
 

 

1 Supplementary Material: ABM Description 1 

We describe the ABM in terms of structure and agents’ behaviours in this section. The 2 

NetLogo source code for the ABM is also available in a GitHub repository upon request from 3 

the first author. 4 

1.1. Parameters: Agents and Pixels 5 

On the one hand, the agents’ parameters are grouped into five categories: (1) market 6 

preferences; (2) land preferences; (3) budget constraints; (4) demography; and (5) relocation 7 

parameters. On the other hand, Pixels have four parameter categories: (1) land use; (2) 8 

location; (3) land plot attributes; and (4) markets. For conciseness, Table S1 lists the agents 9 

and pixels parameters. 10 

Table S1, Agents and Pixels Parameters 11 

 Parameter Name Value Units Type 

A
g

en
ts

 

Exploration Trials [1, UC] Trial Integer 

Relocation Trials [1, UC] Trial Integer 

Age UC Year Integer 

Breeding Age UC Year Integer List 

Relocation Age (s) UC Year Integer List 

Death Age UC Year Integer 

Integrated Motivation Per Market [0, 4] N/A Float 

Identified Motivation Per Market [0, 4] N/A Float 

Introjected Motivation Per Market [0, 4] N/A Float 

External Motivation Per Market [0, 4] N/A Float 

Area Weight [0, 1] N/A Float 

Number of Street Exposure Weight [0, 1] N/A Float 

Proximity to Service Weight [0, 1] N/A Float 

Budget [0, 1] N/A Float 

% Spent on Non-Housing Commodities [0, 100] N/A Float 



 

 

P
ix

el
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Land Use Type N/A N/A Character 

Location 
Min(x-cor) – Max(x-cor) Pixel Integer 

Min(y-cor) – Max(y-cor) Pixel Integer 

Area UC m2 Float 

Number of Street Exposure [1, 4] Street Integer 

Market Type N/A N/A Character 

Unit Price [0, UC] Price / m2 Float 

UC stands for UnConstrained, N/A stands for not applicable, cor stands for coordinate 

1.2. Agents Behaviour: Utility and Budgets 12 

During relocation, agents calculate both the output and procedural utility for the pixels under 13 

consideration. Subsequently, agents calculate an overall utility to assess and compare the 14 

different pixels (see equation 1). 15 

 𝑈𝑖,𝑏|𝑗 = 𝑂𝑈𝑖,𝑏 + 𝑃𝑈𝑖,𝑏|𝑗  (1) 16 

Where, for a buyer b buying a land plot i given a process j, Ui,b|j is the overall utility, OUi,b 17 

is the output utility and PUi,b|j is the procedural utility. 18 

Output utility depends on the utility per land plot attributes and the agents’ preference 19 

weights. The ABM uses a linear utility formula (Acevedo et al., 2008; Magliocca & Walls, 20 

2018; Satake et al., 2007 e.g. ) to calculate output utility (see equation 2). It also uses a linear 21 

normalization for the utility per attribute (see equation 3).To account for the law of 22 

diminishing marginal utility, the ABM uses an observed diminishing utility factor instead of 23 

assuming a logarithmic formula.  24 

 𝑂𝑈𝑖,𝑏 = ∑ (𝑢𝑖,𝑎 ∗ 𝛾𝑏,𝑎)𝑛
𝑎=1  (2) 25 

 𝑢𝑖,𝑎 = {
(

𝑧𝑖,𝑎

max(𝑧𝑎)
) ∗ 𝜎𝑏|𝑎,  𝑖𝑓 𝑏𝑒𝑛𝑖𝑓𝑖𝑡 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑤𝑖𝑡ℎ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒′𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒

(1 −
𝑧𝑖,𝑎

max(𝑧𝑎)
) ∗ 𝜎𝑏|𝑎, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3) 26 



 

 

Where ui,a is the utility of a land plot i due to an attribute a, γb,a is the weight attached by a 27 

buyer b to a land plot attribute a, zi,a is the value of the attribute a of a land plot i and σb|a is 28 

the diminishing utility factor for a buyer b given an attribute a. 29 

For procedural utility, agents calculate the aggregate procedural utility and then transform it 30 

to a scale comparable to the output utility. The procedural utility weight factor (βi,b|j) is 31 

introduced to the ABM as an input based on contextual observations. Details on the 32 

mathematical formulation of procedural utility is available in the paper. 33 

For budgets, agents calculate their Willingness to Pay (WTP) during the relocation process. 34 

