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ABSTRACT
Background and Context. Margulieux’s Spatial Encoding Strat-
egy theory (SpES) provides a possible reason for the relationship
between spatial skills and success in STEM fields, including CS.
While there is indirect evidence to suggest that the theory holds,
there is little work which explicitly explores the core theory in
practice. Furthermore, current work in spatial skills has largely fo-
cused on introductory courses, and it is unclear whether advanced
students (and then experts) use spatial skills in computing.
Objectives. We wish to determine whether we can see senior stu-
dents in CS with high spatial skills utilising non-verbal encoding
strategies when solving CS programming problems.
Method. Transcripts from a think-aloud exercise with experienced
students (final year of undergraduate), whose spatial skills were
measured, were analysed to identify utterances which indicated
spatial encoding strategies being employed, such as the construc-
tion and alteration of mental models on the fly, and to determine
differences according to spatial skills level.
Findings. Students with higher spatial skills were more likely to
exhibit evidence of the construction of flexible, comprehensive
mental models to solve the programming problems, demonstrating
advanced encoding and chunking strategies. Students with lower
spatial skills were more likely to struggle with the construction and
alteration of mental models, indicating that they typically lack the
capability to effectively chunk and save working memory space.
Implications. This work confirms the predictions of SpES more
precisely than prior work by showing that skilled problem solving
involves the mental model creation and manipulation that underlies
SpES. It demonstrates that students with better spatial skills are
more likely to succeed in programming problem solving, even in
the later stages of study, due to their ability to encode non-verbal
information.
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1 INTRODUCTION
Margulieux’s Spatial Encoding Strategy theory (SpES) [28] provides 
a possible reason for the relationship between spatial skills and 
success in Computing Science (CS), a relationship which has been 
increasingly explored over the past few years [4, 5, 17, 21, 22, 25, 26, 
38, 40–44, 48]. The theory states that spatial skills are valuable for 
STEM learning because they give people better encoding and ori-
entation strategies for non-verbal information. This allows people 
to chunk more effectively and store more information in working 
memory, which in turn frees up capacity for tracking complex infor-
mation, making alterations to existing information or constructing 
mental models [28].

There is some recent evidence which suggests that SpES theory 
holds true [25, 26, 42, 44], however the core of the theory – related 
to cognitive mechanisms – is largely untested. There is also some 
conflating evidence on whether experts and advanced students 
require spatial skills in advanced STEM practice [25, 28, 63, 68]. To 
address both these gaps in existing theory, our research questions 
are:
RQ1 Are non-verbal representations predicted by SpES evident

in advanced problem solving practice?
RQ2 Is there an association between measured spatial ability and

the use of non-verbal representations during advanced prob-
lem solving practice?

In answering these questions, this paper exposes cognitive mech-
anisms related to SpES by utilising a think-aloud protocol to ob-
serve the practices of students as they solve programming problems,
seeking evidence of the kinds of mental model building and related
strategies which Margulieux describes. It also contributes to recent
evidence which has shown that spatial skills continue to correlate
with academic results further along in a CS degree [25, 43], not just
introductory outcomes, which is at odds with one of Margulieux’s
facets of the theory stating that spatial skills are of less use to
experts [28].

The study reported here found that senior students with better
spatial skills were more likely to succeed at building robust mental
models, manipulating them on the fly and tracking several pieces of
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information at once – all hallmarks of strong non-verbal encoding 
skills – than their peers with lower spatial skills. Students with 
lower spatial skills were more likely to struggle to adapt their mod-
els or reached limits where they could develop them no further, as 
well as relying on strategies like pure recall to try to solve problems.

Given the involvement of final year undergraduate students, this 
work not only provides more precise evidence for the cognitive 
mechanisms underpinning SpES than has been discovered to date, 
but it also has implications about the role of spatial skills in post-
introductory study and practice.

2 BACKGROUND
2.1 Spatial Skills
Spatial skills are cognitive skills associated with understanding and 
perceiving space and spatial concepts. A challenge in spatial skills 
research espoused by Carroll in a review of about a century of 
spatial skills research is that there have been many overlapping 
and incomplete definitions of spatial skills put forward over the 
years [6]. He opens his 1993 review of various investigations of 
spatial factors with a quote by Elliot & Smith: “Spatial ability has 
been defined in such a  variety of different ways that it  is  often 
difficult to be precise about the meanings which we ascribe to the 
term” [14]. For the purpose of discussion, Carroll provides his own 
broad definition of spatial skills in an effort to  capture al l their 
constituent parts:

Spatial and other visual perceptual abilities have to
do with individuals’ abilities in searching the visual
field, apprehending the forms, shapes, and positions
of objects as visually perceived, forming mental repre-
sentations of those forms, shapes, and positions, and
manipulating such representations “mentally” [6]

Carroll identifies six distinct factors in his 1993 review [6]:

• Spatial visualisation
• Spatial orientation
• Perceptual speed
• Closure speed
• Closure flexibility
• Visual imagery

Parkinson & Cutts explore all of these factors in their 2018 ICER
paper [41]; we will only explore spatial visualisation and spatial
orientation here for brevity, selecting these two because they are
the two factors most studied in relation to CS in prior research.

The spatial skills factor studied most in STEM research is spatial
visualisation. McGee states that spatial visualisation involves, “the
ability to mentally rotate, manipulate, and twist two- and three-
dimensional stimulus objects” [30]. There are several ways to mea-
sure spatial visualisation: 2-D rotation [68], 3-D rotation [18, 66, 70],
object cross-sectioning [7], object construction [3] and paper fold-
ing [13] are a few.

Spatial orientation is a factor of spatial skills involving orient-
ing or positioning with respect to perspective and the location
of objects. Kozhevnikov & Hegarty have explored this factor in
various contexts and have developed a test to measure spatial ori-
entation [20, 24]. The test involves identifying the direction and

locality of objects from a given object while oriented to face an-
other. Spatial orientation often involves map reading, drawing or
navigation tasks [45, 46].

2.2 Spatial Skills in STEM and Computing
Science

Spatial skills, most frequently spatial visualisation, have been con-
nected with success in STEM for some time. Super & Bachrach
provide possibly the first published observation of the relationship,
identifying that spatial skills were valuable for people in scien-
tific careers [57]. Another notable study conducted by Wai et al.
identified that university-level students in the US who completed
STEM degrees were likely to have scored well on a spatial skills
test several years before in high school [68]. Beyond just observing
a correlation, Sorby has been training the spatial skills of engineers
and has observed positive outcomes, such as improved grades and
retention, for decades [53–55]. Veurink & Sorby also observed that
module grades in other STEM subjects, including CS, improved
when they were taken as electives by engineering majors who
completed spatial skills training [67].

