, and all results of manual deduplication need to be ap-
proved by these two authors. 

7.2 Threats to external validity 
The threats to external validity mainly lie in subjects and 
test inputs. First, we only choose Gcov and llvm-cov as the 
subjects. They may not be representative enough for other 
coverage compilers. In the future, we plan to extend our 
approach to other C coverage profilers and even coverage 
profilers for other programming languages. Second, the in-
puts in our experiment face the threat of diversity in terms 
of size and semantics. Most functions in our manual test 
suite are less than 10 lines. We follow the previous works 
[22], [23] and use the random program generator Csmith 
to enrich our inputs, but there is still the problem of con-
vergence in these random programs. In future work, we 
will focus on generating real and diverse test inputs. 

8 RELATED WORK 
In this section, we introduce the related work in recent 
years to the automated testing of developer tools. First, we 
briefly review the work related to coverage profiler testing, 
after which we present the related testing works about the 
profiler and debugger. 

8.1 Coverage profiler testing 
As far as we know, little attention has been paid to the val-
idation of code coverage profilers. Currently, only Yang et 

al. [22], [23] proposed two coverage profiler validators fo-
cusing on this direction, i.e., C2V and Cod.  As the first at-
tempt in this direction, C2V leverages a differential testing 
approach to hunting for bugs in coverage profilers. It as-
sumes that the code coverages given by multiple inde-
pendently implemented coverage profilers are identical. 
Therefore, potential bugs could be found by checking the 
consistency of the coverage reports generated by different 
coverage profilers. Later, Cod, an automated self-validator 
for coverage profilers based on metamorphic testing, is 
proposed to address the limitations of C2V. It uncovers 
coverage bugs according to a metamorphic relation that 
modifying unexecuted code blocks in an input program 
should not affect the coverage statistics of the executed 
code blocks under the identical profiler.  

Inspired by existing works, we propose control flow 
constraint solving to address the oracle problem within 
coverage profiler testing, based on which we also imple-
ment a profiler validator called DOG. To the best of our 
knowledge, DOG is the first effort leveraging control flow 
regularities to validate the coverage profiler, which is our 
biggest innovation. Table 10 provides a technical compari-
son of C2V, Cod, and DOG. Clearly, the main difference 
between these three works is that they adopt different 
methodologies to tackle the oracle problem. Overall, these 
three studies have identified a significant number of bugs 
in various versions of C coverage profilers during different 
periods. Many of these bugs have been verified and ad-
dressed by developers, highlighting the effectiveness of 
these approaches in enhancing the reliability and maturity 
of relevant coverage profilers. 

8.2 Compiler testing 
Compiler testing is the most attractive area of toolchain 
testing and has received a lot of attention in the past dec-
ade. As surveyed by Chen et al. [33], researchers have 
mainly carried out studies on the following four aspects of 
compiler testing: (1) constructing test programs. Besides 
constructing the validation suites manually [34], [35], the 
related main techniques of test program generation can be 
broadly categorized as grammar-based methods [36], [37] 

TABLE 10 
COMPARISON AMONG C2V, COD, AND DOG 

 C2V Cod DOG 

Methodology Differential testing Metamorphic testing control flow constraint solving 

Insight 
Multiple coverage profilers should 
generate consistent coverage statis-
tics for the same program 

A coverage profiler should generate 
consistent coverage statistics for ex-
ecuted statements of path-equiva-
lent variants 

Coverage statistics should follow 
some control flow regularities. 

Input Coverage statistics from different 
coverage profilers 

Coverage statistics for path-equiva-
lent variants 

Coverage reports and control flow 
information 

Output The line with inconsistent coverage 
statistics 

The line with inconsistent coverage 
statistics 

Diagnostic information describing 
the context of potential bugs 

Advantage Easy to implement Zero false-positive Generalizability and interpretability 

