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Streamlined identification of strain 
engineering targets for bioprocess 
improvement using metabolic 
pathway enrichment analysis
Joan Cortada‑Garcia 1, Rónán Daly 2, S. Alison Arnold 3 & Karl Burgess 1*

Metabolomics is a powerful tool for the identification of genetic targets for bioprocess optimisation. 
However, in most cases, only the biosynthetic pathway directed to product formation is analysed, 
limiting the identification of these targets. Some studies have used untargeted metabolomics, 
allowing a more unbiased approach, but data interpretation using multivariate analysis is usually 
not straightforward and requires time and effort. Here we show, for the first time, the application of 
metabolic pathway enrichment analysis using untargeted and targeted metabolomics data to identify 
genetic targets for bioprocess improvement in a more streamlined way. The analysis of an Escherichia 
coli succinate production bioprocess with this methodology revealed three significantly modulated 
pathways during the product formation phase: the pentose phosphate pathway, pantothenate and 
CoA biosynthesis and ascorbate and aldarate metabolism. From these, the two former pathways are 
consistent with previous efforts to improve succinate production in Escherichia coli. Furthermore, to 
the best of our knowledge, ascorbate and aldarate metabolism is a newly identified target that has so 
far never been explored for improving succinate production in this microorganism. This methodology 
therefore represents a powerful tool for the streamlined identification of strain engineering targets 
that can accelerate bioprocess optimisation.

Strain engineering and media optimisation have proven to be a successful tool for bioprocess improvement, 
allowing commercial feasibility of several biotechnological products. Two of the most well-known examples 
are penicillin—going from laboratory production soon after its discovery in  19281 to large-scale production in 
1943 with 100-to-1000-fold increase in product titres (up to 1.8 g  L−1)2—and artemisinic acid—precursor of the 
antimalarial drug artemisinin, for which heterologous expression was demonstrated in Saccharomyces cerevisiae 
up to 100 mg  L−1 and was further improved to 25 g  L−1  titres3,4.

With the advent of “-omics” technologies, system-wide analysis of biological samples is possible, increas-
ing the potential for bioprocess improvement with better guided strain and media optimisation. The uses and 
advantages of each -omics discipline have been reviewed  elsewhere5–7. In this work, the focus is placed on 
metabolomics, the global analysis of the  metabolome8, which provides detailed information on the small mol-
ecules in a biological system, and therefore has the most relevance for small molecule bioprocess improvement. 
Some examples of different ways in which metabolomics has been used to enhance bioprocesses are given below.

Nitta et al. used unsupervised (principal component analysis) and supervised (orthogonal partial least squares 
regression) multivariate analysis on 74 targeted metabolites to find gene targets for the improvement of 1-butanol 
production in Escherichia coli (E. coli)9,10. In the first of the two studies, acetyl-CoA was identified as a bottleneck, 
which was resolved with the overexpression and optimisation of the RBS region of the atoB gene, which converts 
acetyl-CoA into acetoacetyl-CoA, resulting in a significant improve in 1-butanol titres. In the second study, 
glyoxylate was found to accumulate. The knockout of aceA, the first gene in the glyoxylate shunt, resulted in a 
39% increase in 1-butanol titres in the cultivation conditions tested. In a different study, Kawaguchi et al. used 
targeted metabolomics to find intracellular bottlenecks in the co-consumption of glucose and l-arabinose in 
Corynebacterium glutamicum ATCC  3183111. The authors analysed 138 metabolites of central metabolism, with 
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their conclusions based on 29 of these metabolites. Their analysis led to the overexpression of pyk and deletion 
of the araR repressor, achieving the simultaneous consumption of both substrates at the same rate.

Other authors looked at a smaller set of targeted metabolites for strain optimisation. For example, George 
et al. used targeted metabolomics to look at eight compounds of the isoprenoid pathway in E. coli to improve 
the heterologous production of three C5 alcohols with potential use as biofuels, particularly by engineering the 
Shine-Dalgarno sequence of the nudB gene, significantly alleviating the bottleneck of isopentenyl  diphosphate12. 
Barton et al. performed a targeted 13C labelling analysis using LC–MS to look at the intracellular levels of two 
compounds of the 1,4-butanediol (BDO) formation pathway and five up-stream by-products13. This way, the 
authors found the last two steps to be the bottleneck of BDO formation. Subsequent genetic engineering of these 
two steps led to improved BDO formation.

Some studies have also looked at the availability of different target nutrients during the bioprocess in order 
to identify and prevent specific limitations to improve process performance. For example, Korneli et al. looked 
at 22 metabolites—19 of which were amino acids—and identified amino acid limitation during the production 
of GFP in Bacillus megaterium14, and Ho et al. looked at the composition of six fatty acids—and at least 11 other 
intracellular metabolites—produced by the marine microalga Chlamydomonas sp. JSC4 under different condi-
tions of salinity and nitrogen starvation, allowing an increase in lipid accumulation by adjusting the cultivation 
 conditions15.