In CS specifically, Mayer discovered that paper folding predic-
tion questions (which have been used as a component in spatial
visualisation tests [68]) in a battery of logical tests correlated with
success in a BASIC exam for new learners [29]. Cox et al. theorised
about the relationship between spatial skills and navigation of a
codebase [11], and Jones & Burnett later found that better spatial
skills led to more effective source code navigation in a CS mas-
ter’s conversion cohort (that is, students with an undergraduate
degree in a field different to CS) [21]. Parker et al. also observed
that, of a range of factors combined through structural equation
modelling, spatial skills were a more powerful intervening variable
contributing to CS success than a combined measure of access to
computing, which was comprised of “formal exposure to comput-
ing, informal exposure to technology, perceptions of computing,
and encouragement to pursue computing” [38].

Fincher led the BRACE (Building Research in Australasian Com-
puting Education) project which involved examining several fac-
tors related to success in introductory computing at eleven insti-
tutions [17]. They found a correlation between paper folding tests
(spatial visualisation) and CS assessment scores [48]. They also
found that students who were capable of drawing more complex
maps with more spatial and navigation information – in the hierar-
chy of landmark, route and survey [46, 69] – scored higher in CS
assessment than students who drew more basic maps or were not
capable of drawing maps at all [61].

Spatial skills as measured by mental rotation have also been
associated with several measures of CS success in introductory
contexts: module assessment [26, 42], standardised college entry
tests [10] and a reduced set of the SCS1 [37], a CS1 concept in-
ventory [4, 5, 38]. Additionally, Sorby’s spatial skills training pro-
gramme [56] has been used in introductory CS, with gains observed
in multiple contexts [5, 10, 42].

2.3 Theories for the Relationship
Frameworks for the relationship between spatial skills and CS –
and their wider relationship with STEM – were proposed first by
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Parkinson & Cutts in 2018 [41]. Parkinson & Cutts proposed that
there is a cognitive skill, separate from spatial skills and STEM
domains, which connects them both. Their reasoning for this “un-
derlying cognitive ability” was based around findings that spatial
skills have a relationship with a range of STEM domains, including
ones – like CS, arguably – which do not have many explicitly spatial
activities. Rather, they proposed that spatial skills tests exposed a
more abstract skillset related to constructing mental models which
could be applied in many domains.

Margulieux’s Spatial Encoding Strategy theory presents the rela-
tionship between spatial skills and STEM success as depending on
neurostructures in the hippocampus called grid and place cells [35].
These cells were originally developed for navigation, however they
can also encode non-verbal information, even if it is not spatial in na-
ture [8]. The discovery of these cells is accredited to O’Keefe [34, 36]
and Moser & Moser [19], who won a Nobel Prize in Psychology or
Medicine in 2014 in recognition of their work in the area 1. Since
non-verbal information is important in STEM fields [68], being
able to utilise these cells more effectively helps in STEM learning.
Margulieux theorises that spatial skills training can improve the
strategies these cells utilise for encoding, thus making non-verbal
representations easier and faster to generate.

This has implications for how we can store non-verbal infor-
mation in practice. Working memory capacity is fixed at birth [2],
but people can function as if their working memory is much larger
by chunking; that is, storing larger amounts of information in a
single chunk [1]. People can develop highly effective strategies for
chunking information, which leads to high-capacity memory oper-
ations such as memorising the order of an entire deck of playing
cards [15, 60]. Chunking frequently supersedes working memory
capacity in any meaningful practice: any variation in peoples’ fixed
working memory capacity is dwarfed by their ability to chunk [59].

Margulieux theorises that better spatial skills lead to better strate-
gies for storing (chunking) all kinds of non-verbal information. The
theory states as follows (emphasis Margulieux’s) [28]:

“Developing spatial skills (i.e., visualization, re-
lations, and orientation) helps people to develop
generalizable strategies for 1) encoding mental
representations of non-verbal information, in-
cluding 2) identifying useful landmarks to orient
the representation.Having strategies for rapidly en-
coding non-verbal mental representations and identi-
fying landmarks would increase the amount of new
information processed initially. In turn, encoding of
larger chunks of information would afford learners
more capacity in their WM [working memory], es-
pecially in the visuospatial sketchpad, for reasoning
tasks (e.g., running mental models) or for building
more complex representations (e.g., building a robust
notional machine).”

In summary, spatial skills may work to assist in STEM subjects
because non-verbal representations of ideas and knowledge are
important in STEM. This is perhaps particularly true of computing
science, where abstract ideas rarely have physical representations.
We have brain structures which are used for working out spatial
1https://www.nobelprize.org/prizes/medicine/2014/summary/

relationships which in turn are used in navigation tasks, and have
been used so for evolutionarily significant periods of time. In study-
ing STEM subjects, these brain structures are recruited to produce
non-verbal representations (not necessarily spatial ones) which are
necessary or at least valuable for STEM. According to SpES, this is
what underlies the association of spatial skills with ability in STEM
subjects.

2.4 Recent “Post Hoc” Evidence for SpES
In explaining SpES,Margulieux also describes several ways inwhich
SpES aligns with prior research on spatial skills and STEM. These
“post hoc explanations” provide possible ways that SpES can explain
some relationships observed in existing research. They are: spatial
skills training improves STEM attainment in many domains; spa-
tial skills predict initial STEM performance more accurately than
later performance; strategy and spatial training eliminate gender
differences; and transfer of problem-solving skill between fields
is limited [28]. These explanations can be considered the possi-
ble practical outcomes of SpES, demonstrating the relationship’s
existence in ways which align with Margulieux’s theory without
necessarily explicitly demonstrating the theory’s cognitive mech-
anisms in action. More evidence – and some work which raises
some contention – have been presented since SpES was published
for these explanations, and are described in this section.

2.4.1 Spatial training improves achievement in many STEM domains.
The evidence for spatial skills training being valuable inmany STEM
domains is already well documented and has been growing for
several years [64], however its value in CS specifically is relatively
new. Cooper et al. demonstrated the benefits of spatial skills training
with a small cohort of pre-college CS students over a short period
of time in 2015 [10], but since the publication of SpES, spatial skills
training has been adopted at multiple institutions for introductory
CS students and research has involved hundreds of participants,
with positive results observed consistently [5, 26, 40, 42].

2.4.2 Spatial skill predicts initial STEM performance more accurately
than later performance. Margulieux suggests that spatial skills are
more valuable for early STEM learning and are of less value for
later performance, since learners gradually develop domain spe-
cific strategies which are more efficient than more abstract non-
verbal encoding strategies. In some cases, this appears to be true:
it has been found that students with less CS experience show a
stronger correlation with spatial skills when it comes to exam per-
formance [42] and a more precise test of core computing skills [44].

However, there is other work which shows that spatial skills
correlate even more strongly with grades in later study than they
do in introductory years [43] and correlations have been discovered
between spatial skills and individual modules taken in later years
of CS study [25]. This indicates that there is still some association
between spatial skills and success beyond just introductory CS. This
does not invalidate the theory, but rather suggests that generalisable
strategies are still relied upon when students move to new areas
of study even if they could already be considered experts in some
areas of CS. This indicates that domain-specific problem solving
strategies don’t transfer (which is another of Margulieux’s items of
post-hoc explanation).

https://www.nobelprize.org/prizes/medicine/2014/summary/
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However, it does also indicate that the relationship between 
spatial skills and STEM outcomes in experts is perhaps not as simple 
as SpES originally states. There is also very little work involving 
spatial skills and CS outcomes which does not involve introductory 
CS students, so study of students further along in their programmes 
is necessary to provide a full picture of the relationship.

