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A Holistic Safe Planner for Automated Driving
Considering Interaction with Human Drivers

Harikirshnan Vijayakumar1, Dezong Zhao1, Jianglin Lan1, Wenjing Zhao2, Daxin Tian3,
Dachuan Li4, Quan Zhou5 and Kang Song6

Abstract—This paper advances state-of-the-art automated
driving systems with a comprehensive framework that encom-
passes decision making, maneuver planning, and trajectory
tracking considering safety, computational efficiency, and pas-
senger comfort. In face of the co-existence of automated vehicles
(AVs) and human-driven vehicles (HDVs), a decision making
framework of AVs is proposed for safe lane keeping or changing.
The decision making is based on the HDVs’ future motion
predicted by a learning-based Long Short-Term Memory model.
To quantify the uncertainties in prediction, an error ellipse is
used to capture the model deviations from the ground truth to
ensure driving safety. This paper develops a novel method that
leverages lower-order parametric curves to efficiently generate
feasible, safe, and comfortable lateral movements for AVs. The
planner is complemented by maneuver replanning that can
guide the AV back to the original lane when confronted with
unexpected blockages from surrounding vehicles. Based on real-
world datasets, simulation results show that the proposed method
achieves curvature compatibility, shorter trajectory length in
lateral maneuvers, accurate trajectory tracking, and effective
collision avoidance in lane changing.

Index Terms—Automated vehicles, decision making, maneuver
planner and replanner, motion prediction, uncertainties.

I. INTRODUCTION

STATISTICAL results showed that human errors are one
of the major causes of road traffic accidents. A survey

reported that around 57% of crashes in lane change scenarios
were due to drivers’ distractions while driving [1]. Automated
vehicles (AVs) are promising solutions to reduce these ac-
cidents as their behaviors are rational. In addition, AVs can
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effectively reduce congestion, enhance passenger comfort and
improve energy efficiency [2] [3]. One of the major challenges
in automated driving is to generate a smooth, feasible, and
safe trajectory. Meanwhile, this generated trajectory must
consider road and vehicle constraints, and traffic rules. This
work focuses on AVs’ forced lane change (LC) in dynamic
environments because LC happens when overtaking slow-
moving traffic, avoiding obstacles, or the current lane ends.

The first step in AVs’ forced LC is to generate a feasible
trajectory, for which a few methods have been reported [4].
This work considers the Geometric trajectory planning method
because it eases real-time implementation. Geometric forms
of trajectory planning include clothoid [5], basic splines [6],
polynomial curves [7] [8], and Bézier [9] [10]. Clothoid curves
are generated using forward integration, so the computational
burden is increased. The trajectory complexity of spline curves
is higher than other geometrical methods [11]. The use of the
quintic polynomial curve saw great success due to its smooth
curvature and efficiency [12] [7]. The primary concern for
generating higher-order polynomial curves is their require-
ments for many input parameters [8], while the lower-order
polynomial compromises the curvature continuity.

This work uses the parametric Bézier method because of its
advantages in complexity reduction, computational efficiency,
and continuity [11] [13]. The efficiency of the lower-order
Bézier curve is evident in [14] [10] [15]. Both piecewise
Bézier [14] [10] and single Bézier curves [15] have been
used in their works to generate trajectories for various driving
environments. However, these works often fail to acknowledge
the curvature continuity of the generated curves. Moreover, the
method in [10] uses an optimization method to generate the
curves, posing a challenge for real-time implementation. The
fifth or higher-order Bézier curves can generate continuous
curvature paths. For example, the fifth-order Bézier curve
is used in [16] [17] for LC and obstacle avoidance. The
main drawback of [16] [17] is the computational expense in
iteratively generating multiple curves to find a collision-free
path. An efficient trajectory generation method proposed in
[18] uses a piecewise quartic Bézier curve for path smoothing,
lane changing, and lane replanning. The curve maintains
curvature continuity in the planned trajectory but relies on
an offline database containing all potential turning angles
and curve lengths, which is a drawback. This work uses a
cubic piecewise Bézier curve for trajectory planning because
a lower-order Bézier curve can reduce control points, thus
lowering the computational burden [19]. Earlier applications of
the cubic piecewise Bézier curve saw great success in path-
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smoothing applications, where two cubic curves are joined
when there is an angle change in the traveling path [20] [21].
During LC maneuver the traveling path undergoes two angle
changes, requiring four curves to generate the LC path. The
LC curve used in this work can reduce the curve numbers to
two, thereby reduces complexity while maintaining continuity.

Predicting the HDV future trajectory can be divided into
physics-based, maneuver-based, and interaction-based mod-
els [22]. Physics-based models predict the future trajectory
based on dynamic or kinematic models governed by the laws
of physics. The kinematic models are simple and easy to
implement, while the dynamic model captures the vehicle
interaction more precisely with the expense of computational
power. Assumptions like constant acceleration, constant ve-
locity, or constant turn rate and velocity are commonly used
in kinematic models [23]. Kalman filtering-based method [24]
is a typical physics-based model that considers uncertainties
or measurement noises in prediction. However, physics-based
models are only suitable for short-term prediction of around
1 s [22]. The maneuver-based models predict the trajectory
based on the assumption that the vehicle’s future states are
independent of the surrounding vehicles and can be catego-
rized into trajectory matching and intention prediction methods
[22]. The trajectory matching method often employs a cluster-
based or probabilistic method trained on an offline dataset for
trajectory prediction. Here, the future trajectory is learned by a
model conditioned on either the identified cluster they belong
to or the trajectory history. For example, a k-means clustering
method is used in [25] to categorize the trajectories of the
same nature, and a Gaussian model is trained on each cluster
to predict the future trajectory. For the intention prediction
method, the vehicle’s intentions are initially identified using
learning models [26], heuristics, or probabilistic models [27].
The future trajectory is then generated using the geometrical
trajectory generation method based on the identified inten-
tion [27]. The limitation of maneuver-based prediction is the
ignorance of vehicle dependencies on surrounding vehicles,
leading to wrong predictions [22]. This work aims to predict
HDV’s future trajectory by capturing the HDV’s interaction
with its surrounding vehicles. Hence, an interaction-based
model is used in this work as it accurately captures the
vehicle’s interaction with its surrounding vehicles. Markov
model variants are among the popular choices for probabilistic
interaction aware prediction. Results from Hidden Markov
Models [28] [29] and Partially Observable Markov Models
[30] [31] showed promising results in trajectory prediction
considering HDV interactions. However, high computational
demand is a major bottleneck for implementing these methods
in real-time. One solution with low computational cost is using
a sequential learning model to capture the complex influence
of surrounding vehicles on the vehicle considered.