WTP depends on the utility gained from the pixel, the agent’s budget and the ratio it spends 35 

on the non-housing commodities (Filatova et al., 2009, 2011) (see equations 4 and 5). 36 

 𝑊𝑇𝑃𝑖,𝑏|𝑗 =
𝑌𝑏∗𝑈𝑖,𝑏|𝑗

2

𝑞
𝑖′,𝑏|𝑗′
2 +𝑈𝑖,𝑏|𝑗

2  (4) 37 

 𝑞𝑖′,𝑏|𝑗′ =
(𝜌2𝑅𝑏−1)∗max(𝑈𝑖,𝑏|𝑗)

2
 (5) 38 

Where WTPi,b|j is the willingness of a buyer b to pay for a land plot i given a market process 39 

j, Yb is the budget of a buyer b, Ui,b|j is the overall utility of a land plot i that a buyer b is 40 

considering given a market process j, qi’,b|j’ is a budget factor of a buyer b given a highest 41 

utility land plot i’ using a process j’, ρ is a constant factor, Rb is the ratio a buyer b spends on 42 

non-housing commodities from his whole budget Y, max(Ui,b|j) is the highest utility gained 43 

by a buyer b from any land plot i using a process j. 44 

1.3. Pixels: Price formulation 45 

For prices, pixels first calculate their price per meter squared based on the distance from 46 

service attribute. This unit price is then used along with the pixels’ area to calculate an overall 47 



 

 

price (see equation 6). These overall prices are then modified using a variability factor and a 48 

markets dynamics factor (see equation 7). 49 

 𝑃𝑖|𝑗 =
𝑌𝑠∗𝑈𝑖,𝑏|𝑗

2

𝑞
𝑖′,𝑏|𝑗′
2 +𝑈𝑖,𝑏|𝑗

2  (6) 50 

Where Pi|j is the price of a land plot i given set by a seller s a market process j, Ys is the budget 51 

the seller s expects for potential buyers, Ui,b|j is the overall utility of a land plot i that a seller 52 

s is considering given a market process j, qi’,s|j’ is a budget factor of a seller s given a highest 53 

utility land plot i’ using a process j’, ρ is a constant factor, Rs is the ratio a seller s expects 54 

buyers to spend on non-housing commodities from their whole budget Ys, max(Ui,s|j) is the 55 

highest utility gained by a seller s from any land plot i using a process j. 56 

For clarity, the variability factor accounts for different price ranges in a realistic context. It 57 

remains constant for each pixel along the whole simulation. In contrast, the markets dynamics 58 

factor changes across the simulation according to the market type. It keeps prices constant 59 

for the fixed and random markets, and it allows for price fluctuations in supply-demand 60 

markets (see equation 8) 61 

 𝛿𝑗 = {
         1                           𝑓𝑜𝑟 𝑓𝑖𝑥𝑒𝑑 𝑎𝑛𝑑 𝑟𝑎𝑛𝑑𝑜𝑚 𝑚𝑎𝑟𝑘𝑒𝑡𝑠

max (
𝐷𝑗

𝑆𝑗
, 𝛿𝑗

′)             𝑓𝑜𝑟 𝑠𝑢𝑝𝑝𝑙𝑦 − 𝑑𝑒𝑚𝑎𝑛𝑑 𝑚𝑎𝑟𝑘𝑒𝑡
 (7) 62 

Where Dj is the number of pixels agents demand in a given market j over a specific period, 63 

Sj is the number of pixels supplied in a given market j over a specific period and δj’ is the 64 

highest market dynamics factor of a market process j. 65 

In summary, pixels calculate their own prices similar to how buyers set their WTP. The 66 

calculated prices slightly differ due to different expected buyers’ budgets and price variability 67 



 