2.4.3 Strategy and spatial training eliminate gender differences. A 
study by Ly et al. sheds some light on the proposal that gender 
differences can be eliminated through spatial skills training. They 
found that women with low spatial skills when beginning a CS1 
programme are at the highest risk of dropping the course, though 
spatial skills training can close the gap and bring low scorers up to 
a par with the rest of the cohort [26].

2.5 Indirect Evidence and Theories for SpES
Cognition

In addition to more evidence being found for these post hoc expla-
nations, the examples of cognition provided by Margulieux also
appear to be indirectly evident in more recent work. Spatial skills
have been shown to be connected to a core, cognitive skill in CS
through expression evaluation [44]. A test of expression evalua-
tion used by Parkinson et al. had questions of high complexity in
terms of the number of operations which must be tracked and the
amount of data which needs to be followed. The authors explicitly
instructed students not to use written aides in solving the questions,
and those with higher spatial skills scored higher in the expression
evaluation test. This suggests that these students were more able
to chunk the complex non-verbal information effectively and hold
more information in their head at once, which supports the theory.

Additionally, Parkinson & Cutts observed a higher correlation
between spatial skills and long-form coding questions and long
tracing questions in an exam than with the execution of single-line
expressions or short code snippets [42]. This suggests that questions
which involve more information tracking and open problem solving
are more likely to require spatial skills to solve. In order to avoid
confusion, by “problem solving” in this context we are referring to
the ability to address a problem by recalling and utilising known
information (learned code constructs and syntax) when there are
many possible solutions. Liu et al. also explicitly state that they
expect that spatial skills benefit problem solving through more
effective chunking strategies [25].

While many aspects of SpES have been demonstrated, little work
has yet been done to get at the root of the theory: demonstrating the
theory’s cognitive mechanisms in action. The work above represents
some of the closest connections to seeing the cognition underpin-
ning SpES being used, but the connections are indirect. There is
limited evidence for students actually applying the strategies that
Margulieux describes, such as explicit reference to mental model
building and running, or the construction of a robust notional
machine. Although SpES holds in many respects, and evidence
has only grown since it was published, we have not yet explicitly
observed the theory’s cognitive mechanisms in action in actual
student problem solving in CS.

3 RESEARCH QUESTIONS
The background research shows that several pieces of recent work
have contributed to supporting SpES, but there are still some gaps.
While there is evidence to suggest that novices require spatial skills
to solve computing problems more than experts do, this has mostly
only been examined in an introductory context and any work going
beyond the first year of study demonstrates that the relationship
between spatial skills and CS outcomes still exists, and even grows.
Additionally, while there is some evidence that the cognitive mech-
anisms described by Margulieux are being used as predicted, this
evidence is indirect and doesn’t deliberately demonstrate how these
mechanisms are being applied.

Bearing in mind that measures of spatial skills are indicative of
non-verbal representation and encoding strategies at the core of
SpES, our research questions are:

RQ1 Are non-verbal representations predicted by SpES evident
in advanced problem solving practice?

RQ2 Is there an association between measured spatial ability and
the use of non-verbal representations during advanced prob-
lem solving practice?

Spatial Encoding Strategy theory is a significant theory in our
field and beyond. It is recent and non-trivial, linking performance,
psychology and educational effects not only in CS, but also in
wider STEM. It is worth testing and exploring; if we can answer
these research questions, this will be the first major contribution to
demonstrating the cognitive mechanisms in Margulieux’s SpES in
action, thus taking steps towards to the confirmation of the theory.

4 METHOD
In order to find out what is going on in a student’s head, we need
have the students make their thoughts external. A tried-and-tested
method for examining human cognition is a think-aloud protocol,
which uses introspection to expose internal processes and men-
tal models [33, 62]. Think-aloud protocols have a long and well-
regarded history of use: they were formalised by Ericsson & Si-
mon [16], the former of whom went on to be awarded the ACM’s
A. M. Turing Award in 1975 along with Allen Newell for their
contributions to AI and human cognition research involving early
think-aloud protocols [32].

Using a think-aloud protocol, we wished to examine senior stu-
dents’ problem solving processes to identify if SpES was being
applied, and whether there was a difference in the way mental
representations were generated and used by students with different
spatial skills. We wanted to see if we could witness students with
high spatial skills utilising the strategies outlined by SpES as they
solved programming problems, and of these were distinct from
students with lower spatial skills.

4.1 Participants
The participants selected for this study were fourth year students at
a large, research-focused institution. These students were in their fi-
nal year of study in an undergraduate programme andwere enrolled
in Computer Science or a closely related programme (such as Soft-
ware Engineering – at the authors’ institution these programmes
are very similar).
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The reason for choosing fourth year students was because, by
this stage in their degree, such senior students are required to enact
some expert-level behaviours: pick up new languages, systems and
computational domains, work in new problem domains and tackle
complex real-world problems. This made these students at least
close to “experts”, permitting the examination of SpES’s cognitive
mechanisms in action in advanced students.

Using senior students also gives the best chance of eliminating
minimum knowledge and experience effects: we were mostly in-
terested in the students’ ability to solve the problems in relation to
their cognition and wanted their prior procedural and declarative
knowledge to have minimal effect. All CS students learn Python
for a full year in their first year, and will use Python in compulsory
modules in their second and third year of study. This permitted
the use of Python in the planned exercise. One of the exercises
(see section 4.2) required reading and describing a program, and by
choosing fourth year students we could assume at least a baseline
of Python knowledge and experience suitable for completing the
task.

Students were invited to take part in a mass email to all fourth
year students which included an information sheet describing the
experiment in broad terms and an indication that participants
who completed the study would be compensated with an Ama-
zon voucher. To express interest, the students were required to fill
out a form requiring their student IDs and explicitly indicating that
they provided their consent for their data to be used as described
in the information sheet. The student IDs were used to check the
student records to determine that they were suitable for the study
(that is, actually in their fourth year of study and enrolled in CS).

Of a cohort of roughly 250 fourth year students, 17 responded to
the survey. 2 students were removed because they were not fourth
year students. 2 students ultimately did not attend to take part
in the study, resulting in 13 students contributing to the overall
dataset. Students gave consent for their university records to be
examined for demographic data, specifically their age and gender:
all 13 students were in the age range of 18–23, making them “tradi-
tionally university aged” in the UK; 5 participants had a recorded
gender of “female” and 8 had a recorded gender of “male”.2

The entire study methodology was approved by the university
ethics committee prior to the research starting. It was made clear
that students were permitted to withdraw from the study at any
point and that their responses would be made anonymous before
any form of publication or presentation.

