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ABSTRACT High-frequency chest wall oscillation (HFCWO) therapy is one of the techniques to facilitate
the draining of a patient’s lung secretion in pathological situations, and smart therapy with HFCWO devices
equipped with multiple actuators can be achieved via locating nidi in the lung. In this paper, through
developing a novel acoustic lung spatial model and utilizing acoustic imaging simulation, a new and effective
method for assessing lung function with acoustic imaging is presented, which links acoustic lung images with
pathologic changes. The structural similarity between the acoustic reference image based on actual lung
sound and our model acoustic image based on the airway impedance was achieved by an index of 0.8987,
with 1 as the exact score. Simulation studies based on the model are used to analyze the practicality and the
extreme design of the acoustic imaging system on the resolution of the located nidus. For instance, a practical
system design with sensor numbers between 4 and 35 may recognize a lower resolution nidus length of
73 mm to a better resolution nidus length of 22 mm. On the other hand, an extreme system design with more
than 1000 sensors can recognize greater nidus resolution at under 10 mm. Additionally, this research may
be utilized to offer recommendations for acoustic imaging system design and assess the number of sensors
and sensing diameter in current acoustic imaging systems. Furthermore, the geographic detection of nidus
length allows for analyzing of HFCWO therapy results.

INDEX TERMS Acoustic imaging, airway obstruction, airway remodeling, acoustic signal simulation sensor
array design simulation.

I. INTRODUCTION
Chronic inflammation, cystic fibrosis, and some respiratory
viral diseases cause mucous discharge to thicken. High-
Frequency Chest Wall Oscillation (HFCWO) therapy is a
common airway clearance technique for patients with thick
mucus and low mucociliary clearance (MCC) efficiency.
HFCWO devices are defined as small oscillations of mechan-
ical parts at relatively high frequencies (5–20 Hz) applied
onto the patient’s thorax for respiratory therapy. Traditional

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohammad Zia Ur Rahman .

HFCWO devices, such as the Vest 105 by Hillrom [1], use
an air-filled garment enclosing the patient’s chest to gen-
erate motion similar to MCC. The parameter setting and
operation are purely empirical according to user experience.
Modern HFCWO devices such as the Monarch [2], the
AffloVest [3], and the RespIn 11 [4] were equipped with
multiple electromagnetic/pneumatic actuators that can be
controlled individually, enabling a smart therapy that targets
the nidus locations for an optimal therapeutic process. There-
fore, knowledge of nidus location in the airway is critical.

This study presents studies on acoustic imaging to locate
nidi to allow inference on the efficiency of HFCWO
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physiotherapy by respiratory remodeling and acoustic imag-
ing sensor array design simulations. To the best of our
knowledge, locating nidi through the two-dimensional (2D)
acoustic lung model and the resulting acoustic lung imaging
have yet to be performed. Moreover, the acoustic imaging
system setups are typically empirical, potentially leading to
unoptimized nidus detection. Hence, the key contributions
are: 1) Proposing a realistic 2D acoustic lung model incor-
porating spatial location to simulate airway obstruction and
to design and optimize acoustic sensor array measurements
quantitatively [5], [6], [7], [8]. 2) Applying the resulting
acoustic image from the proposed 2D airway model to theo-
retical acoustic sensor array design by considering the sensor
distribution, sensor sensitivity area, and sensor number.

First, by predetermining the acoustic sensor sensing area,
this research illustrates the relationship between the severity
of the airway obstruction and mean acoustic image intensity
through the thickening of the airway wall thickness (AWT).
A good agreement was found between a reference obstructed
airway created from lung sound data and acoustic imaging
from our model, with a structural similarity (SSIM) index
of 0.8987, with 1 denoting an identical image. Next, dif-
ferent sensor sensing areas are employed to correlate the
observed nidus length with the sensor numbers. About 26,000
sensors are required to identify a resolution of 4.35 mm
minimal nidus length with a 10 mm sensor sensing diame-
ter. Comparatively, a 50 mm sensor sensing diameter may
identify a roughly 73 mm minimal nidus length resolu-
tion with only about 4 sensors. The findings support the
theory that better image resolution derives from increased
sensor numbers. In addition, the required sensor numbers
and sensing sensitivity can be used as a baseline consider-
ation in the acoustic imaging system design. Additionally,
a guideline for designing HFCWO devices and assessing the
HFCWO therapy efficacy on the patient for a smarter process
through therapy feedback from identified nidus length can
potentially be provided by understanding how sensor array
and sensing sensitivity affects lung health assessment with
the resolution of detected nidus and optimizing the sensor
array.

This paper is organized as follows. An incisive review of
the airway modeling and the acoustic sensor array design are
presented in Section II. The modeling of airways and gen-
eration of the acoustic imaging are described in Section III.
Model verification by comparing healthy lungs and the
lungs with asthma and chronic obstructive pulmonary disease
(COPD) symptoms are demonstrated in Section IV. The sim-
ulation studies on locating nidi, sensor distribution, and image
resolution are presented in Section V, followed by general
discussions in Section VI. Lastly, the conclusion and future
work are given in Section VII.

II. LITERATURE REVIEW
To realize the HFCWO smart therapy, locating nidi is critical,
while one of the direct ways to access nidus location is to
present on an image.

FIGURE 1. HFCWO device and imaging planes: (a) Typical modern HFCWO
device with multiple actuators that can be activated individually for smart
therapy, and (b) Anatomical imaging planes.

Chest X-rays, CT, and magnetic resonance imaging (MRI)
are the usual imaging techniques to visualize the airways
and lung pathology. However, these approaches are not
ideal due to their ionizing radiation effects and the ‘patient-
to-equipment’ approach [9]. Unlike chest X-rays, CT, and
MRI, electrical impedance tomography (EIT) [10] is an
‘equipment-to-patient’ approach and uses nonionizing radia-
tion technology that provides alternatives to monitor airways.
However, EIT usually provides transverse plane images
instead of the required frontal plane images (see Fig. 1(b)) for
the actuator selection or adjustment (see Fig. 1(a)), making it
challenging to apply to HFCWO therapy.

In the quantitative forms of lung sound presentation,
Kompis et al. [11] developed an acoustic imaging technique
that uses simultaneous multimicrophone recordings to assess
spatial information. Another technique for converting the
acoustic signal to an image is Vibration Response Imaging
(VRI) [5]. VRI reflects the dynamic changes in the lung
by imaging that utilizes the vibration energy created dur-
ing breathing. By presenting localized information on breath
sounds between different lung sites, the visual representation
improves the clinical value [5]. Acoustic imaging and lung
disorders, such as smoking index and the accumulation of
extra fluid between layers of the pleura outside the lungs,
have a positive quantitative data correlation [5]. Computing
from the impedance or the resistivity in the lung or the air-
way through respiratory remodeling as an indicator for lung
function assessment is required as an initial step.

Airway obstruction or the thickening of airway wall occur
in chronic respiratory illness, alter the production and trans-
mission of lung sound spectrally and regionally. Asthma
and COPD patients with frequent mucus production in their
airways tend to have thicker airway walls than those with-
out, regardless of the severity of breathlessness, and have
shown significantly different morphologic airway findings
compared to healthy individuals [12]. The change can be
measured quantitatively in the lung sound transmission and
provide critical information on the disease severity and loca-
tion of the airway obstruction [12], [13], [14], [15], [16], [17].
Spatially distributed airway tree models have been devel-
oped to decipher the relationship between bronchi lengths,
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TABLE 1. Literature reviews key points.

branching angles, and airway diameters [18]. In the develop-
ment,Murray’s law [19] defined that the relationship between
airway bifurcation is fixed, with branch lengths based on
a length-to-diameter ratio. Weibel symmetric and Horsfield
asymmetric models are the most used conducting airway
models [18]. With the advancement of medical imaging tech-
niques, deterministic parameterized bronchial tree generation
algorithms were extracted directly from computed tomog-
raphy (CT), thus constituting the core of patient-specific
modeling [18]. The recent works in this area are summarized
in [20]. However, those models developed so far are typi-
cally simplified to a one-dimensional system of equations to
investigate the relationships between healthy and unhealthy
respiratory system cycles, such as frequency response,
flow rate, resistance, volume, and diagnosis accuracy
[13], [18], [21].

Although positive correlation can be identified through
acoustic imaging and lung disorders, chronic respiratory dis-
eases, such as asthma and COPD, have not been correlated
positively [5], [22]. Moreover, the correlation between acous-
tic sensor placement and sensitivity was not investigated, and
the position of the sensors was typically empirical [5], [11],
[23]. The summary of the key points and the research gap
identified from the concise literature review is presented in
Table 1.