 

factors. During the runs, prices remain constant for the fixed and random markets, whereas 68 

they vary in the supply-demand market. 69 

1.4. Events Sequence 70 

The ABM includes two phases: the setup phase (see Figure S3); and the run phase. In the 71 

setup phase, the model generates a set of pixels within a space of given dimensions. The 72 

pixels are allocated a land use type, a set of attributes and a market type. At that point, the 73 

model allocates residential and service pixels and calculates the distances from service for 74 

each pixel. The price of each pixel is accordingly allocated finalising an abstract 75 

representation of a land use context.  76 

The model then introduces a set of agents with three attributes preferences, four motivational 77 

values per market and a set of demographic properties. These agents apply the exploration 78 

sub-model – they move to a service pixel to explore a random set of unoccupied pixels within 79 

their awareness radius (bounded rationality). Agents calculate the output, procedural and 80 

overall utilities for each explored pixel. The mean values of the overall utilities dictate a 81 

utility threshold for satisfactory pixels.  82 

Using such threshold, the agents start the relocation sub-model. Similar to the exploratory 83 

one, agents randomly search for vacant pixels, but they calculate their WTP for every selected 84 

pixel (see equations 4 and 5); agents relocate to the first pixel that is satisfactory (utility > 85 

utility threshold) and affordable (WTP > price) – the model is satisficing and not maximizing. 86 

If the agent fails to find a satisfactory pixel within its maximum relocation trials, it leaves the 87 

system. After all agents undergo the exploration and relocation sub-models, the setup phase 88 

ends (see Figure S1). 89 



 

 

  90 

Figure S1, Two Initialization Samples Using 1500 Initial Agents and five service pixels 91 

The run phase is applied over a yearly basis. Every year new immigrants are introduced to 92 

the system and all current agents age. On the one hand, the new immigrant agents follow the 93 

same setup procedures.  94 

On the other hand, the current agents’ ages are compared to their corresponding breeding 95 

age(s), relocation age(s) and death age. At breeding age(s), the agents create a similar child 96 

agent at an age of zero. This child agent remains attached to its parent agent until it reaches 97 

its relocation age. At relocation age(s), the agents undergo the exploration and relocation sub-98 

models. Three differences are present however: (1) the current occupied pixel is included in 99 

the mean utility threshold; (2) if an agent finds a satisfactory and affordable pixel, its previous 100 

pixel becomes vacant; (3) the final allocated pixel is chosen based on the target pixel’s market 101 

type. For fixed and supply-demand markets, the agent simply relocates to its chosen pixel. 102 

For the random market, the agent is allocated a random pixel within its awareness radius. At 103 

the death age, the agents leave the system and their pixels become vacant. The only exception 104 

is when an agent dies while still having an attached child. In this case, the child occupies its 105 

dead parent’s pixel until it reaches its own relocation age.  106 



 

 

After all ages are checked and all immigrants are introduced, the model modifies the pixels’ 107 

prices according to their market type. Fixed and random market prices remain constant across 108 

the simulation. However, the supply-demand market prices are modified according to the 109 

changes in the number of occupied and unoccupied pixels during this simulation year (see 110 

Figure S2). Subsequently, the year terminates and the ABM model proceeds to the next year. 111 

 112 

Figure S2, Pixel Price Sample from a Simulation Run Where Darker Colours Indicate Lower 113 

Prices 114 

 115 



 

 

 116 

Figure S3, Immigrant Agent and New Agent Initialization Phase Flow Chart 117 



 

 

 118 

Figure S4, Aging Agents Run Phase Flow Chart 119 

1.5. Market Representation 120 

The ABM is capable of representing markets including budget bound agents with oppressed 121 

competitive bidding. That is, buyers acquire a land plot one their willingness to pay is higher 122 

than the price (i.e., willingness to accept) the seller sets. According to Huang et al. (2013), 123 

this model falls on ‘level 1’ across a four level categorisation based on market 124 

representations. Level 0 (L0) includes agents that are not budget bound. Level 0.5 (L0.5) 125 

includes a bidding process but without budget constrains; that is buyers have infinite money 126 

and bid based on utility only. Level 1 (L1) includes budget bound buyer but without 127 

competitive bidding; sellers make a transaction once they find a buyer with a willingness to 128 



 