This work uses a sequential learning model called Long
Short-Term Memory (LSTM) for trajectory prediction. The
LSTM model developed in [32]–[34] shows prominent results
in trajectory prediction but fails to integrate with AV decision
making. Only a few works like [35] combined the LSTM
prediction into the AV decision making framework. However,
they did not consider the interaction with surrounding ve-

hicles and possible uncertainties from the LSTM model. It
is essential to recognise that prediction from learned models
is not 100% accurate. Traditional methods often quantify
uncertainties in training and then integrate uncertainties to
make predictions [36] [37]. Nonetheless, these approaches
often demand complex and laborious training procedures.
In contrast, this work aims to simplify the training process
while effectively capturing model uncertainties. This approach
quantifies uncertainties during the model validation stage,
incorporates them during real-time predictions, and provides
efficient and reliable predictions.

After obtaining a feasible reference trajectory for the AV
navigation, an efficient controller is needed to track the refer-
ence. The nonlinear model predictive controller (NMPC) is
adopted as it can generate optimal control policy for con-
strained nonlinear systems. The prediction model, constraints,
and cost function can be specified in nonlinear forms, offering
better stability and reliability over the linear MPC [38]. NMPC
is suitable for the proposed work as it adopts a nonlinear
bicycle model traveling on a constrained road.

The rest of the paper is organized as follows. Section II
introduces the overall architecture and the vehicle model.
Section III details the target vehicle position prediction and un-
certainty quantification, Section IV presents the Bézier curve
based trajectory planning and velocity generation, Section
V explains the decision making process for AV navigation,
Section VI details the reference tracking using NMPC and
Section VII provides the simulation results. Section VIII draws
the conclusions. The main contributions of this paper are:

• A complete architecture is proposed for AV safe navi-
gation, which consists of a predictor to predict human
driver trajectory, a trajectory and velocity planner for the
AV, a safety assessor to ensure the feasibility of generated
trajectory, and a controller to track the final planned
trajectory and velocity.

• A novel computationally efficient control point placement
is proposed for cubic piecewise Bézier curve suitable
for real-time application. A trajectroy replanning using
Bézier curve is also proposed to deal with abnormal
behaviors of other traffic participants.

• A path modification strategy is proposed with a low com-
putational load, which is critical when the AV approaches
the barrier during forced LC.

• An efficient way to contain the uncertainties from the
learning model without complicating the model training
process is proposed for safe AV navigation.

II. PROBLEM DESCRIPTION AND DESIGN OVERVIEW

This section outlines the driving environment and the safety
distances that AV must maintain while performing the LC.
Additionally, details of a realistic vehicle model that captures
the real-world vehicle’s dynamics are introduced. Also, the
detailed architecture for safe AV navigation is described.

A. Problem Description

Figure 1 shows the forced LC scenario, where the ego
vehicle is controlled to merge between the target and lead
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Fig. 1. Dynamic lane change scenario considered in this paper.

vehicles in the merging lane as a barrier in the traveling lane
is encountered. The ego vehicle is an AV, while the other
vehicles in the scenario are HDVs. The safe distance to be
maintained between the AV and the lead vehicle is defined as:

Sdf = Thvego + 1.5Lego (1)

where vego and Lego are the longitudinal velocity and vehicle
length, respectively. The term 1.5Lego is the constant safe
distance that the ego vehicle must maintain from the lead
vehicle, even when the ego vehicle’s longitudinal velocity is
zero. For a safe normal LC, the value of Th is chosen as 1.5
s [39]. However, achieving a normal safe space in real-time
may not always be possible. Therefore, Th can be reduced till
0.7 s to allow for a more aggressive LC [39]. Consequently,
the width of the safe merging area is obtained by substituting
different values of Th from 1.5 to 0.7 s.

This work employs the front-steered dynamic bicycle model
[40] to represent the AV dynamics, as shown in Fig. 2. The
model center of gravity is marked as CoG. The model uses
a linear tire model based on the small slip angle assumption,
where the lateral tire forces will be proportional to the slip
angles. The dynamics of the vehicle are governed by

v̇x = a+ ψ̇vy

v̇y =
Fyf cos(δf ) + Fyr

M
− ψ̇vx

ψ̇ =
vx

Lf + Lr
tan(δf )

ψ̈ =
LfFyf cos(δf )− LrFyr

Iz
ẋ = vx cos(ψ)− vy sin(ψ)

ẏ = vx sin(ψ) + vy cos(ψ)

(2)

where vx and vy are the longitudinal and lateral velocities,
respectively. ψ represents the yaw angle. M is the vehicle
mass. Iz is the moment of inertia along the z axis. Lf and Lr

represent the distance from the front and rear wheels to the
CoG, respectively. x and y represent the global longitudinal
and lateral positions of the vehicle in the inertial coordinates,
respectively. a is the vehicle longitudinal acceleration. δf is
the steering angle. Fyf and Fyr represent the lateral tire forces
in the front and rear wheels that are given by

Fyf = −Cfαf , Fyr = −Crαr (3)

y

x
ψ

αr

Fyr

δf

αf

Fyf
vy

vx

Co
G

Lr

Lf

Fig. 2. Dynamic bicycle vehicle model.

where Cf and Cr are the front and rear cornering stiffness.
αf and αr are the front and rear slip angles defined by

αf = δf −arctan
vy + Lf ψ̇

vx
, αr = − arctan

vy − Lrψ̇

vx
(4)

The AV model used in NMPC assumes linear tire forces as
mentioned in (3), while the ego vehicle in Fig. 1 takes into
account nonlinear tire forces [41]. Thus, the lateral tire forces
in (3) are modified to

Fyf = −
2αf,opαfFyf,max

αf,op
2 + αf

2
, Fyr = −

2αr,opαrFyr,max

αr,op
2 + αr

2
(5)

where αf,op and αr,op are the optimal slip angles for the front
and rear tires, respectively. The maximum lateral forces in the
front (Fyf,max) and rear (Fyr,max) tires are

Fyf,max =
Cfαf,op

2
, Fyr,max =

Crαr,op

2
(6)

B. Overall Architecture for AV Safe Navigation

The overall architecture of the proposed AV safe navigation
system design is outlined in Fig. 3. The system is initiated
by collecting real-world data, then the data is pre-processed
for training and validating a sequential learning model. The
learned model will be utilized for predicting the future location
of the target vehicle in real-time. To handle uncertainties in the
learned model, a bivariate error ellipse defines a boundary that
captures prediction errors. The ego vehicle planning module
utilizes a Bézier curve to generate an LC trajectory and a
velocity profile considering passenger comfort. The planned
LC trajectory is then compared with the predicted future
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Fig. 3. AV decision making framework including the target vehicle position prediction and uncertainties.

trajectory of the target vehicle in a decision making module to
estimate the feasibility of LC. If the LC cannot be performed,
the AV reverts the decision to lane keeping. After the final path
and velocity are obtained from the decision making module,
they are tracked by the AV using the NMPC controller.

III. TARGET VEHICLE PREDICTION

This section introduces the network structure, the training
process of the HDV prediction model, and the mitigation to
tackle the uncertainties in making reliable predictions.