III. MODELING OF AIRWAYS AND ACOUSTIC IMAGING
This paper developed a model for acoustic imaging with the
following features to improve the investigation of locating
airway obstruction, as each patient has a unique set of airway
dimensions and structures:

1) The ability to modify the airway input parameters
that influence the model’s output, such as the wall

thickness, length, and diameter, where the patient-
centric assessment technique is made possible.

2) The airway model outputs intuitive spatial-based 2D
imaging to show airway obstruction in the lung caused
by respiratory conditions such as COPD and asthma
(Section IV).

3) The resolution of the lung image was intended mainly
for the assessment and location of the obstruction in the
airways due to the limited sensor numbers andHFCWO
actuators that can fit onto the patient’s posterior chest
area (Section V).

Drawing inspiration from [11], [13], [15], [16], [20], and
[21], the respiratory system is represented as a bifurcating
tree network with the linked node of the bifurcating segment
and integrated spatial position (x, y) on the airway plane,
where the airway plane refers to the three dimensional (3D)
airway network space that is projected onto. After that, the
network is converted into an electrical network with lumped
characteristics and presented as an assessment of the acoustic
lung image. In the model development, the following nota-
tions are used. R denotes the set of all real numbers. Rm×n

is the set of all real (m × n) matrices. C denotes the set of
all complex numbers. Cm×n is the set of all complex (m ×

n) matrices. Z(ω) is the set of all sinusoidal variables with
angular frequency ω.

The construction of respiratory airway modeling on
a single node of the bifurcating airway impedance and
the respiratory airway modeling parameter is presented in
Sections III-A and III-B, respectively. Next, the conversion
of the airway impedance into acoustic imaging is presented
in Sections III-C.

A. MODELING RESPIRATORY AIRWAY
Each 3D network segment is initially projected toward a 2D
plane and given a coordinate for its position (x, y). The respi-
ratory system is thus depicted as a bifurcating tree network,
with the joined node of the bifurcating segment at layer k and
position (x, y) being indexed by (x, y, k) on the plane illus-
trated in Fig. 2(a). Through a recursion index of1(k), the k-th
layer segment splits into asymmetrical airways of layers (k +

1) and (k + 1 + 1(k)) [15]. The airway is then represented
as a network of bifurcating cylinders which can be mod-
elled as a transmission line with distributed parameters and
further translated into an electrical 5 network with lumped
parameters, as shown in Fig. 2(b). The airway network is then
resolved by the acoustic pressure at each segment induced
by the pressure distribution from bronchi breathing and the
airway network [24], [25]. Merging the acoustic power over
a predetermined period of time during each breathing cycle,
a plane image is generated by the projected network as a
subset of the acoustic lung image Q(x, y) ∈ Rm×n (discussed
in Section III-C).
Since the longitudinal motion of the airway is typically

negligible in comparison to the acoustic signal, the acoustical
impedance Z (ω) and acoustical admittance Y (ω) averaged
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FIGURE 2. Model of human respiratory airway system: (a) airway tree of
bifurcating segments, (b) transmission line model of the segment and its
equivalent circuit with lumped parameters.

over the cross-section of the nonrigid airway segment of
Fig. 2(b) are satisfied by the volume flow rate F and pressure
P in (1), 

Z (ω) = F
dP
dl

Y (ω) = −P
dF
dl

(1)

where l is the axial coordinate. When the patient breathes
periodically, the airway can be regarded as a steady-state sys-
tem with each segment as a short nonrigid transmission line
tube with unit-length parameters equivalent acoustic resis-
tance R0, inductance L0, capacitance C0, and conductanceG0
[12], described by (2),(

P1
F1

)
=

 cosh(γ l) Zc sinh(γ l)
1
Zc

sinh(γ l) cosh(γ l)

 (
P2
F2

)
, (2)

where P1 ∈ Z and F1 ∈ Z are the input pressure and input
flowrate and P2 ∈ Z and F2 ∈ Z are the output pressure and
output flowrate, respectively. The propagation coefficient γ

∈ C and characteristic impedance Zc ∈ C are given in (3),{
γ =

√
(R0 + jωL0)(G0 + jωC0)

Zc =
√
(R0 + jωL0)/(G0 + jωC0).

(3)

FIGURE 3. Model of respiratory airways by the equivalent circuit with
lumped admittance parameters: (a) Node and branch indices, with
encircled numbers representing the n number nodes in the branch order,
and underlined numbers denoting the b branch order, and (b) standard
branch.

The transmission line tube with distributed parameters can
be equivalent to a5 network in Fig. 2(b) with lumped param-
eters of segment impedance Zg ∈ C and segment admittance
Yg ∈ C in (4), Zg = Zc sinh γ l ≈ (R0 + jωL0)l

Yg =
cosh γ l − 1
Zc sinh γ l

≈
1
2
(G0 + jωC0)l.

(4)

Hence, the entire network of airways can be represented as
an electrical network made up of a layered bifurcating tree
of impedance connected to the ground through an admittance
at each bifurcating node, as illustrated in Fig. 3(a). The air
pressure and airflow rate are comparable to electrical poten-
tial and current, respectively, when the respiratory airways
are analyzed as an electrical network [13], [21], [26], [27],
[28], [29]. The k-th layer’s impedance and admittance can be
presented in (5),{

Zk = Zg(k, ω)
Yk = Yg(k, ω) + 2Yg(k + 1, ω),

k = 0, n. (5)

The network of airways is constructed with n nodes
indexed with encircled numbers, b branches denoted with
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TABLE 2. Incidence matrix, branch admittance vector, and branch voltage source vector.

underlined numbers, the k-th layer as subscript, and a
sinusoidal voltage source with amplitude Ps and angular
frequency ω in series of a small impedance Zs0 applied at the
input layer 0 to represent the fundamental component of the
periodical patient breath, as presented in Fig. 3(a). An inci-
dence matrix A will be used to evaluate and simulate an
acoustic network encompassing resistive and capacitive ele-
ments scattered over multiple interacting layers and acquiring
a descriptor representation of the network, as demonstrated
in Fig. 2, Fig. 3, and (1)–(5). Thus, we have the following
annotation shown in (6) from the theory of network topology
[24], [25].

A ∈ R(n−1)×b, Y ∈ Cb×b, Yb ∈ Cb×1,Vs ∈ Zb×1

V ∈ Zb×1,Vn ∈ Zn×1, Is ∈ Zb×1, I ∈ Zb×1, (6)

where A, Y, Yb, Vs, V, Vn, Is, and I, are reduced incidence
matrix, branch admittance matrix, branch admittance vector,
branch voltage source vector, branch voltage vector, node
voltage vector, branch current source vector, and node current
vector, respectively. A standard branch in a linear network is
shown in Fig. 3(b), and the node analysis is given in (7),

AT
· Vn = V

A · I = 0
I = Y · V + Is − Y · Vs,

(7)

where Kirchhoff’s voltage law and Kirchhoff’s current law
serve as the first and second requirements in (7), respectively,
with the third requirement deriving from the standard branch
law, and (8) can be obtained from the node analysis in (7).

A · Y · AT
· Vn = A · Y · Vs − A · Is. (8)

The node voltage Vn is the remaining unknown variable
from (8). Assuming node admittance Yn ∈ C(n−1)×(n−1) is a
nonsingular and symmetric square matrix, and Js ∈ Z(n−1)

is the node source-current vector as shown in (9), the node

voltage Vn can be resolved in (10),{
Yn = A · Y · AT

Js = A · Y · Vs − A · Is
(9)

Vn = Y−1
n · Js. (10)

From the graph in Fig. 3(a), assuming b = 3 × 2n, and
Is = 0 in (6)–(9), the reduced incidence matrix A and branch
admittance matrix Y can be denoted as follows:

A=

(
A11 A12
A21 A22

)
, Y=diag(Yb), Vs=

[
Ps 01×(b−1)

]T
A11=

[
1 −1

]
, A12=

[
1 01×(b−3)

]
, A21=0(n−2)×2,

A22=
[
ai,j

] ∣∣∣∣i=2,··· ,n
j=3,··· ,b

=


−1, if j=3(i−1)+k, k=1, 2, 3
1, if j = i+ floor(i/2)
0, else.

(11)

Table 2 shows the incident matrix A, branch admittance
vector Yb, and branch voltage source vector Vs of the first
four network layers in Fig. 3. The reduced incidence matrix
A is the resulting network matrix without the row of node G
in Table 2.
Given that the patient’s breath pressure is sinusoidal, every

joint pressure can be resolved by the network analysis method
as long as parameters Zk and Yk are known. From (5), this
needs to find the segment parameters Zg and Yg.