Shortage Narrow application and heavy hu-
man burden Limited testing capacity Restriction of static analysis 
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and mutation-based methods [6], [38]; (2) alleviating the 
test oracle problem. Since it is difficult to determine the test 
oracle in compiler testing, i.e., to determine whether a 
given test program exposes any undesired behavior, many 
technologies have been proposed to mitigate this issue, e.g., 
differential testing [7], [36] and metamorphic testing [6], [8]; 
(3) optimizing the test process. To improve the test effi-
ciency, many optimization approaches for test-program 
execution have been proposed which can be divided into 
two types: i.e., test-program prioritization [39], [40] and 
test-suite reduction [47], [48]; and (4) post-processing of 
test results. If the test programs indeed trigger compiler 
bugs, the next step is to understand and fix these bugs. The 
related efforts can fall into three groups: test program re-
duction [43], [44], duplicated bug identification [45], [46], 
and compiler bug debugging [46], [47]. 

8.3 Debugger testing 
Debugger is also an important developer tool that is 
widely used. Recently, the testing of debuggers has started 
to receive attention. For the testing of interactive debug-
gers, Lehmann and Pradel [48] have proposed a feedback-
directed test generator, called DBDB, which generates de-
bugger actions to exercise the debugger. By comparing 
traces of multiple debuggers differentially, diverging be-
havior that points to bugs and other noteworthy differ-
ences can be found. Built on DBDB’s approach for obtain-
ing initial test inputs, Tolksdorf et al. [49] have presented 
the first metamorphic testing approach for debuggers 
where both the debugged code and the debugging actions 
will be transformed in such a way that the behavior of the 
original and the transformed inputs should differ only in 
specific ways. Li et al. [50] focus on the validation of the 
correctness of debug information given by a debugger for 
optimized code. They verify whether a debugger can stop 
at a predetermined line and print the correct value of a spe-
cific variable without triggering undefined behavior for 
optimized code. Di Luna et al. [51] proposed Debug2, a 
framework to find debug information bugs that rely on 
trace invariants to perform differential analysis on debug 
traces of optimized and unoptimized programs, and gen-
eralized the work of differential analysis of debug infor-
mation of optimized code to more aspects than the con-
sistency of variables information. 

9 CONCLUSION AND FUTURE WORK 
In this paper, our primary objective is to unveil coverage 
bugs in coverage profilers. To achieve this goal, we present 
an effective approach called control flow constraint solving, 
specifically designed to tackle the oracle problem inherent 
in coverage profiler testing. We identify and summarize six 
control flow regularities based on control dependence and 
the pattern of control flow during program execution. By 
leveraging these regularities, we generate coverage con-
straints that describe the relationship between coverage 
statistics. Using control flow constraint solving as the foun-
dation, we have developed a code coverage profiler valida-
tor called DOG, implemented in Python3. To assess its ef-
fectiveness, we conducted evaluations on two widely used 

C/C++ coverage profilers, namely Gcov and llvm-cov. As a 
result, we discovered 27 bug reports exposing abnormal 
coverage statistics. Out of these, 17 bugs were confirmed 
(with 11 of them fixed), 3 bugs were identified as expected 
behaviors by the developers, and 7 bugs are still pending. 
Most notably, among 24 bugs revealing unexpected behav-
iors, 21 had been latent for at least two and a half years by 
the time we found them, and 10 are completely undetecta-
ble by the state-of-the-art code coverage profiler validators. 
The results show that the overhead of inspection of com-
patibilities-related bugs can be reduced effectively and 
each regularity makes an irreplaceable contribution to 
finding bugs. Our work introduces a novel method for un-
covering bugs in coverage profilers, offering simplicity and 
effectiveness when compared with state-of-the-art ap-
proaches. 

In our future endeavors, we are dedicated to further en-
hancing the effectiveness of control flow constraint solving 
through several key areas of focus. First, we aim to bolster 
the generation of diverse test inputs, enabling us to explore 
a broader range of scenarios and situations within the code. 
Second, we are committed to advancing the accuracy of 
program analysis within control flow constraint solving. 
Third, we plan to extend the applicability of control flow 
constraint solving to cover profilers designed for other pro-
gramming languages. Through these future endeavors, we 
envision a powerful and flexible toolset that empowers de-
velopers and researchers to assess code coverage with in-
creased accuracy and confidence. 
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