A. LSTM for Target Vehicle Position Prediction

An Encoder-Decoder LSTM architecture for the target ve-
hicle position prediction is shown in Fig. 4. An LSTM cell
in the encode-decoder architecture captures the dependencies
between the past and current information using different gating
operations [33]. The LSTM mechanism is defined as

Ft = σ(WXFXt +WHFHt−1 + bF )

It = σ(WXIXt +WHIHt−1 + bI)

Ot = σ(WXOXt +WHOHt−1 + bO) (7)
Ct = Ft ⊙ Ct−1 + It ⊙ tanh(WXCXt +WHCHt−1 + bC)

Ht = Ot ⊙ tanh(Ct)

where the subscripts t and t−1 represent the current and past
time steps, respectively. σ and tanh are the nonlinear activation
functions. Ft, It, and Ot represent the forget, input, and output
gates. Ct is the cell state. Ht is the hidden state. WXF , WHF ,
WXI , WHI , WXO, WHO, WXC , and WHC are the weight
matrices and bF , bI , bO, and bC are the bias vectors. A ⊙ B
represents the Hadamard product between quantities A and B.
The encoder summarizes the input sequence from Xh1 to Xhi

to fixed size context vector represented as the weighted sum of
the final hidden state Hhi of the encoder LSTM. The context
vector is then provided as an input to the decoder at each time
step to generate the output sequence. Also, the decoder’s cell
and hidden states are initiated with the encoder’s last cell state
(Chi) and hidden state (Hhi).

To show the influence of surrounding vehicles on the target
vehicle, the input for each time step will be the surrounding
vehicles’ states relative to the target vehicle and the states
of the target vehicle. In Fig. 4, the interaction period varies
from h1 to hi, and the prediction horizon varies from hp1
to hp. The time step between the inputs of the interaction
horizon and the outputs of the prediction horizon is 0.1 s.
The encoder inputs are: Xinput = [Xh1, Xh2, . . . , Xhi] where

L
S

T
M

L
S

T
M

L
S

T
M
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Fig. 4. Encoder-Decoder LSTM for position prediction.

Xn = [X target,n, X target,n − Xego,n, X target,n − X lead,n, X target,n

− X lag,n], with n ∈ [h1, hi]. Input states Xvehicle,n where
vehicle ∈ [target, ego, lead, lag] are the vehicles’ position
and velocity in the x− y direction and the yaw angle ψ.
Therefore, there will be 20 inputs at each time step. The time
step between each input is 0.1 s. The outputs from the decoder
are: Youtput = [Yhp1, Yhp2, . . . , Yhp] where Ym = (xtm, ytm)
with m ∈ [hp1, hp] is the position of target vehicle in the
x− y coordinates. All the input and output data are normalized
before training the network due to considerable differences in
the scale of each state using

Datanorm =
Data−Datamin

Datamax −Datamin
(8)

where Datamax and Datamin are the maximum and minimum
values of Data, respectively. In scenarios where the lead
vehicle is absent, +1 is assigned to the x− y positions, while
other input states are set to zero, indicating the minimal
influence of the lead vehicle on the target vehicle. Similarly,
-1 is assigned when the lag vehicle is absent. The interaction
period hi was substituted with 1 s, 2 s, and 3 s, respectively,
to choose the best result.

Table I shows the range of network parameters used to
optimize the network. The number of neurons in the network
refers to the LSTM memory cells stacked at each time step
to capture sequential dependencies. The batch size divides the
training dataset into a fixed-length input fed to the network to
update its weights and biases. Each batch will be fed to the
network to make the prediction, and then these predictions will
be compared to the ground truth to update the weights and
biases. This work uses an Adam optimizer with a constant
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TABLE I
RANGE OF NETWORK PARAMETERS CONSIDERED

Parameters Values
Number of neurons 32, 64, 128
Batch size 5:10:145
Epoch 10:20:700

Fig. 5. Scenario from INTERACTION dataset used in the study.

learning rate of 0.001 in updating these parameters. Epoch
refers to the number of times the neural network has processed
the entire dataset to update the network parameters.

The model has been trained, tested, and validated by investi-
gating a forced LC scenario in China from the INTERACTION
dataset [42]. The target vehicle’s interaction period with the
surrounding vehicles and the output prediction period have
been heuristically separated to train the prediction model,
similar to [34]. The interaction horizon ends when the ego
vehicle driven by a human shows a lateral deviation for LC
or attempts the LC. Figure 5 shows an example test case,
illustrating the heuristic selection of the interaction horizon
endpoint. A total of 895 interaction is collected from the
dataset to train and test the model. Out of which, 75% is
used for training and the rest for testing. The dataset contains
around 80% successful and 20% unsuccessful lane changes.

B. Handling Uncertainties using Error Ellipse

Uncertainties in the LSTM prediction must be critically
considered. A bivariate variance-covariance error vector is
used to construct an error ellipse that captures the model errors
in both x and y directions. After that, a linear transformation
is performed to obtain the eigenvalues and eigenvectors to
determine the orientation of the error ellipse, as the x− y
positions are highly correlated. The transformed matrix is
to find the new ellipse equation and the angle at which the
ellipse is aligned. The square root of the largest and smallest
eigenvalues are the length of the ellipse semi-major axis and
semi-minor axis, respectively. The ellipse equation after linear
transformation is

EIG
(
σ2

x σxy
σxy σ2

y

)
⇒ x2

λ1
+
y2

λ2
= s (9)

where EIG refers to eigenvalue transformation, σx2 and σy
2

are the variance along x and y axis, respectively; σxy is the
covariance between x− y coordinates; λ1 and λ2 are the
largest and smallest eigenvalues, respectively; s is the chi-
square value. This work uses a chi-square value of 5.991,

Fig. 6. Bivariate Error Ellipse with 95% and 97% confidence factor.

corresponding to the 95% confidence factor [43]. The ellipse
orientation angle is

ϵellipse = atan

(
ν1(1)

ν1(2)

)
(10)

where ν1(1) and ν1(2) are the first and second components
of the largest eigenvector, respectively. An error ellipse after
linear transformation on an example dataset with different
confidence factors is shown in Fig. 6. The ellipse size increases
and covers more error data points as the confidence factor
value increases. As the expanded ellipse would occupy more
navigation space, the confidence factor value is set to 95%.

IV. EGO VEHICLE PLANNING

This work focuses on local trajectory and velocity planning
for an LC scenario with the following assumptions: precise
waypoints representing the midpoints of both merging and
traveling lanes are obtained before starting the journey. The
scenario also contains a smooth trajectory connecting these
waypoints called the “global path”. The vehicle tracks the
global path before and after a maneuver is performed. The LC
trajectory always starts from the global path in the merging
lane. Initial acceleration at the start of LC is zero.