In the examples mentioned above—and  others16–19—metabolomics was used as a targeted tool to look at 
specific metabolites and pathways, in most cases using unit mass resolution mass spectrometers—such as sin-
gle- and triple-quadrupoles—thus limiting the potential of finding engineering targets for bioprocess improve-
ment to those based on prior knowledge of the biological system. However, untargeted metabolomics offers the 
possibility to find targets for bioprocess optimisation in a wider metabolic context in a more unbiased fashion, 
particularly when used with high-resolution accurate mass (HRAM) mass spectrometry. For example, Xu et al. 
performed an untargeted metabolomics analysis to compare a pho13Δ mutant of S. cerevisiae—with a higher 
capacity to catabolise xylose—with its parental strain. A total of 134 intracellular metabolites were identified, 
and sedoheptulose-7P—a metabolite from the pentose phosphate pathway (PPP) outside carbohydrate metabo-
lism—showed the most significant difference between both strains. Mutants overexpressing the PPP gene TAL1 at 
different degrees were constructed, and their TAL1 expression levels were positively correlated to their respective 
xylose consumption  rates20.

Another study used metabolite profiling to determine which nutrients were limiting in a bioprocess for recom-
binant IgG4 antibody production using Chinese hamster ovary (CHO) cells, a discovery experiment better suited 
to untargeted metabolomics due to the unknown composition of the  medium21, and Xia et al. used untargeted 
and targeted metabolomics to compare the production by Streptomyces tsukubaensis of FK506—a polyketide 
used as immunosuppressant—in a high and low productivity  media22. Multivariate analysis of the metabolomics 
results with partial least squares (PLS) allowed the authors to identify and supplement limiting nutrients in the 
medium, increasing FK506 production. The 13 nutrients most significantly correlated with FK506 biosynthesis 
included coenzyme A (CoA) esters, shikimate, amino acids, pyruvate, lactate and PPP intermediates. Once again, 
these would have been difficult to identify by targeting the product biosynthetic pathway.

As the examples above show, untargeted metabolomics offers the possibility to identify key metabolites for 
bioprocess improvement that are outside the product biosynthetic pathway, which are commonly missed when 
targeted methods are used focusing on prior biological knowledge about the system. However, untargeted metab-
olomics produces very large datasets from which it is challenging to prioritise metabolic reactions and pathways 
for modification. A useful tool for dealing with and obtaining useful information from untargeted metabolomics 
data is pathway enrichment analysis, which analyses groups of compounds that work together to carry out a 
biological process—like a metabolic  pathway23,24, and ranks them in terms of their statistical significance and 
importance. Although pathway enrichment analysis has historically been applied more frequently to genomics, 
transcriptomics and proteomics  data25–27, it has also been applied in the field of metabolomics. However, most 
of these publications are clinical  studies28–32.

There have been some recent studies where metabolic pathway enrichment analysis (MPEA) has been used 
with metabolomics data for bioprocess improvements. For example, Morris et al. compared four different fed-
batch cultivation conditions resulting in differences in monoclonal antibody titres in a CHO  bioprocess33. The 
authors then manually looked in the KEGG  database34 at the pathways of the 10 most significant metabolites, as 
identified by PLS-discriminant analysis (PLS-DA), to find titre inhibitors and promoters that might be modulated 
by changing the bioprocess feeding strategy. With this approach, however, constraining pathway analysis to the 10 
most significant metabolites significantly limits the vast analytical power of metabolomics. In another example, 
Alden et al. used untargeted metabolomics to find metabolites that accumulated in the culture medium of CHO 
fed-batch processes. Using MPEA with a modified Fisher’s exact test, the authors found three pathways that were 
enriched in the cell line with the lowest cell density profile of their study, including aminoacyl-tRNA biosynthe-
sis, tryptophan and histidine metabolism. Further investigation into 11 putatively annotated metabolites that 
accumulated in the culture medium led the researchers to hypothesise that products of tryptophan metabolism 
could behave as inhibitors of cell growth. The authors finished by suggesting targeting the tryptophan pathway 
with genetic engineering, or lowering the concentration of tryptophan in the cultivation  medium35. These exam-
ples show how MPEA can be used for bioprocess improvement, however, this is still a line of research that is 
underexplored, particularly for the identification and prioritising of genetic targets for bioprocess optimisation.

MPEA can be performed in different ways, similar to the examples described above for targeted and untar-
geted metabolomics. Mainly, the analysis can focus on comparing a case and a control group, such as high- and 
low-productivity conditions or  strains9,10,15,20,22, or focus on the dynamic changes of different metabolites through-
out the course of the  fermentation11,12,14,21. Although not mutually exclusive, the first type of analysis can be more 
tailored to identifying media deficiencies, performance biomarkers and genetic differences between differently 
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performing strains, whereas the second type can be used to improve an established working fermentation process 
further by, for example, identifying the accumulation of by-products, the presence of inhibitors, the (in)activation 
of specific metabolic pathways or the depletion of substrates.

In this study, a commercial E. coli succinate production process was analysed with a combined targeted and 
untargeted metabolomics method using HRAM mass spectrometry, and the results were used to perform MPEA 
throughout the time course of the fermentation to identify potential targets for bioprocess optimisation in an 
unbiased fashion.