B. PARAMETERS OF RESPIRATORY AIRWAY MODEL
The airway wall was modeled using the complex Young’s
modulus and material density to replicate the acoustic struc-
tural interaction accurately [13], [15], [21], [30], where the
material parameters of the respiratory system are given in
Table 3. The airway segments’ thickness, cartilage, and soft
tissue fractions were determined by referring to the data
reported in [15] and identifying the closest Horsfield order
segment. Thus, the segment in the k-th layer has the material
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TABLE 3. Material parameters of the airway geometry.

parameters in (12),
Zg(k, ω) ≈ (R0(k) + jωL0(k))l(k) =

jωρgl(k)
As(k)(1 − Fv(k, ω))

Yg(k, ω) ≈
1
2
(G0(k) + jωC0(k))l(k)

=
jωAs(k)l (k)

2ρgv2g
(1+0.402Ft (k, ω))+

l (k)
2Zw(k, ω)

(12)

where

Fv(k, ω) =
2
zv

J1(zv)
J0(zv)

, zv = α(k)
√

−jωρg
/
ηg

Ft (k, ω) =
2
zt

J1(zt )
J0(zt )

, zt = α(k)
√

−jωCg
/
Kg

1
Zw(k, ω)

=
c(k)

Zc(k, ω)
+

(s(k))
Zs(k, ω)

and

Zi(k, ω) = Ri(k) + jωLi(k) +
1

jωGi(k)

Ri(k, ω) =
4h(k)Ei

πd(k)3l(k)ω

Li(k) =
h(k)ρi

πd(k)l(k)

Gi(k) =
πd(k)3l(k)
4h(k)Ei

,

i = c or s.

As(k), α(k), ρg, ηg, Cg, Kg are denoted as the
cross-sectional area of an airway segment, internal airway
radius, air density, viscosity, air specific heat, and ther-
mal conductivity, respectively [14], [27], [31]. Fv(k, ω) and
Ft (k, ω) account for the sound attenuation by air viscosity
and sound attenuation by thermal dissipation, computed with
series expansion with J0(zv), J1(zv) and J0(zt ), J1(zt ) being
Bessel functions of 0-th and 1-st orders [31]. Zw(k, ω) repre-
sents the wall impedance, which is computed from a series of
resistance Ri(k), inductance Li(k), and conductance Gi(k) of
the acoustic transmission line andYoung’s modulusEi, where

FIGURE 4. The vertical and horizontal lines separate the airway geometry
with the multiple sensing areas, and the known position of the simulated
acoustic sensor array design is denoted with circles.

the subscript i is replaced by either c for the cartilage or by s
for the soft tissue, respectively.

C. ACOUSTIC IMAGE GENERATION
Most of the previous works investigate the variable physical
frequency characteristics [13], [21], [26], [27], [28], [29], and
no spatial information is associated with the nodes. In this
study, the spatial location (x, y) was integrated into each node
to transform the airway network into a spatial network and
generate the resulting acoustic image. The acoustic image can
be initiated once the node voltage Vn, which is analogous to
the acoustic pressure Pn distribution within the airways [13],
[21], [26], [27], [28], [29] is obtained. The sound pressure in
dB within the airways is computed as,

P = 20 log10(Pn/P0), (13)

where P0 = 20 µPa is the reference sound pressure.
The sound pressure generated from the lumped electrical

network resulting from the transformation of the respiratory
modeling, as presented in Fig. 2 and Fig. 3, can be captured
with an array of acoustic sensors (see Fig. 4), such as digi-
tal stethoscope or micro-electromechanical systems (MEMS)
microphone [5], [11], [23]. An interpolation function can
be utilized to compute the sound pressure between each
sensor [23].

The airway pressure at each sensor location is computed by
accumulating the captured signals over a given time interval t
from t1 to tk and averaging the signals at all bifurcating airway
nodes within the sensing area enclosed by the horizontal and
vertical lines as the individual area boundary as shown in
Fig. 4,

P̄ (x, y, t1, tk) =
1
Ns

Ns∑
i=1

tk∑
t=t1

Pi(t)2, (14)

where Ns is the total number of airway nodes within the
sensing area. The network of the acoustic lung image Q(x,
y, t1, tk ) is then,

Q (x, y, t1, tk) = P̄ (x, y, t1, tk) h (x, y) . (15)
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The sound intensity outside of the sensor position in
Fig. 4 is estimated by interpolation. From the observation
in (13)–(15), the acoustic lung image Q(P̄, h) is defined as
the 2D acoustic image which comprise acoustic signal P̄(x,
y, t1, tk ) in (13) and (14) with interpolation polynomial h(x,
y). A high spatial resolution is required; hence, Hermite inter-
polation was applied to the acoustic signal P̄ for projecting
acoustic lung imaging [23]. From the study in [23], Hermite
interpolation has been proven to be a better performance
in presenting accurate lung sound intensity as compared to
other established interpolation functions, such as linear, cube
spline, Lagrange and nearest neighbor method. Refer to [23]
for the Hermite interpolation function in-depth analysis, com-
putation and application on acoustic lung imaging.

Each acoustic image pixel is normalized, and the output
obtained from the pressure sound signal is then presented as
an acoustic image with the highest, lowest, and in-between
values are determined as maroon, white, and grey.

IV. MODEL VERIFICATION BY PATHOLOGY EXAMPLES
Model verification and the potential to assess the severity
of airway obstruction through regional pathology with a
predetermined sensor number and sensor sensing area are
demonstrated in this section. Additionally, due to the vast
range of lung sound frequencies documented in the literature,
400 Hz was chosen as the frequency to convey the results in
this paper for the relevancy to respiratory sounds and to keep
it straightforward [21], [32].
A reference image was produced from a COPD patient’s

lung sound signal that was selected from a respiratory
database [33]. A four-by-six array of sensors, as illustrated
in Fig. 4, where the sensors are considered to be equally
dispersed within a 50 mm distance [5], [11], [23], and the
acoustic response is the average intensity value within the
sensing region. A 2D plane acoustic lung image can be
produced with (13)–(15) and the known sensor and spatial
position information (x- and y-axis) as shown in Fig. 2 and
Fig. 4. The light-colored (white) area is the color for the min-
imal or no pressure data area, which represent the airway’s
high airflow resistance, whereas dark-colored (maroon) area
is used to indicate high data locations where the airflow resis-
tance in the airway is the least. Additionally, the in-between
data area, where the airway has airflow resistance, is repre-
sented by light gray colors.

In the following, the assumption for the model simulation
of pathology through AWT remodeling and the quantita-
tive model performance are presented in Section IV-A and
Section IV-B, respectively. The results and discussion are
described in Section IV-C.

A. PATHOLOGY SIMULATION
Airway remodeling was performed by altering the AWT to
simulate airway obstruction [34], [35], [36], [37], [38], [39].
As shown in Fig. 2, the total wall thickness of each airway
segment Hw = Do − Di, where Di and Do are the inner and
outer diameters, respectively.

TABLE 4. Summary of key information about airway remodeling and
airway wall thickness.

The inner airway diameter Di and total wall thickness Hw
were measured and compared from patients with illnesses,
such as asthma and COPD, using computed tomography in
relation to the severity (mild, moderate, severe) of the illness
[34], [35], [36], [38], [40]. The studies in [34], [35], [36], [38],
and [40] have revealed a range for the mean airway wall area
percentage (WA%) increment of 3%–40%, with 0%–3% for
controls, 4%–10% for mild conditions, 11%–30% for mod-
erate conditions and more than 30% for severe conditions.
The studies on airway wall thickness and the increment of the
airway wall area are summarized and presented in Table 4.
The airway wall area (WA) and WA% can be calculated
as [35], {

WA = Ao − Al
WA% = WA

/
Ao × 100,

(16)

where A0 = π (Do/2)2 and Al = π(Di/2)2 can be computed
as the airway area and the luminal area, respectively.

B. PERFORMANCE ASSESSMENT
The mean acoustic image intensity (dB) in (13)–(15) can be
utilized as an indicator for the assessment outcome on the
severity of airway obstructions [5], [6], [7]. The increment
(factor) of AWTwas implemented to standardize the findings
in this study, as mixed airway obstruction results can be
identified from the literature, such as the increment of WA%
or values of AWT [34], [35], [36], [38], [40].

For instance, the AWT must increase by a mean factor of
2.34, as shown in (16), for the mean WA% to increase by
approximately 11%, from 67% healthy lung to 78% respira-
tory illness lung [34], [35], [36], [38], [40]. Finally, in terms
of the severity of respiratory diseases, the internal airway area
between asthma and COPD was essentially the same [34].
Therefore, no differentiation between COPD and asthma is
made in this study.