A. Lane Change Trajectory Planning

To reduce the complexity of higher-order parametric curves
without compromising the curvature continuity, a cubic Bézier
curve is used for trajectory planning with the general form of

P (u) =

3∑
i=0

( ni )u
i(1− u)3−iPi (0 ≤ u ≤ 1) (11)

where Pi represents the control points in the Cartesian coor-
dinates. The curve starts at u = 0 and ends at u = 1. The
curvature of the curve in Cartesian coordinates is

K(u) =
ẋ(u)ÿ(u)− ẏ(u)ẍ(u)

(ẋ(u)2 − ẏ(u)2)
3/2

(12)

where ẋ and ẍ are the first and second derivates of the curve
in the x direction, respectively, and ẏ and ÿ are the first and
second derivates of the curve in the y direction, respectively.
A piecewise curve is used, where P0 to P3 refers to the control
points of the first Bézier curve B1, and P4 to P7 the control
points of refers to the second Bézier curve B2.
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Fig. 7. Waypoint based trajectory planning using Bézier curve.

For a smooth curve transition from B1 to B2, the curves
must obey the C0, C1, and C2 continuity criteria. Hence, the
control points, the first and second derivatives at the end of B1
and the beginning of B2 should be equal, as described below.

C0 continuity, B1(1) = B2(0)

P3 = P4

C1 continuity, Ḃ1(1) = Ḃ2(0)

P3 − P2 = P5 − P4

C2 continuity, B̈1(1) = B̈2(0)

P3 − 2P2 + P1 = P6 − 2P5 + P4

(13)

This work proposes a waypoint-based planning suitable for
both straight and curved paths. The procedures and require-
ments to generate a LC curve are:

• The first control point P0 will be at the center of gravity
of the ego vehicle.

• The second control point P1 will be on the tangent from
the first control point P0 and the immediate waypoint
after P0 in the direction travel, displaced at distance d
from P0.

• P3 will be half the length of the total curve in the x
direction and half the height of points P1 and P7 in the y
direction. Therefore, P3 will be at the center of the road
when the lanes have equal dimensions and are parallel.
Also, P3 will be the starting point of B2, taken as P4.

• P6 lies on the intersection from extending the tangent
from P1 to P4 and the tangent in the direction of P7 to
the waypoint before P7 in the Merging Lane. Hence, P6

will be the same distance d for symmetric B1 and B2,
occuring when lanes are in parallel with the same width.

• The control point P2 will be in the direction of tangent
from P1 to P3 and at a half distance between P1 and P3.
Similarly, P5 will be at the center of P4 and P6.

Figure 7 shows the trajectory generation steps using way-
points, detailed in Algorithm 1. The parameter d is estimated
by iteration that aims to minimizes the lateral acceleration as
in Algorithm 1. The total linear length L, depends on the lead
vehicle position after t seconds. W is the linear width between
control points P0 and P7. If the lead vehicle is absent, L is the
length that bounds the maximum lateral acceleration (|ay,max|)
considered to optimize passenger comfort .

Algorithm 1: Bézier curve generation

1 Input: Plead,t, Sdf, ∆, L0

2 CASE 1 - Length known
3 L = P0 + (Plead,t - Sdf)
4 d = P0:increment:L/2
5 for i=1:length (d) do
6 P1 = P0 + d(i)t1
7 P3 = 0.5[L,W ]
8 P2= 0.5D1t3 from P1

9 P4= P3

10 P6 = intersection point after extending t2 and t3
11 P5 = 0.5D2t3 from P4

12 for u=0:1 do
13 Generate the 1st and 2nd Bézier curves using

(11)
14 end
15 Compute the curvature K using (12)
16 Kmax = max(abs(K))
17 ay(i) = v2xKmax

18 end
19 [ay , idx] =min(ay)
20 d = d(idx)
21 CASE 2 - Length to be estimated
22 Input: L0

23 while |ay| < |ay,max| do
24 CASE - 1
25 L= L+ ∆
26 end
27 L = L− ∆
28 d = d(idx)

Algorithm 1 shows two cases of curve generation: L is
known and needs to be determined. ay is the lateral accel-
eration, ∆ is a small increment value, and Plead,t refers to the
final lead vehicle position at the end of AV LC duration. t1
refers to the unit tangent vector from the start point P0 to
the immediate next waypoint in the traveling lane, t2 refers to
the unit tangent vector from the endpoint P7 to the previous
waypoint in the merging lane, and t3 refers to the unit tangent
vector from P1 to P3. D1 refers to the distance between P1

and P3, and D2 refers to the distance between P4 and P6. For
case 2, the initial guess for the Bézier curve length is taken as

L0 = 3vego (14)

where L0 is the initial curve length. Note that control points
P1, P2, P3, P5 and P6 lie on the same tangent, thus C0 to C2
continuity are satisfied as mentioned in (13). Curves B1 and
B2 will be symmetric if the lead vehicle is absent.

If an obstacle is detected in the traveling lane, P3 of the
B1 curve can be placed to leave a safe distance between the
obstacle and the AV. According to the Bézier curve property,
the control points will have precise control over the curve and
can be adjusted to avoid this obstacle. Finally, B2 curve can be
generated depending on the final position of the lead vehicle
as described in Algorithm 1, or can be symmetric to the B1
curve if the merging lane is empty.
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Fig. 8. Waypoint based trajectory replanning using Bézier curve.

B. Trajectory Replanning

A trajectroy replanning method is proposed to modify the
LC decision if required. Trajectroy replanning will consider
uncertainties from the target vehicle, including delays from
the target vehicle prediction system or unexpected aggressive
acceleration to block the ego vehicle planned LC. Algorithm 1
is modified with the following steps for trajectory replanning:

• The second control point will be tangent to the vehicle’s
current heading direction at a distance d. Distance d is
obtained via iteration that gives a minimum of maximum
lateral accelerations obtained with different d values.

• In the presence of a lead vehicle in the traveling lane, the
Bézier curve length L depends on the final position of the
lead vehicle after t seconds. If the lead vehicle is absent,
the algorithm finds a length that contains |ay,max| to
the considered maximum limit. The other control points
remain similar to the LC trajectory.

Figure 8 shows the steps involved in replanning, where the
green curve refers to the initial B1 planned for the LC, P0

refers to the start point of trajectroy replanning where the AV
decides to abandon LC, and t1 refers to the unit tangent vector
from P0 to the current heading direction. Assuming the target
vehicle travels along the center lane, the maximum limit of d,
marked as a red cross, is obtained by subtracting the target
and ego vehicles’ half-width from merging lane center lane to
ensure safety between the vehicles. It is not always valid to
assume that the target vehicle follows the center of the lane.
To this extent, the maximum limit of d can be modified to
the upper border of the traveling lane, ensuring the trajectroy
replanning is contained within the traveling lane.