Results
Escherichia coli succinate fermentation process. Three E. coli dual-phase succinate fermentation rep-
licates were performed and samples were taken throughout the course of the fermentation for metabolomics 
analysis with LC–MS. Furthermore, the extracellular concentration of glucose and the main fermentative prod-
ucts was also determined by HPLC–UV/Vis-RI analysis (Fig.  1). The fermentation process is split into two 
distinctive parts. The first phase is an aerobic batch process, where all the glucose from the medium is consumed 
for biomass growth, with little production of fermentative products. Under aerobic conditions with glucose 
excess, acetate is formed in E. coli due to overflow metabolism, and part of this acetate is excreted out of the cell 
to prevent osmotic stress due to the accumulation of negative charges in the cytoplasm. After glucose depletion, 
this acetate can be reimported inside the cell and be consumed as a source of carbon and  energy36–38. A small 
amount of lactate, malate, pyruvate and succinate was measured in one of the three replicates in the middle of 
the biomass exponential growth phase, potentially due to a temporary limited supply of oxygen. However, the 
concentration of these organic acids went back down before the end of the biomass growth phase. The second 
phase of the bioprocess is an anaerobic production phase (biotransformation), where additional glucose is added 
to the medium and this is converted into succinate and other fermentative products, being pyruvate the main by-
product. The E. coli strain used in this process cannot sustain cell growth on glucose under anaerobic conditions, 
which can be appreciated by the plateau and slight decrease in the biomass wet cell weight (WCW) measure-
ments during the anaerobic phase of the process.

LC–MS analysis of fermentation samples. The three fermentation experiments were analysed by LC–
MS to try to identify targets for improving succinate production. A total of 13 samples from each replicate fer-
mentation were analysed using both intracellular and extracellular fractions of the samples (see Supplementary 
file “Metabolomics data.xlsx”). The Principal Component Analysis (PCA) plot of the samples for both intra- and 
extracellular analysis shows good clustering of the different time points of the three fermentation replicates, 

Figure 1.  Profile of the E. coli succinate fermentation process showing the main parameters measured by 
HPLC–UV/Vis-RI. Time is indicated with respect to the beginning of the succinate production phase. Error 
bars represent the standard error of the mean of the three replicates (n = 3).
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demonstrating reproducible data (Fig. S1 in the Supplementary materials), despite the lower succinate produc-
tion for one of the three fermentation runs. The combined untargeted and targeted analysis resulted in a total of 
6341 annotated and 92 identified metabolites (Table S1 in the Supplementary materials and see also the Supple-
mentary file “Metabolomics data.xlsx”). Metabolite identification was performed by matching the retention time 
and accurate mass to reference standards following the Metabolomics Standards Initiative (MSI) classification 
 system39.

Metabolic pathway enrichment analysis. The metabolomics results were used to perform pathway 
enrichment analysis in order to find potential genetic targets for bioprocess optimisation without bias from 
preconceived process-specific biological knowledge. MPEA was performed using the Pathway Activity Level 
Scoring (PALS) application in the Polyomics integrated Metabolomics Pipeline (PiMP) online  platform40 (date 
of use: 08 Jul 2020). PALS ranks significantly changing metabolite groups over different sample sets using the 
pathway level analysis of gene expression for metabolomics (mPLAGE) algorithm, which converts m/z features 
into formulae and matches them to  pathways41 and the KEGG  library34 (see Supplementary file “Pathway enrich-
ment analysis data.xlsx”). The output of the mPLAGE algorithm is a p-value that has taken into account the mul-
tiple comparisons over all the pathways in the KEGG library. The different time points of the fermentation data 
were grouped by triplicate measurements and used for pathway enrichment analysis. For every triplicate time 
point of the fermentation, the algorithm evaluates pathways that are significantly different when compared to the 
first triplicate time point. This way, every metabolic pathway assessed is assigned a significance level (p-value) 
for every fermentation sample (except for the first time point). Each p-value indicates the probability that there 
is no difference between the time points for the metabolites on the pathway. The first sample analysed is a time 
point at the early stages of the aerobic phase of the fermentation (right after inoculation for extracellular samples 
and 3 h after inoculation for intracellular samples. See the “Methods” section for more details). By doing a time-
course comparison to an early time point in the fermentation where the cells had abundant access to glucose and 
oxygen, it is possible to identify changes in metabolic regulation at the different stages of the fermentation (e.g. 
end of biomass growth, beginning or end of succinate production phase, etc.). This information can be used to 
put the results in the context of the experiment and aid in the identification of engineering targets.

To find genetic targets for improved succinate production, the mean p-value of each pathway (as compared to 
the first time point) was calculated across all time points in the succinate production phase. This mean p-value 
was used as ranking criteria (rather than focusing on extremely small p-values at individual time points) in order 
to find pathways with consistent statistical significance throughout the production phase and avoid the impact of 
potential outliers. Intracellular and extracellular metabolite fractions were analysed separately. The ten pathways 
with the highest level of significance (lowest mean p-value) resulting from analysing intracellular metabolites are 
represented as a heatmap in Fig. 2. These include several pathways from amino acid, carbohydrate, nucleotide 
and vitamin metabolism.