 

pay higher than the set price. Level 2 (L2) includes budget bound buyers that engage in 129 

competitive bidding. This is the closest representation to markets that include bidding; 130 

however, it is the most complex. 131 

Huang et al. (2013) tested ABMs representing markets at the four levels through an 132 

experiment that adjusts agents heterogeneity. Their results show high discrepancies between 133 

levels that include budget constraints (L0 and L0.5) and levels that do not (L1 and L2). L1 134 

and L2 showed similar populations, close transaction prices and close budget spatial 135 

distribution (Theil index) at the end of the run. This implies that L1 ABMs are sufficient to 136 

represent markets, and L2 ABMs is a more accurate representation of reality that leads to 137 

minor changes in the outcomes. Deciding to add competitive bidding (L2) or not (L1) 138 

requires addressing the aim of the ABM and the study at hand.  139 

The aim of this study is to showcase the effect of procedural utility on the urban context in 140 

terms of segregation and satisfaction of agents (see manuscript). Agents in this model have 141 

preconceptions towards markets in the form of PU. This is unique to this application unlike 142 

ABMs where agents do not have any preconception towards the details of the exchange 143 

process they undergo. Abstracting the markets does not affect these preconceptions, and 144 

accordingly does not affect their impact on the results. Therefore, it is acceptable to simplify 145 

markets by suppressing bidding in this ABM, so long as we simulate more than one market 146 

and associate a set of motivations to each. This does not highly affect the results as long as 147 

budgets are considered as per Huang et al. (2013).  148 

That is not to say adding further details to the presented ABM market mechanisms does not 149 

lead to any benefits. It can improve the predictive capacity of the ABM – in exchange for 150 

increased complexity and challenges with interpreting the effect of procedural utility on 151 

urban trends. We stress that providing a predictive model is not the aim of this paper. Hence, 152 

adding more details to the exchange process in the ABM is beyond the focus of this study. It 153 



 

 

adds to the model complexity without contributing to the effect of procedural utility on urban 154 

trends.1 155 

2 Notes on Experiments and Greater Cairo Case Study 156 

We apply the model to the case of Greater Cairo because it is a context with multiple formal 157 

informal dynamics. The ABM represents Greater Cairo’s context as a set of pixels 158 

representing formal and informal settlements. Figure S5 depicts the spatial distribution of 159 

formal and informal settlements in Greater Cairo, and it shows its representation in the ABM.  160 

We define three experiments (E1, E2 and E3), and we run each experiment with the 161 

procedural utility weight βi,b|j set to zero (β0) and set based on observation in Greater Cairo 162 

(βGC). Experiment 1 assumes buyers are not budget bound. Experiment 2 assumes buyers are 163 

budget bound and sets prices to fixed values regardless of supply and demand. Experiment 3 164 

allows supply and demand to dictate land prices. We run each experiment for 30 years to 165 

explore urban growth and segregation trends. Figure S6 shows sample spatial results for the 166 

three experiments. For further details on the experiments, see manuscript. 167 

In this section, we extend the model results to a measure of isolation. We include a set of 168 

graphs for the diversity index results (see Figure S8). We then discuss the model validation 169 

in section 3. 170 

2.1. Isolation Results 171 

The isolation, in this study is a measure of the spatial distribution of satisfied and dissatisfied 172 

buyers, following a logic similar to Schelling’s (1971) model. If a buyer is surrounded by 173 

 

 

1 It should be noted that the authors incorporated a full bid-auction process in the ABM. By comparing different 

experiments, we observed similar effects for procedural utility on segregation as the ones presented in the 

manuscript. We concluded that minimising complexity is beneficial given our aim to highlight the effect of 

procedural utility, rather than develop a predictive model. 



 

 

more than four buyers with a different land market preference from themself, the buyer is 174 

considered isolated. 175 

2.1.1. Effects on Procedural Utility 176 

The level of spatial isolation is substantially lower for A1 buyers at E1-β0 in comparison to 177 

E1-βGC (see Figure S7). The percentage values reach a mean of 4.4 percent for E1-β0 and 178 

56.2 percent for E1-βGC after 30 years. However, A2 buyers have generally low isolation 179 

rates in both sets of βi,b|j runs. E1-β0 still has slightly lower A2 isolation percentages at 6.9 180 

percent in comparison to 11.6 percent at E1-βGC. At E1-β0, these low isolation values can be 181 

explained by the low net number of buyers. This leads to a lower number of neighbours per 182 

buyer agent. Hence, a buyer is more likely to have less than four surrounding buyers with 183 

opposed market preferences. In such case, the buyer under consideration is counted as non-184 

isolated.  185 

At E1-βGC, the high isolation rate for A1 buyers can be explained through the high net number 186 

of buyers and the low number of M1 plots. Similarly, as with satisfaction, this combination 187 

leads to shortages in M1 plots which diverts A1 buyers to their less preferred M2 plots. These 188 

diverted buyers are very likely to be isolated since M2 plots are generally more occupied by 189 