C. Global Path Modification

The AV must consider the scenarios when the LC maneuver
cannot be performed before the barrier. In this case, the AV
must consider the approaching barrier, stop at a safe distance
from the barrier and be ready to merge at the next LC
opportunity. This is done differently from the works of [44]–
[46], where the controller solves an optimization problem to
ensure a safe distance from the barrier in addition to the
trajectory tracking. The modified global path aims to ease
the computational load of the controller while obtaining a
trajectory that avoids collision into a barrier. Meanwhile,

Lego

Scene-1

Scene-2

Lglobal

Lglobal

Lego

Lego

Ego vehicle

    Ego vehicle

B

A D

C

A

B C

D

Fig. 9. Global path modified while encountering a barrier.

the workload on the control system is reduced to track the
reference trajectory and velocity for lane keeping. This work
uses a cubic Bézier curve at the end of the traveling lane
to leave a safe distance from the barrier. Figure 9 shows the
modified global path for two different barrier shapes in the
traveling lane. The dashed-dotted line passing through the
center of the ego vehicle shows the initial global path, and
the red trajectory highlighted shows the modification added.
P3,global, marked as a red cross in Fig. 9, is the last control

point of the modified global path. Initial estimation for P3,global
to avoid collision is chosen as the difference between barrier
edge and Lego. However, if the initial estimation results in
collision, P3,global is moved backward. The process is repeated
until the AV obtains a collision-free trajectory that leaves
a safe distance of St from the barrier. Algorithm 2 shows
the pseudo-code to generate a modified global path Bglobal.
Collision check is carried out by ensuring the AV edge D
shown in Fig. 9 leaves a safe distance (Lego) from the barrier.
Point D is selected for the collision check as this will be the
first point to contact the barrier. The collision check process
uses a translation and rotation matrix described in line 9 of
Algorithm 2 to ease the computation.

In Algorithm 2, points Dr, D, Oorgin, and Segx,y ∈ R2

are in Cartesian coordinates. Dr refers to the final point after
translation and rotation of the AV edge D. Oorgin is the origin
considered for the rotation. The points A, B, and C of the
AV marked in Fig. 9 will be transformed similarly to point D
for projecting the AV shape to Bglobal. The length of the curve
(Lglobal) is 2.5 times the AV length (Lego), as the AV will be
cruising to a stop. Once the AV enters the modified global path,
the ego vehicle follows the trajectory till the end of the curve.
Therefore, only the B2 curve must be generated, and the length
of the B2 depends on the lead vehicle position. During LC,
if P3 of B1 obtained via Algorithm 1 moves beyond P3,global,
P3 will be taken as P3,global for safety.

This work also finds a point in the modified global path
marked as a black cross in Fig. 9, where the AV comes to rest
and is ready to change the lane. Before LC, it is necessary to
ensure that the AV stays in the traveling lane. This requirement
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Algorithm 2: Modified global path

1 Input: Collision = 1, Lego, Lglobal, Oorigin, P3,global, ∆,
St = 0.5 Lglobal, and AV corners (A,B,C, and D)

2 while Collision= 1 do
3 P0,global = P3,global - Lglobal
4 P1,global, P2,global = generated similar to P1 and P2

5 Bglobal = generate the curve similar to Algorithm 1
6 Segx,y=linspace(Bglobal,15)
7 θs = atan( ˙Segx/ ˙Segy)
8 for i=1:length (Segx,y) do

9 Dr =
[
cos(θs(i)) − sin(θs(i))
sin(θs(i)) cos(θs(i))

]
* (Oorigin-D)

+ Oorigin + (Segx,y(i) − Oorigin)
10 if Dr > St then
11 Collision = 1
12 P3,global = P3,global − ∆
13 else
14 Collision = 0
15 end
16 end
17 end

can be satisfied when the AV edge C does not cross the
boundary of the traveling lane. Restricting the AV within the
traveling lane can be done by modifying lines 10 to 15 in
Algorithm 2. The AV will be projected and cross-checked to
each point in Bglobal, to determine if C crosses the traveling
lane boundary. The black cross in Fig. 9 is taken as the point
before the edge C intersects with the traveling lane boundary.

D. Velocity Planning

1) Lane changing: Velocity planning for the planned trajec-
tory depends on velocity limits at each point, which depends
on maximum allowable lateral acceleration and curvature. The
relation between these quantities can be expressed as

vlimit =

√
|ay,max|
K

(15)

where vlimit is the velocity limit along the planned trajectory
and K is the curvature at the point. A trapezoidal acceleration
profile [47] is used in this work, considering the maximum
acceleration possible and the first derivative of acceleration
(jerk). A general case scenario as in Fig. 10 is considered,
where the profile includes 7 phases. Phases 1 to 3 are the
acceleration zone, phase 4 is the constant acceleration zone,
and phases 4 to 7 are the deceleration zone. The acceleration,
velocity, and traveled distance at time step t are

at = at−1 + Jt∆t
vt = vt−1 + at−1∆t+

1
2Jt∆t

2

st = st−1 + vt−1∆t+
1
2at−1∆t

2 + 1
6Jt∆t

3
(16)

where ∆t = ti − ti−1 and the time intervals for phases 1 to 3
are calculated using

∆t1 = ∆t3 = amax

Jmax
, ∆t2 =

vf−v0
amax

− amax

Jmax
(17)

Fig. 10. Velocity profile for lane change.

the velocities at each interval are

v1 = v0 +
1
2Jmax

(
amax

Jmax

)2

v2 = vf
v3 = vf − amax

2
amax

Jmax

(18)

and the total traveling distance for phases 1 to 3 is given by

s1,2,3 = (vf + v0)
amax

Jmax
+(

vf − a2
max

2Jmax

)2

−
(
v0 +

a2
max

2Jmax

)2

2amax

(19)

where v0 and vf refer to the initial and final velocities,
respectively, amax is the maximum longitudinal acceleration,
and jmax is the maximum allowable jerk.

The jerk value for phase 1 is +Jmax, phase 2 is 0, and
phase 3 is −Jmax. Phase 2 may be neglected if the traveling
distance is short. If the distance required to reach vf from
v0 is greater than the planned LC length, the AV accelerates
after completing the LC and performs lane keeping in the
merging lane until the desired velocity is achieved. Detailed
explanations and special cases of velocity profiles are given in
[47]. Phases 5 to 7 are the reverse case of phases 1 to 3, where
the velocity profile is calculated by swapping the jerk values
in phases 1 and 3. The initial velocity will be vmax, and the
final velocity be v0. Phase 4 depends on the total curvilinear
length of the Bézier (stotal), i.e., if stotal > s1,2,3 + s5,6,7, then
∆t4 is defined by (20).

∆t4 =
stotal − s1,2,3 + s5,6,7

vmax
(20)

2) Lane keeping: While performing lane keeping in a
forced LC scenario, the velocity planner must ensure that AV
decelerates from the traveling velocity to zero as it reaches the
resting point mentioned in Section IV-C. To this end, the ego
vehicle calculates the distance required to decelerate from the
current velocity to zero using (19) considering the maximum
deceleration rate and comfort. The velocity profile for lane
keeping will be the deceleration phases from 5 to 7 in Fig. 10.

V. DECISION MAKING

The data collected for the study contained LC scenarios with
final target velocity reaching up to 11 m/s. Approximately
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Fig. 11. Flow diagram for feasibility check.