More significant changes were observed in the extracellular fraction samples (Fig. S2 in the Supplementary 
materials). This is caused by a significant increase in the number of metabolites found in the extracellular fraction 
as the fermentation progresses—potentially due to cell lysis, particularly under oxygen limitation or absence, 
because the E. coli strain used cannot sustain biomass growth on glucose anaerobically. The large number of 
significant pathways makes the selection of specific ones with significant changes in metabolic levels based on 
the extracellular fraction more challenging. For this reason, the selection of potential genetic targets was done 
purely based on the MPEA performed with the intracellular metabolites.

Selection of potential genetic targets. Pathways showing high metabolic changes during the succinate 
production phase could be potential targets for metabolic reshuffling. Either due to the removal of by-products 
or the elimination of metabolic bottlenecks, the modulation of these pathways could potentially lead to higher 
titres or yields. From the 10 pathways in Fig. 2, three pathways were identified to have particularly low p-values 
during the succinate production phase: the pentose phosphate pathway, ascorbate and aldarate metabolism and 
pantothenate and CoA biosynthesis (marked with red boxes in Fig. 2). The criteria to select these three par-
ticularly was that they all had at least three time points in the succinate production phase with a p-value ≤ 0.01.

The metabolomics results for these pathways are shown in Fig. 3. Several metabolites from the PPP show 
a sudden increase in intracellular levels at the beginning of the succinate production phase and in many cases 
the levels remain high, with the exception of sedoheptulose-7P. The sudden increase at the beginning of the 
production phase is also observed for the precursors of pantothenate. However, pantothenate itself shows a 
decrease in intracellular intensity at the transition from the aerobic growth phase to the anaerobic production 
phase. Similarly, CoA levels drop significantly between 2 and 18 h of succinate production, indicating that CoA 
availability can be a potential bottleneck for succinate production, as suggested by Lin et al.42. Finally, 5-dehydro-
4-deoxy-d-glucarate and 2-oxoglutarate—both involved in ascorbate and aldarate metabolism—show a sudden 
increase in intracellular levels at the beginning of the production phase, followed by a sudden decrease. However, 
l-gulono-1,4-lactone shows a progressive increase in intracellular intensity throughout the succinate production 
phase, indicating intracellular accumulation. Trying to minimise this accumulation can, therefore, be another 
potential genetic target to improve succinate production.

PLS‑DA for identifying targets of succinate improvement. Other authors have used PLS regres-
sion to identify targets for bioprocess  engineering9,22. Therefore, PLS-DA was chosen as a benchmark analytical 
method to compare to the findings of the metabolic pathway enrichment analysis. For this, the three fermenta-
tion replicates described in this work were split into two groups, the first group containing the two experiments 
with higher succinate titres and the second group containing the experiment with a lower titre (10.05 ± 0.64 SD 
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and 4.23 g/L final succinate concentration, respectively). Then, the samples from the succinate production phase 
of the bioprocess were analysed by PLS-DA to identify which metabolites contribute the most to the differences 
in succinate titre (Fig. 4). The samples from the aerobic growth phase were not included in the analysis to avoid 
discrimination based on the large metabolic differences between the aerobic biomass growth phase and the 
anaerobic succinate production phase. Succinate was also removed from the data set before performing PLS-
DA in order to prevent biasing group discrimination. Good separation of the two sample groups was observed 
(Fig. 4, top), and the four first latent variables were selected to build the model, based on maximising the cross-
validated coefficient of determination  (Q2 = 0.7123,  R2 0.9738, Fig. 4, bottom).

From a total of 3989 mass spectrometry signals analysed in PLS-DA, 495 were found significant with a vari-
able importance in projection (VIP) score >  143 in the first latent variable (Supplementary file PLSDA summary.
xlsx). The VIP score is a common measure in PLS-DA of the relative importance of each metabolite with respect 
to the total variation of the latent variable. From these significant signals, 270 had unknown annotations and 
many of the 225 remaining had multiple possible metabolic annotations. Those metabolites with the highest level 
of annotation confidence and a VIP score above 1 in the four first latent variables were investigated. Metabo-
lites with a high level of annotation confidence were defined as either having retention time and accurate mass 
matched to a reference standard, or accurate mass and fragmentation pattern matched to metabolomics library 
data. The 38 metabolites that met the criteria above are gathered in Table S2 (see Supplementary file PLSDA 
summary.xlsx), and most of them belong to amino acid metabolism (18 out of the 38 metabolites) and nucleotide 
metabolism (10 out of 38), which is a much more reduced breadth of metabolic pathways than the findings from 
Fig. 2. Nevertheless, coinciding with the results from MPEA, three metabolites involved in pantothenate and 
CoA biosynthesis were found important for discrimination of a successful E. coli succinate fermentation run 
according to the PLS-DA model, namely d-pantothenic acid, l-alanine and l-valine (Fig. 5), strengthening the 
hypothesis that this pathway could be a potential target of interest for bioprocess optimisation. While l-alanine 
and l-valine show clearer differences between both sample groups (higher levels for the higher succinate titre 
group), the levels of d-pantothenic acid are more similar in both groups, which is also reflected in the latter hav-
ing a lower VIP score in the first two latent variables (see Supplementary file PLSDA summary.xlsx). However, it 
is worth mentioning that PLS-DA looks at individual metabolites and does not reveal any biological information 
of the relationship between them, whereas enrichment analysis groups features (metabolites in this case) under 
common biological themes, making it more robust to reveal real biological differences between sample  groups44. 
That is, for analysing the PLS-DA results, the three abovementioned metabolites were manually linked to the 
same metabolic pathway assisted by the findings from MPEA from Fig. 3. In other words, MPEA makes it easier 
to put metabolomics results in a biological context.