The pixels in natural image signals are heavily dependent
on one another, especially when the pixels are close together.
These dependencies include important details about how the
elements in the visual scene are arranged. The SSIM index
[41] is a straightforward approach for comparing the ref-
erence and distorted signal structures. Additionally, SSIM
indexing provides quality assessment from the perspective
of image generation, particularly for components of medical
images in pixel intensities [42]. The SSIM quality assessment
index is based on the computation of three terms, namely
the brightness term, the contrast term, and the structure term,
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FIGURE 5. The model validation workflow.

as illustrated in (17),

SSIM (Qr ,Q) =

(
2µQrµQ + C1

) (
2σQrQ + C2

)(
µ2
Qr + µ2

Q + C1

) (
σ 2
Qr + σ 2

Q + C2

) ,

(17)

where µQr and µQ are the local means, σQr and σQ, are the
standard deviations, σQrQ cross-covariance, and C1 and C2
are the constants for reference image Qr and captured image
Q. For detailed derivation and computation, see [41].

C. MODEL VALIDATION
The acoustic lung imaging Q projected from lung signals is
computed from the lung signal intensity P̄ at each sensor
location in a coordinate plane over a known time t inter-
val, as shown in (14) and (15). The lung signal intensity is
determined as highest (maroon), lowest (white) or in between
values (grey). The acoustic signal is normalized, and the
output obtained from the intensity of the sound signal is then
displayed as an acoustic image. The overview for the model
validation in this study is presented in Fig. 5, where the incre-
ment factor for the airway wall thickness has been discussed
earlier in Section IV-B, the computation of the acoustic signal
can be identified from (1)–(12), and the translation of the
computed acoustic signal to acoustic image can be inferred
from (13)–(15). An unaltered airway was utilized as a control
in this model validation, where the airway material properties
and parameters have been introduced earlier in Section III-B.
The spatial resolution of the lung geometry in this model

validation is 44 pixels for every 10 millimeters. Fig. 6 dis-
plays acoustic images of a healthy lung (control) and varying
respiratory illness severity obtained by adjusting the AWT
in Section III and (13)–(15). An outline is used in Fig. 6 to
identify better the effect of AWT on the overall (global) lung
image intensity. Additionally, Fig. 7 displays the relationship
between the average image intensity and the global AWT
increment.

Fig. 6 and Fig. 7 demonstrated the relationship between
acoustic lung images of healthy and ill conditions. In con-
trast to ill conditions, such as mild, moderate, and severe
conditions, a healthy lung presents the darkest lung image
(high acoustic intensity value) due to the lowest impedance –
smallest resistance in the airway, from Fig. 6 and Fig. 7
and as observed from (2)–(13). Moreover, the airflow and
the mean image intensity both reduced with the thickening
of AWT can be observed in Fig. 6 and Fig. 7. Although
observable qualitative changes can be seen with the AWT

FIGURE 6. Right lung acoustic images generated from (2)–(15) acoustic
signals with various factor increment in AWT. (a) Healthy lung; AWT
increasing by a factor of about 1.2, 1.5, 1.7, 2.48, 3.5, 4.97, and 6 in
(b), (c), (d), (e), (f), (g), and (h) respectively.

FIGURE 7. Quantitative lung function assessment through the mean
image intensity and the thickening factor of AWT.

increasing by a factor of more than 1.70 in Fig. 6, the mean
image intensity in Fig. 7 can reveal the state of the lungs’
condition. Furthermore, the positive correlation between the
lung impedance from (2)–(13) and the results in Fig. 6 and
Fig. 7 presented a certain level of similarity compared to the
literature [5], [6], [7], [15], [34], [35], [40], e.g., the global
intensity distribution impacting the lung and the airway closer
to the trachea (Fig. 2) is often larger and tends to be the last
impacted region by the thickening in AWT.

After the global thickening in AWT and the consequences
(severity) on lung function have been demonstrated, the next
validation task is the regional increase in AWT. Fig. 8 con-
trasts our model acoustic image with the obstructed reference
lung image, which was created using the lung sound signals
extracted from a respiratory database [33], and converted into
an acoustic image. The obstructed airways are situated along
the posterior right middle scapular line (area B2), and the
posterior right lower scapular line (area C3), as shown in
Fig. 4. The region of the obstructed airway can be located in
our model’s acoustic image presented in Fig. 8. The similarity
between the acoustic reference image and the model acoustic
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FIGURE 8. Acoustic imaging of obstructed airway with AWT increased by
about a factor of 1.7. (a) , (c) Acoustic image produced from lung sound
signal. (b), (d) Model acoustic image produced from airway pressure
signal.

image is highly related given that a mean SSIM index of
0.8987 was obtained, with 1 being the same as [41].

V. OPTIMAL ACOUSTIC SENSOR ARRAY DESIGN FOR
AIRWAY OBSTRUCTION DETECTION
Global and regional pathology with prearranged number of
sensors, e.g., an array of 4-by-6 with 50 mm uniform spac-
ing acoustic sensors, has been validated in Section IV. The
remaining task in this study is how the design of the acoustic
sensor array affects the minimal detectable nidus length, e.g.,
the expected minimal detectable nidus if the acoustic sensor
array is known or the design of acoustic sensor array for an
envisioned minimal detectable nidus length. To the best of
the authors’ knowledge, no discussion was attempted relat-
ing to the distribution array of acoustic sensors for image
assessment and the acoustic imaging resolution, as the array
sensor design was typically empirical in the literature [5],
[21], [23]. In line with the uniform distribution design of
HFCWO electromagnetic/pneumatic actuators [2], [4], and
the traditional acoustic imaging system in the literature [5],
[21], [23], a uniform multimicrophone distribution, vertically
and horizontally, is employed in this paper. In addition, the
overlapping and nonoverlapping sensor sensing sensitivity
can be computed due to the influence of the sensor uniformly
distributed. Hence, the effect of sensor sensing sensitivity
area and the sensor number on the detection of airway
obstruction is presented in Section V-A, followed by analysis
and discussion in Section V-B.
By employing local first-order image statistics [43] around

each pixel, the resulting obstructed airway acoustic image
µ are converted into a binary image, as shown in Fig. 9.

FIGURE 9. Acoustic image and nidus generation. (a) Healthy acoustic
image, (b) Obstructed acoustic image, and (c) Binarized obstructed
acoustic image.

As shown in Fig. 9(c), areas with high-intensity data (healthy)
are denoted by 1s, and areas with low-intensity data (obstruc-
tion) by 0s. Thus, by comparing the acoustic image pixel area
η in Fig. 9(a) and the pixel area µ in Fig. 9(c), the obstruction
in the airway acoustic images can be located, and the area of
the missing pixel (η − µ) can then be used to calculate the
obstructed area (nidus) length,

Ln = 2

√(
η − µ

π

)
. (18)

A. SENSOR SENSING SENSITIVITY AND SENSOR NUMBER
To study the effect of sensor sensitivity on the smallest
observable nidus length Ln, the number of sensors is initially
fixed at 12, 16, 20, 25, 32, 40, 45, and 50 per lung side,
comparable to the empirical acoustic image system [5], [21],
[23]. The selection of the sensor sensing diameters, which
ranged from 10 mm to 50 mm in 10 mm increments, was
made in accordance with commercially available products
and published research [5], [23]. Fig. 10 shows the relation-
ship between sensor sensitivity with a predetermined number
of sensors and the measured minimum nidus length.

After the effect of the different sensor detecting areas
on the minimum detectable nidus length when used with a
predetermined number of sensors, the next step is to evaluate
how the number of sensors affects the minimal detectable
nidus. Fig. 11 illustrates how the number of sensors affects the
minimumobservable nidus length for different sensor sensing
sensitivities.

B. ANALYSIS OF THE SENSOR ARRAY DESIGN
A minimal detectable nidus length of about 68 mm is
expected when using 12 sensors with a 10 mm sensor sensing
diameter, as illustrated in Fig. 10. In contrast, a minimal
detectable nidus length of about 20 mm is expected with
50 sensors, with sensor sensing diameter between 20 mm and
50 mm. Fig. 11 demonstrates the number of sensors and the
sensor sensing diameter required in the acoustic sensor array
for the envisioned minimal detectable nidus length.

According to Fig. 10, a better resolution of the detectable
minimal nidus length was obtained with the increase in sensor
number, and the sensor sensitivity area overlaps more when
compared to fewer sensor numbers and lesser overlapping
of sensor sensitivity area. When compared across all sensor
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FIGURE 10. The relation between sensing sensitivity and the minimal
nidus length that can be observed with a predetermined sensor number.