79% of LC velocity occurs between 2 to 6 m/s. Hence,
the average LC duration is 4.5 s. The target vehicle position
prediction is limited to 3 s as a longer horizon leads to a larger
position error. Moreover, a larger position error increases the
error ellipse size, so more navigation space is excluded. While
limiting the target vehicle prediction horizon to 3 s, AV will
cover around 66% of its total LC trajectory, leading to a
reliable decision. It is preferred to leave a safe gap between
the target and ego vehicles, similar to (1), throughout the LC
process. However, while considering this safe gap, AV LC’s
success rate is drastically reduced compared to human drivers.
Hence for this work, during the prediction horizon of 3 s, the
minimum safety threshold to be kept between the target vehicle
and the AV is taken as the length of the target vehicle. Thus, a
safety threshold equivalent to the length of the target vehicle
is added with the outputs from the encoder-decoder LSTM to
guarantee safe navigation. This padded output will be added
to the ground truth and used to construct the error ellipse to
avoid further calculations.

Figure 11 shows the flow chart for the feasibility check.
The initial value of τ with 1.5 s will be substituted in (1) to
find the last control point of LC trajectory P7. Once the LC
trajectory is generated using Algorithm 1, the corresponding
velocity is obtained, as mentioned in Section IV-D . Once the
trajectory and velocity are planned, the AV position after 3 s
is projected using rotation and translation matrix as described
in Algorithm 2, into the LC trajectory to check for collision
with the error ellipse. Since the error ellipse does not consider
the width of the target vehicle while checking for collision,
the target vehicle width is added with the ego vehicle width
for a more comprehensive collision assessment. If there is no
collision with the error ellipse, the trajectory is selected as the
final LC trajectory and velocity. If there is a collision, the value
of τ is reduced, and the process collision check is repeated.
The process continues till τ reaches 0.7 s. If collisions happen
to all the LC trajectories the LC decision is abandoned, and
the AV continues to drive in the traveling lane and selects the
lag vehicle as the next target vehicle.

VI. TRAJECTORY AND VELOCITY TRACKING

An NMPC is used for trajectory and velocity tracking. The
following discretized prediction model derived from (2), using

the Euler method with sample time Ts, is used to obtain the
control sequence for the NMPC.

vx(k + 1) = vx(k) +
(
a+ ψ̇(k)vy(k)

)
Ts

vy(k + 1) = vy(k) +

(
Fyf cos(δf ) + Fyr

M

−ψ̇(k)vx(k)
)
Ts (21)

ψ(k + 1) = ψ(k) +

(
vx(k)

Lf + Lr
tan(δf )

)
Ts

ψ̇(k + 1) = ψ̇(k) +

(
LfFyf cos(δf )− LrFyr

Iz

)
Ts

x(k + 1) = x(k) + (vx(k) cos(ψ(k))− vy(k) sin(ψ(k)))Ts

y(k + 1) = y(k) + (vx(k) sin(ψ(k)) + vy(k) cos(ψ(k)))Ts

The outputs of the controller are δf and a. The planning
module gives the reference lateral position, longitudinal posi-
tion and velocity. The controller has to bring the error between
state and reference to zero, i.e.

Xe = Xs −Xr = 0 (22)

where Xs represents the states of the prediction model (lateral
position, longitudinal position, and velocity) and Xr refers to
the corresponding reference state from the planning module.

The cost function to be minimized for the NMPC problem
can be formulated as

J(k) =

np∑
i=1

Xe(k + i)
T
QXe(k + i)+

nc∑
i=0

∆U(k + i)
T
R∆U(k + i)

(23)

The NMPC constraints are

Xs(K + i+ 1) = Fdis(Xs(K + i), U(K + i))

Xs(K) = Xs0

−amax ≤ a ≤ amax

−∆amax ≤ ∆a ≤ ∆amax

δf min ≤ δf ≤ δf max

∆δf min ≤ ∆δf ≤ ∆δf max

(24)

where the prediction and control horizons are denoted by nc
and np, respectively. Xs(K + i+1) defines the current states
as a discretized function (Fdis) of previous states (Xs(K+ i))
and inputs (U(K+ i)) as in (21). Xs0 represents the system’s
initial states. Xe is the tracking error as in (22). U ∈ Rm×1,
where m represents the number of control inputs. Q ∈ Rn×n is
the weight matrix for state error, and R ∈ Rm×m is the weight
matrix to penalize the rate of change of control inputs. −amax
and amax represent the maximum deceleration and maximum
acceleration, respectively. δf min and δf max represent the
minimum and maximum steering angle, respectively.

VII. SIMULATION RESULTS

Simulations have been carried out using MATLAB on a lap-
top with Intel Core i7-10850H CPU @ 2.70 GHz and 16 GB
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Fig. 12. Bézier curve and curvature considering a static and dynamic obstacle.

RAM. The vehicle parameters are as follows: M = 1573 kg,
Lego = 4.419 m, H = 1.44 m, Lf = 1.1 m, Lr = 1.58 m, Cf

= Cr = 50000 N/rad, Iz = 2873 kg ·m2, αf,op = 20◦, and αr,op
= 11◦. The comfort parameters are jerk, lateral acceleration,
and rate of change in the steering angle. Their values are:
|Jmax| = 1 m/s3, |ay,max| = 1 m/s2, and |∆δf min| = 2 ◦/s,
respectively. The parameters in the NMPC are: Ts = 0.1 s,
Q = diag(1, 1, 10), R = diag(10, 10), np = 5, nc = 3,
δf max = +30◦, δf min = −30◦, ∆δf min = −2◦/s, ∆δf max

= +2◦/s, amax = +2.5 m/s2, ∆amax = +1 m/s3, and Jmax

= ∆amax. The NMPC optimization problem is solved using
the MATLAB nonlinear optimization function fmincon.

The simulation results reported in Section VII-A show the
proposed trajectory planner’s details and advantages compared
to similar methods. Section VII-B covers the details of the
velocity planner efficiency and altering the velocity profile
according to the scenarios considered. Sections VII-C, VII-D,
and VII-E cover the results obtained from the NMPC con-
troller, the trajectroy replanning, and the modified global path,
respectively. Section VII-F details the results obtained from the
target vehicle prediction and AV planner integration using the
INTERACTION dataset.

A. Performance of Trajectory Planning

Figure 12 shows two planned LC trajectory for the AV
and its corresponding curvatures at a constant velocity of 20
m/s. The first trajectory represented with the solid lane, the
vehicle must quickly steer to avoid the static vehicle. Here, the
efficiency of the proposed method on precise curve control can

TABLE II
BÉZIER CURVE PROPERTIES COMPARISON

Bézier curve Curvature con-
tinuity

Trajectory
Length
(m)

Time
(ms)

Cubic piece-
wise

C1 in the ends
and C2 else-
where

79 16.7

Quadratic
piecewise [9]

C1 in ends and
joints

140 11.3

Quintic [17] C2 continuous 94 16.5

TABLE III
OBSTACLE AVOIDANCE BÉZIER CURVE COMPARISON

Bézier
curve

Time (ms) Obstacle avoidance

Cubic
piecewise

12.8 Achieved by control point
placement

Quadratic
piecewise
[9]

N/A Not defined

Quintic [17] greater
than 16.5

Achieved by multiple curve
generation via iteration

be observed. The control point P3 is placed at a distance of
1.5Lego from the rear of the static lead vehicle and the curve is
contained within the control points. The dotted lines in Fig. 12
show the second case where the lead vehicle in the traveling
lane is moving. The curve here is generated to limit |ay,max|
to 1 m/s2 according to Algorithm 1.