4.2 Instruments
Once they had expressed interest and had signed the consent form,
students were invited to take the Revised PSVT:R test of spatial
skills [70]. The test consists of 30 multiple choice items of increasing
difficulty. The test is a test of rotations: each question requires the
participant to identify an orientation of an object from a selection
of five orientations which matches a sequence of rotations shown
applied to a different object. The test was issued on the institution’s

2The university system permits non-binary gender identities which can be self-
described by students, however the students involved in this study happened to only
have binary genders recorded.

VLE. It was timed at 20 minutes, with given answers automatically
submitted once the time ran out.

For the think-aloud study, participants indicated a 30 minute
time slot to come – in person – to a quiet room on campus to
complete a complex problem-solving programming exercise. The
purpose of the exercise was to have the students think aloud as they
completed it and have them expose their strategies so that they
could be compared to SpES (see section 4.4 for more details on the
analysis rubric) so the exercise needed to expose the students to a
challenge of reasonable complexity and novelty. Three ten-minute
exercises were designed:

(1) An open coding exercise, where a problem specification was
provided and the student had to come up with a program-
matic solution

(2) A sample solution to the first exercise was provided which
the student had to explain to the interviewer

(3) An altered version of the first exercise which required a new
approach to solve, again requiring the student to come up
with a programmatic solution

Each problem was printed on a separate piece of paper and handed
to the students as required. The exercises also came with sample
inputs and expected outputs. The full exercises used can be seen in
the appendix.

The students were expected to complete their solutions on blank
paper, one sheet per exercise, in a language or pseudocode format
of their choice. It was made clear that correct syntax and “real code”
were not as important as demonstrating a clear understanding of
the solution and any programmatic representations they generated.
The students did not have access to any devices which could run
code during the session.

The motivation for selecting these three exercises was to max-
imise the chance of observing some form of a mental representation
of either the problem domain or the students’ solutions. By posing
a fairly complex coding question in the first exercise, we expected
that the students would need to generate a model of the problem
as they constructed a model of their solution, maintaining both
at once. As they moved to the second part of the exercise, they
would need to maintain their problem model and reconcile it with a
new solution model, which may or may not be similar to their own
from the first exercise. As they moved to the third exercise, they
would need to modify their problem model or entirely rebuild it
and come up with a new solution model, which may or may not be
based on their original solution model or the one they constructed
from the solution given to them in the second exercise. We could
not guarantee that students would tackle the exercises in exactly
this way, but they were designed specifically to try and prompt
the generation and alteration of internal representations during
and between exercises to allow us to determine how effective these
representations were.

4.3 Data Collection
The practical procedures for think-aloud protocols detailed by
Someren, Bernard & Sandberg were used as the primary guiding
principles for delivery of the protocol [52]. The three exercises were
completed over 30 minutes – 10 minutes maximum per exercise – in
a quiet room with only the participant and the interviewer present.
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The interviewer made the think-aloud protocol clear to the student 
prior to starting: talk about your thought processes and make it 
clear what you are thinking as much as possible. The interviewer 
also made it clear that if the student had any questions or needed 
to make clarifications about the exercise, they were welcome to do 
so.

The students’ thoughts were captured using a dictaphone, which 
was later transcribed in full. If a student fell silent for a period 
of more than a few seconds, the interviewer prompted them to 
externalise their thought process. Once a student completed their 
solution, or the 10 minutes ran out, the interviewer asked a few 
questions about their solutions.

4.4 Data Analysis
The qualitative methodology applied to analyse the participants’ 
transcripts was a form of deductive coding. The transcripts were 
read by researchers with the text of Margulieux’s theory close 
to hand (specifically, the paper was printed as i t appears in the 
ACM Digital Library and the quote listed above in section 2.3 was 
highlighted as a main point of reference). The researchers were to 
highlight any utterance in the transcript which they felt exhibited 
either:

• SpES in action, such as evidence of the construction of a
mental model or chunking large amounts of information.
Such examples may be those Margulieux explicitly states,
particularly “running mental models” or demonstrations of
students constructing complex, multiple and overlapping
mental models [39]. Any other utterances which may indi-
cate encoding mental representations and similar or related
activities were highlighted.

• Alternative strategies, particularly strategies at odds with
SpES and the development or utilisation of mental repre-
sentations. These might manifest in the form of clues that
students are, for example, not running or building mental
models, or do not have robust internal representations of the
problem domain or their solutions.

These utterances and highlights will be referred to throughout the
rest of this paper as events.

The first pass of analyses was conducted on three transcripts by
two researchers individually (both researchers analysed all three
transcripts). After completing their analysis, the researchers came
together and compared the events they had isolated. The reason
for the identification of each event had to be explained, with the
researcher indicating why they believed the event was an example
of either of the two factors being searched for. This process yielded
91% agreement on coded events and a Cohen’s Kappa value of 0.83,
indicating fairly consistent agreement across the coding process. In
each instance where there was disagreement, or one researcher had
marked an event which the other had not, the event was discussed
until both researchers agreed. Using these corroborated events as a
rubric, one researcher completed the analysis of all the remaining
transcripts.

All the analysis of the transcripts was conducted without knowl-
edge of the students’ spatial skills. This was to avoid bias influencing
the coding. After the analysis was completed, the highlights were
drawn out as events and these were then attributed the spatial

skills score of the student. In the results section, the students’ spa-
tial skills score is shown in parentheses at the end of each quote or
description of an event.

5 RESULTS
5.1 Spatial Skills Test
Out of a maximum 30 points, the mean spatial skills score was 24.5,
the median was 26, the minimum was 16 and the maximum was
30. This is fairly high compared to other students of a similar level
tested, such as the combined third and fourth year students tested in
Parkinson & Cutts 2018 work, where the mean was 22.9 points [41].
However, the fact that these are higher than we might expect to
see with a cohort of fourth year students does not seriously affect
the research outcomes, as discussed in section 6.1.

5.2 Transcript Event Coding
This section groups the events observed by the strategies that they
expose. The intention is to demonstrate how students did, or did
not, apply SpES-related strategies while solving the programming
problems. The spatial skills of the participant exhibiting an event
is shown in parentheses, with a letter used to differentiate students
with the same scores.

Students with higher spatial skills (ranging from 26 to 30) demon-
strated that they constructedmental models andwere able to rapidly
alter them as they understood more about the problem. A few ex-
amples of these events are:

• Realising an else clause is unnecessary in the first task: “if
this is equal to the target you append this coin and– I guess
you don’t want an else, actually [scratches out else clause]”
(26b)

• Addressing a coin duplication problem in the first task: “Oh
wait, I can’t just iterate over the coins ’cos I won’t know if
they’re duplicates. I’ll use. . . I’ll use enumerate and an index.
The index will be unique per coin.” (28a)

One student (28b) demonstrated the ability to completely scrap
their solution model while maintaining their problem model and
start again from scratch: “No this isn’t. . . hmm. . . no, this isn’t going
to do it I don’t think. Let me. . . let’s try this again”. Despite building a
non-starting first solution, the student was still able to complete the
task with a new, different solution. Another student (27) also almost
completely rewrote their solution when they realised that the time
complexity was going to be high: “This is very inefficient! The time
complexity is going to be. . . is going to be wild. That doesn’t matter
though, right? I don’t need to. . .well I– well I should be more efficient
I think, it should be more dynamic. I’ll. . . let me just change it”. The
student identified a limitation of the program – which was not a
hindrance to solving the problem, necessarily – and was able to
rewrite their solution. both these events demonstrate an ability to
hold a model of the problem in their head while actively construct-
ing, deconstructing and reconstructing a separate model of the
solution, exhibiting the ability to chunk effectively and dynamically
manipulate their mental models.