A2 buyers due to their appealing procedural utility. In contrast, the M2 buyers’ isolation rate 190 

is kept low at E1-βGC due to the abundance of M2 plots and the price barrier for M1 plots. In 191 

other words, A2 buyers are initially less likely to seek M1 plots due to their aforementioned 192 

shortage. Further, even if A2 buyers do try to relocate to M1 plots, high M1 prices and low 193 

A2 buyer budgets lead to high rates of unaffordability. 194 

2.1.2. Procedural Utility and Budgets 195 

The isolation of buyers is analysed for A1 and A2 buyers separately. For A1 buyers, E1-βGC 196 

has the highest mean percentage of isolated buyers, 56.3 percent at 30 years. E2-βGC and E3-197 

βGC have mean isolation rates of 19.1 percent and 20.8 percent, respectively. These isolation 198 



 

 

values align with observed spatial clustering of markets and the simulated satisfaction rates 199 

in GC. In E1-βGC, low satisfaction rates are associated with A1 buyers occupying M2 plots 200 

due to shortages in M1 plots (see Figure S6 in supplementary material). These A1 buyers 201 

have high numbers of A2 neighbours which leads to high isolation rates. However, by 202 

considering budgets and higher satisfaction rates, A1 buyers are more likely to buy within 203 

their preferred market. This leads to similar neighbours and substantially lower isolation 204 

values in E2-βGC and E3-βGC. 205 

For A2 buyers, similar trends are observed, but with lower isolation percentages. E1-βGC, E2-206 

βGC and E3-βGC rank from highest to lowest with minor differences – they have mean 207 

isolation values for A2 buyers of 11.6 percent, 8.2 percent and 4.4 percent respectively (see 208 

Figure S7). These low values may be because A2 birth rates are higher than A1, which leads 209 

to a higher population ratio in comparison to A1 buyers. Subsequently, A2 buyers are more 210 

likely to be surrounded by similar buyers leading to lower isolation rates. 211 

3 Validation 212 

The model validation is tied to our aim to understand the effect of procedural utility on the 213 

urban context. We do not aim to accurately represent GC and predict its urban future. Hence, 214 

it is not relevant to validate the model on the basis of its outputs. Instead, we apply the 215 

validation on the basis of the mechanisms of the decision-making process. 216 

The model is based on observed stated preferences in GC. During these observations, 217 

individuals are asked to choose between two realistic plots with different attributes in 218 

different land markets. The model replicates this decision process by: (1) restricting the 219 

agents choices between two land plots following the survey design; and (2) Generating the 220 

agents attributes based on the statistical relevance of the survey results. That is, all the 221 

attributes are generated over a normal distribution with a mean value from the survey results 222 

and a standard deviation of 10 percent. This reflects the 10 percent margin of error in the 223 



 

 

survey results. On that basis, the ABM is valid for understanding procedural utility as it 224 

replicates the behaviours observed in the GC survey.  225 

Although validating the ABM results is not relevant, the model outcomes are close to the 226 

historical urban growth in GC. The model runs for 30 years from 1975 to 2005, and 227 

experiment 3 is the closet representation of markets in GC. The final population in the year 228 

2005 in experiment 3 reaches approximately 13,000,000 individuals – by assuming every 229 

household to include 5 individuals. This is of the same magnitude of an estimated population 230 

of 15,000,000 in GC in 2005. The ABM then has a prediction error of 13.33 percent, and this 231 

can be improved by increasing the sample size in GC.232 



 

 

 233 

Figure S5, GC map (left) and ABM GC Initialisation State (right) 234 



 

 

 235 

Figure S6, Sample Simulation Results after 30 Year Runs 236 
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 239 

Figure S7, Isolation Results 240 
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Figure S8, Diversity Index for M1 and M2 Plots at 30 Years 244 
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