FIGURE 11. The relationship between sensor number and minimal nidus
that can be observed on the right posterior of the chest wall. (a) The
theoretical impact of sensor number required to identify the nidus length,
and (b) The typical sensor numbers in a practical acoustic imaging system.

sensing diameters, the predefined sensor number showed
various observed nidus lengths, as shown in Fig. 10. The
results are in line with the number of sensors and the position,
where higher image resolution can be identified with sensor
sensing diameter (30 mm–50 mm) overlapping reducing the

TABLE 5. Summary of key advantages and limitations of previous work
and this study.

over-reliant on interpolation function, as compared to sensor
sensing area that has lesser nonoverlapping sensor sensing
diameter (10 mm–20 mm) [23].

From Fig. 11(a), a low resolution observed in the detected
nidus length is about 73 mm, requiring about 4 sensors,
with a 50 mm sensor sensing diameter and a 0% sensor
sensing overlapping area. In comparison, a high resolution
identified in nidus length is about 4.35 mm, requiring about
26,000 sensors, with a 10 mm sensor sensing diameter and
a 95% sensor sensing overlapping area. The observations in
Fig. 10 and Fig. 11, where the resolution of nidus length
detected increases with the increase in sensor numbers and
corresponded with the understanding that image resolution
increases with the number of sensors. The practicality in the
designing of an acoustic imaging system for the location of
nidus length, in terms of the number of sensors required,
is demonstrated in Fig. 11(b).

VI. GENERAL DISCUSSION
The severity of respiratory diseases has been demonstrated
with the mean image intensity and the thickening of AWT.
The assessment of lung function through acoustic imaging,
such as presenting global and regional obstructed airways,
was demonstrated in Fig. 6–Fig. 8. The majority of ear-
lier studies [13], [21], [26], [27], [28], [29] focus on the
changeable physical frequency features and no geograph-
ical information was correlated with nodes in the airway.
Thus, the airway network in this study was converted into a
spatial network by integrating the spatial position (x, y) to
each node, which can produce the acoustic image for lung
function assessment as shown in Fig. 4, Fig. 6, Fig. 8, and
Fig. 9. All 35-airway segment layers, starting with the trachea
at k = 1 and terminating at the terminal bronchiole with
k = 35, were included in the calculation of the acoustical
impedance. A similarity rating of about 89% was achieved
between our model image and a reference image converted
from lung sound signals. Minimal differences in Fig. 8 and
the SSIM rating are expected as the acoustic images in
Fig. 8 were generated from two different sources: our model
computed acoustic impedance and the actual acoustic signal
from a respiratory database [33]. Only large airways, e.g.,
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airway segment length > 2 mm, were utilized in our acoustic
imaging, as small airways length ≤ 2 mm flow is laminar
and silent, hence, do not produce an acoustic signal [32].
Bifurcate node angles of the airway system were assumed
to be between 45 and 60 degrees and were drawn ideally
in Fig. 2(a) so that the airway system does not overlap [21].
The sound pressure computation is based on the mean sound
pressure within the sensing region, as shown in Fig. 4 and
(14). Hence, the SSIM rating can be improved with the
additional weighted ratio between pressure in the individual
airway segment and sensor sensing radius to (13)–(15), and
an increase in the total number of airway segments in the
model.

In addition, this study’s objective demonstrated the res-
piratory model systems’ capability to pinpoint the source
of airway obstruction through acoustic signals, in terms of
the minimal nidus length identified through the location of
obstructed airways to both the acoustic sensor sensitives and
the number of acoustic sensors to improve HFCWO therapy
in Fig. 6–Fig. 11. Although the findings in Fig. 6–Fig. 11 are
based on a uniform distribution of sensor location, this paper
can be used as a starting point to study nonuniform sensor
distribution, which may potentially result in a reduction in
the number of sensors needed to achieve the same perfor-
mance. Additionally, this work uses respiratory remodeling
and sensor array simulation to evaluate the sensor’s place-
ment, sensitivity ranges, and the numbers for minimal nidus
length detection, enabling deductions about the efficacy of
HFCWO physiotherapy with the detected nidi. This paper
can also be used to assess an existing acoustic array sys-
tem and provide direction for the development of acoustic
imaging systems, particularly in imaging systems that employ
a multi-acoustic sensor array. Therefore, by comprehending
how sensor array and sensing sensitivity affect lung health
assessment with the resolution of detected nidus and opti-
mizing the sensor array, a guideline for designing HFCWO
devices and assessing the HFCWO therapy efficacy on the
patient for a smarter process through therapy feedback from
identified nidus length may be provided. A comparison to
summarize the key advantages and limitations of the previous
work and this study is presented in Table 5.

A. DESIGN CONSIDERATION OF IMAGING HARDWARE
SYSTEM
Two of the many deciding considerations in creating the
acoustic imaging systems in this study can be sensor type
and sensor costs. Different transduction techniques, such as
condenser (MEMS microphones) and piezoelectric (digital
stethoscope) transduction, can be used to record the acous-
tic images derived from acoustic lung signals. Piezoelectric
sensors were often not mechanically durable and required
hard, specialized contacts with the patient’s skin, such as
gels and vacuum seals [5], [44]. Due to their repeatable
frequency response and high SNR, MEMS microphones
are frequently employed to acquire lung sound signals and
indirectly provide excellent acoustic imaging [45], [46],

[47], [48]. Additionally, flexible multisensor arrays, such as
MEMS microphone arrays, are perfect for delivering a 2D
visualization assessment of the lungs in contrast to a single
sensor, such as a digital stethoscope, which can only provide
one region of data at a time [45], [46], [47], [48].

MEMSmicrophones are also small, light, and inexpensive,
costing only a few dollars, aroundUSD 4, as opposed to a dig-
ital stethoscope, which may run between USD 300 and USD
500 [45], [46], [47]. In addition, MEMS microphones can be
redesigned to accommodate various sensor sensing diameter
requirements, such as 10 mm, 20 mm, or 50 mm, while the
sensor sensing diameter is designed to partially integrate over
the fixed surface area (50 mm) of the stethoscope head [48].

For the same detected minimal nidus length, several sen-
sor numbers and sensitivity combinations can be perceived
in Fig. 11(a). A minimal nidus length of around 50 mm
that can be detected, for instance, can be achieved using
6 pieces of 50 mm sensor sensing diameter or 16 pieces
of 10 mm sensor sensing diameter. Given that one MEMS
microphone can cover a 10 mm sensing diameter and five
MEMS microphones can cover a 50 mm sensing diameter
[48], using a 10 mm sensor sensing diameter may cost the
customer roughly USD 64 as opposed to USD 120 with a
50 mm sensor sensing diameter. Similarly, a minimal nidus
length of around 30 mm that can be detected, for instance,
can be achieved using 20 pieces of 50 mm sensor sensing
diameter or 48 pieces of 10 mm sensor sensing diameter.
Using a 10 mm sensor sensing diameter may cost the cus-
tomer roughlyUSD192 as opposed toUSD400with a 50mm
sensor sensing diameter [48]. In terms of the standardMEMS
microphone physical size and the adult chest area, a maxi-
mum of roughly 1000 pieces of MEMS microphone with a
10 mm sensor sensing diameter can be fitted without physical
devices overlapping onto the chest region [45], [46], [47],
[48], [49]. We anticipate that as sensor technology advances
in terms of the physical size, allowing the number of sensors
to multiply, the resolution of the detectable nidus length can
also be enhanced, as depicted in Fig. 11(a). Since the lung
assessment imaging gold standard, such as chest X-ray, has a
high operational cost (> USD 5000) and radiation exposure
(health hazard), which indirectly leads to the unsuitability
in frequent assessment, the detection of obstructed airways
by acoustic imaging represents a crucial clinical need [44].
In the literature [5], [17], [44], an array of microphones was
employed to produce an acoustic image that was compara-
ble to a chest X-ray in terms of sensitivity, specificity, and
intra- and inter-rater agreement. Besides, the resolution of the
acoustic lung image in our paper was primarily designed to
enable frequent nidus detection by simple 2D image viewing
and frequent evaluation of the efficacy of HFCWO therapy.

The computerized respiratory sound analysis (CORSA)
recommendations for sensor properties to detect human pul-
monary sounds can be used to guide the choice of the MEMS
specification [44], [50]. Other MEMS have been used to
record breathing patterns and respiratory rate, a feature that
can also offer a thorough analysis of lung signals. Examples
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of these MEMS include MEMS accelerometers [51], [52],
MEMS piezoelectric resonant microphones [53], and MEMS
strain gauges [54]. As this study focuses on proposing a real-
istic 2D acoustic lung model incorporating spatial location
to simulate airway obstruction and to design and optimize
acoustic sensor array measurements quantitatively by apply-
ing generic acoustic sensor array design by considering only
the sensor distribution, sensor sensitivity area, and the sensor
number, readers who are interested in the fabrication of the
various state-of-the-art MEMS can refer to [51], [53], and
[54] and the references therein for in-depth details.