Figure 2.  Top 10 pathways with the lowest mean p-value in the succinate production phase based on MPEA 
using the mPLAGE algorithm for intracellular metabolites found with a combined targeted and untargeted 
metabolomics method. Pathway names are shown on the y-axis (in increasing average p-value in the production 
phase going down) and time points of the fermentation process on the x-axis. The values of the cells are the 
p-values (n = 3) comparing each time point to the first time point of the fermentation analysed (3 h after the 
beginning of the aerobic batch phase). The resulting colour corresponds to the level of significance: green 
(p-values ≤ 0.05) and beige (p-values > 0.05). The vertical black dashed line indicates the transition from the 
aerobic growth phase to the anaerobic succinate production phase. The horizontal red dashed lines indicate the 
three pathways highlighted as potential targets for strain engineering.
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Discussion
Metabolomics is an expanding field that has been previously applied to identify potential targets for genetic engi-
neering to improve  bioprocesses9–13,20. However, in most cases, this is still performed with targeted metabolomics 
using unit mass resolution single- or triple-quadrupole instruments looking at pre-selected intermediates from 
the biosynthetic pathway of the product of interest, thus limiting the vast detection capacity of mass spectrometry. 
Some examples are available using untargeted  metabolomics20–22, however, these tend to identify potential genetic 
targets using multivariate statistical tools—often PCA or PLS—applied directly to the metabolomics data without 
using information from metabolic pathways. As this study shows, without the context of biological pathways it 
can be very hard to interpret and extract useful information from untargeted metabolomics data using multivari-
ate statistical analysis. This was demonstrated by developing a PLS-DA model to discriminate between higher and 
lower succinate titre runs in an E. coli bioprocess, based on targeted and untargeted intracellular metabolomics 
data. Overall, although the PLS-DA model was able to achieve good separation of the two sample groups, the 
large number of significant signals and the high level of uncertainty in metabolite annotation makes it difficult 
to identify genetic targets for succinate production improvement. Focusing on those metabolites with a higher 
confidence in annotation it was possible to identify metabolites from amino acid, nucleotide and pantothenate 

Figure 3.  Dynamic evolution of intracellular metabolites of the three pathways identified as potential targets for 
genetic engineering: the pentose phosphate pathway (purple), pantothenate and CoA biosynthesis (green) and 
ascorbate and aldarate metabolism (grey). A simplified version of the pathways is shown for ease of reference. 
The results show both phases of the bioprocess: the aerobic bacterial growth phase (blue) and the succinate 
production phase (red). Orange error bars represent the standard error of the mean (n = 3).



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:12990  | https://doi.org/10.1038/s41598-023-39661-x

www.nature.com/scientificreports/

and CoA metabolism as being important for group discrimination. However, this is a time- and effort-intensive 
exercise that left behind 448 of the 495 (90.51%) significant features according to the PLS-DA model.

Conversely, the use of MPEA allows to exploit metabolomics data further. By considering correlated changes 
in different compounds of specific pathways, certain enrichment analysis tools such as PALS can be used to ana-
lyse targeted and untargeted metabolomics to identify significantly modulated pathways during the bioprocess 
in a more streamlined way. Importantly, as MPEA highlights sets of metabolites that are consistently regulated, 
it is more robust to individually misannotated metabolites than techniques that look at individual metabolites 
without considering any biological context (such as PLS-DA). Furthermore, the PALS tool used in this work 
uses formulae rather than identifications to safeguard even more against the impact of potential misannotations.

The E. coli succinate production bioprocess was analysed with MPEA and the results pointed at three different 
pathways with significantly different levels of metabolites during the bioprocess: the pentose phosphate pathway, 
pantothenate and CoA biosynthesis and ascorbate and aldarate metabolism.

Interestingly, the PPP has previously been reported to play an important role during succinate production 
in E. coli. For example, Lu et al.45 calculated the carbon flux down the PPP during succinate production using 
LC–MS and HPLC measurements and using a stoichiometric model in an E. coli AFP111 dual phase bioprocess 
using 13C-labelled glucose as a carbon source. Using a higher percentage of  CO2 during the succinate production 
phase increased both succinate production and the percentage of carbon flux channelled towards the PPP. In 
another study, Zhu et al. found that increased activity of the enzyme transketolase in the PPP led to an increase 
in succinate titre and yield in E. coli ATCC 8739 derived strains. The succinate titre and yield improved even 
further increasing the activity of the enzyme transhydrogenase, which can convert NADPH generated from the 
PPP into NADH—which can then be used for succinate  production46. The same research group performed a 