By contrast, a student with lower spatial skills (17) noticed at
about the same time in their session that their initial solution wasn’t
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going to work and in fact even noted that an alternative solu-
tion might have been more appropriate (“hmm, perhaps. . . perhaps
this should have been recursive. I think I will. . . I’m not sure how
many. . . how many loops if it’s not recursive.” ) but did not change
their approach and continued to try and make their solution work.
Another student (16) noticed an error quite late in the process of
building their solution, faltered a little, but then decided that they
were not going to fix it and instead continued to try and finish the
incorrect solution: “Okay, well, I know it’s not gonna work but. . . I
think I won’t figure that out so I’m just gonna- let me just do it like this
and. . . and we’ll see.” Both these events could be indicative of cogni-
tive overload: they have identified that their solution is not going
to work, but do not have the mental capacity to make alterations
without losing important information. This could be addressed by
having better chunking strategies.

Another student (20a) decided that the first problem was a “dy-
namic programming problem” and made repeated reference to this
throughout their coding of the solution. It was unclear how this
affected their solution, but they had made a decision early in read-
ing the program specification about the nature of the problem and
decided that – somehow – it must factor into their process. This
demonstrates that they had established some form of mental model
or internal representation of the problem which was rigid and
they were not able to change. This may be indicative of limited
working memory capacity, affecting their ability to incorporate or
adjust their model with new information, suggesting that they have
reached cognitive overload.

All the students who explicitly referred back to their own past
solutions as they moved through the problems were higher spatial
skills scorers of 26 and above. They appeared to be using their
previous work to assist in the model construction of the next task.
One student (27) noted that the recursive solution from the second
task was gradually reducing the size of N until zero was reached
while they had done the opposite, starting at zero and adding until
they reached the target. The student referred to this as “basically
the same” and moved on. Conversely, one of the students with
lower spatial skills (16) had taken a similar incremental approach
in their program and was unable to connect their process with the
decremental process in the solution: they could not understand why
you would want to alter the value of the target because then the
program would lose track of what the final goal should be. These
events indicate that the students with higher spatial skills were
able to keep track of their previous solutions as they progressed in
the problems, or at least were able to orient the new problems with
models that they had previously encoded, while the student with
lower spatial skills appeared to discard their solution or at least
did not recognise its structure against a piece of code in the same
pattern.

It was observed that two of those with lower spatial skills (16,
20a) tended to, when they were stuck, read the problematic text
(either the task specification or their code) over and over again
without necessarily gaining anything new. This was contrasted
with students with higher spatial skills, who tended to take much
more strategic approaches when they were stuck or unsure how to
proceed, such as:

• Sketching out a diagram of their planned solution (27)

• Writing the procedures they planned to implement at a high-
level in a list of bullet points (26d)

• Deliberately pushing the code they were writing away from
themselves and looking to the ceiling before verbalising their
plan again (28b)

By distancing themselves from the problem text, these students
appeared to be strongly focusing on the development of a mental
representation of the problem rather than the text surface.

Interestingly, students with higher spatial skills also had a ten-
dency to remove themselves from the terminology of the task and
create their own.Multiple students (26a, 26b, 27) began to frequently
refer to N as “the target”, which is an accurate conceptual descrip-
tion of what N represents even though N is never referred to as “the
target” in the problem specification. This would suggest that these
students have developed a conceptual idea of a target value which
they are applying to the named variable N, which is a stark contrast
to the students who continuously read the problem specification
while trying to come up with their solutions.

Some high-scoring students also began to refer to some of their
conceptual ideas in very abstract terminology. One student (29) kept
referring to lists as “things” before correcting themselves (“[point-
ing to list] we’ll then add the coin to this thing- this list, sorry” ) which
suggests that they have a conceptual understanding of the con-
structs they are working with, but its representation is abstract and
non-verbal. This kind of behaviour was observed in some other
high-scoring students who would catch themselves as they were ex-
plaining their programs or plans to insert clearer names, apparently
for the interviewer’s benefit.

These events indicate that students with higher spatial skills had
a robust, internal representation of the problem with their own
abstractions. This is indicative of a complex mental model being
formed with pieces being converted to more fluid representations,
demonstrating a robust non-verbal representation of the problem
and solution spaces.

Many of the students with higher spatial skills, without prompt-
ing, would give brief, high-level summaries of both the problem
as they understood it and their planned solution. In most cases
these solution plans were still evolving, also representing that the
students had a flexible mental model which they were updating as
they verbalised their process. Here is an example from one student
with high spatial skills (26a):

“So I’m thinking of using a recursive function. So that
would pass in parameters like what the remaining
coins are in the collection, what the current value
is that you’ve totalled up so far and what the target
value would be. . . and then at each point it just picks
one random one- or no, it’d loop through all the coins
that could be pulled out that were less than adding up
the total that you’re looking for and then. . . it calls that
recursive call back, um, with that coin being taken
out that coin being added to the total so far.”

This – and the other similar examples from other students – looks
like an approach to chunking and encoding the information needed
into a model which can be recalled later. It also demonstrates an
ability to evaluate and adjust their models as they are constructing
them.
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Students with lower spatial skills were more likely to struggle 
with building a clear understanding of the problem or their planned 
solution and tended to either “get lost” or fail to fit all the pieces of 
their model together. One student (16) wondered, early in solving 
the first task, if the coins in the coin list would need to be sorted, 
and decided that they would need to be. The interviewer questioned 
why they might need to be sorted, and the student wasn’t sure, so 
then decided not to sort it. This indicates that the student didn’t 
have a very clear model of their solution or the problem. There were 
valid reasons to sort the list, for some solutions, but the student did 
not appear to have a clear idea of what they were.

The interviewer also asked any students who finished their writ-
ten solutions if they knew any ways they would improve them. 
Those with higher spatial skills appeared to have developed a better 
model of the problem domain because they usually were able to 
indicate some ways that the solution could have been improved 
if they were to try again or had more time. For example, three 
students (26c, 26d, 28a) all indicated that the time complexity of the 
program could be reduced by tracking combinations of coins which 
added up to intermediate values to avoid duplication of additive 
procedures. This indicates that even as they were building their 
solution, with some additional thought they were able to expand 
their model to improve it.