B. LIMITATION
With the current study, four critical points should be con-
sidered. First, this study focused on lung acoustic signals
generated from the proposed model, while the separation of
heart sound signals and lung sound signals was not con-
sidered. The signals obtained were assumed to be at the
patient’s posterior, similar to how a doctor and clinicians per-
form auscultation, significantly minimizing the interference
from heart signals. Likewise, the reference acoustic image
translated from the actual lung signals from the respiratory
database were recorded on the patient’s posterior to ensure
that the heart sounds would be minimal and would not sig-
nificantly interfere with the lung sounds. Additionally, the
frequency range for heart signals is typically below 150 Hz,
while the frequencies of interest for lung signals range
from 250 Hz to 1000 Hz [48], [55], [56], and 400 Hz was
utilized in this work. Thus, a straightforward approach is
to implement a high-pass filter to eliminate the lower heart
signal frequency. Second, there will be variations in respi-
ratory system model performance due to a range of factors
such as the system network architecture: node position in the
x- and y-axis location, and the physical airway model, e.g.,
Horsfield or Weibel airway model. The results presented in
this paper are based on the respiratory model’s independent
abilities to optimize both the number and position of acoustic
sensors for obtaining useful acoustic information, and other
unsupportable combinations of acoustic sensor’s position are
not taken into account, such as imbalanced position, e.g.,
an offset position from adjacent sensors. Although breathing
patterns and respiratory rate with respect to lung signals can
be utilized for a more comprehensive lung function assess-
ment other than acoustic lung sound signals, the frequency
ranges for various breathing patterns and bodily movements
overlap, and significant techniques to signal processing are
required to isolate the signal components while restoring the
important data for assessment purposes [51], [52]. Third,
the diameter of the obstructed lung region estimated from
a circle’s surface area is used to establish the length of the
obstructed airway reported in Fig. 10 and Fig. 11. The airway
geometry was assumed to be translated from a 3D space to a
2D plane without any intersections. To prevent outliners from
determining the nidus length, a carefully selected simulated
obstructed area was used. The lung size [49] of the respira-
tory system model shown in Fig. 2 is maintained at roughly

240 mm (height) by 100 mm (width), which is within 90%
of the actual lung size. Finally, it is possible to locate the
obstructed area in the simulated lung model precisely due to
1) only sensor distribution and sensor sensitivity area were
considered in the simulated acoustic imaging sensor array
design, and the actual sensor characteristics were excluded;
2) The model is believed to be interference-free from body
movement, body temperature, ambient, and the ideal sound
pressure can be captured directly through typical acoustic
sensors utilized for capturing lung sound signals [45], [46],
[47], [48].

VII. CONCLUSION AND FUTURE WORK
A spatial network of the respiratory system modeling is pro-
posed in this paper, and sensor array design studies through
acoustic lung imaging based on the model are conducted.
The study results in a framework for the optimization of the
HFCWO therapeutic technique that has shown: 1) The acous-
tic relationships and imaging characteristics between the
sensing system and the location of nidus; and 2) How the sen-
sor numbers and sensor sensing sensitivity affect the image
dynamics at various locations within the chest area. The
potential of assessing lung functionwith acoustic imaging has
been validated through respiratory remodeling and obtained
a similarity of 89% as compared to the acoustic image ini-
tiated from actual lung sound signals. This study offered
design guidelines for acoustic imaging systems, or served as a
performance assessment of already-in-use multimicrophone
array-based acoustic imaging systems. Although there have
been experimental studies on the location of the nidus, these
researches in [13] and [21] concentrated on acoustic sound
detection rather than acoustic imaging and did not take into
account the impact of sensor sensitivity or sensor number [8],
[13], [21]. In order to support the conclusions in Sections III,
IV, and V about respiratory system modeling and sensor
array design, an experimental investigation on locating nidus
using an acoustic imaging system can be carried out. Lastly,
this work can be further used to compare the modeling and
simulation results with the actual respiratory lung sounds that
contain noise interferences. Thus, as a long-term goal of this
research, it is possible to investigate the impact of nonuni-
formly distributed sensor configuration on nidus detection
and the addition of a denoising algorithm [56], [57] to the
acoustic imaging system for a practical system to precisely
identify the location of the pathology produced by the airways
for targeted therapy.

REFERENCES
[1] The Vest Airway Clearance System, Model 105. Accessed: Mar. 28, 2022.

[Online]. Available: https://www.hillrom.com/en/products/the-vest-
system-105/

[2] The Monarch Airway Clearance System. Accessed: Mar. 28, 2022.
[Online]. Available: https://www.hillrom.com/en/products/the-monarch-
airway-clearance-system/

[3] AffloVest. Accessed: Mar. 28, 2022. [Online]. Available: https://www.
absoluterespiratorycare.com/afflovest

[4] RespIn 11—Bronchial Clearance System. Accessed: Mar. 28, 2022.
[Online]. Available: http://www.respin-usa.com/

VOLUME 11, 2023 109419



C. S. Lee et al.: Locating Nidi for HFCWO Smart Therapy via Acoustic Imaging of Lung Airways

[5] R. P. Dellinger, J. E. Parrillo, A. Kushnir, M. Rossi, and I. Kushnir,
‘‘Dynamic visualization of lung sounds with a vibration response device:
A case series,’’ Respiration, vol. 75, no. 1, pp. 60–72, 2008.

[6] J. He, ‘‘Evaluation of vibration response imaging (VRI) technique and
difference in VRI indices among non-smokers, active smokers, and pas-
sive smokers,’’ Med. Sci. Monitor, Int. Med. J. Exp. Clin. Res., vol. 21,
pp. 2170–2177, Jul. 2015.

[7] D. Bing, K. Jian, S. Long-Feng, T. Wei, and Z. Hong-Wen, ‘‘Vibration
response imaging: A novel noninvasive tool for evaluating the initial ther-
apeutic effect of noninvasive positive pressure ventilation in patients with
acute exacerbation of chronic obstructive pulmonary disease,’’ Respiratory
Res., vol. 13, no. 1, p. 65, Dec. 2012.

[8] C. S. Lee, M. Li, Y. Lou, and R. Dahiya, ‘‘Modeling and simulation of
pulmonary acoustic signal and imaging for lung function assessment,’’ in
Proc. IEEE Int. Conf. Consum. Electron. (ICCE), Las Vegas, NV, USA,
Jan. 2023, pp. 1–6.

[9] National Research Council, Health Risks from Exposure to Low Levels of
Ionizing Radiation: BEIR VII Phase 2. Washington, DC, USA: National
Academies Press, 2006.

[10] Dräger PulmoVista 500: Electrical Impedance Tomography. Accessed:
Mar. 28, 2022. [Online]. Available: https://www.draeger.com/en_sea/
Products/PulmoVista-500

[11] M. Kompis, H. Pasterkamp, and G. R. Wodicka, ‘‘Acoustic imaging of the
human chest,’’ Chest, vol. 120, no. 4, pp. 1309–1321, Oct. 2001.

[12] A. L. James, P. D. Paré, and J. C. Hogg, ‘‘The mechanics of airway
narrowing in asthma,’’ Amer. Rev. Respiratory Disease, vol. 139, no. 1,
pp. 242–246, Jan. 1989.

[13] Z. Dai, Y. Peng, H. A. Mansy, R. H. Sandler, and T. J. Royston, ‘‘Exper-
imental and computational studies of sound transmission in a branching
airway network embedded in a compliant viscoelastic medium,’’ J. Sound
Vibrat., vol. 339, pp. 215–229, Mar. 2015.

[14] J. J. Fredberg and A. Hoenig, ‘‘Mechanical response of the lungs at high
frequencies,’’ J. Biomech. Eng., vol. 100, no. 2, pp. 57–66, May 1978.

[15] R. H. Habib, R. B. Chalker, B. Suki, and A. C. Jackson, ‘‘Airway geometry
and wall mechanical properties estimated from subglottal input impedance
in humans,’’ J. Appl. Physiol., vol. 77, no. 1, pp. 441–451, Jul. 1994.

[16] C. M. Ionescu, P. Segers, and R. De Keyser, ‘‘Mechanical properties of
the respiratory system derived from morphologic insight,’’ IEEE Trans.
Biomed. Eng., vol. 56, no. 4, pp. 949–959, Apr. 2009.