Figure 4.  (A) Scores plot between the latent variables (components) 1 and 2 for the PLS-DA of the three 
fermentation replicates analysed, which were split into two experiments with a high succinate titre (n = 12) and 
one with low succinate titre (n = 6). The explained variances of each latent variable are shown in brackets. (B) 
PLS-DA classification using different number of latent variables (components). The red star indicates the best 
classifier based on maximising  Q2.
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further study where the authors generated a library of PPP genes under the regulation of a constitutive M1-93 
promoter and different ribosome binding sites to generate different E. coli ATCC 8739 derived variants with 
different expression levels of the PPP genes. Their results indicate that increasing the expression levels of PPP 
genes can lead to higher succinate yields and titres, but that a fine tuning of the expression levels gives the best 
 results47. These examples are in agreement with the identification, in this work, of the PPP as a potential target 
for succinate improvement using MPEA, validating this methodology for the identification of pathways for 
bioprocess improvement.

There is less prior literature about manipulating the pantothenate and CoA biosynthetic pathways to increase 
succinate production. However, Lin et al. showed increased succinate production in E. coli GJT001 derived strains 
by overexpressing the enzyme pantothenate kinase, which catalyses the first step in the conversion of pantothen-
ate to  CoA42. Succinate production was increased even further with the co-overexpression of either phospho-
enolpyruvate carboxylase or pyruvate carboxylase, which catalyse the conversion of phosphoenolpyruvate and 
pyruvate into oxaloacetate. The authors attributed the increase in succinate production to a higher intracellular 
availability of acetyl-CoA and CoA. In all experiments, the fermentation medium was supplemented with 5 mM 
pantothenate, therefore, genetic engineering to increase the levels of intracellular pantothenate would also be 
required on top of the changes indicated by the authors to increase succinate production. This study suggests 
that genetic manipulation of the pantothenate and CoA pathway can, indeed, lead to an increase in succinate 
production.

Finally, as far as ascorbate and aldarate metabolism is concerned, no examples were found in the literature 
showing the manipulation of this pathway in E. coli for increased succinate production. Therefore, this study 
might be the first to identify this pathway as a potential target for genetic engineering to achieve improved suc-
cinate production in E. coli.

This work is the first example of the application of MPEA using both targeted and untargeted metabolomics 
to identify potential strain engineering targets for bioprocess improvement. The examples above show that the 
targets identified with this methodology are relevant and coincide with previous successful attempts to improve 

Figure 5.  Three metabolites involved in pantothenate and CoA biosynthesis found important for 
discrimination of a successful E. coli succinate fermentation run according to the PLS-DA model (VIP score > 1 
in at least one of the four latent variables) and with a high level of annotation confidence. The boxplots show 
the peak intensity of the three metabolites in the two sample groups: high (red) and low (green) succinate 
titre (n = 12 and 6, respectively). The peak intensity values are shown as black dots, the black horizontal line 
represents the population median and the yellow diamond represents the population mean. For each metabolite, 
the subplot on the left shows the results with the original peak intensity data, and the subplot on the right the 
results after  log10 transformation and normalisation of the data.
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succinate production in E. coli. The three pathways identified in this work are outside the succinate biosynthetic 
pathway, showing how untargeted metabolomics can identify important pathways for product formation, even if 
these are initially not known to have an impact on the bioprocess. Untargeted metabolomics has the potential to 
accelerate bioprocess optimisation, and pathway enrichment analysis is a useful tool to help analyse and interpret 
the results obtained with this technology putting them in a biological context.

Looking forward, it is important to mention that, although MPEA is a powerful tool for the identification 
of significantly regulated pathways, it does not indicate how these need to be modified to achieve the desired 
strain phenotype. Indeed, biological regulation is complex, with many factors affecting metabolic and protein 
levels. Therefore, predicting and modulating phenotypes is still difficult even when knowing which metabolic 
pathways are highly regulated in a bioprocess. Nevertheless, MPEA can be a powerful tool to streamline and 
speed up the Design-Build-Test-Learn cycle of strain engineering, i.e. the identification of engineering targets.

Methods
Bacterial strain. All experiments described in this article were carried out using a proprietary industrial E. 
coli strain (Ingenza Ltd., UK) previously  described48, based on the E. coli NZN111 strain with deletions of the 
pyruvate-formate lyase (pflB) and lactate dehydrogenase (ldhA)  genes49.

Growth media. All 5 L scale fermentation experiments were carried out with a batch phase for biomass 
formation using a defined minimal medium containing 11.90 g/L glucose as the sole carbon source, 2.00 mM 
 MgSO4, a mix of salts solution (2.00  g/L  (NH4)2SO4, 14.60  g/L  K2HPO4, 3.60  g/L  NaH2PO4·2H2O, 0.50  g/L 
 (NH4)2H-citrate), a mix of trace elements (1.0 mg/L  CaCl2·2H2O, 20.06 mg/L  FeCl3, 0.36 mg/L  ZnSO4·7H2O, 
0.32 mg/L  CuSO4·5H2O, 0.30 mg/L  MnSO4·H2O, 0.36 mg/L  CoCl2·6H2O, 44.60 mg/L  Na2EDTA·2H2O), antibi-
otics (100 mg/L kanamycin, 34 mg/L chloramphenicol) and antifoam (33.33 µL/L polypropylene glycol P-2000). 
Shake flask overnight cultures were prepared using the same medium but with 10.00 g/L glucose and no anti-
foam.