Another event observed among lower spatial skills scoring stu-
dents was an apparent over-reliance on memorisation and recall. 
Two students in particular (17, 20a) appeared to be trying to recall 
a potential solution that they had seen before rather than trying to 
build a solution from first principles: “I’m trying to remember the 
permutations algorithm from [first year module]” (20a). This seems 
to indicate that they relied heavily on other known solutions or 
patterns – which were note well-developed enough in their mem-
ory to effectively recall – and were not capable of or comfortable 
with building solutions from scratch.

5.3 Additional Observations
This section describes some additional observations made during 
the exercise sessions or in relation to aspects of the study which 
were not part of the originally planned observations. These obser-
vations were not included in the original research methodology and 
were not explicitly being monitored, so should not be considered 
as being presented with the same precedence as the other results 
presented earlier in this section. However, these observations are 
still interesting to the authors and may provide further evidence 
of students with higher spatial skills demonstrating the strategies 
associated with SpES while the lower scoring students do not.

Since the recordings were audio only, the interviewer took note 
of physical cues and their time codes, particularly when students 
pointed to artefacts on paper referring to them as “this” or “that”, so 
that during transcription an explicit note could be added about what 
the students were referencing. One of the events being explicitly 
recorded by the interviewer was when students started writing on 
the paper provided – as well as recording the kind of writing: code, 
pseudocode, doodles, diagrams, etc. – so as to differentiate between 
silences on the tape (i.e. to determine whether students busy writing 
or just not verbalising, for example). In doing so, we have accurate 
measures of when students started putting their solutions to paper.

In analysing these timestamps, for both the first and third tasks,
most high-scoring spatial skill students started writing substantially
later than those with low spatial skills: high spatial skills scorers
spent time reading the task, clarifying any queries and verbalising
both the task and their planned solution. Those with lower spatial
skills were fairly quick to start writing once they felt that they had
a good grip on the task, but as is evidenced by other observations,
this didn’t necessarily mean that they would be able to come up
with a solution more quickly (or at all).

Another observation was that some students made use of hand
movements more frequently. The interviewer only noticed this after
two interviews had already been completed, so we do not have a
complete set of data, but the interviewer did begin to record all
instances of expressive hand movements the students made. Of
the students recorded, the use of gesture was much more frequent
and expressive in those with higher spatial skills (one student (27)
accidentally knocked the dictaphone off the table in describing their
solution plan). Students with lower spatial skills were more likely
to keep their hands still while describing their processes. While
we cannot say anything firm about this relationship because we
did not initially consider gesture and did not collect rich data on it,
the research on this area suggests that gesture is both valuable for
generating understanding of abstract concepts in CS [49–51] and
that gesture is useful in both developing and recalling encodings in
memory [9].

We can also make some observations about how well students
tackled the tasks themselves. Students didn’t have machines to test
their solutions on so had to keep track of whether their solutions
worked themselves, but the paper versions were analysed by the au-
thors to determine if they would work without significant changes.
Of the 13 students involved, only two – both lower spatial skills
scorers (16, 20a) – were unable to come up with working solutions
to the first problem. Four students were unable to fully explain the
recursive solution in the second task: two were the same students
from before, and the other two had spatial skills scores of 17 and 20.
There were some details about the recursive solution that some of
the students with higher spatial skills struggled to fully articulate,
but generally they were clear on how the program worked and
could explain how the results were found – in the case of the four
students who could not explain it, they very plainly indicated that
they couldn’t understand the procedure (“I’m not sure why we need
to do n1 and n2 at the same time, at all. It will take a lot more thinking.”
(20b))

It should be noted, however, that these assumptions of complete-
ness and correctness are not completely dependable. Most students
did not write code in any formal sense or stick to consistent syntax.
Instead, they used representations of constructs and concepts from
programming languages which they were familiar with, sometimes
using arrows or flow diagrams to demonstrate operations. There-
fore, it is not really possible to determine whether the produced
programs were truly correct. Rather, the authors can infer from the
structure and the demonstration of the written operations whether
the student had a complete and correct solution to the problems,
though this may not have translated into a fully complete solution.

Even with the time spent planning, students with higher spatial
skills scores also tended to complete the tasks more quickly. The
students were aware that they had 10 minutes for each task so were
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not explicitly told that the task was timed, which may have affected
the time that they took (i.e. the students with lower spatial skills
may have been able to complete the tasks more quickly, but did
not feel compelled to move quickly). To give clear distinctions, the
fastest students to put working solutions to the first task to paper,
with speeds of 4:17, 4:47 and 5:10 had spatial skills scores of 30,
26(b) and 29 respectively, whereas only two of the four students
scoring below 21 were able to complete the task at all within the
allotted 10 minutes, with times of just over 8 minutes and just under
10 minutes.

6 DISCUSSION
6.1 Participants’ Spatial Skills
The spatial skills of the participants in this research were high. The
average PSVT:R score was 24.4 out of a possible 30. This is to be
expected, based on the work of Parkinson & Cutts [41] and Wai,
Lubinski & Benbow [68] who showed that spatial skills on average
tend to be higher in those further along in their academic STEM
careers. However, this does mean that the results may be somewhat
skewed towards the upper bound of spatial ability, meaning that we
may not be able to draw as many distinct conclusions about those
with weaker spatial skills as if the distribution were more spread
across lower spatial skills scores. In the analysis of the think-aloud
transcripts we tend to group the students as low and high spatial
skills scorers with high scoring 21+ in the PSVT:R, leaving only 4
students in the lower spatial skills group and therefore fewer data
points to examine.

Regardless, it is interesting that there are still clear differences
between the higher scorers and the lower scorers across so many
categories, even though the lower scorers have fairly high skills.
Sorby’s work has always split first-year engineering students into
three categories by spatial skills: 18 and below require training,
19–21 inclusive are “marginally passing” students for whom spatial
skills training will likely be beneficial but is not mandatory, and 22
and above indicates a solid pass where additional training should
not be required [53]. But as we move beyond first year, we can see
that these divides may not be appropriately scaled for later study:
the majority of participants were in the “solid pass” threshold, but
we still see fairly distinct divides within this group. The students
scoring 26–30 exhibit different behaviours from those around the
21–25 mark, suggesting that while the categorical breakdowns may
be suitable to identify which students have enough to succeed in
their STEM study, they may still benefit from higher spatial skills.
This, of course, with the caveat that we still expect that students
with lower spatial skills can succeed in further STEM study – even
below Sorby’s lowest threshold – but will have a harder time than
those who pass because they will struggle with their non-verbal
encoding strategies.

6.2 Strategies for Programming Problem
Solving Directly Related to SpES

Recall that our research questions related to whether non-verbal
representations predicted by SpES – such asmental model building –
were evident in programming problem solving and whether the use
of these representations was associated with spatial skills. While
there were some instances of students straying from the norms

described above, generally the differences between high- and low-
scoring spatial skills students were stark. Those with lower spatial
skills were less likely to be able to even complete the assigned
exerciseswhile thosewith higher spatial skills were able to complete
them well within the allotted time, which is only the beginning of
the differences between the two skill groups. We observed many
expected behaviours as per SpES: students with high spatial skills
created well developed mental models of both the problem domain
and their solutions which they were able to adjust and abstract
from, while those with poorer spatial skills focused on the text
surface, struggled to make alterations to their mental models and
got stuck in unproductive loops. We also observed students with
better spatial skills maintaining their models between questions,
utilising them in the solving of the next problems, while students
with lower spatial skills almost appeared to “flush” their memory
between exercises to free up more working memory space.