[17] D. W. Kaczka and R. L. Dellaca, ‘‘Oscillation mechanics of the respiratory
system: Applications to lung disease,’’ Crit. Rev. Biomed. Eng., vol. 39,
no. 4, pp. 337–359, 2011.

[18] M. H. Tawhai, P. Hunter, J. Tschirren, J. Reinhardt, G. McLennan, and
E. A. Hoffman, ‘‘CT-based geometry analysis and finite element models
of the human and ovine bronchial tree,’’ J. Appl. Physiol., vol. 97, no. 6,
pp. 2310–2321, Dec. 2004.

[19] C. D. Murray, ‘‘A relationship between circumference and weight in trees
and its bearing on branching angles,’’ J. Gen. Physiol., vol. 10, no. 5,
pp. 725–729, May 1927.

[20] S. Nousias, E. I. Zacharaki, and K. Moustakas, ‘‘AVATREE: An open-
source computational modelling framework modelling Anatomically
Valid Airway TREE conformations,’’ PLoS ONE, vol. 15, no. 4, 2020,
Art. no. e0230259.

[21] B. Henry and T. J. Royston, ‘‘A multiscale analytical model of bronchial
airway acoustics,’’ J. Acoust. Soc. Amer., vol. 142, no. 4, pp. 1774–1783,
Oct. 2017.

[22] M. Mineshita, H. Kida, H. Handa, H. Nishine, N. Furuya, S. Nobuyama,
T. Inoue, S. Matsuoka, and T. Miyazawa, ‘‘The correlation between lung
sound distribution and pulmonary function in COPD patients,’’PLoSONE,
vol. 9, no. 9, Sep. 2014, Art. no. e107506.

[23] S. Charleston-Villalobos, S. Cortés-Rubiano, R. González-Camerena,
G. Chi-Lem, and T.Aljama-Corrales, ‘‘Respiratory acoustic thoracic imag-
ing (RATHI): Assessing deterministic interpolation techniques,’’ Med.
Biol. Eng. Comput., vol. 42, no. 5, pp. 618–626, Sep. 2004.

[24] S. N. Sivanandam, Electric Circuit Analysis. India: Sangam Books, 2002.
[25] C. A. Whitfield, P. Latimer, A. Horsley, J. M. Wild, G. J. Collier, and

O. E. Jensen, ‘‘Spectral graph theory efficiently characterizes ventilation
heterogeneity in lung airway networks,’’ J. Roy. Soc. Interface, vol. 17,
no. 168, Jul. 2020, Art. no. 20200253.

[26] S. Anzinger, J. Manz, C. Bretthauer, U. Krumbein, and A. Dehé, ‘‘Acoustic
transmission line based modelling of microscaled channels and enclo-
sures,’’ J. Acoust. Soc. Amer., vol. 145, no. 2, pp. 968–976, Feb. 2019.

[27] F. B. Daniels, ‘‘Acoustical impedance of enclosures,’’ J. Acoust. Soc. Amer.,
vol. 19, no. 4, pp. 569–571, Jul. 1947.

[28] J. J. Fredberg and J. A. Moore, ‘‘The distributed response of com-
plex branching duct networks,’’ J. Acoust. Soc. Amer., vol. 63, no. 3,
pp. 954–961, Mar. 1978.

[29] A. H. Benade, ‘‘On the propagation of sound waves in a cylindrical
conduit,’’ J. Acoust. Soc. Amer., vol. 44, no. 2, pp. 616–623, Aug. 1968.

[30] K. Horsfield, ‘‘Morphometry of airways,’’ Comprehensive Physiol.,
pp. 75–88, Jan. 2011, doi: 10.1002/cphy.cp030307.

[31] I. B. Crandall, Theory of Vibrating Systems and Sound. USA: Creative
Media Partners, 1927.

[32] M. Sarkar, I. Madabhavi, N. Niranjan, and M. Dogra, ‘‘Auscultation of
the respiratory system,’’ Ann. Thoracic Med., vol. 10, no. 3, pp. 158–168,
2015.

[33] B. M. Rocha, D. Filos, L. Mendes, G. Serbes, S. Ulukaya, Y. P. Kahya,
N. Jakovljevic, T. L. Turukalo, I. M. Vogiatzis, E. Perantoni,
E. Kaimakamis, P. Natsiavas, A. Oliveira, C. Jácome, A. Marques,
N. Maglaveras, R. P. Paiva, I. Chouvarda, and P. de Carvalho, ‘‘An open
access database for the evaluation of respiratory sound classification
algorithms,’’ Physiol. Meas., vol. 40, no. 3, Mar. 2019, Art. no. 035001.

[34] J. Kosciuch, R. Krenke, K. Gorska, M. Zukowska,
M. Maskey-Warzechowska, and R. Chazan, ‘‘Airway dimensions in
asthma and COPD in high resolution computed tomography: Can we
see the difference?’’ Respiratory Care, vol. 58, no. 8, pp. 1335–1342,
Aug. 2013.

[35] F. Deveci, A. Murat, T. Turgut, E. Altuntaş, and M. H. Muz, ‘‘Airway wall
thickness in patients with COPD and healthy current smokers and healthy
non-smokers: Assessment with high resolution computed tomographic
scanning,’’ Respiration, vol. 71, no. 6, pp. 602–610, 2004.

[36] N. Awadh, N. L. Müller, C. S. Park, R. T. Abboud, and J. M. FitzGerald,
‘‘Airway wall thickness in patients with near fatal asthma and control
groups: Assessment with high resolution computed tomographic scan-
ning,’’ Thorax, vol. 53, no. 4, pp. 248–253, Apr. 1998.

[37] H. A. Tiddens, P. D. Paré, J. C. Hogg, W. C. Hop, R. Lambert, and
J. C. de Jongste, ‘‘Cartilaginous airway dimensions and airflow obstruc-
tion in human lungs,’’ Amer. J. Respiratory Crit. CareMed., vol. 152, no. 1,
pp. 260–266, Jul. 1995.

[38] I. Orlandi, C. Moroni, G. Camiciottoli, M. Bartolucci, M. Pistolesi,
N. Villari, and M. Mascalchi, ‘‘Chronic obstructive pulmonary disease:
Thin-section CT measurement of airway wall thickness and lung attenu-
ation,’’ Radiology, vol. 234, no. 2, pp. 604–610, Feb. 2005.

[39] X. Xie, A. E. Dijkstra, J. M. Vonk, M. Oudkerk, R. Vliegenthart,
and H. J. M. Groen, ‘‘Chronic respiratory symptoms associated with
airway wall thickening measured by thin-slice low-dose CT,’’ Amer.
J. Roentgenol., vol. 203, no. 4, pp. W383–W390, Oct. 2014.

[40] S. Asker, M. Asker, and B. Ozbay, ‘‘Evaluation of airway wall thickness
via high-resolution computed tomography in mild intermittent asthma,’’
Respiratory Care, vol. 59, no. 4, pp. 550–556, Apr. 2014.

[41] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality
assessment: From error visibility to structural similarity,’’ IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[42] V. Mudeng, M. Kim, and S.-W. Choe, ‘‘Prospects of structural similarity
index for medical image analysis,’’ Appl. Sci., vol. 12, no. 8, p. 3754,
Apr. 2022.

[43] D. Bradley and G. Roth, ‘‘Adaptive thresholding using the integral image,’’
J. Graph. Tools, vol. 12, no. 2, pp. 13–21, Jan. 2007.

[44] A. Rao, E. Huynh, T. J. Royston, A. Kornblith, and S. Roy, ‘‘Acoustic
methods for pulmonary diagnosis,’’ IEEE Rev. Biomed. Eng., vol. 12,
pp. 221–239, 2019.

[45] Z. Duanmu, C. Kong, Y. Guo, X. Zhang, H. Liu, C. Zhao, X. Gong, C. Cai,
C. Ho, and C. Wan, ‘‘Design and implementation of an acoustic-vibration
capacitive MEMS microphone,’’ AIP Adv., vol. 12, no. 6, Jun. 2022,
Art. no. 065309.

[46] M. A. Shah, I. A. Shah, D.-G. Lee, and S. Hur, ‘‘Design approaches of
MEMS microphones for enhanced performance,’’ J. Sensors, vol. 2019,
Mar. 2019, Art. no. 9294528.

[47] S. A. Zawawi, A. A. Hamzah, B. Y. Majlis, and F. Mohd-Yasin, ‘‘A review
of MEMS capacitive microphones,’’Micromachines, vol. 11, no. 5, p. 484,
May 2020.