It should be noted that the curves are C1 continuous at
the beginning and end since they start from a non-zero value.
However, these values are close to zero. Consider the solid
curve in Fig. 12, which gives a curvature value of ≈ 0.0027
m−1 at the beginning and end. For this, if front steering angle
approximation by Ackerman is considered:

δAckerman = tan−1(LfK) = 0.17◦ (25)

the steering angle value is within the comfort steering angle
change (∆δ) that the controller can handle. Thus, the steering
angle change from zero to the specific curvature value at the
beginning and end can be carried out without affecting per-
formance or passenger comfort. The same claim is mentioned
and supported in [8] for trajectory planning using a cubic
spline. While generating an LC Bézier curve using Algorithm
1 or a modified global path using Algorithm 2, any curve that
requires the initial steering angle computed using (25) to be
greater than the desired ∆δ is neglected. In such cases, the
curve length is increased, which reduces the curvature thus,
keeping the ∆δ within the comfort limit.

The results are compared with a quintic Bézier curve
[17] and a quadratic [9] piecewise Bézier curve. Table II
summarizes the results of a LC scenario that ignores the
obstacles. The traveling velocity is taken as 20 m/s. Quintic
and piecewise cubic curves are generated to limit |ay,max| to 1
m/s2. The quadratic piecewise Bézier curve is generated based
on the traveling velocity [9] rather than limiting |ay,max|. The
method used by [9] gives the least lateral acceleration with
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Fig. 13. Comparison of cubic piecewise, quadratic piecewise, and quintic
Bézier curves.

|ay,max| = 0.82 m/s2. However, considering the same velocity,
the curve length is significantly longer than other curves.

Table II lists the computational time when the trajectory
length L is unknown. The proposed method consumes slightly
longer computation time because both L and the parameter
d must be determined. Nonetheless, the computational time
for generating three curves is substantially low and can be
easily implemented for real-time application. It should be
noted that if L is known, the computation time for the cubic
piecewise Bézier curve can be further reduced. Figure 13
shows the cubic, quadratic, and quintic Bézier curves and
their corresponding control points. The quintic Bézier curve
uses a longer length to achieve the same lateral acceleration
compared to the proposed method.

Table III compares the three methods during an obstacle
avoidance scenario. For the quintic curve, as there are no
control points in the middle, the curve cannot be precisely
directed. Hence, obstacle avoidance is achieved by iteration,
where multiple curves are generated until a collision-free
curve is obtained. The computation time for the quintic Bézier
curve increases during obstacle avoidance, as it may require
generating multiple curves to find the optimal one. In contrast,
the computational time reduces during obstacle avoidance for
cubic piecewise curves as it can be treated as the case where
L is known. Since the precise location of the obstacle and
safe distance to be kept from the obstacle are known, L is
determined before the curve generation. In any case, if L
has to be determined, unlike the quintic Bézier curve, the
computational time remains constant at 16.7 ms. For quadratic
Bézier curve [9], as the curve generation depends on the
velocity, obstacle avoidance is difficult and not covered in their
study.

B. Performance of Velocity Planning

Assume that the lead vehicle in the traveling lane is moving
for the static obstacle avoidance LC with a fixed curve length.
Considering a constant velocity of 20 m/s, |ay,max| comes
around 1.7 m/s2. In this case, limiting |ay,max| to the specified
range can be achieved by the velocity planner. Consider the
maximum limits for the vehicles as: |ay,max| = 1 m/s2, |amax|
= 1.25 m/s2 and |Jmax| = 1 m/s3. The final velocity considered

Fig. 14. : AV Lane change trajectory, velocity and acceleration.

is also 20 m/s. Figure 14 shows the planned trajectory, ve-
locity profile, acceleration profile, and corresponding velocity
limits. The AV should decelerate from the current velocity to
V1,min, while phases 1 to 3 of the velocity planner are used.
Similarly, the AV should accelerate from V2,min to 20 m/s.
Phases 5 to 7 are used for acceleration. For region V1,min to
V2,min, general velocity planning is used to maximize the travel
time. For this region, the AV cannot achieve the amax since the
distance required to travel from V1,min to V2,min is short. Hence,
velocity is planned with a lower value of amax for this region.
The traveling distance from V1,min to 20 m/s is calculated
using (19), which is around 48 m. However, with the initial
trajectory marked in red, the V1,min point comes around 9
m. Hence, the AV should perform lane keeping around 39
m to achieve V1,min. The same calculation applies for the
acceleration case V2,min to 20 m/s. Lane keeping regions are
marked as green line in Fig. 14. V1,min and V2,min appear at
an equal distance since the road shape is symmetric.

C. Performance of Trajectory and Velocity Tracking

Figure 15 shows the results of trajectory and velocity
tracking in the dynamic environment mentioned in Fig. 14. The
Root mean square error came out to be 0.0059 m for trajectory
reference tracking and around 0.016 m/s for velocity tracking.
The time required to complete the tracking from start to end is
around 2.21 s. From the trajectory and velocity obtained from
the planner, the time required to complete the LC scenario
mentioned in Fig. 14 is around 8.3 s. The NMPC can provide
the control inputs to complete the LC trajectory and velocity
tracking within a quarter of the total LC duration. Thus,
the NMPC used for trajectory tracking can be efficiently
implemented in real-time applications.
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Fig. 15. Trajectory and velocity tracked using NMPC.

Fig. 16. Bézier curve based replanned trajectory during unexpected delay in
target vehicle position prediction.

D. Performance of Trajectroy Replanning

Consider an unlikely scenario with the proposed decision
making framework where a considerable delay was observed
in the target vehicle trajectory prediction. The AV initially
planned an LC trajectory and started the LC process in this
case. However, the prediction obtained from the encoder-
decoder LSTM shows that the target vehicle would block
the LC, and there is no feasible trajectory for LC. Therefore
the AV changes the LC decision initiated to lane keeping.
Figure 16 shows resulting trajectory obtained after changing
the LC decision to lane keeping. The green line shows the
initially planned LC trajectory, assuming that the target vehicle
yields for the ego vehicle. Instead, the target vehicle blocks
the LC. Consider the traveling velocity of 20 m/s and a lead
vehicle in the traveling lane with constant velocity. Since the
LC occurs at a higher velocity, the LC duration is taken as 6 s
[9]. In Fig. 16, the filled plot shows the vehicles in the initial
position, and the other box shows the position after 6 s. The
replanned trajectory length is obtained by subtracting the final

Fig. 17. Modified global path, velocity profile for lane keeping, and LC
trajectories from modified global path with different lead vehicle position.