There were several cognitive mechanisms identified from the
events captured, such as evidence of chunking, cognitive overload
and rapid, flexible development of mental models. The presence
of all of these can be explained with SpES. Chunking is some-
thing Margulieux talks about explicitly as being valuable for STEM
achievement, and also forms a basis for the other mechanisms ob-
served. Chunking makes more effective use of working memory,
allowing for greater intrinsic or extrinsic cognitive load to be taken
onboard; conversely, if working memory is full due to inefficient
chunking, students will experience cognitive overload and will not
be able to process new information [58], and having free working
memory space is necessary for updating mental models [65]. This
ties into mental model construction as well: cognitive overload can
inhibit the initial construction of mental models [23]. In each of
these instances, SpES provides a reason for why better spatial skills
– by way of non-verbal representations – contribute to more effec-
tive use of these cognitive mechanisms, which have been observed
in action in these students.

Therefore, these results appear to indicate that the research ques-
tions posed in this paper can be answered affirmatively: non-verbal
representations related to SpES are evident in advanced program-
ming problem solving and their use appears to be connected with
spatial skills.

6.3 Real-Time Versus Historic Representations
There is an unanswered question inherent in this work: do non-
verbal encoding strategies support in-the-moment mental model
building, or do students with better non-verbal encoding strate-
gies construct more robust and complete models in initial learning,
which they can store to long-term memory and effectively recall?
We have framed our results and discussion around the former,
though the latter could still be how the students solve problems
in practice. Students with better long-term memory encodings (or
schemata [12], or plans [47]), which they created possibly years
prior, can more rapidly recall them and apply them in context
whereas students who have only been able to develop incomplete
or inefficient long-termmemory representations will only find them
of limited use in practice.

Both possibilities align with Margulieux’s theory. Margulieux
discusses mental model building with respect to problem solving
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explicitly, but also discusses how spatial skills may also lead to 
“stronger and faster connections which lead to more efficient learn-
ing” to be recalled later [28].

We theorise that either of these kinds of representations – tran-
sient, real-time generated representations or long-term, stored rep-
resentations being recalled – or perhaps combinations of both, could 
be being applied by our students in this study and it would not 
necessarily affect the outcome. The result would be the same: stu-
dents with better spatial skills will end up with more robust models 
which take up less working memory whether they are recalled or 
generated on the spot. While we do not consider the distinction to 
seriously affect this particular study, we do think that it has some 
interesting implications, which are discussed in section 6.7.

6.4 Contributing to Theory
Malmi et al. highlighted a concerning lack of effective use of theory 
in CS education [27]. While Nelson & Ko argue that there are cases 
where theory can hinder design [31], spatial skills researchers must 
be cautious about this. Even as more work emerges demonstrating 
that there is benefit in developing the spatial skills of students, with-
out a good understanding of and and trust in the underlying theory, 
we cannot be clear about why spatial skills are of value. Spatial 
skills are “off the beaten path” in terms of skills one might think of 
as valuable in CS, which is all the more reason for understanding 
the relationship as best as we can.

Margulieux explicitly tries to address this with SpES. The theory 
clearly and deliberately explores the relationship through cognitive 
mechanisms and provides a reasonable, well-informed conclusion 
on possibilities about the relationship, which was well received 
by the ICER community (winning the John Henry award in 2019, 
a community voted award for the paper which best “pushes the 
upper limits of our pedagogy”3).

This paper provides a significant empirical study which has not 
been conducted before, is a test of the theory and leads to possible 
theory modifications in relation to advanced students. The work 
has been conducted in the spirit of continuing to strengthen theory 
to push our understanding of the why further and to ensure solid 
foundations on which to build future pedagogy.

6.5 Limitations and Threats to Validity
The greatest challenge (but also, the greatest potential value) in this 
work was exposing the hidden cognition that students were using. 
We argue that the events we identified in the results section of this 
work demonstrate the kind of cognition involved in SpES taking 
place, such as the construction and running of mental models. This 
could be debated. The events we selected were indicative of our 
perspectives and are, as such, subjective. This is a characteristic 
of conducting qualitative analysis in this form, which we have 
attempted to address through confirming our event coding strategy, 
as described in section 4.4.

However, it’s important to note the relationship between the 
two authors here: PhD student and supervisor. This relationship 
carries “shared baggage” in the sense that both authors had many 
discussions about the concepts underpinning this study prior even 
to its inception. The is a good chance that the two authors are
3https://archive.icer.acm.org/general-info/paper-awards/

more likely to code events similarly than, say, a non-related third
party, which is a threat to the replication potential of this kind of
study. A more comprehensive rubric is required to crystallise and
expose any hidden shared ideology about the cognition involved
so that anyone could attempt to code the events in the same way
and achieve similar results.

Due to the open call for participation in the experiment, it is
possible that there was discussion or collusion between students
who had completed the study and students who had yet to take
part. It is possible that some of the students shared answers to the
PSVT:R or discussed the problem with other students. We reduced
the risk of this, however, by conducting the sessions chronologically
close together, over just three days. This limited the amount of time
permitted for discussion or sharing of ideas. There was also no
extrinsic motivation to attempt to “cheat” in the study. The students
were advised that they would be rewarded with an Amazon voucher
for the completion of the study and there was no indication that
correctness or completeness was a requirement. In fact, the study
was described in very loose terms in the advertisement, meaning
that students probably were not aware of the structure of the study
enough to know that there was any benefit in preparing or finding
out more about what was being done. Therefore, while possible,
the chances of collusion were low.

One of the reasons to select fourth year students was to ensure
a minimum level of programming language fluency in a shared
language so that the language could be used in one of the exercises.
However, this also introduces a threat to validity: fourth year stu-
dents have a wide range of skills and experiences based on many
factors: their time spent studying, the kinds of elective modules
they have taken, whether they have done a work placement, etc.
All these factors – and more – could contribute to their ability to
strategise and solve the problems presented. This kind of challenge
is inherent in any study where not every confounding factor can
be controlled for. Generally, the events detected fall in line with
predictions based on spatial skills, but we cannot rule out other
possible factors affecting the way the students solved problems.

6.6 Implications
This paper demonstrates that students’ ability to create and mod-
ify complex non-verbal representations as they solve problems is
related to their spatial ability, as predicted by SpES. Furthermore,
these students were final year undergraduates with four years of
CS learning experience, which means that these skills are not just
valuable in the introductory stages. It has implications on how
students solve problems all the way through their programme and
perhaps beyond as they transition to industry.