[48] I. McLane, D. Emmanouilidou, J. E. West, and M. Elhilali, ‘‘Design
and comparative performance of a robust lung auscultation system for
noisy clinical settings,’’ IEEE J. Biomed. Health Informat., vol. 25, no. 7,
pp. 2583–2594, Jul. 2021.

109420 VOLUME 11, 2023

http://dx.doi.org/10.1002/cphy.cp030307


C. S. Lee et al.: Locating Nidi for HFCWO Smart Therapy via Acoustic Imaging of Lung Airways

[49] G. H. Kramer, K. Capello, B. Bearrs, A. Lauzon, and L. Normandeau,
‘‘Linear dimensions and volumes of human lungs obtained from CT
images,’’ Health Phys., vol. 102, no. 4, pp. 378–383, 2012.

[50] L. Vannuccini, J. E. Earis, P. Helisto, B. M. Cheetham, M. Rossi,
A. R. Sovijarvi, J. Vanderschoot, P. Helisto, B. M. G. Cheetham,
A. R. A. Sovijarvi, J. E. Earis, A. R. A. Sovijarvi, P. Helist, and
A. Sovijrvi, ‘‘Capturing and preprocessing of respiratory sounds,’’
Eur. Respir. Rev., vol. 10, no. 77, pp. 616–620, Jan. 2000.

[51] P. Gupta, M. J. Moghimi, Y. Jeong, D. Gupta, O. T. Inan, and F. Ayazi,
‘‘Precision wearable accelerometer contact microphones for longitudinal
monitoring of mechano-acoustic cardiopulmonary signals,’’ NPJ Digit.
Med., vol. 3, no. 1, p. 19, Feb. 2020.

[52] P. Gupta, H. Wen, L. Di Francesco, and F. Ayazi, ‘‘Detection of patho-
logical mechano-acoustic signatures using precision accelerometer contact
microphones in patients with pulmonary disorders,’’ Sci. Rep., vol. 11,
no. 1, p. 13427, Jun. 2021.

[53] H. Liu, M. Barekatain, A. Roy, S. Liu, Y. Cao, Y. Tang, A. Shkel, and
E. S. Kim, ‘‘MEMS piezoelectric resonant microphone array for lung
sound classification,’’ J. Micromech. Microeng., vol. 33, no. 4, Apr. 2023,
Art. no. 044003.

[54] M. Chu, T. Nguyen, V. Pandey, Y. Zhou, H. N. Pham, R. Bar-Yoseph,
S. Radom-Aizik, R. Jain, D. M. Cooper, and M. Khine, ‘‘Respiration rate
and volume measurements using wearable strain sensors,’’ NPJ Digit.
Med., vol. 2, no. 1, Feb. 2019.

[55] L. E. Ellington, R. H. Gilman, J. M. Tielsch, M. Steinhoff, D. Figueroa,
S. Rodriguez, B. Caffo, B. Tracey, M. Elhilali, J. West, and W. Checkley,
‘‘Computerised lung sound analysis to improve the specificity of paediatric
pneumonia diagnosis in resource-poor settings: Protocol and methods for
an observational study,’’ BMJ Open, vol. 2, no. 1, 2012, Art. no. e000506.

[56] F. Meng, Y. Wang, Y. Shi, and H. Zhao, ‘‘A kind of integrated serial
algorithms for noise reduction and characteristics expanding in respiratory
sound,’’ Int. J. Biol. Sci., vol. 15, no. 9, pp. 1921–1932, 2019.

[57] C. S. Lee,M. Li, Y. Lou, and R. Dahiya, ‘‘Restoration of lung sound signals
using a hybrid wavelet-based approach,’’ IEEE Sensors J., vol. 22, no. 20,
pp. 19700–19712, Oct. 2022.

CHANG SHENG LEE (Member, IEEE) received the B.Eng. degree in
mechatronics engineering from the University of Glasgow, U.K., in 2013,
and the M.Sc. degree in mechanical engineering from the National Univer-
sity of Singapore, Singapore, in 2016. He is currently pursuing the Ph.D.
degree in electrical engineering with the University of Glasgow. He is also
with the Global Technology Integration Department, Hill-Rom Services Pte
Ltd., Singapore, as a Research Engineer. His Ph.D. work is focused on the
development of sensing technologies and system for lung health assessment.

YAOLONG LOU (Senior Member, IEEE) received
the B.Eng. and M.Eng. degrees in electrical engi-
neering from the Harbin Institute of Technology,
Harbin, China, in 1985 and 1988, respectively,
and the Dr.-Ing. degree from the University
of Wuppertal, Wuppertal, Germany, in 1996.
From 1997 to 1998, he was a Postdoctoral
Fellow with the National University of Singapore.
From 1999 to 2003, he was a Senior Engineer
and then a Principal Engineer with the Singapore

Research Laboratory, Sony Electronics. From 2003 to 2005, he was a Chief
Engineer with Philips Electronics, Singapore. From 2006 to 2007, he was
a Staff Engineer with Seagate Technology International, Singapore. Since
2007, he has been with Welch Allyn and later with Hill-Rom, Singapore,
as a Principal Engineer, a Research and Development Manager, and a Senior
Manager for Innovation with the Global Technology Integration Department.
His research interests include small and special electrical machines and
their controls, motion control systems, intelligent control with neural net-
works; system analysis, modeling, and simulation; and medical devices and
image processing for cardiovascular and respiratory systems and vision care
systems.

MINGHUI LI (Senior Member, IEEE) received
the B.Eng. and M.Eng. degrees in electrical engi-
neering from Xidian University, Xi’an, China, in
1994 and 1999, respectively, and the Ph.D. degree
in electrical engineering from Nanyang Techno-
logical University (NTU), Singapore, in 2004.
From 1994 to 1996, he was a Faculty Member
of the School of Electronic Engineering, Xidian
University. From 1999 to 2000, he was a Research
Engineer with SIEMENS (China) Company Ltd.,

Beijing, China. From 2003 to 2008, he was with the School of Electrical and
Electronic Engineering and then with the Intelligent Systems Center, NTU,
as a Research Fellow. From 2008 to 2013, he was a Lecturer with the Depart-
ment of Electronic and Electrical Engineering, University of Strathclyde,
U.K. He joined the School of Engineering, University of Glasgow, U.K.,
as an Associate Professor, in August 2013. His research interests include
phased array systems, array design and processing, the direction-of-arrival
estimation, adaptive and arbitrary beamforming, spatial-temporal processing
and coding, smart antennas, MIMO, evolutionary computation, wireless
sensor networks, and coded ultrasound, with application to modern radar,
underwater sonar, medical diagnosis, non-destructive evaluation, and wire-
less communications.

QAMMER H. ABBASI (Senior Member, IEEE) is
currently a Professor with the James Watt School
of Engineering, University of Glasgow, U.K., and
the Deputy Head of the Communication Sens-
ing and Imaging Group. He has published more
than 350 leading international technical journals
and peer reviewed conference papers and ten
books. He received several recognitions for his
research, including the URSI 2019Young Scientist
Awards, the U.K. Exceptional Talent Endorsement

by Royal Academy of Engineering, the Sensor 2021 Young Scientist Award,
the National Talent Pool Award by Pakistan, the International Young Scien-
tist Award by NSFC China, the National Interest Waiver by USA, and eight
best paper awards. He is a Committee Member for IEEE APS Young Pro-
fessional, and the Sub-Committee Chair for IEEE YP Ambassador Program,
IEEE 1906.1.1 Standard on Nano Communication, IEEEAPS/SCWGP145,
IET Antenna Propagation, and Healthcare Network. He is a member of IET.
He is a fellow of RET and RSA.

MUHAMMAD ALI IMRAN (Fellow, IEEE) is
currently the Dean of UESTC, University of
Glasgow, and a Professor of wireless communi-
cation systems. He heads the Communications,
Sensing and Imaging (CSI) Research Group, Uni-
versity of Glasgow. He is also the Director of
Glasgow-UESTC Centre for Educational Devel-
opment and Innovation. He is also an Affiliate
Professor with The University of Oklahoma, USA,
and a Visiting Professor with the 5G Innovation

Centre, University of Surrey, U.K. He has over 20 years of combined
academic and industry experience with several leading roles in multi-million
pounds funded projects. He has filed 15 patents. He has authored/coauthored
over 400 journals and conference publications. He has edited seven books
and authored more than 30 book chapters. He has successfully supervised
over 40 master’s students at doctoral level. His research interests include
self organized networks, wireless networked control systems, the Internet
of Things (IoT), and wireless sensor systems. He has been a consultant
to international projects and local companies in the area of self-organized
networks. He is a fellow of IET. He is a Senior Fellow of HEA.

VOLUME 11, 2023 109421