Fermentation process conditions. All fermentation experiments were carried out in a 5  L Applikon 
stirred tank fermenter (ADI 1030 Bio Controller, 1035 Bio Console), and the process consisted of an initial 
aerobic batch phase where the minimal medium was primarily used for biomass formation, followed by a 24 h 
anaerobic succinate production phase as previously  described48.

Inoculum. Fermentation inocula were prepared by inoculating 50  µL of cell bank into 100  mL of growth 
medium in a 500 mL baffled shake flask and incubated at 37 °C and 165 rpm for 17–17.5 h.

Aerobic batch phase for biomass growth. The fermentation was started by inoculating 100 mL of overnight cul-
ture into 3 L of growth medium in the 5 L fermenter for a starting  OD600 of 0.21 ± 0.025. During biomass growth 
the conditions were maintained at 37 °C temperature, 500–900 rpm agitation (controlled to keep the dissolved 
oxygen (DO) > 30%), 4.00 L/min air (1.33 vvm) and pH 7.0 ± 0.1, controlled with 2.00 M  H2SO4 and 28% w/v 
 NH4OH.

Anaerobic succinate production phase. At the beginning of the production phase, glucose from a 500 g/L solu-
tion and sodium bicarbonate from a 100 g/L solution were added to the fermenter as a single bolus addition to a 
final concentration of 20 g/L and 5 g/L respectively in the vessel, as previously  described50. The sodium bicarbo-
nate provides soluble  CO2, which is required for the conversion of PEP to  oxaloacetate51. Once the glucose and 
sodium bicarbonate were added to the fermenter, the sparged air was replaced by pure (99.8%)  CO2 at 0.50 L/
min (0.17 vvm), agitation was set to 300 rpm, temperature at 37 °C and pH at 7.0 ± 0.1 controlled with 2.00 M 
 H2SO4 and 28% w/v  NH4OH.

Biomass measurement. Biomass levels were reported as  OD600 and wet cell weight (WCW). The former 
was the measured optical density at 600 nm wavelength. The latter was determined by spinning down 1 mL of 
sample for 5 min at 14,462 g twice in a pre-weighed Eppendorf tube, removing the supernatant and weighing the 
resulting pellet. The weight of the pellet in g/L was calculated from gravimetric difference.

Metabolites extraction for LC–MS analysis. Samples for off-line liquid chromatography-mass spec-
trometry (LC–MS) analysis were removed from the bioreactor and collected into dry-ice-cold universal vials, 
placed briefly on an ethanol dry ice bath for a fast cold sample quenching and immediately spun down twice 
at 4 °C and 13,000 g for 10 min. The supernatant and cell pellet were collected as extracellular and intracellular 
fractions respectively and stored at − 80 °C until further extraction for LC–MS analysis.

Extracellular fractions. Extracellular fraction extractions were prepared by diluting 10 µL of sample into 400 µL 
of 1:3:1 chloroform:methanol:water (C:M:W). The samples were then mixed vigorously in a chilled microtube 
mixer for 5 min and then centrifuged for 3 min at 13,000g and 4 °C. At this point, 360 µL of supernatant were 
transferred into a new microtube and stored at − 80  °C until LC–MS analysis. 25 µL of supernatant of each 
extracted sample were combined into one single vial to generate a pooled sample. During handling, the 1:3:1 
C:M:W extraction solvent and the samples were kept on an ethanol dry ice bath.
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Intracellular fractions. Prior to extraction, intracellular fractions were washed by resuspending the cell pellets 
in 1 mL of sterile phosphate buffer solution. The phosphate buffer was removed by spinning down the samples 
twice for 10 min at 13,000 g and 4 °C. For metabolite extraction, 200 µL of 1:3:1 C:M:W were added for every 
5 mg of WCW pellet, thus normalising all samples by their biomass concentration. Cell pellets were resuspended 
by pipetting, and then the samples were mixed vigorously in a chilled microtube mixer for 1 h, before being 
centrifuged for 3 min at 13,000g and 4  °C. At this point, 200 µL of supernatant were transferred into a new 
microtube. The samples were further diluted by adding 200 µL 1:3:1 C:M:W and stored at − 80 °C until LC–MS 
analysis. 25 µL of supernatant of each extracted sample were combined into one single vial to generate a pooled 
sample. During handling, the 1:3:1 C:M:W extraction solvent and the samples were kept on an ethanol dry ice 
bath. The first two fermentation samples had a very small biomass pellet, which made the extraction process 
impractical, particularly the resuspension of the pellet in the amount of extraction solvent required for sample 
normalisation. For this reason, these first two time points from the intracellular fraction were not included in 
the analysis.