Fig. 18. Forced LC Scenario from INTERACTION dataset.

position of the lead vehicle with Sdf in (1). A constant velocity
replanning is considered here. For this scenario |ay,max| came
around 0.9 m/s2. If the obtained |ay,max| is higher than the
considered |ay,max|, either the replanning duration is increased,
or a variable velocity planning is considered.

E. Analysis on Forced LC

Figure 17 shows the modified global path in red and
LC trajectories from the traveling lane to the merging lane.
Different LC length indicates merging behind the lead vehicle
at different positions. Consider the ego vehicle in the traveling
lane travels at 10 m/s. Using (19), the distance required to
decelerate with 1.5 m/s2 from 10 to 0 m/s comes around
40.83 m. The deceleration distance lies between the green and
red cross in Fig. 17. For this work, the deceleration limit for
lane keeping is considered lower than −amax to consider the
possibility of an LC. Hence, AV does not have to start from
−amax to begin the LC maneuver effectively.



13

(a) (b) (c)

(d) (e) (f)

Fig. 19. Trajectory prediction from encode-decoder LSTM with error ellipse.

F. Analysis on the INTERACTION Dataset

Figure 18 shows the INTERACTION scenario plotted in
MATLAB with a random LC trajectory. The plot indicates
waypoints, global paths on traveling and merging lanes, re-
spectively, and the modified global path. The green plot shows
the rear of the lead vehicle position during the LC. The red
spot indicates the position of ego vehicle after 3 s, which is
used to check for collision with the target vehicle.

Figures 19(a) to 19(e) show the prediction results when the
encoder-decoder LSTM is implemented in the test set against
the ground truth. The red dotted line without the solid block
represents the initial interaction horizon for 3 s. The plot
demonstrates the effectiveness of the error ellipse, encompass-
ing the target vehicle deviation within the ellipse boundary.
Upon analyzing the different combinations of network struc-
tures, the best results arises from the encoder-decoder LSTM
architecture featuring 128 neurons, 570 epochs, and 25 batch
sizes. However, the LSTM architecture with 64 neurons, 550
epochs, and 15 batch sizes also presents a competitive result.
Since the prediction result shows only a small variation in
the average RMSE (≈0.1 m in the x and ≈ 0.005 m in the
y direction), the model with 64 neurons, 550 epoch, and 15
batch size is chosen as the final combination to avoid a deep
structure and overfitting. The error ellipse is constructed in
each second to show the error propagation in the prediction
horizon. It is clear that as the prediction horizon increases, the
ellipse size also increases, taking up useful navigation space.

Table IV shows the effect of different interaction horizons
(hi) on the prediction horizon (hp), where xe and ye show the
RMSE error in the x and y positions. For shorter predictions,
the worst performance emerges when hi = 1 s, and the
performance of hi = 2 s outperforms that of hi = 3 s. However,
the average xe is much larger when hi = 2 s and hp = 3 s,
even though the average ye is slightly better. Thus, when hp
= 3 s, the interaction horizon is set to 3 s. It is important to
note that the data should be normally distributed to construct

TABLE IV
EFFECT OF hi ON hp

hi = 1 s hi = 2 s hi = 3 s

hp(s) xe ye xe ye xe ye

0.0 to 1.0 1.47 0.18 0.77 0.07 0.82 0.08
1.1 to 2.0 2.1 0.23 1.22 0.09 1.24 0.10
2.1 to 3.0 2.61 0.28 1.95 0.12 1.56 0.13

Average 2.06 0.22 1.31 0.09 1.2 0.10

the ellipse. With a large test sample size containing 223 LC
scenarios, with each LC scenario recorded at 0.1 s time step
satisfies this condition and makes the error data large enough
at each second to construct the ellipse. If the test samples
were fewer, one ellipse could be plotted with all the error data
accumulated over the prediction horizon.

Figures 20 to 23 show some of the selected decision making
scenarios in the test set. Figure 21 and 20 show the results
two successful LC cases when τ = 1.5 s, including their
corresponding velocity and acceleration profiles from the test
samples. In both cases, acceleration phases 1 to 3 are used for
velocity planning, as the curve satisfies the considered |ay,max|
due to the low-velocity. Figure 21 shows the results of the case
where LC happens before the modified global path. In this
case, the AV follows the global path till the end and plans the
LC trajectory considering the lead vehicle position. Figure 20
shows the results of the LC case where the initial P3 for the
LC trajectory goes beyond P3,global. In this instance, P3 is
modified to P3,global to ensure a collision-free trajectory, as
mentioned in Section IV-C.

Figure 22 shows the results of the case where the LC
trajectory with τ = 1.5 s collides with the error ellipse. The
collision is not directly observable in the plot. Nevertheless,
when the target vehicle width gets added to the AV, LC
trajectory intercepts with the error ellipse. However, a safe
LC trajectory is achieved when τ = 0.9 s, enabling the AV to
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Fig. 20. AV Lane change scenario from modified global path and correspond-
ing velocity profile.

Fig. 21. AV Lane change scenario and corresponding velocity profile.

execute the LC successfully. The velocity profile for the LC
trajectory when τ = 0.9 s is also displayed in Fig. 22.

Figure 23 shows the case where the target vehicle blocks
the LC of the AV. Here, two LC paths are depicted, i.e., when
τ = 1.5 s and when τ = 0.7 s. AV collides with the ellipse in
both cases and performing an LC is unsafe.

Upon expanding the proposed decision making framework
on the test set, the AV was able to detect all the blocking
behaviors of the target vehicle during the LC. On the other
hand, about 2 % of the successful LC were misidentified as a
blocking scenario. This may be due to the assumptions used in
the study, like starting the LC from the global path, or because

Fig. 22. AV LC scenario with different τ values and velocity profile.

Fig. 23. Unsuccessful LC scenario.

human drivers might have performed an aggressive LC and the
AV considered these LC unsafe.

VIII. CONCLUSIONS

The paper proposes a holistic approach for automated
driving, combining an efficient lateral maneuver planner using
piecewise cubic Bézier curves with a safe decision mak-
ing framework. Compared to the quintic Bézier curve, the
piecewise curve shows better controllability, shorter trajectory
length, and compatible curvature characteristics. The coupled
velocity planner generates reference velocities considering
passenger comfort, and an NMPC ensures accurate tracking
of the planned trajectory and velocity with negligible errors.
The decision making framework incorporates an LSTM-based
encoder-decoder architecture for predicting the future position
of the target vehicle, ensuring collision-free courses by bound-
ing uncertainties with error ellipses. Although initial lateral
position deviation by the AV affects the accuracy of successful
lane changes, the framework successfully detects blocking
behaviors of all vehicles. Future work involves determining the
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lead vehicle position in addition to the target vehicle position
for determining the Bézier curve length.
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