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1 Gaussian Derivative Basis Filters
The basis filters can be computed through the multiplication of a Gaussian windowing func-
tion G and the Hermite polynomials H where Hm(x) computes the mth order partial derivative
along the x axis. Accordingly, a 2-D Gaussian Derivative basis filter can be computed as fol-
lows:

B(x,y,σ ,m) = (−1)mxmyHmx
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Where x and y are the coordinates at which the filter is evaluated, σ controls the size of
the filter, and m= (mx,my) defines the order of the partial derivatives in the x and y directions
respectively. The Hermite polynomials are defined as:

H0(x) = 1
H1(x) = 2x

H2(x) = 4x2 −2

H3(x) = 8x3 −12x

H4(x) = 16x4 −48x2 +12

H5(x) = 32x5 −160x3 +120x

(2)

2 Gaussian Derivative Graph Convolution
Equation 3 defines our convolution operation for single channel input and single channel
output layer.

f̂ j =
|S|

∑
m=0

wm ∑
i∈K j

fiB(δxi j,δyi j,σ j,Sm) (3)
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Figure 1: Visualization of Gaussian Derivative Basis Functions. The order of the partial
derivative in the y direction increases from left to right, and the x direction increases from
top to bottom. Our choice of basis functions for a given layer is determined by the hyperpa-
rameter M. The basis includes all Gaussian derivatives where the maximum order of their
partial derivatives is ≤ M

fi is the feature associated with the vertex ui ∈ U in the input features, and w is a set
of learned weights that weigh the responses to individual basis filters. B refers to equation
1 that computes basis filter weights. δxi j and δyi j are the delta offset labels associated with
the edge ei j ∈ E. σ j is the size of the filter when centred on the output node v j ∈ V . S =
{(0,0),(0,1)...(M,M)} where Sm defines the order of the partial derivatives in the x and y
directions, for the mth basis filter. M is a hyperparameter that defines the maximum order of
a partial derivative that is permitted for the basis filters, i.e. any filter with a partial derivative
greater than M is not included in the basis. K j refers to the neighbourhood of the output
vertex v j ∈ V , i.e. the set of vertices in U that have an edge with v j. Additionally, we
normalise the filter values for each basis filter by subtracting its mean and dividing by its ℓ2
norm for a given neighbourhood K. One exception is for the 0th order gaussian derivative,
i.e. a normal gaussian filter, which we normalize by dividing by its ℓ1 norm.

3 Border vs. Zero Padding
In early pilot testing, we observed that zero padding would frequently lead to the collapse of
the attention module (i.e. it would predict the same fixation regardless of the input image).
We conduct an experiment comparing how this affects performance using a 2 fixation se-
quential network on the Imagewoof. We observe a decrease from 79.2% accuracy to 77.8%.
This is approximately in line with the performance improvement from a 1 fixation network
to a 2 fixation network (Figure. ??). We could not ascertain the exact cause of this peculiar-
ity. Fortunately, border padding is readily provided in most frameworks meaning this is not
problematic.

4 Training Details (ImageNet100)
Networks are trained with a batch size of 64, and the AdamW [2] optimizer. We perform a
linear warmup on the learning rate for 5 epochs, followed by cosine annealing for 85 epochs
[1]. During training, we use trivial data augmentation [3], followed by resizing the shortest
side to 256px and a random resized crop of 224× 224. At test time, we resize the shortest
side to 256px and perform a 224×224 centre crop. Images are normalized using Imagenet
mean and standard deviation. We use a learning rate of 0.004 and a weight decay of 0.005
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Foveated Graph
ConvNeXt atto config

Imagenet 100k
Settings

Fovea Radius 40%
Stem - kernel size 16
Stem - sigma 1.0
Stem - max order 4
Blocks - kernel size 49
Blocks - sigma 0.8
Blocks - max order 4
Downsampling - kernel size 4
Downsampling - sigma 0.6
Downsampling - max order 0

Table 1: Stem refers to the initial convolution layer in the ConvNeXt architecture, Blocks
refers to the configuration of the depthwise convolution layers in the NeXt Blocks. Down-
sampling refers to the configuration of the downsampling layers that reduce spatial dimen-
sionality between stages in the ConvNeXt architecture. Kernel size is analogous to kernel
size in ordinary convolution layers. Sigma determines the size of Gaussian derivative basis
filters; max order refers to the maximum order of partial derivatives used in the basis.

for the feature extractors. For the localization network, we use a learning rate of 0.0004
for the final 1× 1 convolution (or MLP in case of the full affine spatial transformer) and a
learning rate of 0.00004 for the convolution stages as done in [4]. We found many methods
that use a localisation network collapse during training; therefore, we use weights pre-trained
on Imagenet-1K for the localisation networks. We evaluate the model on the test set using
the best-performing model checkpoint on the validation set. We include the implementation
details that are specific to our graph convolutional ConvNeXt atto in table 4.

4.1 Implementation details (MNIST)

We utilise a 4-layer feature extractor for all methods, with 64 3× 3 filters in each layer,
followed by batch normalisation and ReLU activation. We found that larger networks did not
increase performance. For our method, we use our graph convolution in place of the standard
2D convolution operator and a filter size of 9 so that the filters are the same size as in the
standard grid convolution case. The convolutional features from the final layer are global
average pooled and passed to a linear classifier. We restrict the number of input pixels to the
feature extractor to be 282, the size of a normal MNIST image. We use the same architecture
as the feature extractor, without average pooling and the linear classifier, for methods that
use a separate localisation network to adjust the sampling grid. The localisation networks
receive a 28×28 uniformly down-sampled image as input.

We independently perform a random hyperparameter search across learning rate and
weight decay for all methods. We use the AdamW optimiser [2] and train with a batch size
of 64 for 20 epochs, which we found was sufficient for networks to converge. We use a 5-
epoch linear warm-up schedule followed by 15-epoch cosine decay [1]. We report accuracy
on the test set using the best-performing model checkpoint on the validation set.
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