LC–MS method. Metabolite separation was performed using a zwitterionic hydrophilic interaction liquid 
chromatography  (ZIC®-pHILIC) column (Merck  SeQuant®) (150 mm × 4.6 mm, 5 µm particle size) equipped 
with the corresponding guard column (20 mm × 2.1 mm, 5 µm particle size) (Merck  SeQuant®). A linear gradient 
was applied to the column, running from 80 to 20% solvent B over 15 min, followed by a 2 min wash with 5% 
solvent B, and 9 min re-equilibration with 80% solvent B, where solvent B was acetonitrile and solvent A (the 
remaining percentage) was 20 mM ammonium carbonate in water. The total flow rate was 300 µL/min, column 
temperature was maintained at 25 °C, sample injection volume was 10 µL, samples were maintained at 4 °C for 
the duration of the analysis and a HESI probe was used on the ion source.

Metabolite detection was done in a high-resolution Thermo Scientific™ Q Exactive™ Orbitrap mass spectrom-
eter at 70,000 resolution, mass range 70–1050 m/z in polarity switching mode with a spray voltage of ± 3.8 kV. 
Capillary temperature was set to 320 °C, sheath gas 40 a.u., AGC target 1 ×  106 a.u. and the lock masses in positive 
and negative mode were 144.9822 m/z and 100.9856 m/z, respectively.

Fragmentation was performed on pooled samples by isolating ions in a 1.2 m/z window and fragmentation 
with stepped HCD collision energy of 24.8, 60.0 and 94.8% for both polarities with 17,500 resolution and AGC 
target 1 ×  105 a.u. Top 10 ions (intensity threshold 1.3 ×  105) were selected for fragmentation and then added to 
a dynamic exclusion window for 15 s.

Metabolomics data processing and analysis. Raw mass spectrometry files were converted into 
.mzXML files in profile mode with the open-source software  ProteoWizard52 (Version 3.0). Further data pro-
cessing and analysis was performed using the PiMP online  platform40 (date of use: 08 Jul 2020). Peak detection 
and filtering were set to 3 ppm of the theoretical monoisotopic mass, minimum intensity to 5000, noise to 0.8, 
retention window to 0.05 and minimum number of detections to 3. Peak retention time was corrected using the 
Obiwarp  algorithm53 from the xcms package (Version 1.48.0).

Metabolite annotation and identification. Metabolite annotation was performed using a local copy of the 
KEGG  database34 (Metabolomics Standards Initiative (MSI) class 2/3  annotation39), the fragmentation library 
(MSI class 2 annotation) and by matching the retention time and accurate mass to reference standards, which 
are listed in the Supplementary file Std_list_Metabolites.xlsx.

HPLC–UV/Vis‑RI analysis. HPLC coupled to UV/Vis and refractive index detectors (HPLC–UV/Vis-
RI) analysis was carried out using a Rezex™ ROA Organic Acid H + ion-exclusion column  (Phenomenex®) (300 
mm × 7.8 mm) equipped with a Carbo-H4 guard column (SecurityGuard™) (3.0 mm i.d.). An isocratic method 
was applied to the column, running a 5 mM  H2SO4 mobile phase solution for 30 min. The total flow rate was 
800 µL/min, column temperature was maintained at 65 °C, sample injection volume was 10 µL and samples were 
maintained at 4 °C for the duration of the analysis. The HPLC–UV/Vis-RI data was extracted as a .csv file and 
was further analysed using the ggplot2  package54 (Version 3.3.3) in the statistical software environment R (Ver-
sion 3.6.1). Metabolite levels below the limit of quantification were replaced by 1/5 of the minimum metabolite 
concentration quantified.

Metabolic pathway enrichment analysis. MPEA was performed using the PALS application in PiMP 
(date of use: 08 Jul 2020) using the mPLAGE algorithm and a local copy of the KEGG  database34. Pathways with 
p-values of 0.05 or below were considered statistically significant across experimental groups compared. The 
experimental groups compared were the different time points, and each pairwise comparison was done com-
paring any given time point with the first sample of the fermentation. In order to reduce the dimensionality of 
the analysis, for each pathway, the p-values of all the samples in the succinate production phase were averaged 
together and this mean p-value was used to find the 10 “most significant” pathways (lowest mean p-value). These 
10 “most significant” selected pathways were displayed as a heatmap showing the p-value of each pathway for 
each sample. Heatmaps were created using the gplots  package55 (Version 3.1.3) in the statistical software envi-
ronment R (Version 4.0.4). MPEA for intracellular and extracellular samples was performed separately.

PLS‑DA. PLS-DA was performed in MetaboAnalyst (date of use: 08 Sep 2022) with R (Version 4.1.3). Con-
stant features across all samples were deleted and missing values were replaced by 1/5 of the minimum positive 
values of their corresponding variables. Variables with near-constant values throughout the experiment con-
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ditions were filtered using the interquartile range, and the data was  log10 transformed and normalised by the 
median to adjust for systematic differences among samples (Figs. S3 and S4 in the Supplementary materials). 
The number of latent variables for the PLS-DA model was chosen by maximising  Q2 using tenfold cross valida-
tion. Those features with a VIP score above 1 in the first latent variable were considered as significant for group 
discrimination when analysing the results.

Data availability
The data that support the findings of this study are available in the Supplementary materials and in MetaboLights 
at http:// www. ebi. ac. uk/ metab oligh ts/ MTBLS 6667, reference number MTBLS6667.
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