It also demonstrates that while “good” spatial skills (as measured
on a scale applied to introductory students) might be enough to
get by, students scoring top scores in the PSVT:R outperformed
their peers who were still above the threshold typically used to
declare students as having strong enough skills to succeed in their
programme. Clearly, these students did succeed in their programme,
or at least managed to get to the final semester of their four-year
enrolment, but still had some difficulties in forming good non-
verbal representations. This indicates that perhaps upfront spatial

https://archive.icer.acm.org/general-info/paper-awards/
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skills training would be of benefit to more students than have pre-
viously been involved in research studies, or perhaps that more
advanced spatial skills training periodically conducted through-
out the programme would help students to achieve higher spatial
skills standards, which should help them in their non-verbal rep-
resentation building as their programme content becomes more
computationally challenging.

6.7 Future Work
What this work lacks is a clear, concise and easily transferable defi-
nition of the encoding and orientation skills Margulieux describes
in SpES. We have attempted to highlight perceived instances of
these skills, but a clearer, more concrete rubric of the kinds of strate-
gies and how they manifest would strengthen these findings and
make them more easily and reliably replicable in other contexts.
This would not be a simple undertaking, especially if the goal is a
comprehensive rubric of all possible practices.

As already mentioned, it is not possible to determine from this
study whether students with good non-verbal representation strate-
gies succeeded in the programming exercises because they were
good at constructing transient mental models to solve the problems
on the fly, or if they had constructed better initial representations
of the problem area which they could recall and apply rapidly, or
a combination of the two. Work should be done to examine this
to better understand spatial skills in practice, so that we can de-
termine when spatial skills are of value – in initial learning or in
practice – so that we can better decide when to conduct spatial
interventions: as early as possible to support learning in the earliest
stages, or as skills which can be developed gradually as problem
solving tasks become more challenging throughout a semester, year
or programme.

This study also contributes to the mounting body of work indi-
cating that while students with experience in CS appear to rely on
spatial skills less than students with no experience, particularly in
familiar problem domains, spatial skills are still of value for some
tasks in new problem contexts. As this body of work grows, it raises
questions about the nature of work in the software industry and
whether spatial skills would be valuable for employees in software
development roles. In particular, the “experts” used in this study
were in fact advanced students, rather than professionals in in-
dustry. While an advanced student would be expected to exhibit
some expert-level behaviours, particularly as they are very probably
about to enter the professional workforce, it would also be valuable
to explore the relationship between spatial skills and task perfor-
mance for better-established industry professionals, particularly
ones who are truly considered experts in their field.

7 CONCLUSION
There is still much to understand about the relationship between
spatial skills and computing success, but Margulieux’s SpES goes a
good distance to clarify how the relationship manifests. This work
lends more credibility to Margulieux’s theory, providing a close
look “under the hood” at student cognition through the lens of SpES.
It demonstrates that we can see the strategies being employed in
practice and being demonstrated by final year students, not just
beginners. This has implications for the value of spatial skills at

many levels of CS education and their application in practice: even
for students on the cusp of graduating and starting their careers
across the computing workforce, spatial skills appear to be useful
in solving programming problems.
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A PART 1: PROBLEM SPECIFICATION
Given a finite collection of coins C, and a positive value N, in
what combinations of coins can we pay the value N precisely
using only the coins in C?
Using a different coin of the same denomination counts as a different
solution (e.g., see that there are two [10] solutions in Example 1
because there are two coins of value 10)
Your solution can assume that there exists a list of coins available
and a number which must be paid.
Example 1

C = [ 1 0 , 10 , 2 , 2 , 2 , 2 , 2 , 5 , 5 ]
N = 10
S o l u t i o n : 4 −−> [ 1 0 ] , [ 1 0 ] , [ 2 , 2 , 2 , 2 , 2 ] ,

[ 5 , 5 ]
Example 2

C = [ 5 , 3 , 1 , 3 , 3 , 2 ]
N = 10
S o l u t i o n : 4 −−> [ 5 , 3 , 2 ] , [ 5 , 3 , 2 ] , [ 5 , 3 ,

2 ] , [ 3 , 1 , 3 , 3 ]

B PART 2: POTENTIAL SOLUTION

de f sum ( my l i s t , s t a r t , f i n i s h ) :
t o t a l = 0
f o r i i n range ( s t a r t , f i n i s h ) :

t o t a l += my l i s t [ i ]
r e t u r n t o t a l

d e f min ( my l i s t , s t a r t , f i n i s h ) :
mini = my l i s t [ s t a r t ]
f o r i i n range ( s t a r t , f i n i s h ) :

i f mini > my l i s t [ i ] :
mini = my l i s t [ i ]

r e t u r n mini

d e f s o l u t i o n s ( myso lu t ions , my l i s t ,
number_index , N) :
i f N == 0 :

p r i n t ( myso lu t i on s )
r e t u r n 1

e l i f N < 0 :
r e t u r n 0

e l i f number_index >= l en ( my l i s t ) :
r e t u r n 0

e l i f sum ( my l i s t , number_index , l en (
my l i s t ) ) < N :
r e t u r n 0

e l i f min ( my l i s t , number_index , l en (
my l i s t ) ) > N :
r e t u r n 0

e l s e :
myso lu t i on s . append ( my l i s t [

number_index ] )
n1 = s o l u t i o n s ( myso lu t ions , my l i s t ,

number_index + 1 , N − my l i s t [
number_index ] )

myso lu t i on s . pop ( )
n2 = s o l u t i o n s ( myso lu t ions , my l i s t ,

number_index + 1 , N)
r e t u r n n1 + n2

Questions asked by the interviewer to capture additional
details about the student’s understanding, which were not
visible to the student)

(1) What does the function ultimately return?
(2) How is the number_index variable used?
(3) Can you describe the purpose of each if... elif... clause

more explicitly?
(4) Why are sum and min used?
(5) What does N denote?
(6) Why are we modifying the value of N in this recursive call?
(7) Can you think of any specific improvements which could be

made to the function?

C PART 3: ALTERED PROBLEM
SPECIFICATION

Making changes to either your original solution or the recursive
solution, make the following adjustment to the program:
Given a set of coins C, and a positive value N, in what combi-
nations of coins can we pay the value N precisely using any
number of each of the coins in C?
Assume that the set C now lists available denominations of coins,
but any number of coins can be used to create the required value N.
There should be no duplicate solutions.
Example 1

C = { 1 0 , 2 , 5 }
N = 10
S o l u t i o n : 3 −−> [ 1 0 ] , [ 5 , 5 ] , [ 2 , 2 , 2 , 2 ,

2 ]
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Example 2
C = { 5 , 3 , 2 }
N = 15

S o l u t i o n : 7 −−> [ 5 , 5 , 5 ] , [ 3 , 3 , 3 , 3 , 3 ] ,
[ 5 , 2 , 2 , 2 , 2 , 2 ] , [ 5 , 5 , 3 , 2 ] , [ 3 , 3 ,
3 , 2 , 2 , 2 ] , [ 5 , 3 , 3 , 2 , 2 ] , [ 3 , 2 , 2 ,
2 , 2 , 2 , 2 ]
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